JP2002270236A - Polymer gel electrolyte and cell - Google Patents
Polymer gel electrolyte and cellInfo
- Publication number
- JP2002270236A JP2002270236A JP2001070041A JP2001070041A JP2002270236A JP 2002270236 A JP2002270236 A JP 2002270236A JP 2001070041 A JP2001070041 A JP 2001070041A JP 2001070041 A JP2001070041 A JP 2001070041A JP 2002270236 A JP2002270236 A JP 2002270236A
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- vinylidene fluoride
- electrolyte
- gel electrolyte
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 163
- 239000011245 gel electrolyte Substances 0.000 title claims abstract description 60
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims abstract description 69
- 239000000178 monomer Substances 0.000 claims abstract description 52
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- 239000011347 resin Substances 0.000 claims abstract description 14
- 229920005989 resin Polymers 0.000 claims abstract description 14
- 239000011159 matrix material Substances 0.000 claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 239000003505 polymerization initiator Substances 0.000 claims abstract description 10
- 239000008151 electrolyte solution Substances 0.000 claims description 56
- 239000000203 mixture Substances 0.000 claims description 20
- 239000000243 solution Substances 0.000 claims description 20
- 239000003960 organic solvent Substances 0.000 claims description 18
- 229920006037 cross link polymer Polymers 0.000 claims description 16
- 238000004132 cross linking Methods 0.000 claims description 12
- 150000008040 ionic compounds Chemical class 0.000 claims description 9
- 238000004770 highest occupied molecular orbital Methods 0.000 claims description 7
- 125000000524 functional group Chemical group 0.000 claims description 6
- 230000000379 polymerizing effect Effects 0.000 claims description 3
- 238000005263 ab initio calculation Methods 0.000 claims 1
- 230000009969 flowable effect Effects 0.000 claims 1
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 claims 1
- 239000003792 electrolyte Substances 0.000 abstract description 20
- 239000007788 liquid Substances 0.000 abstract description 6
- 239000011255 nonaqueous electrolyte Substances 0.000 abstract 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 21
- 238000006116 polymerization reaction Methods 0.000 description 21
- 239000000843 powder Substances 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 11
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 9
- 229910013870 LiPF 6 Inorganic materials 0.000 description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 230000014759 maintenance of location Effects 0.000 description 7
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 7
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- -1 ethylene, propylene Chemical group 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000005518 polymer electrolyte Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical compound FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- CHDVXKLFZBWKEN-UHFFFAOYSA-N C=C.F.F.F.Cl Chemical compound C=C.F.F.F.Cl CHDVXKLFZBWKEN-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 238000000367 ab initio method Methods 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000004386 diacrylate group Chemical group 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 239000011883 electrode binding agent Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000004776 molecular orbital Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000010557 suspension polymerization reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012719 thermal polymerization Methods 0.000 description 2
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical class ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- OFHQVNFSKOBBGG-UHFFFAOYSA-N 1,2-difluoropropane Chemical compound CC(F)CF OFHQVNFSKOBBGG-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- FYBFGAFWCBMEDG-UHFFFAOYSA-N 1-[3,5-di(prop-2-enoyl)-1,3,5-triazinan-1-yl]prop-2-en-1-one Chemical compound C=CC(=O)N1CN(C(=O)C=C)CN(C(=O)C=C)C1 FYBFGAFWCBMEDG-UHFFFAOYSA-N 0.000 description 1
- NOSXUFXBUISMPR-UHFFFAOYSA-N 1-tert-butylperoxyhexane Chemical compound CCCCCCOOC(C)(C)C NOSXUFXBUISMPR-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- JJBFVQSGPLGDNX-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)COC(=O)C(C)=C JJBFVQSGPLGDNX-UHFFFAOYSA-N 0.000 description 1
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 description 1
- LTHJXDSHSVNJKG-UHFFFAOYSA-N 2-[2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOCCOC(=O)C(C)=C LTHJXDSHSVNJKG-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- XOJWAAUYNWGQAU-UHFFFAOYSA-N 4-(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCOC(=O)C(C)=C XOJWAAUYNWGQAU-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- 125000004861 4-isopropyl phenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- SAPGBCWOQLHKKZ-UHFFFAOYSA-N 6-(2-methylprop-2-enoyloxy)hexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCCCOC(=O)C(C)=C SAPGBCWOQLHKKZ-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- PYVHTIWHNXTVPF-UHFFFAOYSA-N F.F.F.F.C=C Chemical compound F.F.F.F.C=C PYVHTIWHNXTVPF-UHFFFAOYSA-N 0.000 description 1
- 206010019332 Heat exhaustion Diseases 0.000 description 1
- 206010019345 Heat stroke Diseases 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013375 LiC Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- ULQMPOIOSDXIGC-UHFFFAOYSA-N [2,2-dimethyl-3-(2-methylprop-2-enoyloxy)propyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(C)(C)COC(=O)C(C)=C ULQMPOIOSDXIGC-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000005284 basis set Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- MSODWKQDERPZOY-UHFFFAOYSA-N bis[2-(2-hydroxycyclohexyl)phenyl]methanone Chemical compound OC1CCCCC1C1=CC=CC=C1C(=O)C1=CC=CC=C1C1C(O)CCCC1 MSODWKQDERPZOY-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- MYWGVEGHKGKUMM-UHFFFAOYSA-N carbonic acid;ethene Chemical compound C=C.C=C.OC(O)=O MYWGVEGHKGKUMM-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001786 chalcogen compounds Chemical class 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical compound FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 239000012933 diacyl peroxide Substances 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- NKHAVTQWNUWKEO-UHFFFAOYSA-N fumaric acid monomethyl ester Natural products COC(=O)C=CC(O)=O NKHAVTQWNUWKEO-UHFFFAOYSA-N 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 1
- 239000012705 liquid precursor Substances 0.000 description 1
- 150000002641 lithium Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- CWOBGOXHYZMVNY-UHFFFAOYSA-N methyl 2,3,5,6-tetrachloro-4-[methoxy(methyl)carbamoyl]benzoate Chemical compound CON(C)C(=O)C1=C(Cl)C(Cl)=C(C(=O)OC)C(Cl)=C1Cl CWOBGOXHYZMVNY-UHFFFAOYSA-N 0.000 description 1
- CXHHBNMLPJOKQD-UHFFFAOYSA-M methyl carbonate Chemical compound COC([O-])=O CXHHBNMLPJOKQD-UHFFFAOYSA-M 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- NKHAVTQWNUWKEO-IHWYPQMZSA-N methyl hydrogen fumarate Chemical compound COC(=O)\C=C/C(O)=O NKHAVTQWNUWKEO-IHWYPQMZSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 1
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
- Graft Or Block Polymers (AREA)
- Conductive Materials (AREA)
- Primary Cells (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水系電池、特に
リチウムイオン電池、を形成するに適した高分子ゲル電
解質、該高分子ゲル電解質を使用した非水系電池、該非
水系電池の製造法ならびに該高分子ゲル電解質の形成用
前駆体組成物に関する。The present invention relates to a polymer gel electrolyte suitable for forming a non-aqueous battery, particularly a lithium ion battery, a non-aqueous battery using the polymer gel electrolyte, a method for producing the non-aqueous battery, and The present invention relates to a precursor composition for forming the polymer gel electrolyte.
【0002】[0002]
【従来の技術】近年電子技術の発展はめざましく、各種
の機器が小型軽量化されてきている。この電子機器の小
型軽量化と相まって、その電源となる電池の小型軽量化
の要望も非常に大きくなってきている。少ない容積及び
重量でより大きなエネルギーを得ることが出来る電池と
して、リチウムを用いた非水系二次電池が、主として携
帯電話やパーソナルコンピュータ、ビデオカムコーダー
などの家庭で用いられる小型電子機器の電源として用い
られてきた。このリチウム非水系二次電池を更に高性能
化するため、正極−負極間にイオン移動媒体として高分
子電解質を使用することが提案されている。2. Description of the Related Art In recent years, the development of electronic technology has been remarkable, and various devices have been reduced in size and weight. Along with the miniaturization and weight reduction of this electronic device, the demand for the miniaturization and weight reduction of a battery serving as a power source for the electronic device has also become very large. Non-aqueous secondary batteries using lithium are used as power sources for small electronic devices mainly used in homes such as mobile phones, personal computers, and video camcorders as batteries capable of obtaining greater energy with a small volume and weight. Have been. In order to further improve the performance of this lithium nonaqueous secondary battery, it has been proposed to use a polymer electrolyte as an ion transfer medium between a positive electrode and a negative electrode.
【0003】すなわち、高分子電解質をイオン移動媒体
とすることにより、従来の電解液をイオン移動媒体とす
るものよりも、漏液が無いため、信頼性、安全性が向上
し、さらに薄型化、形状自由度が高くなるという利点が
得られ、更にパッケージの簡略化、軽量化が期待されて
いる。That is, since the polymer electrolyte is used as the ion transfer medium, there is no liquid leakage as compared with the conventional one using the electrolyte as the ion transfer medium, so that the reliability and safety are improved, and the thickness is further reduced. The advantage that the degree of freedom in shape is increased is obtained, and further simplification and weight reduction of the package are expected.
【0004】電解液を含まない高分子電解質は、イオン
伝導度が低く電池の放電容量が小さくなるなど、電池へ
の応用に要求される特性を満たしがたいので、電解液
(電解質溶液)を含み、イオン伝導度が高い高分子ゲル
電解質が注目されている。イオン伝導度は、一般に高分
子ゲル電解質中の電解液量が高くなる程高くなることが
知られている。他方、この高分子ゲル電解質には、電池
の小型化、高エネルギー密度化などの観点から膜強度が
強いこと、並びに電池の使用温度範囲、安全性などの観
点からは、高温でも正極と負極との間の絶縁性を維持す
ること、つまり耐熱性の向上が望まれている。A polymer electrolyte containing no electrolyte is difficult to satisfy the characteristics required for battery application, such as low ionic conductivity and a low discharge capacity of the battery. Therefore, the polymer electrolyte contains an electrolyte (electrolyte solution). Attention has been focused on polymer gel electrolytes having high ionic conductivity. It is known that the ionic conductivity generally increases as the amount of the electrolyte in the polymer gel electrolyte increases. On the other hand, this polymer gel electrolyte has a strong membrane strength from the viewpoint of battery miniaturization, high energy density, etc., and from the viewpoint of battery operating temperature range, safety, etc. Therefore, it is desired to maintain the insulation between them, that is, to improve the heat resistance.
【0005】しかし、上述した電解液の高濃度化による
電気化学的特性向上と、耐熱性を含めた膜強度の向上と
いう、要求とは、一般には相反するものであり、これら
を両立する高分子ゲル電解質を得ることは容易なことで
はない。[0005] However, the above-mentioned demands for improving the electrochemical characteristics by increasing the concentration of the electrolytic solution and improving the film strength including heat resistance are generally contradictory, and a polymer compatible with these requirements is required. Obtaining a gel electrolyte is not easy.
【0006】上記のような特性を改善した高分子ゲル電
解質を与えるために、電気化学的特性に優れたフッ化ビ
ニリデン重合体と、架橋重合体とを主成分とする複合マ
トリックス樹脂に電解液を含浸保持させて、高分子ゲル
電解質を形成する試みも、以下のようにいくつかなされ
ている。In order to provide a polymer gel electrolyte having improved properties as described above, an electrolytic solution is applied to a composite matrix resin containing a vinylidene fluoride polymer having excellent electrochemical properties and a crosslinked polymer as main components. Some attempts have been made to form a polymer gel electrolyte by impregnation and holding as follows.
【0007】(A)フッ化ビニリデン重合体溶解能を有
し且つ揮発性のTHF(テトラヒドロフラン)等の有機
溶媒と電解液との混合物中にフッ化ビニリデン重合体を
溶解した溶液に、更に二以上の官能基を有する多官能モ
ノマーと、カルボキシル基含有モノマーとを溶解し、得
られた溶液をキャスティング後、THFを蒸発させて得
た膜状物中のモノマーを架橋重合させて高分子ゲル電解
質を得る方法(特開平11−185524号公報)。カ
ルボキシル基含有モノマーの重合体により、電解液を高
濃度で保持することが意図されている。(A) A solution of a vinylidene fluoride polymer dissolved in a mixture of an organic solvent such as THF (tetrahydrofuran) and a volatile organic solvent having the ability to dissolve the vinylidene fluoride polymer. After dissolving a polyfunctional monomer having a functional group and a carboxyl group-containing monomer, casting the resulting solution, and evaporating THF, the monomers in the film-like material obtained are cross-linked and polymerized to form a polymer gel electrolyte. Method for obtaining (Japanese Patent Application Laid-Open No. 11-185524). It is intended that the polymer of the carboxyl group-containing monomer maintain the electrolyte at a high concentration.
【0008】(B)フッ化ビニリデン重合体の電解液中
への分散液中に多官能モノマーを溶解させて、該多官能
モノマーを架橋重合することにより電解液で膨潤したフ
ッ化ビニリデン重合体を生成した架橋重合体で保持させ
た高分子ゲル電解質を得る方法(特開平11−0866
30号公報)。(B) The vinylidene fluoride polymer swollen with the electrolytic solution is obtained by dissolving the polyfunctional monomer in a dispersion of the vinylidene fluoride polymer in the electrolytic solution and crosslinking-polymerizing the polyfunctional monomer. A method for obtaining a polymer gel electrolyte held by the formed crosslinked polymer (JP-A-11-0866)
No. 30).
【0009】しかしながら、これら方法で実現される高
分子ゲル電解質中の電解液含量は60〜80重量%程度
であり、イオン伝導度の向上の観点で、未だ充分とはい
い難い。本発明者等の研究によれば、後で本発明に関連
してより詳述するが、上記方法においては、フッ化ビニ
リデン重合体が電解液単独では、膨潤はするが溶解しな
い系を採用しているために、電解液の含有率の向上が不
充分になっているものと理解される。事実フッ化ビニリ
デン重合体が従来の電解液をイオン伝導媒体するタイプ
の非水系電池において、優れた正極あるいは負極バイン
ダーとして用いられた理由は、主としてその電気化学的
安定性に加えて、電解液には、膨潤はするが溶解しない
という優れた耐電解液特性によるが、本発明者らは、こ
のようなフッ化ビニリデン重合体の耐電解液特性が、高
分子ゲル電解質の形成には必ずしも有利でないことを見
出したのである。[0009] However, the content of the electrolyte solution in the polymer gel electrolyte realized by these methods is about 60 to 80% by weight, and it is still difficult to say that it is sufficient from the viewpoint of improving the ionic conductivity. According to the study of the present inventors, as will be described later in more detail in connection with the present invention, the above method employs a system in which a vinylidene fluoride polymer swells but does not dissolve in an electrolytic solution alone. Therefore, it is understood that the improvement of the content of the electrolytic solution is insufficient. In fact, vinylidene fluoride polymer has been used as an excellent positive electrode or negative electrode binder in conventional non-aqueous batteries that use an electrolyte as an ion-conducting medium, mainly because of its electrochemical stability, Swells but does not dissolve due to the excellent electrolyte resistance properties, but the present inventors have found that such electrolyte resistance properties of vinylidene fluoride polymers are not necessarily advantageous for the formation of polymer gel electrolytes. I found that.
【0010】[0010]
【発明が解決しようとする課題】すなわち、本発明の主
要な目的は、高い濃度で電解液を保持可能であり、高い
イオン伝導度を示す高分子ゲル電解質を提供することに
ある。That is, a main object of the present invention is to provide a polymer gel electrolyte which can hold an electrolyte at a high concentration and has a high ionic conductivity.
【0011】本発明の他の目的は、上記高分子ゲル電解
質を含む非水系電池、その効率的な製造方法、ならびに
上記高分子ゲル電解質の形成用前駆体組成物を提供する
ことにある。Another object of the present invention is to provide a non-aqueous battery containing the polymer gel electrolyte, an efficient method for producing the same, and a precursor composition for forming the polymer gel electrolyte.
【0012】[0012]
【課題を解決するための手段】本発明者らの研究によれ
ば、上述の目的の達成のためには、電解質溶液(電解
液)とフッ化ビニリデン重合体とが相溶性を有する組合
せを採用することが極めて望ましいことが見出された。According to the study of the present inventors, in order to achieve the above object, a combination in which an electrolyte solution (electrolyte solution) and a vinylidene fluoride polymer have compatibility is adopted. Has been found to be highly desirable.
【0013】本発明の高分子ゲル電解質は、上述の知見
に基づくものであり、イオン性化合物を有機溶媒に溶解
した電解質溶液(I)を、少なくとも(a)単独では上
記電解質溶液に溶解し得る種類および量のフッ化ビニリ
デン重合体と、(b)二以上の官能基を有する多官能モ
ノマーの架橋重合体とからなるマトリックス樹脂(I
I)、で固定してなることを特徴とするものである。本
発明の高分子ゲル電解質においては、好ましくは80〜
99重量%という高い電解質溶液含量が得られる。好ま
しくは、上記高分子ゲル電解質は、フッ化ビニリデン重
合体(a)が溶解された電解質溶液(I)中で多官能モ
ノマーを架橋重合することにより得られる。フッ化ビニ
リデン重合体(a)と電解質溶液(I)との相互溶解性
を改善するために、より好ましくは加温がなされる。The polymer gel electrolyte of the present invention is based on the above-mentioned findings, and the electrolyte solution (I) obtained by dissolving an ionic compound in an organic solvent can be dissolved at least (a) alone in the electrolyte solution. A matrix resin (I) comprising a type and amount of a vinylidene fluoride polymer and (b) a crosslinked polymer of a polyfunctional monomer having two or more functional groups.
I), characterized by being fixed by: In the polymer gel electrolyte of the present invention, preferably 80 to
A high electrolyte solution content of 99% by weight is obtained. Preferably, the polymer gel electrolyte is obtained by cross-linking and polymerizing a polyfunctional monomer in an electrolyte solution (I) in which a vinylidene fluoride polymer (a) is dissolved. In order to improve the mutual solubility between the vinylidene fluoride polymer (a) and the electrolyte solution (I), heating is more preferably performed.
【0014】上述の製法からも理解されるように、本発
明の高分子ゲル電解質を形成するマトリックス樹脂は、
フッ化ビニリデン重合体(a)と生成した多官能モノマ
ーの架橋重合体(b)の両者の高分子網目が相互に分子
レベルで絡み合ったいわゆる相互侵入高分子網目構造
(Interpenetratig PolymerN
etworks;以下、「IPN構造」と称することが
ある。但し、通常IPN構造においては、構成二ポリマ
ー鎖間の化学結合が生じていない方が普通であるが、本
発明では、フッ化ビニリデン重合体(a)と架橋重合体
(b)間の化学結合はあっても差し支えない)。このフ
ッ化ビニリデン重合体(a)と架橋重合体(b)との間
での良好なIPN構造が電解液の高濃度保持特性を発現
させているものと解される。これに対し、前記特開平1
1−086630号公報の方法では、フッ化ビニリデン
重合体が電解液に膨潤はされるが、溶解していない状態
で多官能モノマーの架橋重合が行われており、分子レベ
ルでの良好なIPN構造は形成されていないため、電解
液保持特性が不充分となっており、また不均一なゲルで
あるためイオンの均一伝導性にも欠けるものと解され
る。他方、特開平11−185524号公報の方法で
は、フッ化ビニリデン重合体と、架橋重合体と、カルボ
キシル基含有モノマーの重合体との間に一応のIPN構
造が形成されているものと解されるが、大量に使用した
揮発性有機溶媒の蒸発の過程で、良好な電解液保持特性
を発現させるIPN構造の形成が阻害されているのでは
ないかと解される。また、本発明では,フッ化ビニリデ
ン重合体(a)と電解質溶液(I)とが相互溶解性を示
す程度に親和性の良い組合せを採用しているため、これ
もIPN構造の電解質溶液保持特性を向上しているもの
と解される。As can be understood from the above-mentioned production method, the matrix resin forming the polymer gel electrolyte of the present invention comprises:
A so-called interpenetrating polymer network structure in which the polymer networks of both the vinylidene fluoride polymer (a) and the crosslinked polymer of the formed polyfunctional monomer (b) are entangled with each other at the molecular level.
networks; hereinafter, may be referred to as an “IPN structure”. However, in the IPN structure, it is normal that no chemical bond occurs between the constituent two polymer chains. However, in the present invention, the chemical bond between the vinylidene fluoride polymer (a) and the crosslinked polymer (b) is used. May be present). It can be understood that the favorable IPN structure between the vinylidene fluoride polymer (a) and the crosslinked polymer (b) expresses the high-concentration retention characteristics of the electrolytic solution. In contrast, Japanese Patent Laid-Open No.
According to the method disclosed in Japanese Patent Application Laid-Open No. 1-086630, the vinylidene fluoride polymer is swollen in the electrolytic solution, but the cross-linking polymerization of the polyfunctional monomer is performed in a state where the polymer is not dissolved. It is understood that since no is formed, the electrolyte retention characteristics are insufficient, and the non-uniform gel lacks the uniform conductivity of ions. On the other hand, according to the method disclosed in JP-A-11-185524, it is understood that a tentative IPN structure is formed between the vinylidene fluoride polymer, the crosslinked polymer, and the polymer of the carboxyl group-containing monomer. However, it is understood that during the evaporation of the volatile organic solvent used in a large amount, the formation of an IPN structure that exhibits good electrolyte retention characteristics may be hindered. Further, in the present invention, since the vinylidene fluoride polymer (a) and the electrolyte solution (I) employ a combination having a high affinity to the extent that mutual solubility is exhibited, this is also the electrolyte solution retention characteristic of the IPN structure. It is understood that has improved.
【0015】また本発明の非水系電池は、上記本発明の
高分子ゲル電解質を正極と負極との間に配置してなるこ
とを特徴とするものである。A non-aqueous battery according to the present invention is characterized in that the polymer gel electrolyte of the present invention is disposed between a positive electrode and a negative electrode.
【0016】更に、本発明の非水系電池の製造方法は、
上記非水系電池の効率的な製造方法に相当するものであ
り、フッ化ビニリデン重合体(a)と、多官能モノマー
と、該多官能モノマーの重合開始剤とを電解質溶液
(I)に溶解させてなる溶液を、正極および負極を収容
する外装体の、該正極および負極間に注入し、その後上
記外装体を加熱して前記溶液をゲル化させる工程を有す
ることを特徴とする。Further, the method for producing a non-aqueous battery according to the present invention comprises:
This corresponds to an efficient method for producing the above non-aqueous battery, and comprises dissolving a vinylidene fluoride polymer (a), a polyfunctional monomer, and a polymerization initiator of the polyfunctional monomer in an electrolyte solution (I). A step of injecting the resulting solution between the positive electrode and the negative electrode of the package housing the positive electrode and the negative electrode, and then heating the package to gel the solution.
【0017】また、本発明の高分子ゲル電解質注入形成
用組成物は、上記非水系電池の製造方法の効率的な実施
を可能とする高分子ゲル電解質の形成用前駆体組成物に
相当するものであり、フッ化ビニリデン重合体(a)
と、多官能モノマーと、該多官能モノマーの重合開始剤
とを、電解質溶液(I)に溶解させてなる溶液からなる
ことを特徴とする。Further, the composition for injecting and forming a polymer gel electrolyte of the present invention corresponds to a precursor composition for forming a polymer gel electrolyte which enables the above-mentioned method for producing a nonaqueous battery to be efficiently carried out. And a vinylidene fluoride polymer (a)
And a solution obtained by dissolving a polyfunctional monomer and a polymerization initiator of the polyfunctional monomer in an electrolyte solution (I).
【0018】[0018]
【発明の実施の形態】(I)電解質溶液 本発明の高分子ゲル電解質を構成する量的にも第一の成
分は電解質溶液(電解液)であり、これはイオン性化合
物を有機溶媒に溶解することにより得られる。DESCRIPTION OF THE PREFERRED EMBODIMENTS (I) Electrolyte solution The first component quantitatively constituting the polymer gel electrolyte of the present invention is an electrolyte solution (electrolyte solution), which dissolves an ionic compound in an organic solvent. It is obtained by doing.
【0019】(i)イオン性化合物 本発明において用いるイオン性化合物は、リチウムイオ
ン電池をはじめとする非水系電池において、電解質とし
て用いられるものであり、一般式M+X-(M+は周期律
表のI族又はII族に属する金属のイオン、X-は任意
のアニオン)で表わされるものが好ましい。特にM+が
Li+、Na+又はK+から選ばれるものが好ましく、よ
り好ましいイオン性化合物の具体例としてはLiP
F6、LiAsF6、LiClO4、LiBF4、LiC
l、LiBr、LiCH3SO3、LiCF3SO3、Li
N(CF3SO2)2、LiC(CF3SO2)3、を挙げる
ことが出来る。[0019] (i) an ionic compound used in the ionic compound present invention, in a non-aqueous battery including a lithium ion battery, which is used as an electrolyte, the general formula M + X - (M + Periodic The ion of a metal belonging to Group I or Group II in the table, X − is preferably an anion) is preferable. Especially M + is Li +, LiP Specific examples of preferably those selected from Na + or K +, more preferred ionic compounds
F 6 , LiAsF 6 , LiClO 4 , LiBF 4 , LiC
1, LiBr, LiCH 3 SO 3 , LiCF 3 SO 3 , Li
N (CF 3 SO 2) 2 , LiC (CF 3 SO 2) 3, can be mentioned.
【0020】(ii)有機溶媒 イオン性化合物とともに電解質溶液を構成する有機溶媒
は、本発明において、主として、上記イオン性化合物に
加えて、後述するフッ化ビニリデン重合体に対する溶解
能の高いものを用いることが好ましいが、更に非水系電
池で使用するために必要な電気化学的安定性を確保する
意味で、ab initio法によるHOMO(最高被
占分子軌道エネルギー)準位が−11eV以下であるこ
とで表わされる優れた耐酸化性と、LUMO(最低空位
分子軌道エネルギー準位)が+4.0eV以上、特に+
4.5eV以上、であることで表わされる優れた耐還元
性を有する有機溶媒が好ましい。(Ii) Organic Solvent In the present invention, in addition to the above-mentioned ionic compound, an organic solvent having a high solubility for a vinylidene fluoride polymer described later is used as the organic solvent constituting the electrolyte solution together with the ionic compound. by it is preferred, it is further meant to ensure the electrochemical stability required for use in non-aqueous battery, HOMO (highest occupied molecular orbital energy) by ab initio method level is -11eV less Excellent oxidation resistance and LUMO (lowest vacancy molecular orbital energy level) of +4.0 eV or more, especially +
An organic solvent having an excellent reduction resistance represented by being 4.5 eV or more is preferable.
【0021】溶媒のHOMO準位とLUMO準位は、分
子軌道計算(ab initio法)により市販のプロ
グラムを用いて計算できる。(因に、本明細書の記載値
は、Carnegie Office Park Bu
ilding 6,Pittsburgh,PA151
06 U.S.A.(アメリカ合衆国)のGaussi
an,Inc.から発行された市販汎用プログラム「G
aussian 94」を用い基底関数系3−21G
(*) により本発明者らが計算した値に基づいている。)
HOMO準位が−12eV以下且つLUMO準位が+
4.0eV以上である有機溶媒の具体例としては、アセ
トニトリル(HOMO−12.62eV、LUMO+
5.97eV)、エチレン−カーボネート(HOMO−
12.46eV、LUMO+5.87eV)、ジメチル
カーボネート(HOMO−12.21eV、LUMO+
6.10eV)、ジエチルカーボネート(HOMO−1
2.08eV、LUMO+6.22eV)、エチルメチ
ルカーボネート(HOMO−12.14eV、LUMO
+6.16eV)、プロピレンカーボネート(HOMO
−12.34eV、LUMO+5.88eV)、プロピ
オニトリル(HOMO−12.42eV、LUMO+
5.76eV)、ブチレンカーボネート(HOMO−1
2.31eV、LUMO+5.87eV)、γ−ブチロ
ラクトン(HOMO−11.50eV、LUMO+5.
06eV)などを挙げることが出来るが、上記に限定さ
れるものではない。The HOMO level and the LUMO level of the solvent can be calculated by molecular orbital calculation (ab initio method) using a commercially available program. (Note that the values described in this specification are those of Carnegie Office Park Bu.
ilding 6, Pittsburgh, PA151
06 U.S. S. A. Gaussi (United States)
an, Inc. Commercial general-purpose program "G
aussian 94 "and the basis set 3-21G
(*) Is based on the value calculated by the present inventors. )
HOMO level is -12 eV or less and LUMO level is +
Specific examples of the organic solvent of 4.0 eV or more include acetonitrile (HOMO-12.62 eV, LUMO +
5.97 eV), ethylene-carbonate (HOMO-
12.46 eV, LUMO + 5.87 eV), dimethyl carbonate (HOMO-12.21 eV, LUMO +
6.10 eV), diethyl carbonate (HOMO-1
2.08 eV, LUMO + 6.22 eV), ethyl methyl carbonate (HOMO-12.14 eV, LUMO
+6.16 eV), propylene carbonate (HOMO
-12.34 eV, LUMO + 5.88 eV), propionitrile (HOMO-12.42 eV, LUMO +
5.76 eV), butylene carbonate (HOMO-1)
2.31 eV, LUMO + 5.87 eV), γ-butyrolactone (HOMO-11.50 eV, LUMO + 5.
06 eV) and the like, but are not limited to the above.
【0022】参考までに、従来電極バインダー溶液を形
成するためにフッ化ビニリデン系重合体用溶媒として慣
用されている溶媒は、例えばN−メチルピロリドン(H
OMO−10.18eV、LUMO+5.81eV)、
N,N−ジメチルホルムアミド(−9.85eV、+
5.80eV)、アセトン(−10.93eV、+4.
53eV)、N,N−ジメチルアセトアミド(−9.6
6eV、+5.67eV)、トルエン(−8.88e
V、+2.87eV)、フタル酸ジメチル(−9.70
eV、+1.74eV)、1,4−ジオキサン(−1
0.36eV、+7.39eV)、テトラハイドロフラ
ン(−10.79eV、+6.93eV)などであっ
て、いずれも主として、HOMO準位が−11eV以下
の要件を満たさないため、耐酸化性の点で、本発明の目
的のためには好ましくない。For reference, a solvent conventionally used as a solvent for a vinylidene fluoride polymer for forming an electrode binder solution is, for example, N-methylpyrrolidone (H
OMO-10.18 eV, LUMO + 5.81 eV),
N, N-dimethylformamide (-9.85 eV, +
5.80 eV), acetone (-10.93 eV, +4.
53 eV), N, N-dimethylacetamide (-9.6
6 eV, +5.67 eV), toluene (−8.88 e)
V, +2.87 eV), dimethyl phthalate (-9.70)
eV, +1.74 eV), 1,4-dioxane (-1
0.36 eV, +7.39 eV), tetrahydrofuran (-10.79 eV, +6.93 eV), etc., all of which do not mainly satisfy the requirement that the HOMO level is −11 eV or less. This is not preferred for the purpose of the present invention.
【0023】本発明の高分子ゲル電解質を形成するため
には、従来フッ化ビニリデン重合体の良溶媒あるいは潜
在溶媒として用いられてきた、例えばアセトン、THF
等の沸点が100℃以下の揮発性有機溶媒を用いて、フ
ッ化ビニリデン重合体を溶解後に有機溶媒を蒸発除去す
る工程は採用しないことが望ましい。これにより、製造
プロセスが簡略化するだけでなく、高分子ゲル電解質中
の電解液含量を高く保つことができ、更にはジメチルカ
ーボネート(沸点90〜91℃)、ジエチルカーボネー
ト(沸点127℃)、エチルメチルカーボネート(沸
点、108℃)等の良好な電気化学特性を有し、また低
粘度電解液の調製に好ましいが、比較的低沸点である有
機溶媒の、同伴による電解液の組成変化が防止でき、良
好な組成制御が可能になる。すなわち、本発明の高分子
ゲル電解質を構成する電解質溶液(I)を形成するため
に用いられる有機溶媒は、実質的に全量が高分子ゲル電
解質中に採り込まれることが好ましい。In order to form the polymer gel electrolyte of the present invention, for example, acetone, THF which has been conventionally used as a good solvent or a latent solvent for a vinylidene fluoride polymer is used.
It is desirable not to employ a step of dissolving the vinylidene fluoride polymer using a volatile organic solvent having a boiling point of 100 ° C. or lower, and evaporating and removing the organic solvent. This not only simplifies the manufacturing process but also keeps the electrolyte content in the polymer gel electrolyte high, and furthermore, dimethyl carbonate (boiling point 90-91 ° C), diethyl carbonate (boiling point 127 ° C), ethyl It has good electrochemical properties such as methyl carbonate (boiling point, 108 ° C.) and is suitable for preparing a low-viscosity electrolytic solution. And good composition control becomes possible. That is, it is preferable that substantially the entire amount of the organic solvent used to form the electrolyte solution (I) constituting the polymer gel electrolyte of the present invention is incorporated into the polymer gel electrolyte.
【0024】有機溶媒は、二種以上を混合してフッ化ビ
ニリデン重合体の溶解能を調整することも、好ましく、
その1リットルに対して、前記イオン性化合物が0.1
〜10mol、特に0.5〜5molとなる割合で溶解
して、電解質溶液(I)を形成することが好ましい。It is also preferable to adjust the dissolving ability of the vinylidene fluoride polymer by mixing two or more kinds of organic solvents.
The ionic compound is contained in an amount of 0.1 to 1 liter.
It is preferable to form the electrolyte solution (I) by dissolving at a ratio of 10 to 10 mol, particularly 0.5 to 5 mol.
【0025】(II)マトリックス樹脂 本発明の高分子ゲル電解質は、上記電解質溶液(I)
を、マトリックス樹脂(II)で保持固定することによ
り得られる。マトリックス樹脂(II)は、少なくとも
フッ化ビニリデン重合体(a)と、多官能モノマーの架
橋重合体(b)とからなる。(II) Matrix resin The polymer gel electrolyte of the present invention comprises the above-mentioned electrolyte solution (I)
Is held and fixed with the matrix resin (II). The matrix resin (II) comprises at least a vinylidene fluoride polymer (a) and a crosslinked polymer of a polyfunctional monomer (b).
【0026】(a)フッ化ビニリデン重合体 本発明で用いるフッ化ビニリデン重合体(a)として
は、フッ化ビニリデンの単独重合体または、フッ化ビニ
リデン50重量パーセント以上とこれと共重合可能な単
量体1重量パーセント以上との共重合体が用いられる
が、前記電解質溶液に対しての可溶性の観点で、特にフ
ッ化ビニリデン含量が60〜95重量パーセントである
共重合体が好ましく用いられる。(但し、後記インヘレ
ント粘度の調整、加温の併用等によりフッ化ビニリデン
単独重合体も用いられる。) フッ化ビニリデン単量体と共重合可能な単量体として
は、例えばエチレン、プロピレン、等の炭化水素系単量
体、フッ化ビニル、3フッ化エチレン、3フッ化塩化エ
チレン、4フッ化エチレン、6フッ化プロピレン、フル
オロアルキルビニルエーテル、等の含フッ素単量体、マ
レイン酸モノメチル、シトラコン酸モノメチル、等のカ
ルボキシル基含有単量体、またはアリルグリシジルエー
テル、クロトン酸グリシジルエステル、等のエポキシ基
含有ビニル単量体、が挙げられるが、必ずしもこれらに
限定されるものではない。なかでも6フッ化プロピレン
や3フッ化塩化エチレンを含むフッ化ビニリデン共重合
体が好ましく用いられる。(A) Vinylidene Fluoride Polymer As the vinylidene fluoride polymer (a) used in the present invention, a homopolymer of vinylidene fluoride or a vinylidene fluoride of 50% by weight or more and a copolymer copolymerizable therewith can be used. A copolymer having a monomer content of 1% by weight or more is used. From the viewpoint of solubility in the electrolyte solution, a copolymer having a vinylidene fluoride content of 60 to 95% by weight is particularly preferably used. (However, a vinylidene fluoride homopolymer is also used by adjusting the inherent viscosity and using heating in combination, as described later.) Examples of monomers copolymerizable with the vinylidene fluoride monomer include ethylene, propylene, and the like. Hydrocarbon monomers, vinyl fluoride, ethylene trifluoride, ethylene trifluoride chloride, ethylene tetrafluoride, fluorinated monomers such as hexafluoropropylene, fluoroalkyl vinyl ether, etc., monomethyl maleate, citraconic acid Examples include carboxyl group-containing monomers such as monomethyl, and epoxy group-containing vinyl monomers such as allyl glycidyl ether and glycidyl crotonate, but are not necessarily limited thereto. Among them, vinylidene fluoride copolymers containing propylene hexafluoride and ethylene trifluoride chloride are preferably used.
【0027】フッ化ビニリデン重合体は、前記電解質溶
液に対して、少なくとも100℃以下、好ましくは80
℃以下での加温により可溶である必要があり、この観点
で、インヘレント粘度が2.5dl/g以下、更に2.
2dl/g、特に2.0dl/g以下であることが好ま
しい。また得られる高分子ゲル電解質の機械強度、耐熱
性などの点から、0.2dl/g以上、特に0.4dl
/g以上であることが好ましい。ここでいうインヘレン
ト粘度とはポリマーの分子量の目安として用いられるも
ので、樹脂4gを1リットルのN,N−ジメチルホルム
アミドに溶解させた溶液の30℃における対数粘度をい
う。The vinylidene fluoride polymer is at least 100 ° C. or less, preferably 80 ° C. or less, based on the electrolyte solution.
It is necessary to be soluble by heating at a temperature of not more than 0 ° C., and from this viewpoint, the inherent viscosity is not more than 2.5 dl / g, and further, 2.
It is preferably 2 dl / g, especially 2.0 dl / g or less. From the viewpoint of the mechanical strength and heat resistance of the obtained polymer gel electrolyte, 0.2 dl / g or more, particularly 0.4 dl / g or more.
/ G or more. Here, the inherent viscosity is used as a measure of the molecular weight of the polymer, and refers to the logarithmic viscosity at 30 ° C. of a solution obtained by dissolving 4 g of a resin in 1 liter of N, N-dimethylformamide.
【0028】またフッ化ビニリデン重合体(a)は、少
なくとも加温下に、前記電解質溶液に対して可溶である
とともに、後記多官能モノマーの架橋重合体(b)との
組合せにより電解質溶液を高濃度で安定に保持して、電
気化学的に安定で、且つ少なくとも自立性があり、耐熱
性の高分子ゲル電解質を形成するためのマトリックス樹
脂(II)を構成する必要があり、前記電解質溶液
(I)の100重量部当り、1〜10重量部、特に1〜
7重量部の割合で用いられることが好ましい。The vinylidene fluoride polymer (a) is soluble in the above-mentioned electrolyte solution at least under heating, and the electrolyte solution is combined with a cross-linked polymer (b) of a polyfunctional monomer to be described later. It is necessary to constitute a matrix resin (II) for forming a heat-resistant polymer gel electrolyte, which is stably maintained at a high concentration, is electrochemically stable, and is at least autonomous, and has a high heat resistance. 1 to 10 parts by weight, especially 1 to 100 parts by weight of (I)
It is preferably used in a proportion of 7 parts by weight.
【0029】(b)多官能モノマーの架橋重合体 上記フッ化ビニリデン重合体(a)とともに、マトリッ
クス樹脂を構成する架橋重合体(a)は、多官能モノマ
ーの架橋重合により得られるものである。多官能モノマ
ーは、二以上の重合性官能基を持つものであり、重合性
官能基としてはビニル基、特に(ビニル基を含む)アク
リロイル基が好ましい。多官能モノマーの具体例として
は、ジメチロールトリシクロデカンジアクリレート、ジ
ビニルベンゼン、ジメタクリル酸エチレングリコール、
ジメタクリル酸トリエチレングリコール、ジメタクリル
酸テトラエチレングリコール、ジメタクリル酸1,3−
ブチルグリコール、ジメタクリル酸ブロピレングリコー
ル、1,4−ブタンジオールジメタクリレート、1,6
−ヘキサンジオールジメタクリレート、ネオペンチルグ
リコールジメタクリレート、メタクリル酸アリル、アク
リル酸アリル、ビスフェノール系ジメタクリレート、ビ
スフェノール系ジアクリレート、環状脂肪族ジアクリレ
ート、ジアクリル化イソシアヌレート、トリメタクリル
酸トリメチロールプロパン、トリアクリルホルマール、
トリアクリルイソシアヌネート、トリアリルシアヌネー
ト、脂肪族トリアクリレート、テトラメタクリル酸ペン
タエリスリトール、テトラアクリル酸ペンタエリスリト
ール、脂肪族テトラアクリレート、等が好適に用いられ
るが、これらに限定されるものではない。(B) Crosslinked Polymer of Polyfunctional Monomer Along with the vinylidene fluoride polymer (a), the crosslinked polymer (a) constituting the matrix resin is obtained by crosslinking polymerization of a polyfunctional monomer. The polyfunctional monomer has two or more polymerizable functional groups, and as the polymerizable functional group, a vinyl group, particularly an acryloyl group (including a vinyl group) is preferable. Specific examples of the polyfunctional monomer include dimethylol tricyclodecane diacrylate, divinylbenzene, ethylene glycol dimethacrylate,
Triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, 1,3-dimethacrylate
Butyl glycol, propylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, 1,6
-Hexanediol dimethacrylate, neopentyl glycol dimethacrylate, allyl methacrylate, allyl acrylate, bisphenol dimethacrylate, bisphenol diacrylate, cycloaliphatic diacrylate, diacrylated isocyanurate, trimethylolpropane trimethacrylate, triacryl Formal,
Triacryl isocyanurate, triallyl cyanurate, aliphatic triacrylate, pentaerythritol tetramethacrylate, pentaerythritol tetraacrylate, aliphatic tetraacrylate, and the like are preferably used, but are not limited thereto. .
【0030】上記多官能モノマーは、上記フッ化ビニリ
デン重合体(a)の電解質溶液(I)中への溶液に溶解
された状態で、加熱、可視あるいは紫外光照射、電子線
あるいはγ線照射などの方法により架橋重合される。必
要に応じて重合開始剤を添加することができる。熱重合
開始剤としては、各種の有機過酸化物が使用可能であ
り、ジ−t−ブチルパーオキシド等のジアルキルパーオ
キシド類、ベンゾイルパーオキシドなどのジアシルパー
オキシド類、2,5−ジメチル−ジ(t−ブチルパーオ
キシ)ヘキサン等のパーオキシケタール類、ジ−i−プ
ロピルパーオキシジカーボネート類、等が好適に用いら
れ、アゾビスイソブチロニトリル類等も好適に用いる事
ができる。The polyfunctional monomer is dissolved in a solution of the vinylidene fluoride polymer (a) in the electrolyte solution (I), and is heated, irradiated with visible or ultraviolet light, irradiated with an electron beam or γ-ray. Cross-linking polymerization is carried out by the method described above. If necessary, a polymerization initiator can be added. As the thermal polymerization initiator, various organic peroxides can be used, such as dialkyl peroxides such as di-t-butyl peroxide, diacyl peroxides such as benzoyl peroxide, and 2,5-dimethyl-dioxide. Peroxyketals such as (t-butylperoxy) hexane, di-i-propylperoxydicarbonates, and the like are suitably used, and azobisisobutyronitrile and the like can also be suitably used.
【0031】光重合開始剤としては、ジメトキシフェニ
ルアセトフェノン、2−ヒドロキシシクロヘキシルフェ
ニルケトン、2−ヒドロキ−2−メチル−1−フェニル
プロパンノン−1、1−(4−イソプロピルフェニル)
−2−ヒドロキ2−メチルプロパンノン−1等が好適に
用いられる。As the photopolymerization initiator, dimethoxyphenylacetophenone, 2-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropanone-1,1- (4-isopropylphenyl)
2-Hydroxy-2-methylpropanone-1 and the like are preferably used.
【0032】本発明の高分子ゲル電解質の好ましい形成
法の一つは、上記重合開始剤をも添加した架橋重合前の
組成物、すなわちフッ化ビニリデン重合体(a)と、多
官能モノマーと、該多官能モノマーの重合開始剤とを電
解質溶液(I)に溶解させてなる溶液を、非水系電池を
構成する正極および負極を収容する外装体の、該正極お
よび負極間に注入し、その後、上記外装体を加熱して、
前記溶液をゲル化することにより、高分子ゲル電解質を
その場で形成することである。これにより、非水系電池
の主要部分が、一挙に形成される。すなわち、高分子ゲ
ル電解質層を形成後、正極および負極層と積層して、電
池を構成して行く過程が著しく簡略化される。One of the preferable methods for forming the polymer gel electrolyte of the present invention is a composition before cross-linking polymerization to which the above-mentioned polymerization initiator is added, that is, a vinylidene fluoride polymer (a), a polyfunctional monomer, A solution obtained by dissolving the polymerization initiator of the polyfunctional monomer and the electrolyte solution (I) is injected between the positive electrode and the negative electrode of an exterior body containing the positive electrode and the negative electrode constituting the nonaqueous battery, and thereafter, Heat the outer body,
By gelling the solution, a polymer gel electrolyte is formed in situ. Thereby, the main part of the non-aqueous battery is formed at once. That is, the process of forming the battery after forming the polymer gel electrolyte layer and laminating it with the positive electrode layer and the negative electrode layer is remarkably simplified.
【0033】この目的で上記前駆体組成物中に添加され
る熱重合開始剤は、30〜80℃程度の温度での架橋重
合を可能にするものであることが好ましく、また上記多
官能モノマー100重量部に対し、0.01〜30重量
部の割合で使用することが好ましい。The thermal polymerization initiator added to the precursor composition for this purpose is preferably one that enables cross-linking polymerization at a temperature of about 30 to 80 ° C. It is preferable to use 0.01 to 30 parts by weight with respect to parts by weight.
【0034】このようにして形成された架橋重合体
(b)は、上記フッ化ビニリデン重合体(a)との合計
量(すなわちマトリックス樹脂(II)の量)が、本発
明の高分子ゲル電解質の1〜20重量%、より好ましく
は2〜15重量%、特に好ましくは2〜10重量%、を
占める量となるようにすることが好ましい。この割合が
1重量%以下であると、必要な高分子ゲル電解質の自立
性、耐熱性が得られないおそれがあり、20重量%を超
えると、イオン伝導度の向上効果が乏しくなり、また均
質な前駆体組成物の溶液状態が加温下においても損なわ
れるおそれがあり、得られるIPN構造の均質性が損な
われるおそれが生ずる。The total amount of the crosslinked polymer (b) thus formed and the vinylidene fluoride polymer (a) (that is, the amount of the matrix resin (II)) is the same as that of the polymer gel electrolyte of the present invention. It is preferable that the amount occupies 1 to 20% by weight, more preferably 2 to 15% by weight, particularly preferably 2 to 10% by weight. If the proportion is less than 1% by weight, the necessary independence and heat resistance of the polymer gel electrolyte may not be obtained. If the proportion exceeds 20% by weight, the effect of improving the ionic conductivity is poor and the homogeneity is poor. There is a possibility that the solution state of the precursor composition may be impaired even under heating, and the homogeneity of the obtained IPN structure may be impaired.
【0035】またマトリックス樹脂(II)中におけ
る、フッ化ビニリデン重合体(a)と架橋重合体(b)
の合計量に対するフッ化ビニリデン重合体(a)の占め
る割合は、10〜90重量%、更に10〜80重量%、
特に20〜75重量%、の範囲とすることが好ましい。
この割合が10重量%未満であると、得られる高分子ゲ
ル電解質の電気化学的特性、特にイオン伝導度が低下す
るおそれがあり、また弾性に富むゲルが得られにくくな
る。他方90重量%を超えると、高分子ゲル電解質の強
度(自立性)、耐熱性が不充分となりがちである。The vinylidene fluoride polymer (a) and the crosslinked polymer (b) in the matrix resin (II)
The proportion of the vinylidene fluoride polymer (a) to the total amount of is 10 to 90% by weight, further 10 to 80% by weight,
In particular, it is preferably in the range of 20 to 75% by weight.
If this proportion is less than 10% by weight, the electrochemical properties of the resulting polymer gel electrolyte, particularly the ionic conductivity, may be reduced, and a gel with high elasticity may not be obtained. On the other hand, if it exceeds 90% by weight, the strength (self-supporting) and heat resistance of the polymer gel electrolyte tend to be insufficient.
【0036】本発明の非水系電池の基本構造は、上述の
ようにして得られた高分子ゲル電解質の層を正極および
負極間に配置することにより得られる。高分子ゲル電解
質層は厚さが2〜1000μm、特に5〜200μm程
度であることが好ましい。The basic structure of the non-aqueous battery of the present invention can be obtained by disposing the polymer gel electrolyte layer obtained as described above between the positive electrode and the negative electrode. The thickness of the polymer gel electrolyte layer is preferably from 2 to 1000 μm, particularly preferably from about 5 to 200 μm.
【0037】非水系電池の例として、リチウムイオン電
池としての構成を例にとった場合、正極活物質として
は、例えば一般式LiMY2(Mは、Co、Ni、F
e、Mn、Cr、V等の遷移金属の少なくとも一種:Y
はO、S等のカルコゲン元素)で表わされる複合金属カ
ルコゲン化合物、特にLiNixCo1-xO2(0≦x≦
1)をはじめとする複合金属酸化物やLiMn2O4など
のスピネル構造をとる複合金属酸化物等が好適に用いら
れる。In the case where the configuration as a lithium ion battery is taken as an example of a non-aqueous battery, as a positive electrode active material, for example, a general formula LiMY 2 (M is Co, Ni, F
e, at least one of transition metals such as Mn, Cr, V: Y
Is a complex metal chalcogen compound represented by a chalcogen element such as O and S, particularly LiNi x Co 1 -x O 2 (0 ≦ x ≦
A composite metal oxide having a spinel structure such as 1) or a composite metal oxide such as LiMn 2 O 4 is preferably used.
【0038】上記した積層電池基本構造体は、必要に応
じて、捲回し、折り返し等により更に積層して、容積当
たりの電極面積を増大させ、さらには比較的簡単な容器
に収容して取り出し電極を形成する等の処理により、例
えば、角形、円筒型、コイン型、ペーパー型等の全体構
造を有する非水系電池が形成される。但し、前述したよ
うに、非水系電池外装体中に注入したのちに高分子ゲル
電解質を架橋重合により形成する態様が最も好ましい。The above-mentioned basic structure of the laminated battery is further laminated as necessary by winding or folding, so as to increase the electrode area per volume, and further accommodate the electrode in a relatively simple container. For example, a non-aqueous battery having an overall structure such as a prismatic shape, a cylindrical shape, a coin shape, a paper shape, or the like is formed. However, as described above, it is most preferable that the polymer gel electrolyte is formed by crosslinking polymerization after being injected into the non-aqueous battery outer package.
【0039】本発明の高分子ゲル電解質は、その優れた
特性を活かして、上記リチウムイオン二次電池以外にも
電気二重層キャパシタ、エレクトロクロミックディスプ
レイ、センサ等の電気化学デバイスに用いることができ
る。The polymer gel electrolyte of the present invention can be used for electrochemical devices such as electric double layer capacitors, electrochromic displays, and sensors, in addition to the above-mentioned lithium ion secondary battery, by utilizing its excellent characteristics.
【0040】[0040]
【実施例】以下、実施例および比較例により、本発明を
更に具体的に説明する。まず、フッ化ビニリデン重合体
の調製例について述べる。The present invention will be described more specifically with reference to the following examples and comparative examples. First, a preparation example of a vinylidene fluoride polymer will be described.
【0041】(重合体調製例−1)内容量10リットル
のオートクレーブ中に、イオン交換水8013重量部
(g)、メチルセルロース1.565重量部、フロン2
25cb 25.04重量部、酢酸エチル93.9重量
部、ジイソプロピルパーオキシジカーボネ−ト(IP
P)25.04重量部、フッ化ビニリデン(VdF)2
442重量部、6フッ化プロピレン(HFP)689重
量部を仕込み、28℃で13時間45分懸濁重合を行っ
た。重合完了後、重合体スラリーを脱水、水洗後、80
℃で20時間乾燥して重合体粉末Aを得た。重合率は6
3%で、得られたインヘレント粘度(ηin h)は0.8
17dl/gであった。19F−NMR分析の結果、重合
体中のフッ化ビニリデン単量体と6フッ化プロピレン単
量体の重合比は、87:13であった。(Preparation Example of Polymer-1) Content 10 L
8013 parts by weight of ion-exchanged water in an autoclave
(G), 1.565 parts by weight of methylcellulose, Freon 2
25cb 25.04 parts by weight of ethyl acetate 93.9 wt
Part, diisopropyl peroxydicarbonate (IP
P) 25.04 parts by weight, vinylidene fluoride (VdF) 2
442 parts by weight, propylene hexafluoride (HFP) 689
The suspension polymerization was carried out at 28 ° C. for 13 hours and 45 minutes.
Was. After the polymerization is completed, the polymer slurry is dehydrated, washed with water, and then dried.
It dried at 20 degreeC for 20 hours, and obtained the polymer powder A. The conversion is 6
At 3%, the resulting inherent viscosity (ηin h) Is 0.8
It was 17 dl / g.19As a result of F-NMR analysis, polymerization
Vinylidene fluoride monomer and propylene hexafluoride
The polymerization ratio of the monomer was 87:13.
【0042】(重合体調製例−2)内容量2リットルの
オートクレーブ中に、イオン交換水1075重量部、メ
チルセルロース0.21重量部、フロン225cb
4.2重量部、酢酸エチル12.6重量部、ジイソプロ
ピルパーオキシジカーボネ−ト(IPP)4.2重量
部、フッ化ビニリデン(VdF)344.4重量部、6
フッ化プロピレン(HFP)42重量部、3フッ化塩化
エチレン(CTFE)8重量部を仕込み、29℃で26
時間30分懸濁重合を行った。重合完了後、重合体スラ
リーを脱水、水洗後、80℃で20時間乾燥して重合体
粉末Bを得た。重合率は90%で、得られたηinhは
0.836dl/gであった。19F−NMR分析の結
果、重合体中のフッ化ビニリデン単量体、6フッ化プロ
ピレン、3フッ化塩化エチレン単量体の重合比は、8
3:8:9であった。(Polymer Preparation Example-2) In an autoclave having a content of 2 liters, 1075 parts by weight of ion-exchanged water, 0.21 parts by weight of methylcellulose, 225 cb of CFCs
4.2 parts by weight, ethyl acetate 12.6 parts by weight, diisopropyl peroxydicarbonate (IPP) 4.2 parts by weight, vinylidene fluoride (VdF) 344.4 parts by weight, 6
42 parts by weight of propylene fluoride (HFP) and 8 parts by weight of trifluorinated ethylene chloride (CTFE) were charged, and the mixture was heated at 29 ° C to 26 parts by weight.
Suspension polymerization was performed for 30 minutes. After completion of the polymerization, the polymer slurry was dehydrated, washed with water, and dried at 80 ° C. for 20 hours to obtain a polymer powder B. The conversion was 90%, and the obtained η inh was 0.836 dl / g. As a result of 19 F-NMR analysis, the polymerization ratio of the vinylidene fluoride monomer, propylene hexafluoride and ethylene trifluoride in the polymer was 8%.
3: 8: 9.
【0043】(重合体調製例−3〜5)重合体調製例−
2に準じ、但しモノマー組成、比等の重合条件を変化さ
せて重合した。このときの重合条件及び得られた重合体
の特性を表1にまとめて記す。(Polymer Preparation Example-3 to 5) Polymer Preparation Example-
Polymerization was carried out in the same manner as in Example 2 except that the polymerization conditions such as the monomer composition and ratio were changed. Table 1 summarizes the polymerization conditions and the properties of the obtained polymer.
【0044】[0044]
【表1】 [Table 1]
【0045】(19F−NMR分析の分析法)フッ化ビニ
リデン系重合体の19F−NMR分析の分析法スペクトル
の回折ピークから求めた。(Analytical Method of 19 F-NMR Analysis) The vinylidene fluoride polymer was determined from the diffraction peak of the analytical spectrum of 19 F-NMR analysis.
【0046】具体的には、フッ化ビニリデン系重合体試
料約5mgを、ジメチルホルムアミド(DMF)0.4
mlとNMR測定溶媒である重水素ジメチルホルムアミ
ド(DMF−d7)0.1mlとの混合溶媒に溶解し、
室温で19F−NMRを測定した。Specifically, about 5 mg of a vinylidene fluoride-based polymer sample was placed in dimethylformamide (DMF) 0.4
ml deuterium dimethylformamide is an NMR measurement solvent (DMF-d 7) was dissolved in a mixed solvent of 0.1 ml,
19 F-NMR was measured at room temperature.
【0047】(インヘレント粘度の測定法)粉末状の試
料80mgを20mlのN,N−ジメチルホルムアミド
に溶解して、30℃の恒温槽内でウベローテ粘度計を用
い次式によりインヘレント粘度ηin hを求めた: ηinh=(1/C)・ln(η/ηo) ここで、ηは重合体溶液の粘度、ηoは溶媒のN,N−
ジメチルホルムアミド単独の粘度、Cは0.4(g/d
l)である。(Measurement Method of Inherent Viscosity)
80 mg of N, N-dimethylformamide
In a 30 ° C thermostat using an Ubbeloth viscometer
Inherent viscosity η is given byin hWas found: ηinh= (1 / C) · ln (η / ηoHere, η is the viscosity of the polymer solution, ηoIs N, N-
The viscosity of dimethylformamide alone, C is 0.4 (g / d
l).
【0048】<実施例1>50mlの密閉容器中に、調
製例−1で得られた重合体粉末Aを1重量部秤量し、電
解液(エチレンカーボネート(EC)/プロピレンカー
ボネート(PC)/ジエチレンカーボネート(DEC)
=1/1/2(体積比)混合液中に、LiPF6を1モ
ル濃度で溶解)100重量部(10g)を用いて60℃
で加熱溶解させた後、室温まで自然冷却させた。<Example 1> 1 part by weight of the polymer powder A obtained in Preparation Example 1 was weighed in a 50 ml closed container, and an electrolytic solution (ethylene carbonate (EC) / propylene carbonate (PC) / diethylene Carbonate (DEC)
= 100 parts by weight (10 g) in a mixed solution (1/1 (volume ratio) of LiPF 6 dissolved at 1 molar concentration) at 60 ° C.
, And allowed to cool to room temperature.
【0049】ここに、テトラメチロールメタンテトラア
クリレート(A−TMMT)3重量部を加え室温で数分
間撹拌した後、0.5重量部のイソプロピルパーオキシ
ジカーボネート(IPP)を加えて60℃で1時間重合
した。To the solution, 3 parts by weight of tetramethylolmethanetetraacrylate (A-TMMT) was added, and the mixture was stirred at room temperature for several minutes. Then, 0.5 parts by weight of isopropyl peroxydicarbonate (IPP) was added, and the mixture was heated at 60 ° C. for 1 hour. Polymerized for hours.
【0050】得られた重合物について、室温で目視観察
下スパチュラ等で軽く押圧することにより弾力性を確認
した。また同重合物について80℃×1時間および10
0℃×1時間の加熱処理を施し、重合物(ゲル)の崩壊
の有無により耐熱性を評価した。The elasticity of the obtained polymer was confirmed by lightly pressing with a spatula or the like under visual observation at room temperature. Further, the same polymer was used at 80 ° C. for 1 hour and 10 hours.
Heat treatment was performed at 0 ° C. for 1 hour, and the heat resistance was evaluated based on the presence or absence of collapse of the polymer (gel).
【0051】その結果、上記例によれば、弾力性のある
ゲルが得られ、いずれの加熱処理によってもゲルの崩壊
のない耐熱が示された。As a result, according to the above-mentioned example, an elastic gel was obtained, and heat resistance without gel collapse was shown by any heat treatment.
【0052】<実施例2〜10>フッ化ビニリデン重合
体粉末Aの量ならびに多官能モノマー(テトラメチロー
ルメタンテトラアクリレート(A−TMMT))の量を
下表2のように変化する以外は、実施例1と同様にして
重合物(ゲル)を得、評価した。その結果、いずれの場
合も、実施例1と同様の結果が得られた。Examples 2 to 10 Except that the amount of vinylidene fluoride polymer powder A and the amount of polyfunctional monomer (tetramethylolmethanetetraacrylate (A-TMMT)) were changed as shown in Table 2 below, A polymer (gel) was obtained and evaluated in the same manner as in Example 1. As a result, in each case, the same result as in Example 1 was obtained.
【0053】<比較例1>フッ化ビニリデン重合体粉末
Aを用いないで、A−TMMTを2重量部用いた以外
は、実施例1と同様にして、重合を試みた。Comparative Example 1 Polymerization was attempted in the same manner as in Example 1 except that vinylidene fluoride polymer powder A was not used and A-TMMT was used in an amount of 2 parts by weight.
【0054】その結果、ゲル化重合物は得られなかっ
た。As a result, no gelled polymer was obtained.
【0055】<比較例2>フッ化ビニリデン重合体粉末
Aを用いないで、A−TMMTを6重量部用いた以外
は、実施例1と同様にして重合物を得、評価をした。<Comparative Example 2> A polymer was obtained and evaluated in the same manner as in Example 1 except that vinylidene fluoride polymer powder A was not used and A-TMMT was used in an amount of 6 parts by weight.
【0056】その結果、弾力性のあるゲル状重合物を得
ることができず、弾力性のない固化物が得られた。As a result, an elastic gel polymer could not be obtained, and a solidified product having no elasticity was obtained.
【0057】<実施例11>実施例1と同じ電解液(E
C/PC/DEC=1/1/2(体積比)にLiPF6
を1モル濃度で溶解)100重量部に対し、重合体粉末
2重量部およびメタクリレートモノマー(商品名「4
G」、新中村化学(株)製;「MM4G」と略記)9重
量部を用いる以外は実施例1と同様にして重合物(ゲ
ル)を得、評価した。その結果、実施例1との同様の結
果が得られた。<Embodiment 11> The same electrolytic solution (E
LiPF 6 to C / PC / DEC = 1/1/2 (volume ratio)
Was dissolved at a molar concentration of 100 parts by weight, and 2 parts by weight of the polymer powder and methacrylate monomer (trade name “4
G "(manufactured by Shin-Nakamura Chemical Co., Ltd .; abbreviated as" MM4G ") except that 9 parts by weight were used to obtain and evaluate a polymer (gel) in the same manner as in Example 1. As a result, the same result as in Example 1 was obtained.
【0058】<実施例12>メタクリレートモノマ−
(MM4G)に代え、メタクリレートモノマー(商品名
「9PG」、新中村化学(株)製;「MM9PG」と略
記)を用いる以外は実施例1と同様にして重合物(ゲ
ル)を得、評価した。その結果、実施例1との同様の結
果が得られた。<Example 12> Methacrylate monomer
Instead of (MM4G), methacrylate monomer; give (trade name "9PG", manufactured by Shin-Nakamura Chemical Co., Ltd. "MM9PG" for short) in the same manner as in Example 1 except for using polymerization product (gel) was evaluated . As a result, the same result as in Example 1 was obtained.
【0059】<実施例13〜21>フッ化ビニリデン重
合体粉末A、B、Cを1〜3重量部用い、A−TMMT
を3重量部に固定して表2のように組成変化する以外は
実施例1と同様にして重合物(ゲル)を得、評価した。
その結果、いずれの場合も、実施例1と同様の結果が得
られた。<Examples 13 to 21> A-TMMT using 1 to 3 parts by weight of vinylidene fluoride polymer powders A, B and C
Was fixed to 3 parts by weight, and a polymer (gel) was obtained and evaluated in the same manner as in Example 1 except that the composition changed as shown in Table 2.
As a result, in each case, the same result as in Example 1 was obtained.
【0060】<実施例22>50mlの密閉容器中に、
重合体粉末Fを6.7重量部秤量し、実施例1と同じ電
解液100重量部(4.5g)を用いて60℃で加熱溶
解後、室温まで冷却した。Example 22 In a 50 ml closed container,
6.7 parts by weight of the polymer powder F was weighed, heated and dissolved at 60 ° C. using 100 parts by weight (4.5 g) of the same electrolytic solution as in Example 1, and then cooled to room temperature.
【0061】次いで実施例1と同じ多官能モノマー(A
−TMMT)2.2重量部を加え室温で数分間撹拌した
後、1.1重量部のIPPを加えて50℃で1時間重合
した。Next, the same polyfunctional monomer (A
After adding 2.2 parts by weight of (TMMT) and stirring at room temperature for several minutes, 1.1 parts by weight of IPP was added and polymerization was carried out at 50 ° C. for 1 hour.
【0062】得られた重合物は、弾力性のあるゲルであ
り、50℃×1時間加熱処理によっては、ゲルの崩壊が
見られず、耐熱性を示したが60℃×1時間の加熱処理
の後には、流動性が認められた。The obtained polymer was an elastic gel, and showed no heat collapse at 60 ° C. for 1 hour, although no gel collapse was observed by heat treatment at 50 ° C. for 1 hour. After, fluidity was observed.
【0063】[0063]
【表2】 [Table 2]
【0064】上記各例を含めて、実施例1の電解液(E
C/PC/DEC=1/1/2(体積比)にLiPF6
を1モル濃度で溶解)100重量部に対し、可変量の重
合体粉末Aと多官能モノマー(テトラメチロールプロパ
ンテトラアクリレート(A−TMMT))を加えて重合
した際の重合物の状態は、次表3のようにまとめられ
る。Including the above examples, the electrolytic solution (E
LiPF 6 to C / PC / DEC = 1/1/2 (volume ratio)
Is dissolved at a molar concentration of 100 parts by weight), and a polymer is prepared by adding a variable amount of the polymer powder A and a polyfunctional monomer (tetramethylolpropanetetraacrylate (A-TMMT)) to the polymer. It is summarized as in Table 3.
【0065】[0065]
【表3】 [Table 3]
【0066】<実施例23>重合体粉末Dの2重量部
を、実施例1と同じ電解液(EC/PC/DEC=1/
1/2(体積比)にLiPF6を1モル濃度で溶解)1
00重量部に60℃で加熱溶解した後、室温まで自然冷
却した。次いで、不飽和二重結合をもつ2−メタクリロ
イルオキシイソシアネート(MEI)3重量部、触媒と
してジブチル錫ジラウレート1重量部を加えて70℃で
1時間反応させた。IRの測定結果から重合物Dのカル
ボン酸とイソシアネート(−N=C=O)が反応してい
ることが確認された。<Example 23> 2 parts by weight of the polymer powder D was mixed with the same electrolytic solution (EC / PC / DEC = 1 /
Dissolve LiPF 6 at a molar concentration of 1/2 (volume ratio) 1
After heating and dissolving in 00 parts by weight at 60 ° C., the mixture was naturally cooled to room temperature. Next, 3 parts by weight of 2-methacryloyloxy isocyanate (MEI) having an unsaturated double bond and 1 part by weight of dibutyltin dilaurate as a catalyst were added and reacted at 70 ° C. for 1 hour. From the IR measurement results, it was confirmed that the carboxylic acid of the polymer D and the isocyanate (-N = C = O) had reacted.
【0067】ここに、A−TMMT3重量部を加え室温
で数分間撹拌した後、0.5重量部のIPPを加えて6
0℃で1時間重合した。得られた重合物は弾力性のある
ゲルであり、実施例1と同様に耐熱試験(80℃×1
h、100℃×1h)を行ったところ、ゲルの崩壊が見
られず、耐熱性に優れることが分かった。A-TMMT (3 parts by weight) was added thereto, and the mixture was stirred at room temperature for several minutes.
Polymerization was performed at 0 ° C. for 1 hour. The obtained polymer was an elastic gel and was subjected to a heat resistance test (80 ° C. × 1) as in Example 1.
h, 100 ° C. × 1 h), it was found that the gel did not disintegrate and was excellent in heat resistance.
【0068】<実施例24>実施例23の重合体粉末D
に代わり重合体粉末Eを用い、また電解液(EC/PC
/DEC=1/1/2(体積比)1MLiPF6)10
0重量部の代わりに電解液(γ−ブチロラクトンにLi
PF6を1モル濃度で溶解)100重量部を用いた以外
は実施例23と同様にして、重合物を得た。<Example 24> Polymer powder D of Example 23
Was replaced by a polymer powder E, and an electrolytic solution (EC / PC
/ DEC = 1/1/2 (volume ratio) 1M LiPF 6 ) 10
Instead of 0 parts by weight, an electrolytic solution (γ-butyrolactone is added to Li
Except that the PF 6 with 1 dissolved at a molar concentration) 100 parts by weight in the same manner as in Example 23, to obtain a polymer.
【0069】その結果、得られた重合物は弾力性のある
ゲルであり、実施例1と同様に耐熱試験(80℃×1
h、100℃×1h)を行ったところ、ゲルの崩壊が見
られず、耐熱性に優れることが分かった。As a result, the obtained polymer was an elastic gel, and was subjected to a heat resistance test (80 ° C. × 1) in the same manner as in Example 1.
h, 100 ° C. × 1 h), it was found that the gel did not disintegrate and was excellent in heat resistance.
【0070】<比較例3>50mlの密閉容器中にて、
重合体粉末A12.5重量部と、電解液(γ−ブチロラ
クトンにLiBF4を1モル濃度で溶解)100重量部
(8g)とを、室温で15分間撹拌したところ重合体粉
末Aは膨潤したが溶解はしなかった。[0070] In <Comparative Example 3> in a sealed container of 50ml,
When 12.5 parts by weight of the polymer powder A and 100 parts by weight (8 g) of an electrolytic solution (1 mol of LiBF 4 dissolved in γ-butyrolactone) were stirred at room temperature for 15 minutes, the polymer powder A swelled. Did not dissolve.
【0071】次いで、ポリオキシエチレン(n=23)
ジメタクリレート(分子量1136)12.5重量部を
加え数分間撹拌した後、IPP1.25重量部を加え
て、60℃で1時間重合した。Next, polyoxyethylene (n = 23)
After adding 12.5 parts by weight of dimethacrylate (molecular weight 1136) and stirring for several minutes, 1.25 parts by weight of IPP was added and polymerization was carried out at 60 ° C. for 1 hour.
【0072】重合物は、無色透明に近い薄い上層ゲル
と、重合体粉末Aを含む白濁した下層ゲルに分離してい
ることが観察され、ゲル自体は弾力性を有していた。It was observed that the polymer was separated into a thin upper gel which was almost colorless and transparent, and a lower turbid lower gel containing the polymer powder A, and the gel itself had elasticity.
【0073】上記で得られた、実施例4、11、12、
23および参考例1(上記実施例の電解液のみ)ならび
実施例24および参考例2(上記実施例24の電解液の
み)、更には比較例3のゲル原料あるいは電解液を用い
て、下記のようにしてイオン伝導度測定を行った。Examples 4, 11, 12,
23 and Reference Example 1 (only the electrolyte of the above example) and Example 24 and Reference Example 2 (only the electrolyte of the above Example 24), and further using the gel raw material or the electrolyte of Comparative Example 3, the following The ionic conductivity was measured as described above.
【0074】<イオン伝導度測定>すなわち、各例の架
橋重合前の液状前駆体、あるいは電解液のみを、それぞ
れSUS製のセルに入れ、60℃のオーブンで1時間重
合した。このセルについて、Cole−Coleプロッ
トによりインピーダンス測定を行った。測定機器として
は、ソーラトロン社製インピーダンスアナライザー/ポ
テンションスタットを行い、周波数の範囲は1kHz〜
100kHzとした。<Measurement of Ionic Conductivity> That is, only the liquid precursor before the cross-linking polymerization in each example or the electrolytic solution alone was placed in a cell made of SUS and polymerized in an oven at 60 ° C. for 1 hour. The impedance of this cell was measured by Cole-Cole plot. As a measuring device, a Solartron impedance analyzer / potentiometer was used. The frequency range was 1 kHz to
Was 100kHz.
【0075】結果をまとめて、下表4に示す。The results are shown in Table 4 below.
【0076】[0076]
【表4】 [Table 4]
【0077】本発明の実施例においては、従来の高分子
ゲル電解質において実現されていた1ms/cm前後の
イオン伝導度に比べてはるかに高く、電解液単独(参考
例1および2)とも比較し得る程度に高いイオン伝導度
が得られていることが注目される。[0077] In an embodiment of the present invention is much higher than the 1 ms / cm before and after the ion conductivity that is realized in a conventional polymer gel electrolyte, electrolyte solution alone (Reference Examples 1 and 2) both compared It is noted that ionic conductivity as high as possible is obtained.
【0078】[電池性能評価] (負極電極の作製)フッ化ビニリデン重合体KF#91
00(呉羽化学工業製)0.8gを炭素材料MCMB2
5−28(大阪ガスケミカル製)9.2gおよびN−メ
チル−2−ピロリドン9.2gと混合した。得られたス
ラリーを厚さ10μmの銅箔上に塗布し、130℃で乾
燥させ、N−メチル−2−ピロリドンを蒸発除去した
後、直径15mmの円盤状に打ち抜き、厚さ約120μ
mの乾燥電極を得た。[Evaluation of Battery Performance] (Preparation of Negative Electrode) Vinylidene fluoride polymer KF # 91
0.8 g of carbon material MCMB2
5-28 (manufactured by Osaka Gas Chemicals) and 9.2 g of N-methyl-2-pyrrolidone. The obtained slurry was applied on a copper foil having a thickness of 10 μm, dried at 130 ° C., and after removing N-methyl-2-pyrrolidone by evaporation, punched into a disk having a diameter of 15 mm and having a thickness of about 120 μm.
m dried electrodes were obtained.
【0079】(正極電極の作製)フッ化ビニリデン重合
体KF#1300(呉羽化学工業製)0.3gをLiC
oO29.4g、デンカブラックHS−100(電気化
学工業製)0.3gおよびN−メチル−2−ピロリドン
4.7gと混合した。得られたスラリーを厚さ10μm
のアルミ箔上に塗布し、130℃で乾燥させ、N−メチ
ル−2−ピロリドンを蒸発除去した後、直径14mmの
円盤状に打ち抜き、厚さ約110μmの乾燥電極を得
た。(Preparation of Positive Electrode) 0.3 g of vinylidene fluoride polymer KF # 1300 (manufactured by Kureha Chemical Industry Co., Ltd.)
The mixture was mixed with 9.4 g of oO 2 , 0.3 g of Denka Black HS-100 (manufactured by Denki Kagaku Kogyo) and 4.7 g of N-methyl-2-pyrrolidone. The obtained slurry is 10 μm thick.
Was dried at 130 ° C. to remove N-methyl-2-pyrrolidone by evaporation, and then punched into a disk having a diameter of 14 mm to obtain a dry electrode having a thickness of about 110 μm.
【0080】(ゲル前駆体溶液調製例) <実施例25>50ml密閉容器中に、調製例−1で得
られた重合粉末体Aを2重量部秤量し、電解液(エチレ
ンカーボネート(EC)/エチルメチルカーボネート
(EMC)=1/1(重量比)混合液中に、LiPF6
を1モル濃度で溶解)100重量部(10g)を用いて
加熱溶解させた後、室温まで自然冷却させた。(Preparation Example of Gel Precursor Solution) <Example 25> In a 50 ml airtight container, 2 parts by weight of the polymer powder A obtained in Preparation Example-1 was weighed, and an electrolytic solution (ethylene carbonate (EC) / Ethyl methyl carbonate (EMC) = 1/1 (weight ratio) LiPF 6
Was dissolved in 100 mol parts (10 g) by heating and then allowed to cool naturally to room temperature.
【0081】ここに、テトラメチロールメタンテトラア
クリレート(A−TMMT)3重量部を加え室温で数分
間撹拌した後、0.5重量部のイソプロピルパーオキシ
ジカーボネート(IPP)を加えてゲル前駆体溶液を調
製した。[0081] 3 parts by weight of tetramethylolmethanetetraacrylate (A-TMMT) was added thereto, and the mixture was stirred at room temperature for several minutes, and then 0.5 parts by weight of isopropyl peroxydicarbonate (IPP) was added thereto to obtain a gel precursor solution. Was prepared.
【0082】(電池の作製と評価) <実施例26>上記で作製した正極と負極との間に、ポ
リプロピレン製セパレータ(厚さ20μm)を挾んで電
極構造を作り、ステンレススチール製缶体中に装入し
て、コイン形電池缶体を構成した。そこに実施例25で
調製したゲル前駆体溶液を注入した後、ステンレススチ
ール製缶体をかしめ、次に60℃で1時間架橋反応を進
行させ、ゲル電解質電池を作製した。25℃において
0.4mAで4.0Vまで充電した後、25時間定電圧
で充電を継続し、その後0.4mAの定電流で3.0V
まで放電する充放電するサイクルを1回行った後、2回
目からは4.0mAで4.1Vまで充電した後、1.5
時間定電圧で充電を継続し、その後3.0mAの定電流
で3.0Vまで放電する充放電するサイクルを31回繰
り返した。31回目の放電容量を2回目の放電容量で除
した値に100を乗じて容量保持率(%)とした。結果
を下表5に示す。(Preparation and Evaluation of Battery) <Example 26> An electrode structure was formed by sandwiching a polypropylene separator (thickness: 20 μm) between the positive electrode and the negative electrode prepared above, and was placed in a stainless steel can. The battery was charged to form a coin-shaped battery can. After injecting the gel precursor solution prepared in Example 25 there, the stainless steel can was caulked, and then a crosslinking reaction was allowed to proceed at 60 ° C. for 1 hour to produce a gel electrolyte battery. After charging to 4.0 V at 0.4 mA at 25 ° C., charging was continued at a constant voltage for 25 hours, and then 3.0 V at a constant current of 0.4 mA.
After performing one charge-discharge cycle, the battery was charged to 4.0 V at 4.0 mA from the second time,
To continue charging time constant voltage, it was repeated cycle 31 times for charging and discharging discharged to 3.0V at a subsequent 3.0mA constant current. The value obtained by dividing the 31st discharge capacity by the 2nd discharge capacity was multiplied by 100 to obtain a capacity retention (%). The results are shown in Table 5 below.
【0083】<比較例4>実施例26において、実施例
25で調製した溶液に代わり、電解液(エチレンカーボ
ネート(EC)/エチルメチルカーボネート(EMC)
=1/1(重量比)混合液中に、LiPF6を1モル濃
度で溶解)を、コイン型電池缶体に注入し、60℃で1
時間の加熱を行わない以外は、実施例26と同様に電池
を作製して、充放電を行い、同様に31回目の容量保持
率を測定した。結果を下表5に示す。<Comparative Example 4> In Example 26, an electrolyte (ethylene carbonate (EC) / ethyl methyl carbonate (EMC)) was used instead of the solution prepared in Example 25.
= 1/1 (weight ratio) LiPF 6 dissolved at a 1 molar concentration in a mixed solution) was injected into a coin-type battery can body,
A battery was prepared and charged and discharged in the same manner as in Example 26, except that heating was not performed for a period of time, and the 31st capacity retention was measured in the same manner. The results are shown in Table 5 below.
【0084】[0084]
【表5】 [Table 5]
【0085】上表から、本発明による高分子ゲル電解質
を用いた電池性能は、比較例4の電解液のみからなる電
池を用いた場合と同様に高い容量保持率を示すことが分
かった。From the above table, it was found that the battery performance using the polymer gel electrolyte according to the present invention showed a high capacity retention as in the case of using the battery consisting of only the electrolyte solution of Comparative Example 4.
【0086】[0086]
【発明の効果】上述したように、本発明によれば、電解
質溶液とフッ化ビニリデン重合体とが相溶し、実質的に
全量が高分子ゲル電解質に含まれる有機溶媒を用いた系
において、多官能モノマーを架橋重合することにより、
フッ化ビニリデン重合体と架橋重合体とにより構成され
た均一なIPN構造中に電解質溶液が高濃度で保持され
ることにより極めて高いイオン伝導度を示す高分子ゲル
電解質が与えられる。また、その架橋重合前の前駆体組
成物を用いることにより、高性能な非水系電池ならびに
その効率的な製造が可能となる。As described above, according to the present invention, in a system using an organic solvent in which an electrolyte solution and a vinylidene fluoride polymer are compatible and substantially all of which is contained in a polymer gel electrolyte, By cross-linking and polymerizing polyfunctional monomers,
The high concentration of the electrolyte solution in the uniform IPN structure composed of the vinylidene fluoride polymer and the crosslinked polymer provides a polymer gel electrolyte having extremely high ionic conductivity. Further, by using the precursor composition before the cross-linking polymerization, a high-performance non-aqueous battery and its efficient production become possible.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 5/00 C08K 5/00 C08L 27/16 C08L 27/16 33/04 33/04 H01B 1/06 H01B 1/06 A (72)発明者 川上 智昭 福島県いわき市錦町前原16−1−4−5 Fターム(参考) 4J002 BD14W BG04X BG05X BG07X DD036 DD056 DD086 DE196 DH006 DK006 EV256 EV266 EZ006 GQ02 4J011 PA07 PA10 PA14 PA45 PA49 PA66 PC02 PC08 4J026 AA26 BA07 BA28 BA29 DB02 DB09 DB12 DB15 DB36 FA04 FA09 GA06 5G301 CA30 CD01 5H029 AJ01 AK03 AL06 AM03 AM04 AM05 AM07 BJ03 BJ16 CJ11 EJ12 HJ01 HJ10 HJ14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C08K 5/00 C08K 5/00 C08L 27/16 C08L 27/16 33/04 33/04 H01B 1/06 H01B 1/06 A (72) Inventor Tomoaki Kawakami 16-1--4-5 Maehara, Nishikicho, Iwaki-shi, Fukushima F-term (reference) 4J002 BD14W BG04X BG05X BG07X DD036 DD056 DD086 DE196 DH006 DK006 EV256 EV266 EZ006 GQ02 4J011 PA07 PA10 PA14 PA45 PA66 PC02 PC08 4J026 AA26 BA07 BA28 BA29 DB02 DB09 DB12 DB15 DB36 FA04 FA09 GA06 5G301 CA30 CD01 5H029 AJ01 AK03 AL06 AM03 AM04 AM05 AM07 BJ03 BJ16 CJ11 EJ12 HJ01 HJ10 HJ14
Claims (11)
解質溶液(I)を、少なくとも(a)単独では上記電解
質溶液に溶解し得る種類および量のフッ化ビニリデン重
合体と、(b)二以上の官能基を有する多官能モノマー
の架橋重合体とからなるマトリックス樹脂(II)、で
固定してなることを特徴とする高分子ゲル電解質。1. An electrolyte solution (I) in which an ionic compound is dissolved in an organic solvent, at least (a) a vinylidene fluoride polymer of a kind and in an amount capable of being dissolved in the electrolyte solution alone; A polymer gel electrolyte characterized by being fixed with a matrix resin (II) comprising a crosslinked polymer of a polyfunctional monomer having a functional group.
である請求項1記載の高分子ゲル電解質。2. The content of the electrolyte solution is 80 to 99% by weight.
The polymer gel electrolyte according to claim 1, which is:
フッ化ビニリデン重合体(a)と多官能モノマーの架橋
重合体(b)との合計重量に対するフッ化ビニリデン重
合体(a)の割合が10〜90重量%である請求項1ま
たは2に記載の高分子ゲル電解質。3. Constituting a matrix resin (II),
The ratio of the vinylidene fluoride polymer (a) to the total weight of the vinylidene fluoride polymer (a) and the crosslinked polymer (b) of the polyfunctional monomer is 10 to 90% by weight according to claim 1 or 2. Polymer gel electrolyte.
レント粘度が0.2〜2.5dl/gである請求項1〜
3のいずれかに記載の高分子ゲル電解質。4. The vinylidene fluoride polymer (a) has an inherent viscosity of 0.2 to 2.5 dl / g.
4. The polymer gel electrolyte according to any one of 3.
を有するフッ化ビニリデン重合体である請求項1〜4の
いずれかに記載の高分子ゲル電解質。5. The polymer gel electrolyte according to claim 1, wherein the vinylidene fluoride polymer (a) is a vinylidene fluoride polymer having a functional group.
る請求項1〜5のいずれかに記載の高分子ゲル電解質。6. The polymer gel electrolyte according to claim 1, which is non-flowable at least at 50 ° C.
が、ab initio法分子軌道計算によるHOMO
準位が−11eV以下でLUMO準位が+4.0eV以
上である有機溶媒である請求項1〜6のいずれかに記載
の高分子ゲル電解質。7. The organic solvent constituting the electrolyte solution (I) is a HOMO by ab initio molecular orbital calculation.
The polymer gel electrolyte according to any one of claims 1 to 6, which is an organic solvent having a level of -11 eV or less and a LUMO level of +4.0 eV or more.
れた電解質溶液(I)中で、多官能モノマーを架橋重合
して得られる請求項1〜7のいずれかに記載の高分子ゲ
ル電解質。8. The polymer gel electrolyte according to claim 1, which is obtained by crosslinking and polymerizing a polyfunctional monomer in an electrolyte solution (I) in which a vinylidene fluoride polymer (a) is dissolved. .
ゲル電解質を正極と負極との間に配置してなることを特
徴とする非水系電池。9. A non-aqueous battery comprising the polymer gel electrolyte according to claim 1 disposed between a positive electrode and a negative electrode.
官能モノマーと、該多官能モノマーの重合開始剤とを電
解質溶液(I)に溶解させてなる溶液を、正極および負
極を収容する外装体の、該正極および負極間に注入し、
その後上記外装体を加熱して前記溶液をゲル化させる工
程を有することを特徴とする請求項9に記載の非水系電
池の製造方法。10. A housing for housing a positive electrode and a negative electrode, comprising a solution obtained by dissolving a vinylidene fluoride polymer (a), a polyfunctional monomer, and a polymerization initiator of the polyfunctional monomer in an electrolyte solution (I). Body, injected between the positive and negative electrodes,
The method for producing a non-aqueous battery according to claim 9, further comprising a step of heating the outer package to gel the solution.
官能モノマーと、該多官能モノマーの重合開始剤とを、
電解質溶液(I)に溶解させてなる溶液からなることを
特徴とする高分子ゲル電解質注入形成用組成物。11. A vinylidene fluoride polymer (a), a polyfunctional monomer, and a polymerization initiator of the polyfunctional monomer,
A polymer gel electrolyte injection-forming composition comprising a solution dissolved in an electrolyte solution (I).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001070041A JP4781547B2 (en) | 2001-03-13 | 2001-03-13 | Polymer gel electrolyte and battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001070041A JP4781547B2 (en) | 2001-03-13 | 2001-03-13 | Polymer gel electrolyte and battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002270236A true JP2002270236A (en) | 2002-09-20 |
JP4781547B2 JP4781547B2 (en) | 2011-09-28 |
Family
ID=18927980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001070041A Expired - Fee Related JP4781547B2 (en) | 2001-03-13 | 2001-03-13 | Polymer gel electrolyte and battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4781547B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006022081A1 (en) * | 2004-08-26 | 2006-03-02 | National University Corporation Yokohama National University | Proton conductor |
JP2007063515A (en) * | 2005-09-02 | 2007-03-15 | Ricoh Co Ltd | Resin material, method for producing the same, ion conducting film, fuel cell, power source, and electronic equipment |
JP2007265886A (en) * | 2006-03-29 | 2007-10-11 | Sumitomo Bakelite Co Ltd | Ion conductive electrolyte, and secondary battery using this ion conductive electrolyte |
CN100346527C (en) * | 2003-09-24 | 2007-10-31 | 三星Sdi株式会社 | Polymer electrolyte compsn. for rechargable Li cell and rechargable Li cell of using same |
KR101093295B1 (en) | 2006-02-27 | 2011-12-14 | 주식회사 엘지화학 | Electrochemical device under reduced pressure by chemical reaction |
CN103474697A (en) * | 2013-09-10 | 2013-12-25 | 东莞新能源科技有限公司 | Gel polymer lithium ion battery |
EP2790259A4 (en) * | 2012-05-29 | 2015-09-02 | Lg Chemical Ltd | RECHARGEABLE BATTERY AND METHOD FOR MANUFACTURING THE SAME |
JPWO2015186517A1 (en) * | 2014-06-05 | 2017-04-20 | ソニー株式会社 | Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device |
CN110352526A (en) * | 2017-03-21 | 2019-10-18 | 株式会社吴羽 | Gel-like electrolyte |
CN112789756A (en) * | 2018-10-31 | 2021-05-11 | 株式会社吴羽 | Gel electrolyte and nonaqueous electrolyte secondary battery |
CN113906065A (en) * | 2019-08-08 | 2022-01-07 | 株式会社Lg新能源 | Copolymer for polymer electrolyte, and gel polymer electrolyte and lithium secondary battery comprising the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1032019A (en) * | 1996-07-17 | 1998-02-03 | Matsushita Electric Ind Co Ltd | Polymer electrolyte and lithium polymer battery using the same |
JPH10283839A (en) * | 1997-04-10 | 1998-10-23 | Samsung Electron Co Ltd | Polymer solid electrolyte, method for producing the same, and lithium secondary battery employing the polymer solid electrolyte |
JPH1135765A (en) * | 1997-07-24 | 1999-02-09 | Sharp Corp | Solid polyelectrolyte and its production |
JPH11260407A (en) * | 1998-03-16 | 1999-09-24 | Mitsubishi Paper Mills Ltd | Polymer electrolyte for lithium secondary battery |
JPH11283672A (en) * | 1998-03-31 | 1999-10-15 | Sanyo Electric Co Ltd | Polymer solid electrolyte cell and its manufacture |
JP2000019552A (en) * | 1998-02-19 | 2000-01-21 | Hitachi Ltd | Liquid crystal display |
JP2000215917A (en) * | 1999-01-20 | 2000-08-04 | Kureha Chem Ind Co Ltd | Composition for polymer electrolyte formation |
JP2001035535A (en) * | 1999-07-16 | 2001-02-09 | Matsushita Electric Ind Co Ltd | Non-aqueous secondary battery and its manufacturing method |
-
2001
- 2001-03-13 JP JP2001070041A patent/JP4781547B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1032019A (en) * | 1996-07-17 | 1998-02-03 | Matsushita Electric Ind Co Ltd | Polymer electrolyte and lithium polymer battery using the same |
JPH10283839A (en) * | 1997-04-10 | 1998-10-23 | Samsung Electron Co Ltd | Polymer solid electrolyte, method for producing the same, and lithium secondary battery employing the polymer solid electrolyte |
JPH1135765A (en) * | 1997-07-24 | 1999-02-09 | Sharp Corp | Solid polyelectrolyte and its production |
JP2000019552A (en) * | 1998-02-19 | 2000-01-21 | Hitachi Ltd | Liquid crystal display |
JPH11260407A (en) * | 1998-03-16 | 1999-09-24 | Mitsubishi Paper Mills Ltd | Polymer electrolyte for lithium secondary battery |
JPH11283672A (en) * | 1998-03-31 | 1999-10-15 | Sanyo Electric Co Ltd | Polymer solid electrolyte cell and its manufacture |
JP2000215917A (en) * | 1999-01-20 | 2000-08-04 | Kureha Chem Ind Co Ltd | Composition for polymer electrolyte formation |
JP2001035535A (en) * | 1999-07-16 | 2001-02-09 | Matsushita Electric Ind Co Ltd | Non-aqueous secondary battery and its manufacturing method |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100346527C (en) * | 2003-09-24 | 2007-10-31 | 三星Sdi株式会社 | Polymer electrolyte compsn. for rechargable Li cell and rechargable Li cell of using same |
WO2006022081A1 (en) * | 2004-08-26 | 2006-03-02 | National University Corporation Yokohama National University | Proton conductor |
JP2007063515A (en) * | 2005-09-02 | 2007-03-15 | Ricoh Co Ltd | Resin material, method for producing the same, ion conducting film, fuel cell, power source, and electronic equipment |
KR101093295B1 (en) | 2006-02-27 | 2011-12-14 | 주식회사 엘지화학 | Electrochemical device under reduced pressure by chemical reaction |
JP2007265886A (en) * | 2006-03-29 | 2007-10-11 | Sumitomo Bakelite Co Ltd | Ion conductive electrolyte, and secondary battery using this ion conductive electrolyte |
EP2790259A4 (en) * | 2012-05-29 | 2015-09-02 | Lg Chemical Ltd | RECHARGEABLE BATTERY AND METHOD FOR MANUFACTURING THE SAME |
US9240574B2 (en) | 2012-05-29 | 2016-01-19 | Lg Chem, Ltd. | Secondary battery and method for manufacturing the same |
CN103474697A (en) * | 2013-09-10 | 2013-12-25 | 东莞新能源科技有限公司 | Gel polymer lithium ion battery |
JPWO2015186517A1 (en) * | 2014-06-05 | 2017-04-20 | ソニー株式会社 | Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device |
CN110352526A (en) * | 2017-03-21 | 2019-10-18 | 株式会社吴羽 | Gel-like electrolyte |
CN110352526B (en) * | 2017-03-21 | 2022-11-01 | 株式会社吴羽 | Gel electrolyte |
US11542382B2 (en) | 2017-03-21 | 2023-01-03 | Kureha Corporation | Gel-like electrolyte having vinylidene fluoride copolymer |
CN112789756A (en) * | 2018-10-31 | 2021-05-11 | 株式会社吴羽 | Gel electrolyte and nonaqueous electrolyte secondary battery |
CN112789756B (en) * | 2018-10-31 | 2024-05-31 | 株式会社吴羽 | Gel electrolyte and nonaqueous electrolyte secondary battery |
CN113906065A (en) * | 2019-08-08 | 2022-01-07 | 株式会社Lg新能源 | Copolymer for polymer electrolyte, and gel polymer electrolyte and lithium secondary battery comprising the same |
CN113906065B (en) * | 2019-08-08 | 2024-05-28 | 株式会社Lg新能源 | Copolymer for polymer electrolyte, gel polymer electrolyte and lithium secondary battery including the copolymer |
Also Published As
Publication number | Publication date |
---|---|
JP4781547B2 (en) | 2011-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4370079B2 (en) | Lithium polymer battery | |
US8043386B2 (en) | Process for producing polymer electrolyte | |
JP3784494B2 (en) | Binder for battery, binder solution, electrode mixture, electrode structure and battery | |
JP5867550B2 (en) | Method for producing fluorine-containing copolymer, polymer electrolyte, electrode for lithium battery, and lithium battery | |
JP2896361B2 (en) | Polymer solid electrolyte, method for producing the same, and lithium secondary battery employing the polymer solid electrolyte | |
KR100371954B1 (en) | Vinylidene fluoride copolymer for gel-form solid electrolyte formation, solid electrolyte, and battery | |
JP3854382B2 (en) | Polymer matrix for forming gelled solid electrolyte, solid electrolyte and battery | |
JPH11195419A (en) | Depolarizing mix for nonaqueous battery and nonaqueous battery | |
JP4781547B2 (en) | Polymer gel electrolyte and battery | |
JPWO1999034372A6 (en) | Polymer electrolyte and non-aqueous battery using the same | |
JP4163295B2 (en) | Gel-like solid electrolyte battery | |
JP4132912B2 (en) | Gel electrolyte, its production method and its use | |
EP1016151B1 (en) | Vinylidene fluoride polymer-based binder solution and electrode-forming composition | |
JP4402192B2 (en) | Composition for forming polymer electrolyte | |
JP2003331838A (en) | Lithium secondary battery | |
JP2005507138A (en) | Solid polymer electrolyte lithium battery | |
JPH1180296A (en) | Gel-like polymer electrolyte | |
JP3136610B2 (en) | Battery and manufacturing method thereof | |
JP2001110403A (en) | Electrode for electrochemical device | |
JP3942232B2 (en) | Gel-like solid electrolyte and battery | |
JP4156420B2 (en) | Gel electrolyte, its production method and its use | |
JP2003077537A (en) | Gel nonaqueous electrolyte battery | |
JP2002252034A (en) | Solid electrolyte and its manufacturing method, solid electrolyte battery equipped with this solid electrolyte and its manufacturing method | |
JPH11185816A (en) | High polymer gel electrolyte and secondary battery | |
JPH11185524A (en) | Polymer gel electrolyte and secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110705 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110706 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140715 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |