JP2001110403A - Electrode for electrochemical device - Google Patents
Electrode for electrochemical deviceInfo
- Publication number
- JP2001110403A JP2001110403A JP29177599A JP29177599A JP2001110403A JP 2001110403 A JP2001110403 A JP 2001110403A JP 29177599 A JP29177599 A JP 29177599A JP 29177599 A JP29177599 A JP 29177599A JP 2001110403 A JP2001110403 A JP 2001110403A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- ion
- electrolyte
- electrochemical device
- porosity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】 本発明は固体のイオン導電
性高分子固体電解質を用いた電極に関し、特に、電池、
キャパシター、光電変換素子、センサー等の電気化学デ
バイス用材料として好適な電極材料に関する。TECHNICAL FIELD The present invention relates to an electrode using a solid ion-conductive polymer solid electrolyte, and particularly to a battery,
The present invention relates to an electrode material suitable as a material for an electrochemical device such as a capacitor, a photoelectric conversion element, and a sensor.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】従来、
電池、キャパシター、光電変換素子、センサーなどの電
気化学デバイスを構成する電極材料は、イオン伝導の媒
体として液体の有機化合物を使用しているため、液漏れ
による機器の損傷や発火の恐れがあること、これを用い
た電池の薄型化や形状の自由度に限界があることなどの
問題点が指摘されている。2. Description of the Related Art
Electrode materials that make up electrochemical devices such as batteries, capacitors, photoelectric conversion elements, and sensors use liquid organic compounds as an ion-conducting medium, which may cause damage to equipment or fire due to liquid leakage. However, there have been pointed out problems such as the thinning of the battery using the same and the limitation in the degree of freedom of the shape.
【0003】電極中のイオン拡散と高分子固体電解質と
の界面の特性を向上させるために、固体のイオン伝導性
物質に極性溶媒を含浸させた方法(特開平5-9481
9号公報)や極性溶媒を含むゲル状ポリマーを用いた方
法(特開平9-129218号公報)などが報告されてい
るが、いずれも、媒体として液体の有機化合物を用いて
いる。より安全性の高い全固体型リチウム電池を作るた
めには、電池構成から液体のイオン伝導体を排除する必
要があり、全く液体を使用しない電池が望まれている。In order to improve the characteristics of the interface between the ion diffusion in the electrode and the solid polymer electrolyte, a method of impregnating a solid ionic conductive substance with a polar solvent (Japanese Patent Laid-Open No. 5-9481).
No. 9) and a method using a gel polymer containing a polar solvent (Japanese Patent Application Laid-Open No. 9-129218), etc., all of which use a liquid organic compound as a medium. In order to produce an all-solid-state lithium battery with higher safety, it is necessary to eliminate a liquid ionic conductor from the battery configuration, and a battery using no liquid at all is desired.
【0004】[0004]
【課題を解決するための手段】本発明では、電極の空孔
率を低減させ、かつ電極材料にエーテル結合を有するイ
オン導電性高分子固体電解質を用いることで完全固体型
の優れた電池性能を発揮する電極を開発した。According to the present invention, the porosity of the electrode is reduced, and the ionic conductive polymer solid electrolyte having an ether bond as the electrode material is used to obtain excellent solid-state battery performance. We have developed an electrode that works.
【0005】本発明の電極は、エーテル結合を有する高
分子物質からなる固体のイオン導電性物質で充填された
電極の全体積中の空孔率が20%以下であることを特徴と
する電気化学デバイス用電極である。本発明の電極は全
体積中の空孔率が20%以下、好ましくは15%以下になる
ようにして、イオン導電性高分子固体電解質を電極に充
填させたものであり、本発明ではこの電極を正極及び/
又は負極として用いた電池、特に固体リチウム2次電池
をも提供する。空孔率が20%を越える電極では電極中の
イオンの移動が十分に起こらず、高分子固体電解質との
界面抵抗が大きくなり、電池としての性能が低下する。
また、容量当たりのエネルギー密度が低くなり、好まし
くない。The electrode according to the present invention is characterized in that the porosity in the total volume of the electrode filled with a solid ionic conductive material comprising a polymer material having an ether bond is 20% or less. It is a device electrode. The electrode of the present invention has an ion-conductive polymer solid electrolyte filled in the electrode so that the porosity in the entire volume is 20% or less, preferably 15% or less. To the positive electrode and / or
Alternatively, a battery used as the negative electrode, in particular, a solid lithium secondary battery is also provided. In an electrode having a porosity exceeding 20%, the movement of ions in the electrode does not sufficiently occur, the interface resistance with the solid polymer electrolyte increases, and the performance as a battery decreases.
In addition, the energy density per capacity becomes low, which is not preferable.
【0006】電極の作成方法は、イオン導電性高分子化
合物の単独またはバインダーとして機能するポリフッ化
ビニリデン(以後PVDFという)などの非イオン導電性高
分子化合物との混合物を電極活物質、導電剤、電解質塩
化合物等と共に混合成型する方法、または電極活物質、
導電剤とPVDFのようなバインダーで成型後、イオン導電
性高分子固体電解質(イオン導電性高分子化合物に電解
質塩化合物を溶解したもの)を充填するなどの方法があ
る。電極材料の混合は溶剤を使用しても良い。溶剤を使
用して混合した場合は、混合物を集電体(通常金属箔を
用いる)上に均一に塗布し、溶剤を除去する事で均一な
層が得られる。これらの混合には水や有機溶媒などの溶
剤を用いても良い。有機溶媒を溶剤として用いる場合に
は各種の極性溶媒、例えばテトラヒドロフラン、アセト
ン、アセトニトリル、ジメチルホルムアミド、ジメチル
スルホキシド、ジオキサン、メチルエチルケトン、メチ
ルイソブチルケトン、トルエン等が単独、或いは混合し
て用いられる。また、溶剤を使用せずに混合した場合に
は、この混合物を溶剤に溶かした後に、集電体上に塗布
し溶剤を除去する事で均一な層が得られる。層中にイオ
ン導電性高分子固体電解質が含まれていない場合には、
溶剤に溶かしたイオン導電性高分子固体電解質を層に含
浸させた後溶剤を除去するか、融解させたイオン導電性
高分子固体電解質を層に充填等を行う。これらの集電体
以外の電極層の空孔率が20%以下になるように層を圧縮
成形して電極を作成する。圧縮成形は、ロールプレス、
平行平板プレスなどが用いられる。この時、加熱を行っ
ても良い。これらの方法で作成した電極は大きな電流値
がとれ、充放電しても劣化が少ない。[0006] An electrode is prepared by using an ionic conductive polymer compound alone or a mixture with a non-ionic conductive polymer compound such as polyvinylidene fluoride (hereinafter referred to as PVDF) which functions as a binder, as an electrode active material, a conductive agent, A method of mixing and molding with an electrolyte salt compound or the like, or an electrode active material,
After molding with a conductive agent and a binder such as PVDF, there is a method of filling with an ionic conductive polymer solid electrolyte (an electrolyte salt compound dissolved in an ionic conductive polymer compound). A solvent may be used for mixing the electrode materials. When mixing using a solvent, a uniform layer can be obtained by uniformly applying the mixture on a current collector (usually using a metal foil) and removing the solvent. A solvent such as water or an organic solvent may be used for mixing them. When an organic solvent is used as a solvent, various polar solvents such as tetrahydrofuran, acetone, acetonitrile, dimethylformamide, dimethylsulfoxide, dioxane, methyl ethyl ketone, methyl isobutyl ketone, and toluene are used alone or in combination. In the case of mixing without using a solvent, a uniform layer can be obtained by dissolving this mixture in a solvent, applying the mixture on a current collector and removing the solvent. If the layer does not contain an ion-conductive polymer solid electrolyte,
After the layer is impregnated with the ion-conductive polymer solid electrolyte dissolved in the solvent, the solvent is removed or the layer is filled with the molten ion-conductive polymer solid electrolyte. The electrodes are formed by compression molding the layers so that the porosity of the electrode layers other than the current collector is 20% or less. Compression molding, roll press,
A parallel plate press or the like is used. At this time, heating may be performed. The electrodes prepared by these methods can take a large current value and have little deterioration even when charged and discharged.
【0007】電極の空孔率は、空孔率(%)=(1−(実測密
度/理論密度))×100として算出されるが集電体として機
能する金属箔は計算に含まれない。電極の理論密度は混
合する要素の混合比と密度から算出し、実測密度は電極
の体積と重量から算出する。The porosity of the electrode is calculated as porosity (%) = (1− (measured density / theoretical density)) × 100, but the metal foil functioning as a current collector is not included in the calculation. The theoretical density of the electrode is calculated from the mixture ratio and density of the elements to be mixed, and the measured density is calculated from the volume and weight of the electrode.
【0008】電極作製において、電極活物質、導電剤、
イオン導電性高分子化合物、電解質塩化合物、非イオン
導電性高分子化合物の配合比は電極活物質と導電剤の合
計が全重量の50〜95%、イオン導電性高分子化合物、電
解質塩化合物および非イオン導電性高分子化合物の合計
が全重量の5〜50%であることが望ましい。電極活物質
と導電剤の合計の重量比が50%より低くなると、電極の
容量が小さくなり好ましくない。また、電極活物質と導
電剤の重量比が95%を超えると、電極のイオン導電性が
悪くなり好ましくない。また電極活物質:導電剤の重量
比は40:60から90:10が好ましく、非イオン導電性高分
子化合物:イオン導電性高分子化合物の重量比は0:100
から60:40が好ましい。In the production of an electrode, an electrode active material, a conductive agent,
The compounding ratio of the ionic conductive polymer compound, the electrolyte salt compound and the non-ionic conductive polymer compound is such that the total of the electrode active material and the conductive agent is 50 to 95% of the total weight, the ionic conductive polymer compound, the electrolyte salt compound and It is desirable that the total amount of the nonionic conductive polymer compound is 5 to 50% of the total weight. When the weight ratio of the total of the electrode active material and the conductive agent is lower than 50%, the capacity of the electrode is undesirably small. On the other hand, if the weight ratio between the electrode active material and the conductive agent exceeds 95%, the ionic conductivity of the electrode deteriorates, which is not preferable. The weight ratio of the electrode active material to the conductive agent is preferably 40:60 to 90:10, and the weight ratio of the nonionic conductive polymer compound to the ionic conductive polymer compound is 0: 100.
To 60:40 is preferred.
【0009】本発明のイオン導電性高分子化合物はエー
テル結合を有する高分子化合物であり、エチレンオキシ
ドなどのポリエーテル系の化合物がイオンの移動を容易
にさせるのに適している。The ion-conductive polymer compound of the present invention is a polymer compound having an ether bond, and a polyether compound such as ethylene oxide is suitable for facilitating the transfer of ions.
【0010】特に、低温状態での作動特性については、
主鎖及び側鎖にエチレオキシド単位を有するポリエーテ
ル化合物が非常に優れた性能を示す。これは主鎖及び側
鎖にエーテル結合を有する高分子化合物はガラス転移温
度が低く、低温状態でも、イオン伝導度が高い値を示す
ことによる。In particular, regarding the operating characteristics in a low temperature state,
Polyether compounds having an ethylene oxide unit in the main chain and side chain show very excellent performance. This is because a polymer compound having an ether bond in the main chain and the side chain has a low glass transition temperature and a high ionic conductivity even at a low temperature.
【0011】この主鎖及び側鎖にエチレンオキシド単位
を有するポリエーテル化合物は、(A)成分として
(1)式The polyether compound having an ethylene oxide unit in the main chain and the side chain is represented by the following formula (1):
【0012】[0012]
【化1】 Embedded image
【0013】[式中、R1、R2、R3は水素原子または-C
H2O(CH2CH2O)nRであり、nおよびRはR1、R2、R3の
間で異なっていても良い。但し、R1、R2、R3の全て
が同時に水素原子であることはない。Rは炭素数1〜12
のアルキル基であり、nは1〜12である。]で示される単
量体から誘導される繰り返し単位5〜95モル%、(B)
成分として(2)式[Wherein R 1 , R 2 and R 3 represent a hydrogen atom or -C
H 2 O (CH 2 CH 2 O) n R, where n and R may be different between R 1 , R 2 and R 3 . However, all of R 1 , R 2 and R 3 are not hydrogen atoms at the same time. R is carbon number 1-12
And n is 1-12. 5 to 95 mol% of a repeating unit derived from a monomer represented by the formula:
Formula (2) as a component
【0014】[0014]
【化2】 Embedded image
【0015】で示される単量体から誘導される繰り返し
単位95〜5モル%、(C)成分として1つのエポキシ基
および少なくとも1つの反応性官能基を有する単量体か
ら誘導される繰り返し単位0〜15モル%を有してなる
(A)、(B)及び(C)成分からなるポリエーテル多
元共重合体である。95 to 5 mol% of a repeating unit derived from a monomer represented by the following formula (C): a repeating unit derived from a monomer having one epoxy group and at least one reactive functional group as component (C). It is a polyether multi-component copolymer comprising the components (A), (B) and (C) having a content of about 15 mol%.
【0016】電解質塩化合物を含むエーテル結合を有す
る高分子化合物の25℃でのイオン伝導度は1 x 10-5S/cm
以上、好ましくは3 x 10-5S/cm以上のものが適する。イ
オン導電度が1 x 10-5S/cm未満のものは、電極内でイオ
ンの移動が十分に起こらず、電池として性能が著しく低
下する。The ionic conductivity at 25 ° C. of a polymer compound having an ether bond containing an electrolyte salt compound is 1 × 10 −5 S / cm.
Above, preferably 3 × 10 −5 S / cm or more are suitable. When the ionic conductivity is less than 1 × 10 −5 S / cm, the movement of ions in the electrode does not sufficiently occur, and the performance of the battery is significantly reduced.
【0017】本発明においては、以下に挙げる電解質塩
化合物が好ましく用いられる。即ち、金属陽イオン、ア
ンモニウムイオン、アミジニウムイオン、及びグアニジ
ウムイオンから選ばれた陽イオンと、塩素イオン、臭素
イオン、ヨウ素イオン、過塩素酸イオン、チオシアン酸
イオン、テトラフルオロホウ素酸イオン、硝酸イオン、
AsF6 -、PF6 -、ステアリルスルホン酸イオン、オクチル
スルホン酸イオン、ドデシルベンゼンスルホン酸イオ
ン、ナフタレンスルホン酸イオン、ドデシルナフタレン
スルホン酸イオン、7,7,8,8-テトラシアノ-p-キノジメ
タンイオン、X1SO3 -、[(X1SO2)(X2SO2)N]-、[(X1SO2)(X
2SO2)(X3SO2)C]-、及び[(X1SO2)(X2SO2)YC] - から選ば
れた陰イオンとからなる化合物が挙げられる。但し、
X1、X2、X3及びYは電子吸引性基である。好ましくは
X1、X2、及びX3は各々独立して炭素数が1から6迄のパ
ーフルオロアルキル基又はパーフルオロアリール基であ
り、Yはニトロ基、ニトロソ基、カルボニル基、カルボ
キシル基又はシアノ基である。X1、X2及びX3は各々同一
であっても、異なっていてもよい。金属陽イオンとして
は遷移金属の陽イオンを用いる事ができる。好ましくは
Mn、Fe、Co、Ni、Cu、Zn及びAg金属から選ばれた金属の
陽イオンが用いられる。又、Li、Na、K、Rb、Cs、Mg、C
a及びBa金属から選ばれた金属の陽イオンを用いても好
ましい結果が得られる。電解質塩化合物として前述の化
合物を2種類以上併用することは自由である。In the present invention, the following electrolyte salts
Compounds are preferably used. That is, metal cations,
Ammonium ion, amidinium ion, and guanidinium
Cations selected from umium ions, chlorine ions, and bromine
Ion, iodine ion, perchlorate ion, thiocyanate
Ion, tetrafluoroborate ion, nitrate ion,
AsF6 -, PF6 -, Stearyl sulfonate ion, octyl
Sulfonate ion, dodecylbenzene sulfonate ion
, Naphthalenesulfonic acid ion, dodecylnaphthalene
Sulfonate ion, 7,7,8,8-tetracyano-p-quinodime
Tanion, X1SOThree -, [(X1SOTwo) (XTwoSOTwo) N]-, [(X1SOTwo) (X
TwoSOTwo) (XThreeSOTwo) C]-, And [(X1SOTwo) (XTwoSOTwo) YC] - Choose from
And a compound comprising an anion. However,
X1, XTwo, XThreeAnd Y are electron-withdrawing groups. Preferably
X1, XTwo, And XThreeAre each independently a group of 1 to 6 carbon atoms.
-Fluoroalkyl group or perfluoroaryl group
Y is nitro, nitroso, carbonyl, carbo
Xyl group or cyano group. X1, XTwoAnd XThreeAre the same
Or may be different. As metal cation
Can use a cation of a transition metal. Preferably
Of metals selected from Mn, Fe, Co, Ni, Cu, Zn and Ag metals
Cations are used. Also, Li, Na, K, Rb, Cs, Mg, C
It is also preferable to use a cation of a metal selected from a and Ba metals.
Good results are obtained. As described above as an electrolyte salt compound
It is free to use two or more compounds in combination.
【0018】本発明において、電解質塩化合物の使用量
は、電解質塩化合物のモル数/オキシエチレン単位の総
モル数の値が0.0001〜5、好ましくは0.001〜0.5の範囲
がよい。この値が5を越えると加工性、成形性及び得ら
れた電極の機械的強度や柔軟性が低下し、さらにイオン
伝導性も低下する。In the present invention, the amount of the electrolyte salt compound used is such that the value of the number of moles of the electrolyte salt compound / the total number of moles of oxyethylene units is 0.0001 to 5, preferably 0.001 to 0.5. If this value exceeds 5, processability, moldability, mechanical strength and flexibility of the obtained electrode are reduced, and ion conductivity is also reduced.
【0019】[0019]
【発明の実施の形態】本発明の電極の製造方法は特に制
約はないが、それぞれの成分を機械的に混合後、集電体
上に層状に成形し、その後圧縮等によって空孔率を調節
して製造される。機械的に混合する手段としては、2本
ロール、3本ロール等のミキシングロール、ディスパ
ー、ホモジナイザー等の分散攪拌機、ボールミル、遊星
ミル等の分散混合機などの混練機を任意に用いることが
できる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for producing an electrode of the present invention is not particularly limited, but after mechanically mixing the respective components, forming them into a layer on a current collector, and then adjusting the porosity by compression or the like. Manufactured. As a means for mechanically mixing, a kneading machine such as a mixing roll such as a two roll or a three roll, a dispersion stirrer such as a disperser and a homogenizer, and a dispersion mixer such as a ball mill and a planetary mill can be arbitrarily used.
【0020】本発明で示される電極は、電極中の空孔率
が20%以下であることを特徴とし、活物質、導電剤およ
びイオン導電性高分子化合物が密に充填されており、低
抵抗とイオン移動の点が優れている。空孔率を低くする
ことで、液体のイオン伝導体を使うこと無く電極/電解
質界面および電極内でのイオンの移動が阻害されず、液
体を含まない優れた性能を有する電気化学デバイスを作
成することが可能である。The electrode according to the present invention is characterized in that the porosity in the electrode is not more than 20%, the active material, the conductive agent and the ionic conductive polymer compound are densely packed, and the resistance is low. And the point of ion migration is excellent. By lowering the porosity, the transfer of ions at the electrode / electrolyte interface and within the electrode is not hindered without using a liquid ionic conductor, creating an excellent liquid-free electrochemical device. It is possible.
【0021】例えば本発明の電極を用いた電池の作製が
可能である。この場合、正極の活物質にはリチウム-マ
ンガン複合酸化物、コバルト酸リチウム、五酸化バナジ
ウム、ポリアセチレン、ポリピレン、ポリアニリン、ポ
リフェニレン、ポリフェニレンサルファイド、ポリフェ
ニレンオキサイド、ポリピロール、ポリフラン、ポリア
ズレン等がある。導電剤としてはグラファイト、カーボ
ンブラック等がある。非イオン導電性のバインダーポリ
マーとしてはポリテトラフルオロエチレン、四フッ化エ
チレン・六フッ化プロピレン共重合体、四フッ化エチレ
ン・エチレン共重合体、ポリフッ化ビニリデン、ポリフ
ッ化ビニリデン系共重合体、ポリフッ化ビニル等の各種
フッ素系ポリマー、SBRゴム、ポリオレフィン類などが
ある。負極材料としてはリチウムがグラファイトあるい
はカーボンの層間に吸蔵された層間化合物、リチウム金
属、リチウム-鉛合金、リチウム-アルミニウム合金、リ
チウム-錫合金、リチウム-ケイ素合金等がある。負極に
層間化合物を使用する場合、負極活物質には黒鉛質材
料、易黒鉛化炭素、難黒鉛化炭素、低温焼成炭素などを
用いることが出来る。For example, a battery using the electrode of the present invention can be manufactured. In this case, the active material of the positive electrode includes lithium-manganese composite oxide, lithium cobaltate, vanadium pentoxide, polyacetylene, polypyrene, polyaniline, polyphenylene, polyphenylene sulfide, polyphenylene oxide, polypyrrole, polyfuran, and polyazulene. Examples of the conductive agent include graphite and carbon black. Examples of the nonionic conductive binder polymer include polytetrafluoroethylene, ethylene tetrafluoride / propylene hexafluoride copolymer, ethylene tetrafluoride / ethylene copolymer, polyvinylidene fluoride, polyvinylidene fluoride copolymer, and polyolefin. There are various fluoropolymers such as vinyl chloride, SBR rubber, and polyolefins. Examples of the negative electrode material include an intercalation compound in which lithium is occluded between graphite or carbon layers, lithium metal, lithium-lead alloy, lithium-aluminum alloy, lithium-tin alloy, lithium-silicon alloy, and the like. When an interlayer compound is used for the negative electrode, a graphite material, easily graphitizable carbon, non-graphitizable carbon, low-temperature fired carbon, or the like can be used as the negative electrode active material.
【0022】[0022]
【実施例】以下、実施例を示し、本発明を具体的に説明
するが、本発明はこれら実施例に限定されるものではな
い。 実施例1 イオン伝導性高分子固体電解質の作製方法。EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples. Example 1 A method for producing an ion-conductive polymer solid electrolyte.
【0023】[0023]
【化3】 Embedded image
【0024】アセトニトリル中、ポリエーテル共重合体
((3)式で表されるグリシジルエーテル化合物:エチ
レンオキシド:アリルグリシジルエーテル=16:83:1モル
%、重量平均分子量(Mw)=80万)50g、ホウフッ化リチ
ウム7g、架橋剤としてアゾビスイソブチロニトリル0.2
g、架橋助剤としてビスマレイミド1.2gを混合した
後、PETフイルム上にキャストし、溶媒を除去後、減圧
下100℃で乾燥しながら、3時間架橋を行い、50μmの高
分子固体電解質のフィルムを得た。このフィルムのイオ
ン伝導度は25℃で4x10-5cm/Sの値を示した。50 g of a polyether copolymer (glycidyl ether compound represented by formula (3): ethylene oxide: allyl glycidyl ether = 16: 83: 1 mol%, weight average molecular weight (Mw) = 800,000) in acetonitrile, Lithium borofluoride 7 g, azobisisobutyronitrile 0.2 as a crosslinking agent
g, bismaleimide (1.2 g) was mixed as a cross-linking aid, then cast on a PET film, and after removing the solvent, cross-linking was performed for 3 hours while drying at 100 ° C. under reduced pressure to obtain a 50 μm polymer solid electrolyte film. I got The ionic conductivity of this film showed a value of 4 × 10 −5 cm / S at 25 ° C.
【0025】実施例2 コバルト酸リチウム80g、グラファイト10g、ポリエーテ
ル共重合体((2)式で表されるグリシジルエーテル化
合物:エチレンオキシド= 30:70モル%、Mw=110万)10
g、ホウフッ化リチウム1.3gをミキシングロールにより
混合し、この混合物をアセトニトリル100gに分散させ
た。この混合物の分散液をAl箔上に均一に塗布し、室温
で30分静置してアセトニトリルを蒸発させ、さらに100
℃のオーブンで30分間乾燥させた。乾燥後ロールプレス
を行い正極用電極を得た。得られた電極は厚み52μm、
比重2.96g/cm3(空孔率12.3%)、抵抗値12Ω/cm2 あっ
た。抵抗値は、作製した電極をSUS電極間に挟み、2kgの
圧力をかけた状態での直流抵抗値を採用した。得られた
電極と実施例1で作製した電解質膜を110℃で48時間減
圧乾燥し、対極に金属Liを用いて電池を作製し充放電試
験を行った。正極活物質重量当たりで初回放電容量が13
0mAh/g、10回目の放電容量が125mAh/gであった。Example 2 80 g of lithium cobaltate, 10 g of graphite, polyether copolymer (glycidyl ether compound represented by formula (2): ethylene oxide = 30: 70 mol%, Mw = 1100,000) 10
g and lithium borofluoride (1.3 g) were mixed with a mixing roll, and this mixture was dispersed in acetonitrile (100 g). The dispersion of this mixture was uniformly applied on an Al foil, and allowed to stand at room temperature for 30 minutes to evaporate acetonitrile.
Dry in oven at 30 ° C. for 30 minutes. After drying, a roll press was performed to obtain a positive electrode. The obtained electrode has a thickness of 52 μm,
Specific gravity was 2.96 g / cm 3 (porosity 12.3%), and resistance value was 12 Ω / cm 2 . As the resistance value, a DC resistance value in a state where the produced electrode was sandwiched between SUS electrodes and a pressure of 2 kg was applied was adopted. The obtained electrode and the electrolyte membrane prepared in Example 1 were dried under reduced pressure at 110 ° C. for 48 hours, and a battery was prepared using metal Li as a counter electrode, and a charge / discharge test was performed. Initial discharge capacity of 13 per weight of positive electrode active material
The discharge capacity at the time of 0 mAh / g and the 10th time was 125 mAh / g.
【0026】実施例3 ポリエーテル共重合体((2)式で表されるグリシジル
エーテル化合物:エチレンオキシド=30:70モル%、Mw=11
0万)15gおよびホウフッ化リチウム3.2gをアセトニトリ
ル150gに溶解させ、マンガン酸リチウム60gおよびグラ
ファイト25gを溶液に加えて、ディスパーで攪拌する。
この混合物の分散液をAl箔上に均一に塗布し、室温で30
分静置してアセトニトリルを蒸発させ、さらに100℃の
オーブンで30分間乾燥させる。乾燥後、平行平板プレス
を行い正極用電極を得る。得られた電極は厚み47μm、
比重2.00g/cm3(空孔率18.9%)、直流抵抗値9Ω/cm2で
あった。得られた電極を用いて実施例2と同様にして電
池を作製し充放電試験を行った。正極活物質重量当たり
で初回放電容量が100mAh/g、10回目の放電容量が96mAh/
gであった。Example 3 Polyether copolymer (glycidyl ether compound represented by formula (2): ethylene oxide = 30: 70 mol%, Mw = 11
(0000,000) 15 g and 3.2 g of lithium borofluoride are dissolved in 150 g of acetonitrile, 60 g of lithium manganate and 25 g of graphite are added to the solution, and the mixture is stirred with a disper.
The dispersion of this mixture is uniformly applied on an Al foil, and
Let stand for a minute to evaporate the acetonitrile and further dry in an oven at 100 ° C. for 30 minutes. After drying, a parallel plate press is performed to obtain a positive electrode. The resulting electrode is 47 μm thick,
Specific gravity was 2.00 g / cm 3 (porosity: 18.9%), and DC resistance was 9 Ω / cm 2 . Using the obtained electrode, a battery was prepared in the same manner as in Example 2, and a charge / discharge test was performed. The initial discharge capacity was 100 mAh / g and the 10th discharge capacity was 96 mAh /
g.
【0027】実施例4 PVDF5g、ポリエーテル共重合体((2)式で表されるグ
リシジルエーテル化合物:エチレンオキシド=30:70モル
%、Mw=110万)7gおよびホウフッ化リチウム0.9gをN-メ
チルピロリドン150gに溶解させ、マンガン酸リチウム70
g、グラファイト10g及びカーボンブラック8gを溶液に加
えてディスパーで分散させる。この混合物の分散液をAl
箔上に均一に塗布し、100℃のオーブンで2時間乾燥させ
る。乾燥後、ロールプレスを行い正極用電極を得る。得
られた電極は厚み49μm、比重2.85g/cm3(空孔率4.0
%)、直流抵抗値3Ω/cm2であった。得られた電極を用
いて実施例2と同様にして電池を作製し充放電試験を行
った。正極活物質重量当たりで初回放電容量が98mAh/
g、10回目の放電容量が95mAh/gであった。Example 4 5 g of PVDF, 7 g of a polyether copolymer (glycidyl ether compound represented by the formula (2): ethylene oxide = 30: 70 mol%, Mw = 1100,000) and 0.9 g of lithium borofluoride were converted to N-methyl. Dissolved in 150 g of pyrrolidone, lithium manganate 70
g, 10 g of graphite and 8 g of carbon black are added to the solution and dispersed with a disper. Disperse this mixture in Al
Apply evenly on foil and dry in oven at 100 ° C for 2 hours. After drying, roll pressing is performed to obtain a positive electrode. The obtained electrode had a thickness of 49 μm and a specific gravity of 2.85 g / cm 3 (porosity of 4.0
%), And the direct current resistance was 3Ω / cm 2 . Using the obtained electrode, a battery was prepared in the same manner as in Example 2, and a charge / discharge test was performed. The initial discharge capacity is 98mAh /
g, the 10th discharge capacity was 95 mAh / g.
【0028】実施例5 PVDF 5g、コバルト酸リチウム80g、グラファイト5g、カ
ーボンブラック5g及びN-メチルピロリドン50gをミキシ
ングロールを用いて混練し、この混合物ペーストをN-メ
チルピロリドンを用いて3万cpsの粘度まで希釈する。こ
の希釈した混合物分散液をAl箔上に均一に塗布し、100
℃のオーブンで2時間乾燥させる。ポリエーテル共重合
体((2)式で表されるグリシジルエーテル化合物:エ
チレンオキシド:アリルグリシジルエーテル=29:70:1モ
ル%、Mw=115万)5gと過塩素酸リチウム0.7gをアセトニ
トリル70gに溶解させた溶液を作成し、乾燥させたAl箔
上のこの混合物層に含浸させる。含浸させた溶液のアセ
トニトリルを室温で徐々に除去し、次いで100℃のオー
ブンで30分乾燥させる。乾燥後、ロールプレスを行い正
極用電極を得る。得られた電極は厚み47μm、比重3.44g
/cm3(空孔率4.3%)、直流抵抗値6Ω/cm2であった。得
られた電極を用いて実施例2と同様にして電池を作製し
充放電試験を行った。正極活物質重量当たりで初回放電
容量が133mAh/g、10回目の放電容量が122mAh/gであっ
た。Example 5 5 g of PVDF, 80 g of lithium cobaltate, 5 g of graphite, 5 g of carbon black and 50 g of N-methylpyrrolidone were kneaded using a mixing roll, and the mixture paste was mixed with N-methylpyrrolidone at 30,000 cps. Dilute to viscosity. This diluted mixture dispersion was uniformly applied on an Al foil, and 100
Dry in oven at 2 ° C for 2 hours. Dissolve 5 g of a polyether copolymer (glycidyl ether compound represented by the formula (2): ethylene oxide: allyl glycidyl ether = 29: 70: 1 mol%, Mw = 1.15 million) and 0.7 g of lithium perchlorate in 70 g of acetonitrile A dried solution is made and impregnated into this mixture layer on the dried Al foil. The acetonitrile of the impregnated solution is slowly removed at room temperature and then dried in an oven at 100 ° C. for 30 minutes. After drying, roll pressing is performed to obtain a positive electrode. The resulting electrode is 47 μm thick, specific gravity 3.44 g
/ cm 3 (porosity 4.3%) and DC resistance 6 Ω / cm 2 . Using the obtained electrode, a battery was prepared in the same manner as in Example 2, and a charge / discharge test was performed. The initial discharge capacity was 133 mAh / g and the 10th discharge capacity was 122 mAh / g per weight of the positive electrode active material.
【0029】実施例6 ポリエーテル共重合体((2)式で表されるグリシジル
エーテル化合物:エチレンオキシド=30:70モル%、Mw=11
0万)10gおよび過塩素酸リチウム1.3gをアセトニトリル
100gに溶解させ、難黒鉛化炭素90gを溶液に加えて、デ
ィスパーで攪拌する。混合物分散液をCu箔上に均一に塗
布し、室温で30分静置してアセトニトリルを蒸発させ、
さらに100℃のオーブンで30分間乾燥させる。乾燥後、
平行平板プレスを行い負極用電極を得る。得られた電極
は厚み57μm、比重1.58g/cm3(空孔率2.9%)であっ
た。得られた電極を用いて実施例2と同様にして電池を
作製し充放電試験を行った。負極活物質重量当たりで初
回放電容量が310mAh/g、10回目の放電容量が303mAh/gで
あった。Example 6 Polyether copolymer (glycidyl ether compound represented by formula (2): ethylene oxide = 30: 70 mol%, Mw = 11
100,000) 10 g and lithium perchlorate 1.3 g in acetonitrile
Dissolve it in 100 g, add 90 g of non-graphitizable carbon to the solution, and stir with a disper. The mixture dispersion was evenly applied on a Cu foil and allowed to stand at room temperature for 30 minutes to evaporate acetonitrile,
Further, it is dried in an oven at 100 ° C. for 30 minutes. After drying,
A parallel plate press is performed to obtain a negative electrode. The obtained electrode had a thickness of 57 μm and a specific gravity of 1.58 g / cm 3 (a porosity of 2.9%). Using the obtained electrode, a battery was prepared in the same manner as in Example 2, and a charge / discharge test was performed. The initial discharge capacity was 310 mAh / g and the tenth discharge capacity was 303 mAh / g per weight of the negative electrode active material.
【0030】比較例1 実施例2と同様の混合物を作成し、Al上に塗布、乾燥を
行い、プレスを行わずに正極用電極を得た。得られた電
極は厚み93μm、比重1.68g/cm3(空孔率50.2%)、直流
抵抗値36Ω/cm2であった。この電極を用いた以外は実施
例2と同様にして電池を作成し、充放電試験を行った。
正極活物質重量当たりで初回放電容量は84mAh/gで10サ
イクル目の放電容量は7mAh/gであった。Comparative Example 1 The same mixture as in Example 2 was prepared, coated on Al, dried, and a positive electrode was obtained without pressing. The obtained electrode had a thickness of 93 μm, a specific gravity of 1.68 g / cm 3 (porosity of 50.2%), and a DC resistance of 36 Ω / cm 2 . A battery was prepared in the same manner as in Example 2 except that this electrode was used, and a charge / discharge test was performed.
The initial discharge capacity per weight of the positive electrode active material was 84 mAh / g, and the discharge capacity at the 10th cycle was 7 mAh / g.
【0031】[0031]
【発明の効果】本発明で示される電極は、電極活物質、
導電剤およびイオン導電性高分子化合物を密に充填する
ことにより、低抵抗とイオン移動の点が優れている。空
孔率を低くすることで、液体のイオン伝導体を使うこと
無く電極/電解質界面および電極内でのイオンの移動が
阻害されず、液体を含まない優れた性能を有する電気化
学デバイスを作成することが可能である。The electrode shown in the present invention is an electrode active material,
By densely filling the conductive agent and the ionic conductive polymer compound, low resistance and excellent ion transfer are obtained. By lowering the porosity, the transfer of ions at the electrode / electrolyte interface and within the electrode is not hindered without using a liquid ionic conductor, creating an excellent liquid-free electrochemical device. It is possible.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 貴明 大阪府大阪市西区江戸堀1丁目10番8号 ダイソー株式会社内 Fターム(参考) 4J002 CH021 DD046 DD086 DE196 DF036 DG036 DH006 DK006 ET006 EV216 EV236 EV256 EV266 FD116 GQ02 HA05 5H014 AA01 BB08 EE01 HH02 HH04 HH08 5H029 AJ12 AK02 AK03 AK05 AK16 AL07 AL08 AL12 AM16 DJ09 EJ12 HJ09 HJ14 HJ20 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takaaki Sakai 1-10-8 Edobori, Nishi-ku, Osaka-shi, Osaka Daiso Corporation F-term (reference) 4J002 CH021 DD046 DD086 DE196 DF036 DG036 DH006 DK006 ET006 EV216 EV236 EV256 EV266 FD116 GQ02 HA05 5H014 AA01 BB08 EE01 HH02 HH04 HH08 5H029 AJ12 AK02 AK03 AK05 AK16 AL07 AL08 AL12 AM16 DJ09 EJ12 HJ09 HJ14 HJ20
Claims (4)
る固体のイオン導電性物質で充填された電極の全体積中
の空孔率が20%以下であることを特徴とする電気化学デ
バイス用電極。1. An electrode for an electrochemical device, wherein a porosity in an entire volume of an electrode filled with a solid ionic conductive substance comprising a polymer substance having an ether bond is 20% or less.
および側鎖にエーテル結合を有する高分子物質であるこ
とを特徴とする請求項1に記載の電気化学デバイス用電
極。2. The electrode for an electrochemical device according to claim 1, wherein the polymer substance having an ether bond is a polymer substance having an ether bond in a main chain and a side chain.
ことにより25℃で1 x 10-5S/cm以上のイオン導電性を
示す高分子物質であることを特徴とする請求項2に記載
の電気化学デバイス用電極。3. The polymer material according to claim 2, wherein the polymer material has an ionic conductivity of 1 × 10 −5 S / cm or more at 25 ° C. by adding an electrolyte salt compound. Electrodes for electrochemical devices.
を正極及び/又は負極に用いることを特徴とする固体リ
チウム2次電池。4. A solid lithium secondary battery using the electrode according to claim 1 as a positive electrode and / or a negative electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29177599A JP2001110403A (en) | 1999-10-14 | 1999-10-14 | Electrode for electrochemical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29177599A JP2001110403A (en) | 1999-10-14 | 1999-10-14 | Electrode for electrochemical device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001110403A true JP2001110403A (en) | 2001-04-20 |
Family
ID=17773270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29177599A Pending JP2001110403A (en) | 1999-10-14 | 1999-10-14 | Electrode for electrochemical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001110403A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003055545A (en) * | 2001-08-16 | 2003-02-26 | Daiso Co Ltd | Composition for semiconductive vulcanized rubber |
WO2011001636A1 (en) * | 2009-06-30 | 2011-01-06 | パナソニック株式会社 | Non-aqueous electrolyte secondary battery and process for production thereof |
JP2012109189A (en) * | 2010-10-27 | 2012-06-07 | Daiso Co Ltd | Polymer electrolyte for dye sensitized solar cell and use thereof |
JP2018060815A (en) * | 2012-05-25 | 2018-04-12 | バシウム・カナダ・インコーポレーテッド | Electrode material for lithium electrochemical cell |
CN112864462A (en) * | 2019-11-12 | 2021-05-28 | 财团法人工业技术研究院 | Lithium battery structure |
US11764358B2 (en) | 2018-05-03 | 2023-09-19 | Lg Energy Solution, Ltd. | Method for manufacturing all solid-state battery comprising polymeric solid electrolyte and all solid-state battery obtained thereby |
WO2024090132A1 (en) * | 2022-10-26 | 2024-05-02 | ステラケミファ株式会社 | Fluoride particle dispersion |
US12119477B2 (en) | 2018-05-03 | 2024-10-15 | Lg Energy Solution, Ltd. | Method for manufacturing electrode comprising polymeric solid electrolyte and electrode obtained thereby |
-
1999
- 1999-10-14 JP JP29177599A patent/JP2001110403A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003055545A (en) * | 2001-08-16 | 2003-02-26 | Daiso Co Ltd | Composition for semiconductive vulcanized rubber |
WO2011001636A1 (en) * | 2009-06-30 | 2011-01-06 | パナソニック株式会社 | Non-aqueous electrolyte secondary battery and process for production thereof |
JPWO2011001636A1 (en) * | 2009-06-30 | 2012-12-10 | パナソニック株式会社 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
JP2012109189A (en) * | 2010-10-27 | 2012-06-07 | Daiso Co Ltd | Polymer electrolyte for dye sensitized solar cell and use thereof |
JP2018060815A (en) * | 2012-05-25 | 2018-04-12 | バシウム・カナダ・インコーポレーテッド | Electrode material for lithium electrochemical cell |
US11764358B2 (en) | 2018-05-03 | 2023-09-19 | Lg Energy Solution, Ltd. | Method for manufacturing all solid-state battery comprising polymeric solid electrolyte and all solid-state battery obtained thereby |
US12119477B2 (en) | 2018-05-03 | 2024-10-15 | Lg Energy Solution, Ltd. | Method for manufacturing electrode comprising polymeric solid electrolyte and electrode obtained thereby |
CN112864462A (en) * | 2019-11-12 | 2021-05-28 | 财团法人工业技术研究院 | Lithium battery structure |
CN112864462B (en) * | 2019-11-12 | 2024-06-11 | 财团法人工业技术研究院 | Lithium battery structure |
US12034158B2 (en) | 2019-11-12 | 2024-07-09 | Industrial Technology Research Institute | Lithium battery structure |
WO2024090132A1 (en) * | 2022-10-26 | 2024-05-02 | ステラケミファ株式会社 | Fluoride particle dispersion |
JPWO2024090132A1 (en) * | 2022-10-26 | 2024-05-02 | ||
JP7706202B2 (en) | 2022-10-26 | 2025-07-11 | ステラケミファ株式会社 | Fluoride particle dispersion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4370079B2 (en) | Lithium polymer battery | |
Song et al. | Review of gel-type polymer electrolytes for lithium-ion batteries | |
JP4736804B2 (en) | Binder for lithium ion secondary battery electrode | |
CN107636880A (en) | Polymer electrolyte with multilayer structure and all-solid-state battery containing it | |
US20050250010A1 (en) | Coating liquid for electrode formation, electrode. electrochemical device, and process for producing these | |
JP7084587B2 (en) | Polymers, electrode active materials and secondary batteries | |
CN112086619B (en) | All-solid-state lithium battery positive plate, preparation method thereof and all-solid-state lithium battery | |
JPWO2019194094A1 (en) | Separator for power storage device, power storage device and manufacturing method thereof | |
CN113013481B (en) | All-solid-state battery and its preparation method | |
JP3724960B2 (en) | Solid electrolyte and electrochemical device using the same | |
JP2013175701A (en) | Electrochemical capacitor | |
JP2000021390A (en) | Lithium polymer secondary battery provided with positive electrode containing metal composite positive electrode material | |
KR20170050278A (en) | Polymer Electrolyte comprising Lithium Nitrate and All-Solid-State Battery comprising The Same | |
JP2001110403A (en) | Electrode for electrochemical device | |
JP4781547B2 (en) | Polymer gel electrolyte and battery | |
JPS63121262A (en) | Electrode for nonaqueous cell | |
JP4086939B2 (en) | Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same | |
JPH1180296A (en) | Gel-like polymer electrolyte | |
JP4214691B2 (en) | Electrode material, method for producing the electrode material, battery electrode using the electrode material, and battery using the electrode | |
JP6341360B2 (en) | Nonaqueous electrolyte secondary battery | |
JPH11144735A (en) | Battery | |
WO2013172222A1 (en) | Electricity storage device, positive electrode and porous sheet used in electricity storage device, and method for improving dope rate | |
JP2004247180A (en) | Electrode mix, electrode structure using it, and nonaqueous electrochemical element | |
KR100301623B1 (en) | Manufacturing method of multi-component solid polymer electrolyte and lithium polymer battery using same | |
JP6103521B2 (en) | Nonaqueous electrolyte secondary battery and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061011 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090804 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100105 |