[go: up one dir, main page]

JP2002171669A - Power system stabilizer and its control method - Google Patents

Power system stabilizer and its control method

Info

Publication number
JP2002171669A
JP2002171669A JP2000367282A JP2000367282A JP2002171669A JP 2002171669 A JP2002171669 A JP 2002171669A JP 2000367282 A JP2000367282 A JP 2000367282A JP 2000367282 A JP2000367282 A JP 2000367282A JP 2002171669 A JP2002171669 A JP 2002171669A
Authority
JP
Japan
Prior art keywords
output
power
storage device
power storage
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000367282A
Other languages
Japanese (ja)
Inventor
Katsufusa Mizuki
克房 水木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2000367282A priority Critical patent/JP2002171669A/en
Publication of JP2002171669A publication Critical patent/JP2002171669A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a 100% automatic operation of a power storage together with a distributed power supply in a power system stabilizer compensating the power fluctuation. SOLUTION: In a power system stabilizer which suppresses output fluctuation of a distributed power supply 11 to suppress the power system fluctuation by controlling the output of the power supply 11 together with a rechargeable power storage 13, a control device 18 is provided to sum up the output of the power supply averaged in a certain period and the dischargeable power from the storage 13 in a unit time within the dischargeable period when discharging the storage 13 connected to the power supply and regards it as the total output of the power supply 11 and the storage 13. When charging the storage 13 using the power supply, the control device 18 makes the total output power zero or regards the above sum the total power and updates the total output power for every certain period.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は系統安定化システム
及びその制御方法に関し、例えば風力発電機などのよう
に自然エネルギーを利用した分散電源を連系させた電力
系統に設けられ、電力の安定供給を支える系統安定化シ
ステム及びその制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for stabilizing a power system and a control method therefor, and more particularly to a system for stabilizing power supply provided in a power system in which distributed power sources utilizing natural energy, such as a wind power generator, are interconnected. The present invention relates to a system stabilization system for supporting the system and a control method thereof.

【0002】[0002]

【従来の技術】近年、地球環境問題から自然エネルギー
を利用したクリーンな電力供給源として風力発電システ
ムが開発されつつあり、例えば風力発電機などの分散電
源を系統電源に連系させた電力系統の運用が図られてい
る。前記風力発電機は、風速などの自然条件に応じて時
々刻々と出力変動するものであり、例えば僻地や離島な
どに設置されることから、電力系統の末端、つまり、デ
ィーゼル発電機を系統電源として持つ小規模な、いわゆ
る弱い電力系統と連系することになる。この種の弱い電
力系統では、風力発電機の出力変動が頻繁に現出する
と、その風力発電機の出力変動により電力系統に電圧ま
たは周波数変動を招く影響が大きいことから、風力発電
機の出力変動を抑えて電力系統の電圧または周波数変動
を抑制するための系統安定化システムを設置するのが一
般的である。
2. Description of the Related Art In recent years, a wind power generation system has been developed as a clean power supply source utilizing natural energy due to global environmental problems. For example, in a power system in which a distributed power supply such as a wind power generator is connected to a system power supply. Operation is planned. The wind power generator fluctuates every moment according to natural conditions such as wind speed, and is installed in, for example, a remote place or a remote island, so that the terminal of the power system, that is, a diesel generator is used as a system power supply. It will be connected to a small, so-called weak power system. In this type of weak power system, if the output fluctuations of the wind power generator appear frequently, the fluctuations in the power output of the wind power generator will have a large effect on the power grid, causing fluctuations in the output power of the wind power generator. It is common to install a system stabilization system for suppressing fluctuations in voltage or frequency of the power system while suppressing power fluctuations.

【0003】図3はその系統安定化システムの主回路構
成を示す。この系統安定化システムは、同図に示すよう
に、例えば風力発電機である分散電源1と系統電源2と
の間に設置され、その連系点Aに連系用変圧器(図示せ
ず)を介して電力貯蔵装置3を接続した概略構成を有す
る。電力貯蔵装置3は、電力変換器4とその直流側に接
続された充放電可能な鉛電池などの二次電池5とで構成
されている。なお、図中、6,7は系統母線に設けられ
た計器用変圧器(VT)と変流器(CT)である。
FIG. 3 shows a main circuit configuration of the system stabilization system. As shown in FIG. 1, the system stabilization system is installed between a distributed power source 1 such as a wind power generator and a system power source 2, and a connection transformer A (not shown) is provided at a connection point A thereof. And has a schematic configuration in which the power storage device 3 is connected via the. The power storage device 3 includes a power converter 4 and a secondary battery 5 such as a chargeable / dischargeable lead battery connected to a DC side thereof. In the figure, reference numerals 6 and 7 denote an instrument transformer (VT) and a current transformer (CT) provided on the system bus.

【0004】前記電力変換器4は、放電機能と充電機能
を有する双方向形交直変換器で、系統母線からの交流電
力を直流変換して二次電池5に充電するコンバータ運転
と、二次電池5に充電された直流電力を交流変換して系
統母線に供給するインバータ運転とに切り換え制御され
る。
The power converter 4 is a bidirectional AC / DC converter having a discharging function and a charging function. The converter operates to convert the AC power from the system bus into DC and charge the secondary battery 5; The control is switched to an inverter operation for converting the DC power charged in 5 into AC and supplying it to the system bus.

【0005】そのため、系統安定化システムでは、前述
した分散電源1の出力変動を計器用変圧器6及び変流器
7により検出し、その分散電源1の出力変動を打ち消す
ように電力貯蔵装置3の電力変換器4をコンバータ運転
またはインバータ運転させることにより二次電池5を充
放電させ、この電力変換器4のコンバータ運転またはイ
ンバータ運転による電力系統との電力のやり取りでもっ
て、分散電源1の出力変動を抑えて電力系統の電圧また
は周波数変動を抑制するように電力の変動補償動作を行
っている。
Therefore, in the system stabilization system, the output fluctuation of the distributed power source 1 is detected by the instrument transformer 6 and the current transformer 7 and the power storage device 3 is controlled to cancel the output fluctuation of the distributed power source 1. The secondary battery 5 is charged and discharged by operating the power converter 4 in the converter operation or the inverter operation, and the output fluctuation of the distributed power source 1 is performed by exchanging the power with the power system by the converter operation or the inverter operation of the power converter 4. The power fluctuation compensation operation is performed so as to suppress the voltage or frequency fluctuation of the power system by suppressing the power fluctuation.

【0006】この系統安定化システムにおける電力の変
動補償動作は、例えば一般家庭や工場などの電力需要家
における電力パターンに基づいて行われる。この電力需
要家における1日の電力パターンは、例えばAM8〜P
M6時の昼間に電力消費量が大きい特性を有する。その
ため、系統安定化システムでは、図4に示すように例え
ばPM6時〜AM8時の夜間に電力変換器4のコンバー
タ運転により二次電池5を充電し、その二次電池5の充
電電力をAM8〜PM6時の昼間に電力変換器4のイン
バータ運転により放電する運転パターンでもって、その
二次電池5の放電電力を負荷(図示せず)に供給する。
このような二次電池5の充放電により電力の平準化を実
現している。
[0006] The power fluctuation compensation operation in this system stabilization system is performed based on a power pattern in a power consumer such as a general home or a factory, for example. The daily power patterns of the power consumers are, for example, AM8 to P8.
The power consumption is large in the daytime of M6. Therefore, in the system stabilization system, as shown in FIG. 4, the secondary battery 5 is charged by the converter operation of the power converter 4 at night, for example, from 6:00 PM to 8:00 AM, and the charging power of the secondary battery 5 is reduced to AM8 to AM8. The discharge power of the secondary battery 5 is supplied to a load (not shown) according to an operation pattern of discharging by the inverter operation of the power converter 4 in the daytime at PM6.
Such charge and discharge of the secondary battery 5 achieves power leveling.

【0007】[0007]

【発明が解決しようとする課題】ところで、前述した系
統安定化システムでは、風力発電機などが自然エネルギ
ーを利用した分散電源1であるため、前述したように分
散電源1の出力が風速などの自然条件に応じて時々刻々
と変動する。そのため、頻繁に現出する分散電源1の出
力変動に対して、電力変換器4の運転による電力系統と
の電力のやり取りでもって、常時、分散電源1の出力変
動を抑えて電力系統の電圧または周波数変動を抑制する
ように電力の変動補償動作を行っている。
In the system stabilization system described above, since the wind power generator or the like is the distributed power source 1 utilizing natural energy, the output of the distributed power source 1 depends on natural power such as wind speed as described above. It fluctuates momentarily according to conditions. Therefore, with respect to the output fluctuation of the distributed power supply 1 that frequently appears, the power fluctuation is suppressed by always exchanging the power with the power system by operating the power converter 4 so that the output fluctuation of the distributed power supply 1 is suppressed. The power fluctuation compensation operation is performed so as to suppress the frequency fluctuation.

【0008】また、系統安定化システムにおける電力の
変動補償動作は、負荷の電力需要量が少ない夜間に電力
変換器4のコンバータ運転により二次電池5を充電し、
その二次電池5の充電電力を負荷の電力需要量が多い昼
間に電力変換器4のインバータ運転により放電して、そ
の二次電池5の放電電力を負荷に供給することにより電
力の平準化を実現している。
In the power fluctuation compensation operation in the system stabilization system, the secondary battery 5 is charged by the converter operation of the power converter 4 at night when the power demand of the load is small.
The charging power of the secondary battery 5 is discharged by the inverter operation of the power converter 4 in the daytime when the power demand of the load is large, and the power leveling is performed by supplying the discharging power of the secondary battery 5 to the load. Has been realized.

【0009】しかしながら、分散電源1の出力変動に対
する電力の変動補償動作や、負荷の電力需要量に基づく
昼夜間の電力の変動補償動作においては、二次電池5の
充放電状態、つまり、二次電池5の充放電可能量や充放
電限界量をシステム管理員が認知した上で、そのシステ
ム管理員の手動操作により、電力貯蔵装置3の電力変換
器4について各種指令値が設定されていた。そのため、
分散電源1と協調した電力貯蔵装置3の自動運転を10
0%実現しているとは言いがたいのが現状である。
However, in the operation for compensating the power fluctuation with respect to the output fluctuation of the distributed power source 1 and the operation for compensating the power fluctuation between day and night based on the power demand of the load, the charging / discharging state of the secondary battery 5, that is, the secondary After the system administrator has recognized the chargeable / dischargeable amount and the charge / discharge limit of the battery 5, various command values have been set for the power converter 4 of the power storage device 3 by manual operation of the system administrator. for that reason,
Automatic operation of the power storage device 3 in cooperation with the distributed power source 1
It is hard to say that it has achieved 0%.

【0010】そこで、本発明は、前述した問題点に鑑み
て提案されたもので、分散電源の出力変動に対する電力
の変動補償動作や、負荷の電力需要量に基づく昼夜間の
電力の変動補償動作において、人手を煩わせず、分散電
源と協調した電力貯蔵装置の100%自動運転を実現容
易にし得る系統安定化システム及びその制御方法を提供
することを目的とする。
Therefore, the present invention has been proposed in view of the above-described problems, and has an operation of compensating power fluctuations with respect to output fluctuations of a distributed power source, and an operation of compensating power fluctuations between day and night based on the power demand of a load. In view of the above, an object of the present invention is to provide a system stabilization system capable of easily realizing 100% automatic operation of a power storage device in cooperation with a distributed power source without any trouble, and a control method thereof.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
の技術的手段として、本発明は、分散電源を連系させた
電力系統に充放電可能な電力貯蔵装置に接続し、前記分
散電源出力とそれに協調した電力貯蔵装置の充放電とを
制御することにより、分散電源の出力変動を抑えて電力
系統の電圧または周波数変動を抑制する系統安定化シス
テム及びその制御方法において、請求項1に記載した発
明に係る系統安定化システムは、前記分散電源出力と協
調した電力貯蔵装置からの放電時、分散電源出力の一定
期間の平均値と電力貯蔵装置の放電可能期間内の単位時
間放電可能量との和を分散電源と電力貯蔵装置との合成
出力とし、前記分散電源出力の電力貯蔵装置への充電
時、前記合成出力を零とするか又は分散電源出力の一定
期間の平均値と電力貯蔵装置の充電可能期間内の単位時
間充電可能量との和を前記合成出力とし、それら合成出
力を前記一定期間ごとに更新する制御装置を具備したこ
とを特徴とする。
As a technical means for achieving the above object, the present invention relates to a method for connecting a distributed power supply to a power storage device capable of charging and discharging a power system connected to the distributed power supply, and A system stabilization system and a control method therefor, wherein the system stabilization system suppresses output fluctuations of a distributed power source to suppress voltage or frequency fluctuations of a power system by controlling charging and discharging of a power storage device cooperating therewith. The system stabilization system according to the invention, when discharging from the power storage device in coordination with the distributed power source output, the average value of the distributed power source output for a fixed period and the dischargeable amount per unit time within the dischargeable period of the power storage device. Is the combined output of the distributed power source and the power storage device, and when charging the distributed power source output to the power storage device, the combined output is set to zero or the average value and the power of the distributed power source output for a certain period of time. The sum of the unit time chargeable amount of the chargeable period built device and the combined output, characterized in that they synthesized output equipped with a control device for updating each said predetermined period.

【0012】また、請求項3に記載した発明に係る系統
安定化システムの制御方法は、前記分散電源出力と協調
した電力貯蔵装置からの放電時、分散電源出力の一定期
間の平均値と電力貯蔵装置の放電可能期間内の単位時間
放電可能量との和を分散電源と電力貯蔵装置との合成出
力とし、前記分散電源出力の電力貯蔵装置への充電時、
前記合成出力を零とするか又は分散電源出力の一定期間
の平均値と電力貯蔵装置の充電可能期間内の単位時間充
電可能量との和を前記合成出力とし、それら合成出力を
前記一定期間ごとに更新することを特徴とする。
According to a third aspect of the present invention, there is provided a control method of a system for stabilizing a power system, comprising the steps of: providing an average value of a distributed power supply output for a predetermined period and power storage when discharging from a power storage device cooperating with the distributed power supply output; The sum of the dischargeable amount per unit time within the dischargeable period of the device as a composite output of the distributed power supply and the power storage device, when charging the power storage device of the distributed power supply output,
The combined output is set to zero or the sum of the average value of the distributed power supply output during a fixed period and the chargeable amount per unit time within the chargeable period of the power storage device is defined as the combined output, and the combined output is set for each of the fixed periods. It is characterized by updating.

【0013】請求項1又は3に記載した本発明では、前
記分散電源出力と協調した電力貯蔵装置からの放電時、
分散電源出力の一定期間の平均値と電力貯蔵装置の放電
可能期間内の単位時間放電可能量との和を分散電源と電
力貯蔵装置との合成出力とし、前記分散電源出力の電力
貯蔵装置への充電時、前記合成出力を零とするか又は分
散電源出力の一定期間の平均値と電力貯蔵装置の充電可
能期間内の単位時間充電可能量との和を前記合成出力と
し、それら合成出力を前記一定期間ごとに更新すること
により、分散電源の出力変動に対する電力の変動補償動
作や、負荷の電力需要量に基づく昼夜間の電力の変動補
償動作において、電力貯蔵装置を分散電源と協調させ、
その分散電源と電力貯蔵装置との合成出力を常に一定に
維持することができて、人手を煩わせることなく、電力
貯蔵装置の100%自動運転が実現容易となる。
According to the first or third aspect of the present invention, when discharging from the power storage device in cooperation with the distributed power supply output,
The sum of the average value of the distributed power supply output for a fixed period and the dischargeable amount per unit time within the dischargeable period of the power storage device is defined as a composite output of the distributed power source and the power storage device, and the distributed power source output is supplied to the power storage device. At the time of charging, the combined output is set to zero or the sum of the average value of the distributed power supply output for a fixed period and the chargeable amount per unit time within the chargeable period of the power storage device is set as the combined output, and the combined outputs are set as the combined output. By updating at regular intervals, in the power fluctuation compensation operation for the output fluctuation of the distributed power source, and in the day and night power fluctuation compensation operation based on the power demand of the load, the power storage device is coordinated with the distributed power source,
The combined output of the distributed power source and the power storage device can always be kept constant, and it is easy to realize 100% automatic operation of the power storage device without any trouble.

【0014】本発明に係る系統安定化システムの制御装
置は、請求項2に記載したように電力貯蔵装置の放電可
能期間内の単位時間放電可能量を算出する第1演算回路
と、電力貯蔵装置の充電可能期間内の単位時間充電可能
量を算出する第2演算回路と、分散電源から出力される
有効電力を算出する第3演算回路と、その第3演算回路
から出力される有効電力の平均値を算出する第4演算回
路と、前記第1および第4演算回路の両出力を加算する
第1合成回路と、前記第2および第4演算回路の両出力
を加算する第2合成回路と、前記第1および第2合成回
路の出力を切り替えると共にその出力を一定期間保持
し、その保持された第1又は第2合成回路の出力と第4
演算回路の出力とを切り替える運転制御回路と、第1又
は第2合成回路の出力或いは第4演算回路の出力を出力
基準信号として第3演算回路の出力との差を算出する第
5演算回路とからなり、その第5演算回路の出力を電力
貯蔵装置の出力指令信号とすることを特徴とする。
According to a second aspect of the present invention, there is provided a control device for a system stabilization system, comprising: a first arithmetic circuit for calculating a dischargeable amount per unit time within a dischargeable period of the power storage device; , A second arithmetic circuit for calculating the chargeable amount per unit time within the chargeable period, a third arithmetic circuit for calculating the active power output from the distributed power source, and an average of the active power output from the third arithmetic circuit A fourth arithmetic circuit for calculating a value, a first combining circuit for adding both outputs of the first and fourth arithmetic circuits, a second combining circuit for adding both outputs of the second and fourth arithmetic circuits, The output of the first and second combining circuits is switched, and the output is held for a certain period of time. The output of the first or second combining circuit and the fourth
An operation control circuit for switching between the output of the arithmetic circuit and a fifth arithmetic circuit for calculating a difference between the output of the first or second combining circuit or the output of the fourth arithmetic circuit as an output reference signal and the output of the third arithmetic circuit; Wherein the output of the fifth arithmetic circuit is used as an output command signal of the power storage device.

【0015】この制御回路では、前記分散電源出力と協
調した電力貯蔵装置からの放電時、第1演算回路により
電力貯蔵装置の放電可能期間内の単位時間放電可能量を
算出すると共に、第3及び第4演算回路により分散電源
から出力される有効電力の平均値を算出し、電力貯蔵装
置の放電可能期間内の単位時間放電可能量と分散電源出
力の平均値の和を第1合成回路により算出して分散電源
と電力貯蔵装置との合成出力とする。
In this control circuit, when discharging from the power storage device in cooperation with the distributed power source output, the first arithmetic circuit calculates the unit time dischargeable amount within the dischargeable period of the power storage device, An average value of the active power output from the distributed power supply is calculated by the fourth arithmetic circuit, and a sum of the dischargeable amount per unit time within the dischargeable period of the power storage device and the average value of the output of the distributed power supply is calculated by the first synthesis circuit. To obtain a combined output of the distributed power source and the power storage device.

【0016】また、前記分散電源出力の電力貯蔵装置へ
の充電時、前記合成出力を零とすることにより分散電源
出力をすべて電力貯蔵装置に充電するか、または、第2
演算回路により電力貯蔵装置の充電可能期間内の単位時
間充電可能量を算出すると共に、第3及び第4演算回路
により分散電源から出力される有効電力の平均値を算出
し、電力貯蔵装置の充電可能期間内の単位時間充電可能
量と分散電源出力の平均値の和を第2合成回路により算
出して分散電源と電力貯蔵装置との合成出力とする。
In addition, when the distributed power supply output is charged to the power storage device, the combined output is set to zero to charge all the distributed power supply output to the power storage device.
The arithmetic circuit calculates the chargeable amount per unit time within the chargeable period of the power storage device, and the third and fourth arithmetic circuits calculate the average value of the active power output from the distributed power source, thereby charging the power storage device. The sum of the chargeable amount per unit time within the possible period and the average value of the output of the distributed power supply is calculated by the second combining circuit to obtain a combined output of the distributed power supply and the power storage device.

【0017】前記分散電源出力と協調した電力貯蔵装置
の充放電時、運転制御回路により、前記第1および第2
合成回路の出力を切り替えると共にその出力を一定期間
保持し、その保持された第1又は第2合成回路の出力と
第4演算回路の出力とを切り替える。運転制御回路で
は、第1及び第2合成回路から出力される合成出力を一
定期間ごとに更新する。第1又は第2合成回路の出力或
いは第4演算回路の出力を出力基準信号として、第5演
算回路により第3演算回路の出力との差を算出するし、
その第5演算回路の出力を電力貯蔵装置の出力指令信号
とする。
At the time of charging / discharging the power storage device in cooperation with the distributed power supply output, the first and second power control devices are controlled by an operation control circuit.
The output of the combining circuit is switched and the output is held for a certain period of time, and the held output of the first or second combining circuit and the output of the fourth arithmetic circuit are switched. The operation control circuit updates the combined output output from the first and second combining circuits at regular intervals. Using the output of the first or second combining circuit or the output of the fourth arithmetic circuit as an output reference signal, the fifth arithmetic circuit calculates a difference from the output of the third arithmetic circuit,
The output of the fifth arithmetic circuit is used as an output command signal of the power storage device.

【0018】[0018]

【発明の実施の形態】本発明に係る系統安定化システム
及びその制御方法の実施形態を以下に詳述する。図1は
自然エネルギーを利用したクリーンな電力供給源とし
て、例えば風力発電機を分散電源11として連系させた
電力系統に設置された系統安定化システムの主回路構成
を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a system stabilization system and a control method thereof according to the present invention will be described in detail below. FIG. 1 shows a main circuit configuration of a grid stabilization system installed as a clean power supply source using natural energy, for example, a power grid in which a wind power generator is connected as a distributed power supply 11.

【0019】この系統安定化システムは、同図に示すよ
うに風力発電機である分散電源11と系統電源12との
間に設置され、その連系点Aに連系用変圧器(図示せ
ず)を介して電力貯蔵装置13を接続した概略構成を有
する。この電力貯蔵装置13は、電力変換器14とその
直流側にエネルギー貯蔵部である鉛電池などの二次電池
15とで構成されている。なお、図中、16,17は系
統母線に設けられた計器用変圧器(VT)と変流器(C
T)である。また、エネルギー貯蔵部は充放電可能なも
のであればよく、二次電池15のほか、直流コンデンサ
やフライホイール等が可能である。
This system stabilization system is installed between a distributed power supply 11 which is a wind power generator and a system power supply 12 as shown in the figure, and a connection transformer (not shown) is provided at a connection point A thereof. ) Has a schematic configuration connected to the power storage device 13. The power storage device 13 includes a power converter 14 and a secondary battery 15 such as a lead battery as an energy storage unit on the DC side thereof. In the figure, reference numerals 16 and 17 denote an instrument transformer (VT) and a current transformer (C) provided on the system bus.
T). The energy storage unit may be any unit that can be charged and discharged, and may be a DC capacitor, a flywheel, or the like in addition to the secondary battery 15.

【0020】前記電力変換器14は、放電機能と充電機
能を有する双方向形交直変換器で、系統母線からの交流
電力を直流変換して二次電池15に充電するコンバータ
運転と、二次電池15に充電された直流電力を交流変換
して系統母線に供給するインバータ運転とに切り換え制
御される。
The power converter 14 is a bidirectional AC / DC converter having a discharging function and a charging function. The power converter 14 converts the AC power from the system bus into a direct current and charges the secondary battery 15. The control is switched to an inverter operation in which the DC power charged in the DC power supply 15 is converted to AC and supplied to the system bus.

【0021】この系統安定化システムでは、前述した分
散電源11の出力変動を計器用変圧器16及び変流器1
7により検出し、その検出された電力量(または電力変
動量)に基づいて電力変換器14をコンバータ運転また
はインバータ運転させるように制御する制御装置18を
具備する。例えば僻地や離島などの電力系統の末端に設
置された分散電源11の出力が風速などの自然条件に応
じて時々刻々と変動する場合であっても、その分散電源
11の出力変動を打ち消すように電力貯蔵装置13の電
力変換器14を制御装置18により制御することで分散
電源11の出力変動を抑えて電力系統の電圧または周波
数変動を抑制する。
In this system stabilization system, the output fluctuation of the distributed power source 11 described above is measured by the instrument transformer 16 and the current transformer 1.
7 and a control device 18 for controlling the power converter 14 to perform a converter operation or an inverter operation based on the detected power amount (or power fluctuation amount). For example, even if the output of the distributed power supply 11 installed at the end of the power system such as a remote area or an isolated island fluctuates momentarily according to natural conditions such as wind speed, the output fluctuation of the distributed power supply 11 is canceled. By controlling the power converter 14 of the power storage device 13 by the control device 18, the output fluctuation of the distributed power supply 11 is suppressed, and the voltage or frequency fluctuation of the power system is suppressed.

【0022】つまり、系統安定化システムでは、分散電
源11の出力が大きい時に電力変換器14のコンバータ
運転により二次電池15を充電し、前述した分散電源1
1の出力が小さい時に前記二次電池15の貯蔵電力を電
力変換器14のインバータ運転により電力系統へ放電
し、この電力変換器14の運転による電力系統との電力
のやり取りでもって、分散電源11の出力変動を抑えて
電力系統の電圧または周波数変動を抑制するように電力
の変動補償動作を行っている。
That is, in the system stabilization system, when the output of the distributed power source 11 is large, the secondary battery 15 is charged by the converter operation of the power converter 14, and
When the output of the power converter 1 is small, the stored power of the secondary battery 15 is discharged to the power system by the inverter operation of the power converter 14, and by the exchange of power with the power system by the operation of the power converter 14, the distributed power 11 The power fluctuation compensation operation is performed so as to suppress the fluctuation of the output of the power system and the fluctuation of the voltage or the frequency of the power system.

【0023】また、例えば一般家庭や工場などの電力需
要家における電力パターンに基づく電力の変動補償動作
について、系統安定化システムは、例えばPM6時〜A
M8時の夜間に電力変換器14のコンバータ運転により
二次電池15を充電し、その二次電池15の充電電力を
AM8〜PM6時の昼間に電力変換器14のインバータ
運転により放電する運転パターンでもって、その二次電
池15の放電電力を負荷に供給する(図4参照)。この
ような二次電池15の充放電により電力の平準化を実現
している。
For example, regarding a power fluctuation compensation operation based on a power pattern in a power consumer such as a general household or a factory, the power system stabilization system uses, for example, PM 6:00 to PM
The operation pattern in which the secondary battery 15 is charged by the converter operation of the power converter 14 at night of M8 and the charging power of the secondary battery 15 is discharged by the inverter operation of the power converter 14 during the daytime of AM8 to PM6. Thus, the discharge power of the secondary battery 15 is supplied to the load (see FIG. 4). Such charge and discharge of the secondary battery 15 achieves power leveling.

【0024】この系統安定化システムの前記制御装置1
8は、図2に示すように電力貯蔵装置13の放電可能期
間内の単位時間放電可能量を算出する第1演算回路19
と、電力貯蔵装置13の充電可能期間内の単位時間充電
可能量を算出する第2演算回路20と、分散電源11か
ら出力される有効電力を算出する第3演算回路21と、
その第3演算回路21から出力される有効電力の平均値
を算出する第4演算回路22と、第1及び第4演算回路
19,22の両出力を加算する第1合成回路23と、第
2及び第4演算回路20,22の両出力を加算する第2
合成回路24と、第1及び第2合成回路23,24の出
力を切り替えると共にその出力を一定期間保持し、その
保持された第1又は第2合成回路23,24の出力と第
4演算回路22の出力とを切り替えるように制御する運
転制御回路25と、第1又は第2合成回路23,24の
出力或いは第4演算回路22の出力を出力基準信号P
refとして第3演算回路21の出力との差を算出する第
5演算回路26とからなり、その第5演算回路26の出
力を電力貯蔵装置13の出力指令信号Pref’とする。
The controller 1 of the system stabilization system
8, a first arithmetic circuit 19 for calculating a dischargeable amount per unit time within a dischargeable period of the power storage device 13 as shown in FIG.
A second arithmetic circuit 20 for calculating a chargeable amount per unit time within a chargeable period of the power storage device 13, a third arithmetic circuit 21 for calculating active power output from the distributed power supply 11,
A fourth arithmetic circuit 22 for calculating an average value of the active power output from the third arithmetic circuit 21; a first combining circuit 23 for adding both outputs of the first and fourth arithmetic circuits 19 and 22; And the second operation for adding both outputs of the fourth arithmetic circuits 20 and 22
The output of the synthesizing circuit 24 and the first and second synthesizing circuits 23 and 24 are switched and the output is held for a certain period of time, and the held output of the first or second synthesizing circuits 23 and 24 and the fourth arithmetic circuit 22 And an operation control circuit 25 for controlling the output of the first or second combining circuit 23 or 24 or the output of the fourth arithmetic circuit 22 to output the reference signal P.
A fifth operation circuit 26 for calculating a difference from the output of the third operation circuit 21 as ref , and the output of the fifth operation circuit 26 is used as an output command signal P ref ′ of the power storage device 13.

【0025】なお、図2中、27は第1及び第2合成回
路23,24の出力、つまり、放電又は充電のいずれか
によって切り替えられる第1切替回路、28は第1及び
第2合成回路23,24の出力を保持する保持回路、2
9は第1又は第2合成回路23,24の出力、つまり、
保持回路28の出力或いは第4演算回路22の出力のい
ずれかによって切り替えられる第2切替回路である。
In FIG. 2, reference numeral 27 denotes a first switching circuit which is switched by the output of the first and second synthesizing circuits 23 and 24, that is, either discharging or charging, and 28 denotes a first and second synthesizing circuit 23. , 24 holding circuits, 2
9 is the output of the first or second combining circuit 23, 24, that is,
The second switching circuit is switched by either the output of the holding circuit 28 or the output of the fourth arithmetic circuit 22.

【0026】前記構成を有する制御装置18を具備した
系統安定化システムでは、前述した分散電源11の出力
変動に対する電力の変動補償動作や、負荷の電力需要量
に基づく昼夜間の電力の変動補償動作について、制御装
置18により、分散電源出力Pwと協調した電力貯蔵装
置13からの放電時、分散電源出力Pwの一定期間の平
均値と電力貯蔵装置13の放電可能期間内の単位時間放
電可能量との和を分散電源11と電力貯蔵装置13との
合成出力Pとし、前記分散電源出力Pwの電力貯蔵装置
13への充電時、前記合成出力Pを零とするか又は分散
電源出力Pwの一定期間の平均値と電力貯蔵装置13の
充電可能期間内の単位時間充電可能量との和を前記合成
出力Pとする。
In the system stabilizing system including the control device 18 having the above-described configuration, the power fluctuation compensating operation for the output fluctuation of the distributed power supply 11 and the day-night power fluctuation compensating operation based on the power demand of the load. When the control device 18 discharges from the power storage device 13 in cooperation with the distributed power source output Pw, the average value of the distributed power source output Pw for a certain period and the dischargeable amount per unit time within the dischargeable period of the power storage device 13 Is the combined output P of the distributed power source 11 and the power storage device 13, and when the distributed power output Pw is charged to the power storage device 13, the combined output P is set to zero, or the distributed power output Pw is maintained for a certain period of time. The sum of the average value of the power storage device 13 and the chargeable amount per unit time within the chargeable period of the power storage device 13 is defined as the composite output P.

【0027】つまり、この制御装置18では、前記分散
電源出力Pwと協調した電力貯蔵装置13からの放電
時、第1演算回路19により電力貯蔵装置13の放電可
能期間内の単位時間放電可能量を算出すると共に、第3
及び第4演算回路21,22により分散電源11から出
力される有効電力の平均値を算出し、電力貯蔵装置13
の放電可能期間内の単位時間放電可能量と分散電源出力
Pwの平均値の和を第1合成回路23により算出して分
散電源11と電力貯蔵装置13との合成出力Pとする。
That is, in the control device 18, when discharging from the power storage device 13 in cooperation with the distributed power source output Pw, the first arithmetic circuit 19 determines the unit time dischargeable amount within the dischargeable period of the power storage device 13. Calculation and the third
And an average value of the active power output from the distributed power source 11 by the fourth arithmetic circuits 21 and 22 is calculated.
Is calculated by the first combining circuit 23 as the combined output P of the distributed power supply 11 and the power storage device 13.

【0028】また、前記分散電源出力Pwの電力貯蔵装
置13への充電時、前記合成出力Pを零とすることによ
り分散電源出力Pwをすべて電力貯蔵装置13に充電す
るか、または、第2演算回路20により電力貯蔵装置1
3の充電可能期間内の単位時間充電可能量を算出すると
共に、第3及び第4演算回路21,22により分散電源
11から出力される有効電力の平均値を算出し、電力貯
蔵装置13の充電可能期間内の単位時間充電可能量と分
散電源出力Pwの平均値の和を第2合成回路24により
算出して分散電源11と電力貯蔵装置13との合成出力
Pとする。
When charging the distributed power supply output Pw to the power storage device 13, the distributed power output Pw is charged to the power storage device 13 by setting the composite output P to zero, or the second operation is performed. Power storage device 1 by circuit 20
3 and calculates the average value of the active power output from the distributed power source 11 by the third and fourth arithmetic circuits 21 and 22 to charge the power storage device 13. The sum of the chargeable amount per unit time within the possible period and the average value of the distributed power supply output Pw is calculated by the second combining circuit 24 to obtain a combined output P of the distributed power supply 11 and the power storage device 13.

【0029】前記分散電源出力Pwと協調した電力貯蔵
装置13の充放電時、運転制御回路25により、前記第
1および第2合成回路23,24の出力を第1切替回路
27で切り替えると共にその出力を保持回路28で一定
期間保持し、その保持された第1又は第2合成回路2
3,24の出力と第4演算回路22の出力とを第2切替
回路29で切り替える。運転制御回路25では、第1及
び第2合成回路23,24から出力される合成出力Pを
前述した運転パターン(図4参照)でもって一定期間
(出力時間)ごとに更新する。第1又は第2合成回路2
3,24の出力或いは第4演算回路22の出力を出力基
準信号Prefとして、第5演算回路26により第3演算
回路21の出力との差を算出し、その第5演算回路26
の出力を電力貯蔵装置13の出力指令信号Pref’とす
る。
When charging and discharging the power storage device 13 in cooperation with the distributed power output Pw, the operation control circuit 25 switches the outputs of the first and second combining circuits 23 and 24 by the first switching circuit 27 and outputs the same. Is held in the holding circuit 28 for a certain period, and the held first or second combining circuit 2
The outputs of 3, 24 and the output of the fourth arithmetic circuit 22 are switched by the second switching circuit 29. The operation control circuit 25 updates the combined output P output from the first and second combining circuits 23 and 24 at regular intervals (output time) according to the above-described operation pattern (see FIG. 4). First or second synthesis circuit 2
As an output or output reference signal P ref the output of the fourth arithmetic circuit 22 of 3,24, by the fifth arithmetic circuit 26 calculates a difference between the output of the third arithmetic circuit 21, the fifth arithmetic circuit 26
Is an output command signal P ref ′ of the power storage device 13.

【0030】このようにして得られた合成出力Pを前記
一定期間ごとに更新することにより、分散電源11の出
力変動に対する電力の変動補償動作や、負荷の電力需要
量に基づく昼夜間の電力の変動補償動作において、電力
貯蔵装置13を分散電源11と協調させ、その分散電源
11と電力貯蔵装置13との合成出力Pを常に一定に維
持することができて、人手を煩わせることなく、電力貯
蔵装置13の100%自動運転が実現容易となる。
By updating the composite output P obtained in this manner at regular intervals, the power fluctuation compensation operation for the power fluctuation of the distributed power source 11 and the power supply between day and night based on the power demand of the load are obtained. In the fluctuation compensation operation, the power storage device 13 is coordinated with the distributed power source 11 so that the combined output P of the distributed power source 11 and the power storage device 13 can be constantly maintained at a constant level. 100% automatic operation of the storage device 13 is easily realized.

【0031】なお、電力貯蔵装置13の充放電中、二次
電池15の充電状態(電池定格容量)、つまり、SOC
(State Of Charge)が利用限界(上下限値)に達した
ら、その充放電を中止して分散電源出力Pwの一定期間
の平均値を合成出力Pとする。これにより、電力貯蔵装
置13の二次電池15を電池性能限界まで運用可能とし
ている。
During charging / discharging of the power storage device 13, the state of charge of the secondary battery 15 (battery rated capacity), that is, the SOC
When the (State Of Charge) reaches the use limit (upper / lower limit), the charge / discharge is stopped and the average value of the distributed power supply output Pw for a certain period is set as the composite output P. Thereby, the secondary battery 15 of the power storage device 13 can be operated up to the battery performance limit.

【0032】なお、前述した実施形態では、分散電源1
1の一例である風力発電機を系統連系させた場合につい
て説明したが、本発明はこれに限定されることなく、自
然エネルギーを利用したクリーンな電力供給源としての
他の分散電源にも適用可能である。
In the above embodiment, the distributed power source 1
Although the case where the wind power generator is connected to the grid as one example has been described, the present invention is not limited to this, and is applicable to other distributed power sources as a clean power supply source using natural energy. It is possible.

【0033】[0033]

【発明の効果】本発明によれば、本発明では、前記分散
電源出力と協調した電力貯蔵装置からの放電時、分散電
源出力の一定期間の平均値と電力貯蔵装置の放電可能期
間内の単位時間放電可能量との和を分散電源と電力貯蔵
装置との合成出力とし、前記分散電源出力の電力貯蔵装
置への充電時、前記合成出力を零とするか又は分散電源
出力の一定期間の平均値と電力貯蔵装置の充電可能期間
内の単位時間充電可能量との和を前記合成出力とし、そ
れら合成出力を前記一定期間ごとに更新することによ
り、分散電源の出力変動に対する電力の変動補償動作
や、負荷の電力需要量に基づく昼夜間の電力の変動補償
動作において、電力貯蔵装置を分散電源と協調させ、そ
の分散電源と電力貯蔵装置との合成出力を常に一定に維
持することができて、電力貯蔵装置の能力限界まで、人
手を煩わせることなく、電力貯蔵装置の100%自動運
転が実現容易となる。
According to the present invention, according to the present invention, at the time of discharging from the power storage device in cooperation with the distributed power source output, the average value of the distributed power source output for a certain period and the unit within the dischargeable period of the power storage device are provided. The sum of the time dischargeable amount and the combined output of the distributed power supply and the power storage device is used, and when the distributed power supply output is charged to the power storage device, the combined output is set to zero or the average of the distributed power supply output for a certain period of time. The sum of the value and the chargeable amount per unit time within the chargeable period of the power storage device is used as the combined output, and the combined output is updated every fixed period, thereby compensating the power fluctuation with respect to the output fluctuation of the distributed power supply. In addition, in a power fluctuation compensation operation between day and night based on the power demand of the load, the power storage device can be coordinated with the distributed power source, and the combined output of the distributed power source and the power storage device can always be kept constant. , Until capacity limit of the force storage device, without troubling human intervention, automatic operation is facilitated realized 100% of the electric power storage device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る系統安定化システムの実施形態を
示す主回路構成図である。
FIG. 1 is a main circuit configuration diagram showing an embodiment of a system stabilization system according to the present invention.

【図2】図1の制御装置を示す構成ブロック図である。FIG. 2 is a configuration block diagram showing a control device of FIG. 1;

【図3】従来の系統安定化システムを示す主回路構成図
である。
FIG. 3 is a main circuit configuration diagram showing a conventional system stabilization system.

【図4】電力貯蔵装置による1日の充放電時間帯を示す
説明図である。
FIG. 4 is an explanatory diagram showing a charge / discharge time zone of one day by the power storage device.

【符号の説明】[Explanation of symbols]

11 分散電源(風力発電機) 12 系統電源 13 電力貯蔵装置 14 電力変換器 15 エネルギー貯蔵部(二次電池) 18 制御装置 19 第1演算回路 20 第2演算回路 21 第3演算回路 22 第4演算回路 23 第1合成回路 24 第2合成回路 25 運転制御回路 26 第5演算回路 DESCRIPTION OF SYMBOLS 11 Distributed power supply (wind power generator) 12 System power supply 13 Power storage device 14 Power converter 15 Energy storage part (secondary battery) 18 Control device 19 1st arithmetic circuit 20 2nd arithmetic circuit 21 3rd arithmetic circuit 22 4th arithmetic Circuit 23 First synthesis circuit 24 Second synthesis circuit 25 Operation control circuit 26 Fifth arithmetic circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 分散電源を連系させた電力系統に充放電
可能な電力貯蔵装置に接続し、前記分散電源出力とそれ
に協調した電力貯蔵装置の充放電とを制御することによ
り、分散電源の出力変動を抑えて電力系統の電圧または
周波数変動を抑制する系統安定化システムにおいて、 前記分散電源出力と協調した電力貯蔵装置からの放電
時、分散電源出力の一定期間の平均値と電力貯蔵装置の
放電可能期間内の単位時間放電可能量との和を分散電源
と電力貯蔵装置との合成出力とし、前記分散電源出力の
電力貯蔵装置への充電時、前記合成出力を零とするか又
は分散電源出力の一定期間の平均値と電力貯蔵装置の充
電可能期間内の単位時間充電可能量との和を前記合成出
力とし、それら合成出力を前記一定期間ごとに更新する
制御装置を具備したことを特徴とする系統安定化システ
ム。
The present invention relates to a distributed power supply connected to a power storage device that can be charged and discharged from an interconnected power system, and controls the output of the distributed power supply and the charging and discharging of the power storage device in coordination with the power supply. In a system stabilization system that suppresses output fluctuation and suppresses voltage or frequency fluctuation of a power system, when discharging from a power storage device in cooperation with the distributed power source output, the average value of the distributed power source output for a certain period and the power storage device The sum of the dischargeable amount per unit time within the dischargeable period is defined as a combined output of the distributed power supply and the power storage device, and when charging the distributed power supply output to the power storage device, the combined output is set to zero or the distributed power supply is A control device is provided that sets the sum of the average value of the output for a fixed period and the chargeable amount per unit time within the chargeable period of the power storage device as the combined output, and updates the combined output every fixed period. System stabilization system according to claim.
【請求項2】 前記制御装置は、電力貯蔵装置の放電可
能期間内の単位時間放電可能量を算出する第1演算回路
と、電力貯蔵装置の充電可能期間内の単位時間充電可能
量を算出する第2演算回路と、分散電源から出力される
有効電力を算出する第3演算回路と、その第3演算回路
から出力される有効電力の平均値を算出する第4演算回
路と、前記第1および第4演算回路の両出力を加算する
第1合成回路と、前記第2および第4演算回路の両出力
を加算する第2合成回路と、前記第1および第2合成回
路の出力を切り替えると共にその出力を一定期間保持
し、その保持された第1又は第2合成回路の出力と第4
演算回路の出力とを切り替える運転制御回路と、第1又
は第2合成回路の出力或いは第4演算回路の出力を出力
基準信号として第3演算回路の出力との差を算出する第
5演算回路とからなり、その第5演算回路の出力を電力
貯蔵装置の出力指令信号とすることを特徴とする請求項
1に記載の系統安定化システム。
2. The control device according to claim 1, wherein the control device calculates a unit time dischargeable amount within a dischargeable period of the power storage device, and calculates a unit time chargeable amount during a chargeable period of the power storage device. A second operation circuit, a third operation circuit for calculating active power output from the distributed power supply, a fourth operation circuit for calculating an average value of active power output from the third operation circuit, A first combining circuit for adding both outputs of the fourth arithmetic circuit, a second combining circuit for adding both outputs of the second and fourth arithmetic circuits, and switching between the outputs of the first and second combining circuits. The output is held for a certain period of time, and the held output of the first or second synthesis circuit and the fourth
An operation control circuit for switching between the output of the arithmetic circuit and a fifth arithmetic circuit for calculating a difference between the output of the first or second combining circuit or the output of the fourth arithmetic circuit as an output reference signal and the output of the third arithmetic circuit; The system stabilization system according to claim 1, wherein an output of the fifth arithmetic circuit is used as an output command signal of the power storage device.
【請求項3】 分散電源を連系させた電力系統に充放電
可能な電力貯蔵装置を接続し、前記分散電源出力とそれ
に協調した電力貯蔵装置の充放電とを制御することによ
り、分散電源の出力変動を抑えて電力系統の電圧または
周波数変動を抑制する系統安定化システムの制御方法に
おいて、 前記分散電源出力と協調した電力貯蔵装置からの放電
時、分散電源出力の一定期間の平均値と電力貯蔵装置の
放電可能期間内の単位時間放電可能量との和を分散電源
と電力貯蔵装置との合成出力とし、前記分散電源出力の
電力貯蔵装置への充電時、前記合成出力を零とするか又
は分散電源出力の一定期間の平均値と電力貯蔵装置の充
電可能期間内の単位時間充電可能量との和を前記合成出
力とし、それら合成出力を前記一定期間ごとに更新する
ことを特徴とする系統安定化システムの制御方法。
3. A distributed power source is connected to a power system interconnected with a distributed power source, and a chargeable / dischargeable power storage device is connected to control the distributed power source output and the charge / discharge of the power storage device in coordination with the power source. In a control method of a system stabilization system that suppresses output fluctuation and suppresses voltage or frequency fluctuation of a power system, an average value and a power of a distributed power supply output during a certain period of time during discharging from a power storage device cooperating with the distributed power output. The sum of the dischargeable amount per unit time within the dischargeable period of the storage device is defined as the combined output of the distributed power supply and the power storage device, and when the distributed power supply output is charged to the power storage device, the combined output is set to zero. Alternatively, the sum of the average value of the distributed power supply output for a fixed period and the chargeable amount per unit time within the chargeable period of the power storage device is set as the combined output, and the combined output is updated every fixed period. Control method for system stabilization system.
JP2000367282A 2000-12-01 2000-12-01 Power system stabilizer and its control method Pending JP2002171669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000367282A JP2002171669A (en) 2000-12-01 2000-12-01 Power system stabilizer and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000367282A JP2002171669A (en) 2000-12-01 2000-12-01 Power system stabilizer and its control method

Publications (1)

Publication Number Publication Date
JP2002171669A true JP2002171669A (en) 2002-06-14

Family

ID=18837730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000367282A Pending JP2002171669A (en) 2000-12-01 2000-12-01 Power system stabilizer and its control method

Country Status (1)

Country Link
JP (1) JP2002171669A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182859A (en) * 2007-01-26 2008-08-07 Hitachi Industrial Equipment Systems Co Ltd Hybrid system of wind power generator and power storage device, wind power generation system, power control device
WO2012108033A1 (en) * 2011-02-10 2012-08-16 三菱重工業株式会社 Wind-powered electricity generation equipment and method for controlling wind-powered electricity generation equipment
EP2487769A4 (en) * 2009-10-05 2013-03-27 Toyota Motor Co Ltd ENERGY STORAGE SYSTEM SPECIFICATION SELECTION DEVICE AND ENERGY STORAGE SYSTEM SPECIFICATION SELECTION METHOD
JPWO2011122681A1 (en) * 2010-03-30 2013-07-08 三洋電機株式会社 System stabilization system, power supply system, centralized management device control method, and centralized management device program
CN103606940A (en) * 2013-11-05 2014-02-26 国电南瑞科技股份有限公司 Distributed power stabilizing method applied in micro grid
US8779724B2 (en) 2009-12-28 2014-07-15 Toyota Jidosha Kabushiki Kaisha Residential electric power storage system
CN104242328A (en) * 2014-09-03 2014-12-24 南方电网科学研究院有限责任公司 Energy storage control method based on impedance detection

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182859A (en) * 2007-01-26 2008-08-07 Hitachi Industrial Equipment Systems Co Ltd Hybrid system of wind power generator and power storage device, wind power generation system, power control device
US7855467B2 (en) 2007-01-26 2010-12-21 Hitachi Industrial Equipment Systems Co., Ltd. Hybrid power generation of wind-power generator and battery energy storage system
EP2487769A4 (en) * 2009-10-05 2013-03-27 Toyota Motor Co Ltd ENERGY STORAGE SYSTEM SPECIFICATION SELECTION DEVICE AND ENERGY STORAGE SYSTEM SPECIFICATION SELECTION METHOD
US8829720B2 (en) 2009-10-05 2014-09-09 Toyota Jidosha Kabushiki Kaisha Apparatus for selecting specifications of power storage system and method for selecting specifications of power storage system
US8779724B2 (en) 2009-12-28 2014-07-15 Toyota Jidosha Kabushiki Kaisha Residential electric power storage system
JPWO2011122681A1 (en) * 2010-03-30 2013-07-08 三洋電機株式会社 System stabilization system, power supply system, centralized management device control method, and centralized management device program
WO2012108033A1 (en) * 2011-02-10 2012-08-16 三菱重工業株式会社 Wind-powered electricity generation equipment and method for controlling wind-powered electricity generation equipment
CN102770663A (en) * 2011-02-10 2012-11-07 三菱重工业株式会社 Wind-powered electricity generation equipment and method for controlling wind-powered electricity generation equipment
US8338978B2 (en) 2011-02-10 2012-12-25 Mitsubishi Heavy Industries, Ltd. Wind turbine generator having electrical storage device and acoustic noise suppression method thereof
JP5579176B2 (en) * 2011-02-10 2014-08-27 三菱重工業株式会社 Wind power generation facility and control method for wind power generation facility
CN103606940A (en) * 2013-11-05 2014-02-26 国电南瑞科技股份有限公司 Distributed power stabilizing method applied in micro grid
CN104242328A (en) * 2014-09-03 2014-12-24 南方电网科学研究院有限责任公司 Energy storage control method based on impedance detection

Similar Documents

Publication Publication Date Title
JP5584763B2 (en) DC power distribution system
KR101454299B1 (en) Control Method of Stand-alone Microgrid using Inverter for ESS
JP2018107991A (en) Composite power generation system
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
JP2008154360A (en) Power storage unit, and hybrid distributed power system
JP2004180467A (en) Grid-connected power supply system
CN102195312A (en) A battery system
JP2020520226A (en) Hybrid energy storage system
WO2015004999A1 (en) Power control system
JP2013247795A (en) Autonomous operation system for distributed power supply
JP6194527B2 (en) Grid interconnection power supply
JP4616579B2 (en) Power supply system
JP2024051003A (en) Power Conversion Systems
JP2012200060A (en) Feeding control system and feeding control method
JP6225672B2 (en) Power supply equipment and operation method thereof
JP2002171669A (en) Power system stabilizer and its control method
JP2004129412A (en) Power storing device
WO2013179358A1 (en) Controller, battery control unit, and power distribution system
JP7026419B1 (en) Power supply system
JP3122815U (en) Power storage device
JP2014103819A (en) Charging device, charging method, power supply system and residual stored power amount measuring method thereof
JP2000175360A (en) Inverse power flow method of power storing system
JP5901495B2 (en) Output stabilization controller for distributed power supply
JP2013099207A (en) Control apparatus and control method
JP2012010554A (en) Private power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060303