[go: up one dir, main page]

JP2014103819A - Charging device, charging method, power supply system and residual stored power amount measuring method thereof - Google Patents

Charging device, charging method, power supply system and residual stored power amount measuring method thereof Download PDF

Info

Publication number
JP2014103819A
JP2014103819A JP2012255906A JP2012255906A JP2014103819A JP 2014103819 A JP2014103819 A JP 2014103819A JP 2012255906 A JP2012255906 A JP 2012255906A JP 2012255906 A JP2012255906 A JP 2012255906A JP 2014103819 A JP2014103819 A JP 2014103819A
Authority
JP
Japan
Prior art keywords
storage battery
power
charging
pcs
charging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012255906A
Other languages
Japanese (ja)
Inventor
Akio Nemoto
暁生 根本
Shigeo Shiono
繁男 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEMOTO DENKO CO Ltd
TOWA ELEX CORP
Original Assignee
NEMOTO DENKO CO Ltd
TOWA ELEX CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEMOTO DENKO CO Ltd, TOWA ELEX CORP filed Critical NEMOTO DENKO CO Ltd
Priority to JP2012255906A priority Critical patent/JP2014103819A/en
Publication of JP2014103819A publication Critical patent/JP2014103819A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charging device for charging a rechargeable battery at a time less than output from a photovoltaic panel which cannot generate power due to cloudy weather or from wind power generation under a weak wind force, a charging method, a high-efficiency power generation and supply system which is available all the time, and a residual stored power amount measuring method thereof.SOLUTION: The charging device comprises: a low voltage detector which is connected between a power conditioner (PCS) of a power generation system effectively utilizing natural energy and a rechargeable battery, detects an operational voltage range of the PCS, and determines that the operational voltage is equal to or lower than a predetermined value; and a relay with a contact for not electrically connecting an input-side DC circuit of the PCS and the rechargeable battery when the operational voltage exceeds the predetermined value, but electrically connecting the input-side DC circuit of the PCS and the rechargeable battery when it is determined that the operational voltage is equal to or lower than the predetermined value. The charging device is capable of providing a high-efficiency power supply system which is available all the time in combination with a charging/discharging amount measuring section for residual capacitance value confirmation of the rechargeable battery.

Description

本発明は、常時使用可能な高効率の電力供給システムを構築するために、自然エネルギー活用の発電装置を蓄電池と組み合わせて使用するための充電装置、充電方法及び電力供給システムとその蓄電残量計測方法に関する。   The present invention relates to a charging device, a charging method, a power supply system, and a remaining power storage measurement for using a power generation device utilizing natural energy in combination with a storage battery in order to construct a highly efficient power supply system that can always be used. Regarding the method.

自然エネルギー活用の発電法(太陽光発電、風力発電、マイクロ水力発電等)が普及・加速している。   Power generation methods utilizing natural energy (solar power generation, wind power generation, micro hydropower generation, etc.) are becoming popular and accelerating.

しかし、太陽発電や風力発電等は天候などの自然気象現象に左右される宿命があり、その対策として如何に発電効率を向上させるかの工夫が盛んである。例えば、特許文献1では、複数の太陽光発電装置による電力系統への売電量の変動を低減させるために、日の出時刻より日没時刻の期間を運用システムで最適化させることが示されている。   However, solar power generation, wind power generation, and the like have fate that depends on natural weather phenomena such as the weather, and as a countermeasure, there are many ways to improve power generation efficiency. For example, Patent Document 1 discloses that the operation system optimizes the sunset time period from the sunrise time in order to reduce fluctuations in the amount of power sold to the power system by a plurality of solar power generation devices.

一方、特許文献2では、電気自動車の蓄電池への充電用として家庭内の直流電源装置とを連携させて充電効率を向上する発明が記載されている。   On the other hand, Patent Document 2 describes an invention in which charging efficiency is improved by linking a DC power supply device in a home for charging an electric vehicle storage battery.

また、最近の新聞によれば、停電時に電気自動車の蓄電池を家庭内へ給電し、停電対策も出来るという記事が散見される。   In addition, according to a recent newspaper, there are some articles that power storage batteries for electric vehicles can be fed into the home in the event of a power outage to take measures against power outage.

特開2010-288393号公報JP 2010-288393 A 特開2003-79059号公報JP 2003-79059 A

しかしながら、太陽光発電の安定化には蓄電池が必要であるが、売電用に供する場合は、蓄電池の接続が認められていないので、自家消費に限定されてしまうという課題を有する。   However, although a storage battery is required for stabilization of solar power generation, when the battery is used for power sale, since the connection of the storage battery is not permitted, there is a problem that it is limited to self-consumption.

また、日射量に応じた太陽パネルの発電量のため、曇り空では発電量が極端に少ないか、又は、発電できない状態となる。同様な状態は、風力が極端に弱いときの風力発電の場合にもみられる。   In addition, because of the amount of power generated by the solar panel according to the amount of solar radiation, the amount of power generated is extremely small in a cloudy sky, or power generation is not possible. A similar situation is seen in the case of wind power generation when the wind power is extremely weak.

本発明はこのような課題を解決するためになされたもので、その目的は、曇天時等の発電できない太陽光パネルや風力が弱い風力発電の出力以下の時に、蓄電池に充電回路を構成して、直流/直流変換器(D/Dコンバータ)で蓄電池に整合させて充電することができる充電装置を提供することを目的とする。   The present invention has been made in order to solve such problems, and its purpose is to configure a charging circuit in a storage battery when the solar panel is unable to generate power during cloudy weather or when the output of wind power is weak or less. An object of the present invention is to provide a charging device that can be charged by matching a storage battery with a DC / DC converter (D / D converter).

また、蓄電池の容量は[電圧(V)×電流(A)×時間(h)]によって表されるが、一般に電圧(V)の低下監視が簡便なため、電圧Vが規定値(定格12Vのときは、10.5Vが使用下限電圧)以下になると、通常使用を停止して、再充電作業により12Vに復帰させて、再負荷することが行われている。本発明では、この従来方法に代えて、蓄電池の入力端の電流(A)の出入り(入るときは充電モード、出るときは放電使用モード)を計測した[A×h]の積として処理して充電量と放電量とを表示する。すなわち、充電量がどの程度なのかの残留容量表示器を有する充放電量計測部を備えることによって、蓄電池の残留容量を計測するとともに、充電量と放電量が目視できるようにする電力供給システムを提供することである。   The capacity of the storage battery is represented by [Voltage (V) × Current (A) × Time (h)]. In general, since the voltage (V) drop can be easily monitored, the voltage V is a specified value (rated 12V). When 10.5V becomes lower than the use lower limit voltage), the normal use is stopped, it is returned to 12V by recharging work, and reloading is performed. In the present invention, instead of this conventional method, the current (A) at the input end of the storage battery is processed as a product of [A × h] which is measured as the input / output (charge mode when entering, discharge use mode when exiting). The amount of charge and the amount of discharge are displayed. That is, by providing a charge / discharge amount measuring unit having a remaining capacity indicator of how much the charge amount is, a power supply system that measures the remaining capacity of the storage battery and makes the charge amount and the discharge amount visible Is to provide.

太陽光パネルや風力発電等の自然エネルギー活用の発電装置の中継箱とパワーコンディショナー(PCS)との間にDC充電装置を設けて蓄電池への回路構成を設ける。本発明の充電装置は、PCS動作電圧範囲以下と判定する低電圧検出器により、接点付継電器を動作させて、D/Dコンバータで蓄電電圧に整合させて充電させるDCの充電装置を設けたものである。   A DC charging device is provided between a relay box of a power generation device utilizing natural energy such as a solar panel or wind power generation and a power conditioner (PCS) to provide a circuit configuration for a storage battery. The charging device of the present invention is provided with a DC charging device that operates a relay with a contact by a low voltage detector that is determined to be below the PCS operating voltage range, and charges the battery by matching with the storage voltage by a D / D converter. It is.

また、本発明の充電装置は、前記PCSの動作の有無及び/又は日照量の多さを確認するために、前記PCSの内部制御部の動作範囲外条件接点及び/又は日照計と電気的に並列に接続されたAND回路を備え、それに加えて、充電電力を蓄積するための回路を構成するコンデンサ、及び蓄電池からの電流逆流を防止するための逆流防止ダイオードの少なくとも何れかを備えても良い。   In addition, the charging device of the present invention is electrically connected to the contact point outside the operating range of the internal control unit of the PCS and / or the sunshine meter in order to confirm the presence / absence of the PCS and / or the amount of sunshine. An AND circuit connected in parallel may be provided, and in addition to this, at least one of a capacitor constituting a circuit for accumulating charging power and a backflow prevention diode for preventing current backflow from the storage battery may be provided. .

また、本発明の充電方法は、前記発電装置のパワーコンディショナー(PCS)の動作電圧範囲を検出し、該動作電圧が所定の値未満と判定する工程と、前記の動作電圧が所定の値以上のときには、前記PCSの入力側DC回路と前記蓄電池とは電気的に接続されず、前記の動作電圧が所定の値未満と判定されたときに、前記PCSの入力側DC回路と前記蓄電池とを電気的に接続することによって、前記蓄電池へ前記発電装置からの電力を充電する工程を有する。さらに、前記PCSの内部制御部の動作範囲外条件接点及び/又は日照計によって、前記PCSの動作の有無及び/又は日照量の多さを確認する工程を有しても良い。   Further, the charging method of the present invention includes a step of detecting an operating voltage range of a power conditioner (PCS) of the power generator and determining that the operating voltage is less than a predetermined value, and the operating voltage is not less than a predetermined value. Sometimes, the input DC circuit of the PCS and the storage battery are not electrically connected, and when the operating voltage is determined to be less than a predetermined value, the input DC circuit of the PCS and the storage battery are electrically connected. By connecting to the storage battery, the electric power from the power generator is charged to the storage battery. Furthermore, it may have a step of confirming the presence / absence of the operation of the PCS and / or the amount of sunshine by the out-of-operation condition contact and / or the sunshine meter of the internal control unit of the PCS.

また、本発明の電力供給システムは、蓄電池への入力部にDC電流検出器を配置することで充電量((+)Ah)と放電量((−)Ah)を判別するとともに、蓄電池の残留容量値も確認できる充放電計測部を設けたものである。   Further, the power supply system of the present invention discriminates the charge amount ((+) Ah) and the discharge amount ((−) Ah) by arranging a DC current detector at the input part to the storage battery, and the remaining of the storage battery. A charge / discharge measurement unit that can also confirm the capacity value is provided.

また、本発明の電力供給システムにおいて行われる前記蓄電池の残存容量を計測する方法は、前記の充電装置と前記の蓄電池との間に電気的に配置して接続され、前記の蓄電池の外部端子部に設けた電流検出器によって充放電時の電流を検知する工程と、充電量と放電量をそれぞれの累積積分値として取得する工程と、前記充電量の累積積分値から前記放電量の累積積分値を減算する処理を行って蓄電池の残存容量値を算出する工程と、前記残存容量値を表示する工程とからなる。   The method of measuring the remaining capacity of the storage battery performed in the power supply system of the present invention is electrically arranged and connected between the charging device and the storage battery, and the external terminal portion of the storage battery A step of detecting a current at the time of charging and discharging by a current detector provided in the step, a step of obtaining a charge amount and a discharge amount as respective cumulative integral values, and a cumulative integral value of the discharge amount from the cumulative integral value of the charge amount The process of subtracting is performed to calculate the remaining capacity value of the storage battery, and the remaining capacity value is displayed.

前記手段に記述した本発明の構成によれば、次の効果を得ることができる。曇天時の太陽光発電しないときや風力が弱くて十分な電力を得られなった風力発電のときも、本発明の充電装置を取り付けることによって蓄電池への充電が可能となるので、太陽光や風力等の自然エネルギー利用による発電の無駄が無くなる。また、前記PCSの動作の有無及び/又は日照量の多さを確認するために、前記PCSの内部制御部の動作範囲外条件接点及び/又は日照計と電気的に並列に接続されるAND回路を備えることによって、太陽光や風力による発電装置として売電する場合に、PCSの入力側DC回路に蓄電池を接続してはいけないという規制に対して確実に対応できる信頼性の高い充電装置が得られる。さらに、充電電力を蓄積するためのコンデンサ、及び蓄電池からの電流逆流を防止するための逆流防止ダイオードの少なくとも何れかを備えることによって、充電装置として機能の向上を図ることができる。   According to the configuration of the present invention described in the above means, the following effects can be obtained. The battery can be charged by installing the charging device of the present invention even when there is no solar power generation in cloudy weather or when the wind power is weak and sufficient power is not obtained. This eliminates the waste of power generation due to the use of natural energy. In addition, in order to confirm the presence / absence of the operation of the PCS and / or the amount of sunshine, an AND circuit electrically connected in parallel with the contact point outside the operating range of the internal control unit of the PCS and / or the sunshine meter By providing this, a highly reliable charging device that can reliably comply with the regulation that a storage battery must not be connected to the DC circuit on the input side of the PCS is obtained when selling power as a solar or wind power generator. It is done. Furthermore, by providing at least one of a capacitor for storing charging power and a backflow prevention diode for preventing current backflow from the storage battery, the function of the charging device can be improved.

本発明の電力供給システムによれば、蓄電池への充電量も測れるので、蓄電池が充電モードと放電使用モードでも蓄電池の残留容量値もわかる。それによって、蓄電池が何時使えなくなるのかが判り、急速充電させるか、又は通電を使用制限するのかの対策が事前にできるので、蓄電電力が使い易くなる。さらに、蓄電池からの直流を交流に変換して商用電力系統へ発電を行わせるための交流給電部、又は、商用電力系統からの交流電圧を蓄電池へ給電するための交流給電部を備えることによって、突然の蓄電容量停止を防止したり、急速充電が行うことができるため、常時使用可能な高効率の電力供給システムを構築することが可能となる。   According to the power supply system of the present invention, the amount of charge to the storage battery can also be measured, so that the residual capacity value of the storage battery can be found even when the storage battery is in the charge mode and the discharge use mode. As a result, it is possible to know when the storage battery can no longer be used, and it is possible to take measures in advance for quick charging or for restricting the use of energization, which makes it easy to use the stored power. Furthermore, by providing an AC power supply unit for converting the direct current from the storage battery into alternating current and generating power to the commercial power system, or an AC power supply unit for supplying AC voltage from the commercial power system to the storage battery, Since sudden storage capacity stoppage can be prevented or rapid charging can be performed, a highly efficient power supply system that can be used at all times can be constructed.

また、本発明の電力供給システムによって行われる蓄電残量計測方法は、経験則から充電時の発熱損失を考慮して、充電容量を放電量よりも多く見積もるための補正値を適用することによって、充放電による蓄電池の残留容量を実情に即した状態で適正に制御及び管理することができる。   In addition, the method for measuring the remaining amount of electricity performed by the power supply system of the present invention considers the heat loss during charging from the rule of thumb, and applies a correction value for estimating the charge capacity more than the discharge amount. It is possible to appropriately control and manage the remaining capacity of the storage battery due to charging and discharging in a state in accordance with the actual situation.

本発明の充電装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the charging device of this invention. 本発明の充電装置において、低電圧検出器がPCSの内部制御部の動作範囲外条件接点及び/又は日照計と電気的に並列に接続されたAND回路を示す図である。FIG. 4 is a diagram showing an AND circuit in which a low voltage detector is electrically connected in parallel with an out-of-operation condition contact of an internal control unit of PCS and / or a sunshine meter in the charging device of the present invention. 本発明の充電装置によるDC充電部の動作説明図である。It is operation | movement explanatory drawing of the DC charging part by the charging device of this invention. 本発明の電力供給システムを示す図である。It is a figure which shows the electric power supply system of this invention. 本発明の電力供給システムにおける充放電計測部の動作説明図である。It is operation | movement explanatory drawing of the charging / discharging measurement part in the electric power supply system of this invention. 本発明の電力供給システムにおいて、太陽光発電と風力発電を併用したときの発電部の模式図である。In the electric power supply system of this invention, it is a schematic diagram of a power generation part when using solar power generation and wind power generation together.

本発明の充電装置の構成を図1に基づいて説明する。
図1には、自然エネルギーを活用する発電装置の例として太陽光発電装置を示している。図1に示す太陽光発電装置において、1は、複数個の太陽光パネル(P〜P)で、中継箱2(逆流防止用ダイオード付)とPCS(パワーコンデイショナー)3とより構成し、発電電力は電力量計4で計測して、商用電源系統5に接続される。ここに、PCSとはDC入力をSで受けてSwt(スイッチング回路)により交流化して、Tr(変圧器)経由でAC出力をS経由で出力する構成である。
The structure of the charging device of the present invention will be described with reference to FIG.
FIG. 1 shows a solar power generation device as an example of a power generation device that utilizes natural energy. In the solar power generation apparatus shown in FIG. 1, reference numeral 1 denotes a plurality of solar panels (P 1 to P n ), which includes a relay box 2 (with a backflow prevention diode) and a PCS (power conditioner) 3. The generated power is measured by the watt-hour meter 4 and connected to the commercial power supply system 5. Here, the PCS has a configuration in which a DC input is received at S 1 and converted into an alternating current by S wt (switching circuit), and an AC output is output via Tr (transformer) via S 2 .

本発明の充電装置6は、上記1〜4の構成を有する太陽光発電装置に組み合わせて用いられ、PCS3の入力部分にPCS3と並列に接続される入力端子部と、蓄電池10と直列に接続される出力端子部とを有する。   The charging device 6 of the present invention is used in combination with the solar power generation device having the above-described configurations 1 to 4, and is connected in series with the input terminal portion connected in parallel with the PCS 3 to the input portion of the PCS 3 and the storage battery 10. Output terminal portion.

PCSの内部処理手段では、DC入力変化(一般に250〜450V)条件に対してスイッチング(Swt)とトタンジスタ(Tr)とによりAC出力を、例えば100V又は200Vと一定にする機能としているので、DC入力が250〜200Vに低下する場合、一定AC出力とする変換制御ができなくなるため、DC/AC変換機能を停止又はロックして、AC出力の質(電圧変動と周波数変動)を確保している。   The internal processing means of the PCS has a function of making the AC output constant, for example, 100 V or 200 V by switching (Swt) and the transistor (Tr) with respect to the DC input change (generally 250 to 450 V) condition. When the voltage drops to 250 to 200 V, conversion control with a constant AC output becomes impossible, so the DC / AC conversion function is stopped or locked to ensure the quality of AC output (voltage fluctuation and frequency fluctuation).

このように、PCS3の動作可能なDC入力電圧は、一般に200V〜500V範囲としており、実用的には、250V〜450Vの範囲で一定電圧の交流電力を出力している。   As described above, the DC input voltage at which the PCS 3 can operate is generally in the range of 200V to 500V, and practically, AC power having a constant voltage is output in the range of 250V to 450V.

高出力条件とは晴天で日射量が最大となる時点で、DC入力電圧は450V〜500Vに上昇する。   When the high output condition is sunny and the amount of solar radiation becomes maximum, the DC input voltage rises to 450V to 500V.

曇天時は250V以下となるため、PCS3は動作範囲外となり、安定したAC出力制御ができなくなるので、AC出力を停止する制限的ロックをかける仕掛をしている。   Since it becomes 250 V or less in cloudy weather, the PCS 3 is out of the operating range, and stable AC output control cannot be performed, so that a restrictive lock for stopping AC output is applied.

本発明では、曇天時のDC250V未満、好ましくはDC200V以下のときのみ、太陽光セルの出力を利用しようとするもので、その手段として、PCS3の入力端子部にDCの充電装置6を接続し、さらに充電装置6と蓄電池10とを接続し、充電電力として利用する方法である。   In the present invention, the output of the solar cell is intended to be used only when it is less than DC 250V, preferably DC 200V or less in cloudy weather. As a means for that, the DC charging device 6 is connected to the input terminal portion of the PCS 3, Furthermore, it is the method of connecting the charging device 6 and the storage battery 10, and utilizing as charging power.

DC充電装置6の機能を具体的な実施形態によって説明する。   The function of the DC charging device 6 will be described using a specific embodiment.

<第1の実施形態>
先ず、PCSの入力電圧は低電圧検出器(AV)6−2で検出し併せて日射計6−1が曇天である条件をAND回路6−3で判定し、DC250V未満、具体的にはDC200V以下ならば接点付継電器6−4を動作させ、DC/DCコンバータ6−5と逆流防止ダイオード6−6とにより蓄電池10の充電電圧に整合して充電させる。逆流防止ダイオード6−6としては、定格電流が10〜30Aで、逆耐圧が500V以上のものを使用することができる。
<First Embodiment>
First, the input voltage of the PCS is detected by the low voltage detector (AV) 6-2, and the condition that the pyranometer 6-1 is cloudy is determined by the AND circuit 6-3, and is less than DC250V, specifically DC200V. If it is below, the contact relay 6-4 is operated and charged by the DC / DC converter 6-5 and the backflow prevention diode 6-6 in accordance with the charging voltage of the storage battery 10. As the backflow prevention diode 6-6, a diode having a rated current of 10 to 30 A and a reverse withstand voltage of 500 V or more can be used.

ここにコンデンサ6−7を付加しておくと、曇天時の日射量の微分的変化出力が積分されてコンデンンサ6−7に蓄積できるので効率よく充電電力を取り出すことができる。本発明では、コンデンサ6−7として容量が20〜500ファラッド(F)の範囲のものを使用する。   If a capacitor 6-7 is added here, the differential change output of the amount of solar radiation at the time of cloudy weather can be integrated and accumulated in the capacitor 6-7, so that the charging power can be taken out efficiently. In the present invention, a capacitor having a capacity in the range of 20 to 500 farads (F) is used as the capacitor 6-7.

なお、中継箱2とPCS3との結線により引出し線でDCの充電部装置6に接続するときは、次のような制約条件が存在する。
(1)太陽光発電装置として売電する場合は(電力量計4−1を使用)、PCSの入力側DC回路に蓄電池を接続してはいけない規制がある。理由は、太陽光発電のみの売電契約条件があり、蓄電入力は、夜間電力の利用等が行われる可能性があるため、売電という本来の目的に対して契約違反となる。
(2)太陽光発電装置として自家発電する場合は(電力量計4−2を使用)、上記の規制は無くなり、自在に蓄電池10を設けて、昼間に蓄電をし、夜間に使用する等としてもよいことになる、その場合、PCS3内のSの切替えで商用電源系統5のSに接続して使用される。
In addition, when connecting to the DC charging unit 6 by a lead wire by connecting the relay box 2 and the PCS 3, the following restrictions exist.
(1) When selling power as a solar power generation device (using a watt-hour meter 4-1), there is a restriction that a storage battery must not be connected to the DCS input side DC circuit. The reason is that there is a power sale contract condition for only solar power generation, and the power storage input may be used for nighttime power, etc., which violates the contract for the original purpose of power sale.
(2) When self-generating as a solar power generation device (using watt-hour meter 4-2), the above restrictions are eliminated, and storage battery 10 is provided freely to store electricity during the day, use it at night, etc. It would also be possible, in which case, be used in connection with S 3 of the commercial power system 5 by switching the S 2 in PCS3.

故に、本発明のように、接点付継電器6−4で、太陽電池装置が蓄電池10との間で物理的に接続しない条件として、PCS動作条件のときは蓄電池10への回路は物理的に遮断されることが必須となる。   Therefore, as in the present invention, as a condition that the solar cell device is not physically connected to the storage battery 10 in the contact relay 6-4, the circuit to the storage battery 10 is physically interrupted under the PCS operating condition. It is essential that

本実施形態の変形例としては、低電圧検出器6−2は高抵抗設置回路をつくり分圧の小さい電圧で6−2の入力電源としてもよい。   As a modification of the present embodiment, the low voltage detector 6-2 may be a high resistance installation circuit, and may be used as an input power source for 6-2 with a small voltage.

また、図2に示すように、AND回路6−3の条件は、日照計6−1ではなく、PCS3の内部制御部の動作範囲外条件接点を使用してもよい。図2は、本発明の充電装置において、低電圧検出器6−2がPCS3の内部制御部の動作範囲外条件接点及び/又は日照計6−1と電気的に並列に接続されたAND回路6−3を示す図である。ここで、日照計6−1及びPCS3の内部制御部の動作範囲外条件接点は、それらの何れか一つを使用しても良いし、両者を同時に併用しても良い。両者を併用することにより、上記の(1)の制約条件を確実に遵守することができるため、充電装置6を発電装置と組み合わせたときに充電機能の信頼性が大幅に向上するだけでなく、売電契約の履行に対して保証が得られる。   Further, as shown in FIG. 2, the condition of the AND circuit 6-3 may use a condition contact outside the operating range of the internal control unit of the PCS 3 instead of the sunshine meter 6-1. FIG. 2 shows an AND circuit 6 in which the low voltage detector 6-2 is electrically connected in parallel with the out-of-range condition contact of the internal control unit of the PCS 3 and / or the sunshine meter 6-1 in the charging device of the present invention. FIG. Here, any one of them may be used as the contact point outside the operating range of the internal control unit of the sunshine meter 6-1 and the PCS 3, or both may be used simultaneously. By combining both, it is possible to reliably comply with the constraint (1) above, so that not only the reliability of the charging function is greatly improved when the charging device 6 is combined with the power generation device, Guarantees can be obtained for the performance of power sale contracts.

本発明においては、日照計6−1及び/又はPCS3の内部制御部の動作範囲外条件接点を接続するAND回路を備えることは、必ずしも必須の条件ではない。上記の(1)の制約条件が将来的に緩和される場合には、日照計6−1及び/又はPCS3の内部制御部の動作範囲外条件接点を接続するAND回路を備えなくても、充電装置としての機能を十分に発揮することができる。   In the present invention, it is not always necessary to provide an AND circuit for connecting the sunshine meter 6-1 and / or the condition contact outside the operating range of the internal control unit of the PCS3. If the restriction condition (1) is relaxed in the future, charging can be performed without providing an AND circuit that connects the sunshine meter 6-1 and / or the out-of-range condition contact of the internal control unit of the PCS 3. The function as a device can be fully exhibited.

図3は、DC充電部6の動作説明図である。
太陽光セル1の出力DC電圧は、晴天曇天具合により日射量が変化するので、縦軸に出力電圧、横軸に日射量の多さを示すと、PCS3の動作範囲はDC250V〜450Vの範囲で制御して、PCS内部でAC出力一定の処理をしている。曇天の場合、太陽光セル1の出力が低下するとDC250V未満、より具体的にはDC200V以下においてPCS3は動作範囲外となり、DC充電装置6が再利用電源としてDC200V〜50Vの範囲で充電制御して使用することを示す。
FIG. 3 is an operation explanatory diagram of the DC charging unit 6.
The output DC voltage of the solar cell 1 changes in the amount of solar radiation depending on the degree of sunny weather. If the vertical axis indicates the output voltage and the horizontal axis indicates the amount of solar radiation, the operating range of the PCS 3 is DC250V to 450V. Control is performed and the AC output is constant in the PCS. In the case of cloudy weather, when the output of the solar cell 1 is reduced, the PCS 3 is out of the operating range at less than DC 250V, more specifically, DC 200V or less, and the DC charging device 6 performs charge control in the range of DC 200V to 50V as a reusable power source. Indicates use.

なお、DC50Vとは蓄電池10のセル構成数に依存し、セル電圧2Vで24個直列接続すると48Vとなり、充電電圧は48V×1.2=57.6Vと、DC/DCコンバータ(D/D)6−5で出力を設定すればよい。   Note that DC50V depends on the number of cell configurations of the storage battery 10. When 24 cells are connected in series at a cell voltage of 2V, the voltage is 48V, and the charging voltage is 48V × 1.2 = 57.6V, which is a DC / DC converter (D / D). The output may be set at 6-5.

以上のように、本発明の充電装置を取り付けることによって曇天時の太陽光発電しないときでも蓄電池への充電が可能となる。そこで行う本発明の充電方法は、発電装置のパワーコンディショナー(PCS)の動作電圧範囲を検出し、該動作電圧が所定の値未満と判定する工程と、前記の動作電圧が所定の値以上のときには、前記PCSの入力側DC回路と前記蓄電池とは電気的に接続されず、前記の動作電圧が所定の値未満と判定されたときに、前記PCSの入力側DC回路と前記蓄電池とを電気的に接続することによって、前記蓄電池へ前記発電装置からの電力を充電する工程とを有することを特徴とする。   As described above, by attaching the charging device of the present invention, it is possible to charge the storage battery even when the solar power generation during cloudy weather is not performed. Therefore, the charging method of the present invention to be performed includes a step of detecting an operating voltage range of a power conditioner (PCS) of the power generator and determining that the operating voltage is less than a predetermined value, and when the operating voltage is greater than or equal to a predetermined value. The PCS input-side DC circuit and the storage battery are not electrically connected, and when the operating voltage is determined to be less than a predetermined value, the PCS input-side DC circuit and the storage battery are electrically connected. And charging the electric power from the power generation device to the storage battery.

さらに、前記PCSの内部制御部の動作範囲外条件接点及び/又は日照計によって、前記PCSの動作の有無及び/又は日照量の多さを確認する工程を有し、前記蓄電池へ前記発電装置からの電力を充電する工程において、前記の動作電圧が所定の値未満と判定されるとともに、前記PCSの動作が無いこと、及び前記日照量が所定の値未満であること、の少なくとも何れか一つが確認されたときに、前記PCSの入力側DC回路と前記蓄電池とを電気的に接続する充電方法である。   Furthermore, it has the process of confirming the presence or absence of the operation of the PCS and / or the amount of sunshine by the out-of-range condition contact and / or sunshine meter of the internal control unit of the PCS, and from the power generator to the storage battery In the step of charging the electric power, at least one of the operation voltage is determined to be less than a predetermined value, the PCS is not operating, and the amount of sunshine is less than a predetermined value. When confirmed, the charging method is to electrically connect the DCS input side DC circuit and the storage battery.

<第2の実施形態>
次に、本発明の電力供給システムについて、図4を用いて説明する。
図4に示す電力供給システムは、PCSを備える太陽発電装置と、本発明の充電装置6と、蓄電池10とを備え、少なくとも、前記の充電装置と前記の蓄電池との間に電気的に配置して接続され、前記の蓄電池の外部端子部に電流検出器9−1を設けることによって蓄電池の残留容量を検知して表示する充放電量計測部9とを有する。ここで、充放電量計測部9は、以下に説明するような機能を有し、蓄電池の残留容量値を把握するために設ける。
<Second Embodiment>
Next, the power supply system of the present invention will be described with reference to FIG.
The power supply system shown in FIG. 4 includes a solar power generation device including a PCS, the charging device 6 of the present invention, and a storage battery 10, and is electrically disposed at least between the charging device and the storage battery. And a charge / discharge amount measuring unit 9 for detecting and displaying the remaining capacity of the storage battery by providing a current detector 9-1 at the external terminal of the storage battery. Here, the charge / discharge amount measuring unit 9 has a function as described below, and is provided to grasp the remaining capacity value of the storage battery.

蓄電池10は、電池のセルを複数個直列にして構成し、電圧×電流×時間=電力量(Wh)が定まる。セル電圧がe〜eであることで端子電圧が定まる。 The storage battery 10 is formed by connecting a plurality of battery cells in series, and voltage × current × time = power consumption (Wh) is determined. It terminal voltage is determined by the cell voltage is e 1 to e n.

鉛蓄電池の場合において、例えば[12V×60Ah/5時間]の蓄電池の条件とは、「定格電流I(=60A/5時間=12A/h)を一定時間消費させて、端子電圧V(=12V)が終止電圧V(=10.5V)となるときの時間が5時間以上を100%容量」と規定している。また、充電・放電との繰返し工程で使われるが、その繰返し回数をサイクル寿命と定義し、容量が充電しても80%以下となるときを交換寿命期として、新品を推奨しようとしている。 In the case of a lead storage battery, for example, the condition of a storage battery of [12 V × 60 Ah / 5 hours] is “the rated current I (= 60 A / 5 hours = 12 A / h) is consumed for a certain period of time and the terminal voltage V (= 12 V ) Is the final voltage V E (= 10.5 V), a time of 5 hours or more is defined as “100% capacity”. Also, it is used in the repeated process of charging and discharging, but the number of repetitions is defined as the cycle life, and a new product is recommended as a replacement life period when the capacity is 80% or less even when charged.

しかしながら、この放電特性を求める定電流放電器は、高価で蓄電池より大型となるため、電力メーカ以外では汎用的に使うことができないので、端子電圧の低下レベルで蓄電や容量を概略表示する小型表示器が汎用化され使われている。ただし、定電流放電時の電圧降下特性は蓄電池の型式・製造法によって様々に異なるので、小型表示器による表示は負荷使用可否の限界確認のための目安であり、容量寿命(Ah)を示してはいない。また、蓄電池の寿命劣化、すなわち充電しても回復しない理由は、電気化学反応において、PbSOが結晶化して充電面積を小さくしていくのが原因であり、一定電流の放電時間でのみ実物判定できる方法として確立している。 However, the constant current discharger for obtaining this discharge characteristic is expensive and larger than the storage battery, so it cannot be used for general purposes except by electric power manufacturers. The instrument is used in general. However, since the voltage drop characteristics during constant current discharge vary depending on the battery type and manufacturing method, the display on the small indicator is a guideline for checking the limit of load availability and indicates the capacity life (Ah). No. Moreover, the reason why the life of the storage battery is deteriorated, that is, the reason why the battery does not recover even if it is charged is that, in the electrochemical reaction, PbSO 4 is crystallized to reduce the charging area. Established as a possible method.

また、特殊事情として、充電容量の(Ah)と放電容量の(Ah)とは等しくなく、前者が110〜120%多く充電しないと100%の蓄電ができない。これは、定電圧充電方式で充電すると、満充電に近づくと蓄電池内の内部インピーダンスが大きくなり、充電電流が小さくなるので、ゆるやかな充電期間が必要となり、さらに溶液(HSO)の電気分解でHガス化により充電に寄与しない反応も同時に生じることも原因となっている。 Also, as a special situation, the charge capacity (Ah) and the discharge capacity (Ah) are not equal, and if the former is not charged 110 to 120% more, 100% power storage is impossible. This is because when the battery is charged by the constant voltage charging method, the internal impedance in the storage battery increases and the charging current decreases as the battery approaches full charge, so that a slow charging period is required, and the electric power of the solution (H 2 SO 4 ) is further increased. It is also caused by the simultaneous occurrence of reactions that do not contribute to charging due to H 2 gasification in decomposition.

故に、過電圧とならない定電圧充電方式で充電容量を充電すると120%のAh(充電量)が、放電試験時の100%Ahとよく一致するという知見が得られている。   Therefore, the knowledge that 120% Ah (amount of charge) agrees well with 100% Ah in the discharge test when the charging capacity is charged by a constant voltage charging method that does not cause overvoltage is obtained.

本発明では、充電量は充電電流×時間(Ah)であるので、充放電量計測部9により求めることができ、それによって蓄電池の残留容量を検知して表示する方法を採用する。このとき、DC電流検出器9−1により、充電方向を正(+)とし、放電方向の電流を負(−)と定義しておく。   In the present invention, since the charge amount is charge current × time (Ah), the charge amount can be obtained by the charge / discharge amount measuring unit 9, thereby adopting a method of detecting and displaying the remaining capacity of the storage battery. At this time, the DC current detector 9-1 defines the charge direction as positive (+) and the current in the discharge direction as negative (-).

電流検出器より処理しやすいレベルとする増幅器9−2により、プラス(+)、マイナス(−)の電流値を得ることができる。充電方向の成分は[kΣ(+)Ah]9−3として計測する。この係数kとは、前述の知見(120%充電容量=100%放電容量)より入れる補正値であり、ここではk=0.8とする。一方、負荷放電時の方向成分は[Σ(−)Ah]9−4として計測する。なお、[Σ(+)Ah]及び[Σ(−)Ah]に示す(+)及び(−)は、それぞれ充電及び放電における電流の方向を示す記号である。   A positive (+) and a negative (-) current value can be obtained by the amplifier 9-2 having a level easier to process than the current detector. The charge direction component is measured as [kΣ (+) Ah] 9-3. The coefficient k is a correction value entered from the above knowledge (120% charge capacity = 100% discharge capacity), and here, k = 0.8. On the other hand, the direction component during load discharge is measured as [Σ (−) Ah] 9-4. Note that (+) and (−) shown in [Σ (+) Ah] and [Σ (−) Ah] are symbols indicating the direction of current in charging and discharging, respectively.

本発明においては、経験則として補正値kは1未満で0.8以上であることが必要である。充電容量を放電量よりも多く見積もるために、補正値kは1未満であることが必要条件であるが、逆に補正値k値が0.8未満の場合は充電量が大きくなりすぎて現実的ではなく、余分な充電が必要となるため充電効率の大きな低下を招く。本発明において適用する補正値kは、充電時の発熱損失を考慮したときの充放電状態及び充電効率向上の観点から0.8〜0.9が好ましい。   In the present invention, as a rule of thumb, the correction value k needs to be less than 1 and 0.8 or more. In order to estimate the charge capacity more than the discharge amount, it is a necessary condition that the correction value k is less than 1, but conversely, when the correction value k value is less than 0.8, the charge amount becomes too large and the actual value is increased. In this case, excessive charging is required, and the charging efficiency is greatly reduced. The correction value k applied in the present invention is preferably 0.8 to 0.9 from the viewpoint of charge / discharge state and charge efficiency improvement when considering heat loss during charging.

時々刻々の蓄電池10の残存容量は、充電量の累積積分器(Σ(+)Ah)9−3と放電量の累積積分器(Σ(−)Ah)9−4とでデータを取得して、同時に減算器(ΣAh)9−5により出力されたデータを残存容量表示器9−6に与えることで知ることができる。   From time to time, the remaining capacity of the storage battery 10 is obtained by accumulating a charge amount cumulative integrator (Σ (+) Ah) 9-3 and a discharge amount cumulative integrator (Σ (−) Ah) 9-4. At the same time, the data output from the subtracter (ΣAh) 9-5 can be obtained by giving it to the remaining capacity indicator 9-6.

図5は、充放電量制御計測部9の動作説明図である。
横軸は時間(t)、縦軸は充電量累積積分器(Σ(+)Ah)9−3が充電していてt1で終了、放電量は放電量累積積分器(Σ(−)Ah)9−4が放電し、t〜tで終了する。
FIG. 5 is an operation explanatory diagram of the charge / discharge amount control measurement unit 9.
The horizontal axis represents time (t), and the vertical axis the charge amount cumulative integrator (Σ (+) Ah) 9-3 is being charged ends at t 1, the discharge amount of the discharge amount cumulative integrator (Σ (-) Ah ) 9-4 is discharged and ends at t 1 to t 2 .

次に、tより充電しtで終了するが放電がt〜tまで使用するような充放電量の重なる範囲もある。このような時に、減算差(ΣAh)9−5では、図5のように常時表示されるので、放電容量がどの位残っているかが分かる。その量は残存容量表示器9-6で表示されるので目視で確認することができる。 Next, ends at t 4 charged from t 2 is also overlapping range of the charge and discharge amount as used discharge until t 3 ~t 5. In such a case, the subtraction difference (ΣAh) 9-5 is always displayed as shown in FIG. 5, so that it can be seen how much discharge capacity remains. Since the amount is displayed on the remaining capacity indicator 9-6, it can be visually confirmed.

このように、本発明の電力供給システムの大きな特徴は、充電装置6と蓄電池10との間に電気的に配置して接続され、前記の蓄電池の外部端子部に設けた電流検出器9−1によって充放電時の電流を検知する工程と、充電量と放電量をそれぞれの累積積分値として取得する工程と、前記充電量の累積積分値から前記放電量の累積積分値を減算する処理を行って蓄電池の残存容量値を算出する工程と、前記残存容量値を表示する工程とからなる電力供給システムの蓄電残量計測方法を有することである。さらに、上記で述べたように、充電時の発熱損失を考慮して、経験側から充電容量を放電量よりも多く見積もるための補正値を適用することによって、充放電による蓄電池の残留容量を実情に即した状態で適正に制御及び管理することができる。   Thus, the major feature of the power supply system of the present invention is that the current detector 9-1 is electrically connected and connected between the charging device 6 and the storage battery 10 and provided in the external terminal portion of the storage battery. A step of detecting current during charging and discharging, a step of obtaining the charge amount and the discharge amount as respective cumulative integral values, and a process of subtracting the cumulative integral value of the discharge amount from the cumulative integral value of the charge amount. And having a method for measuring the remaining capacity of the power supply system comprising the step of calculating the remaining capacity value of the storage battery and the step of displaying the remaining capacity value. Furthermore, as described above, in consideration of the heat loss during charging, the actual value of the remaining capacity of the storage battery due to charging / discharging is applied by applying a correction value for estimating the charging capacity more than the discharge amount from the experience side. Can be properly controlled and managed in accordance with

また、本発明では、別の実施形態として、図4に示すように、Ahの残存容量表示器9−6のデータを、給電部8と給電ユニットのPCS−X(8−3)又はINV(8−1)の起動/停止信号とリンケージさせて、蓄電残量が、例えば10%に近くなる値のときに、PCS−X(8−3)又はINV(8−1)を停止させたり、或いは急速充電処理としてAC充電部7のA/Dコンバータ(7−1)起動制御を行うことで突然の蓄電容量停止を防止することができる。   In another embodiment of the present invention, as shown in FIG. 4, as shown in FIG. 4, the data of the remaining capacity indicator 9-6 of Ah is converted into PCS-X (8-3) or INV ( 8-1) is linked with the start / stop signal, and when the remaining power amount is a value close to 10%, for example, PCS-X (8-3) or INV (8-1) is stopped, Alternatively, sudden storage capacity stoppage can be prevented by performing start-up control of the A / D converter (7-1) of the AC charging unit 7 as quick charging processing.

この実施形態では、蓄電池10の活用法として、給電部8により蓄電池の放電電流はINV(DC/ACインバータ)8−1で交流化し、関連負荷(ΔL)5−2にてSの切替えで消費される。 In this embodiment, as method of utilizing the storage battery 10, battery discharge current by feeding unit 8 alternating with INV (DC / AC inverter) 8-1, by switching the S 7 at associated load ([Delta] L) 5-2 Is consumed.

PCS−X(8−3)を使う場合は、商用電源系統5と同一周波数と同期制御しているので、蓄電池10や出力電圧に合わせてD/Dコンバータ(8−2)により昇圧してPOS−Xの入力電圧としてAC出力化するので、S経由で給電すれば関連負荷ΔL(5−2)には、S→S→S経由として接続できる。このような場合は、負荷ΔL(5−2)の昼間午後1時〜3時までの時間のピークカット給電として、契約電力を下げることができる節電として用いることができる。INV(8−1)は非同期のAC出力のため、Sを使い停電時の給電として用いることができる。 When PCS-X (8-3) is used, since it is synchronously controlled with the same frequency as the commercial power supply system 5, it is boosted by the D / D converter (8-2) in accordance with the storage battery 10 and the output voltage. since AC output power as the input voltage of -X, the relevant load [Delta] L (5-2) When feeding via S 5, it can be connected as via S 5 → S 6 → S 7 . In such a case, the load ΔL (5-2) can be used as power saving that can reduce the contract power as peak cut power supply during the time from 1 pm to 3 pm in the daytime. INV (8-1) because of asynchronous AC output can be used as a power supply during power outages use S 7.

さらに別の実施形態として、充電量を急速に必要とする場合には、AC充電部7により、蓄電池10への充電ができるようにしてある。つまり、商用電源系統5よりAC/DCコンバータ7−1を通し充電電圧を合わせて給電すればよい。それによって、急速充電時に対応するだけでなく、上記で述べたように、突然の蓄電容量の停止を防止できるという効果も得られる。なお、図4に示す逆流防止ダイオード7−2は、DC充電部6と干渉しないために設けてある。   As yet another embodiment, the storage battery 10 can be charged by the AC charging unit 7 when the amount of charge is required rapidly. That is, power may be supplied from the commercial power supply system 5 through the AC / DC converter 7-1 to match the charging voltage. As a result, not only can a quick charge be dealt with, but an effect of preventing a sudden stop of the storage capacity as described above can be obtained. The backflow prevention diode 7-2 shown in FIG. 4 is provided so as not to interfere with the DC charging unit 6.

図4には、本発明の電力供給システムとして太陽光発電のみを示しているが、本発明においては風力発電又はマイクロ水力発電にも適用することができる。また、これらの自然エネルギーを活用する発電装置の2以上を組み合わせることも可能である。   Although FIG. 4 shows only solar power generation as the power supply system of the present invention, the present invention can also be applied to wind power generation or micro hydropower generation. It is also possible to combine two or more of the power generation devices that utilize these natural energies.

図6は、本発明の電力供給システムにおいて、太陽光発電と風力発電を併用したときの発電部の模式図である。図6に示す風力発電部11は、太陽光発電用の太陽光パネル1と並列に接続される構成となっており、発電機(Gen)11−1を介して直流/直流(D/D)変換器11−2によって約400Vに昇圧された直流が電気的に接続されて中継箱2(逆流防止用ダイオード)に供給された後、PCS3に出力される。このとき、直流/直流(D/D)変換器11−2に代えて、交流/直流(A/D)変換器を使用しても良い。充電装置6は、図1及び図4に示す充電装置と同じように、PCS3と並列に接続され、蓄電池(図6では図示せず)と直列に接続される。   FIG. 6 is a schematic diagram of a power generation unit when solar power generation and wind power generation are used in combination in the power supply system of the present invention. The wind power generation unit 11 shown in FIG. 6 is configured to be connected in parallel with the solar power generation solar panel 1 and is connected to a direct current / direct current (D / D) via a generator (Gen) 11-1. The direct current boosted to about 400 V by the converter 11-2 is electrically connected and supplied to the relay box 2 (backflow prevention diode), and then output to the PCS 3. At this time, an AC / DC (A / D) converter may be used instead of the DC / DC (D / D) converter 11-2. The charging device 6 is connected in parallel with the PCS 3 and is connected in series with a storage battery (not shown in FIG. 6), similarly to the charging device shown in FIGS.

以上のように、本発明の充電装置及び充電方法によれば、曇天時の太陽光発電しないときや風力が弱くて従来は電力を得られなった風力発電のときも蓄電池への充電が可能となるので、太陽光や風力等の自然エネルギー利用による発電の無駄が無くなる。また、前記PCSの動作の有無及び/又は日照量の多さを確認する機能を有するために、太陽光や風力による発電装置として売電する場合に、PCSの入力側DC回路に蓄電池を接続してはいけないという規制に対して確実に対応できる信頼性に高い充電装置を得ることができる。   As described above, according to the charging device and the charging method of the present invention, it is possible to charge the storage battery even when the solar power generation is not performed in cloudy weather or when the wind power generation is weak because the wind power is weak. Therefore, waste of power generation due to the use of natural energy such as sunlight and wind power is eliminated. In addition, in order to have the function of confirming the presence / absence of the operation of the PCS and / or the amount of sunlight, a storage battery is connected to the input DC circuit of the PCS when selling power as a power generation device using sunlight or wind power. Therefore, it is possible to obtain a highly reliable charging device that can reliably cope with a regulation that must not be applied.

また、本発明の電力供給システム及びその蓄電残量計測方法によれば、蓄電池への充電量も測れるので、蓄電池が充電モードと放電使用モードでも蓄電池の残留容量値もわかる。それによって、蓄電池が何時使えなくなるのかが判り、急速充電させるか、又は通電を使用制限するのかの対策が事前にできるので、蓄電電力が使い易くなる。さらに、蓄電池からの直流を交流に変換するための交流給電部、又は、商用電力系統からの交流電圧を蓄電池へ給電するための交流給電部をそれぞれ備えることによって、突然の蓄電容量停止を防止したり、急速充電が必要となる場合に対応できるようになる。したがって、本発明は、自然エネルギーを活用する電力供給システムにおいて、常時使用可能な高効率のシステムを構築することができるだけでなく、様々な発電形態への適用が可能となるため、その有用性は極めて高い。   Further, according to the power supply system and the method for measuring the remaining amount of electricity of the present invention, the amount of charge to the storage battery can also be measured, so that the remaining capacity value of the storage battery can be found even when the storage battery is in the charge mode and the discharge use mode. As a result, it is possible to know when the storage battery can no longer be used, and it is possible to take measures in advance for quick charging or for restricting the use of energization, which makes it easy to use the stored power. In addition, an AC power supply unit for converting direct current from the storage battery into alternating current, or an AC power supply unit for supplying AC voltage from the commercial power system to the storage battery, respectively, prevents sudden storage capacity stoppage. Or when quick charging is required. Therefore, the present invention can not only construct a high-efficiency system that can always be used in a power supply system that utilizes natural energy, but also can be applied to various power generation modes. Extremely high.

1 太陽光パネル 7 AC充電部
2 中継箱 8 給電部
3 パワーコンデイショナー 9 充放電量計測部
4 電力量計 10 蓄電池
5 商用電源系統 11 風力発電部
6 充電装置
1 Solar panel 7 AC charging unit 2 Relay box 8 Power feeding unit
DESCRIPTION OF SYMBOLS 3 Power conditioner 9 Charging / discharging amount measurement part 4 Electricity meter 10 Storage battery 5 Commercial power supply system 11 Wind power generation part 6 Charging apparatus

Claims (13)

自然エネルギーを活用する発電装置のパワーコンディショナー(PCS)の入力部分に前記PCSと並列に接続され、蓄電池と直列に接続される充電装置であって、
前記PCSの動作電圧範囲を検出して、該動作電圧が所定の値未満と判定する低電圧検出器と、
前記動作電圧が所定の値以上のときには、前記PCSの入力側DC回路と前記蓄電池とは電気的に接続されず、前記動作電圧が所定の値未満と判定されたときに、前記PCSの入力側DC回路と前記蓄電池とを電気的に接続する接点付継電器とを備える充電装置。
A charging device connected in parallel with the PCS to an input portion of a power conditioner (PCS) of a power generator utilizing natural energy, and connected in series with a storage battery,
A low voltage detector that detects an operating voltage range of the PCS and determines that the operating voltage is less than a predetermined value;
When the operating voltage is greater than or equal to a predetermined value, the input DC circuit of the PCS and the storage battery are not electrically connected, and when the operating voltage is determined to be less than the predetermined value, the input side of the PCS A charging device comprising a relay with a contact for electrically connecting a DC circuit and the storage battery.
請求項1に記載の充電装置は、さらに、前記低電圧検出器が前記PCSの内部制御部の動作範囲外条件接点及び/又は日照計と電気的に並列に接続されたAND回路を備えることを特徴とする充電装置。   The charging device according to claim 1, further comprising: an AND circuit in which the low voltage detector is electrically connected in parallel with an out-of-range condition contact of the internal control unit of the PCS and / or a sunshine meter. Charging device characterized. 請求項1又は2に記載の充電装置は、さらに、前記動作電圧が所定の値以下のときに前記動作電圧の微分的変化出力を積分して充電電力を蓄積するコンデンサを、前記接点付継電器の出力側に備えることを特徴とする充電装置。   The charging device according to claim 1 or 2, further comprising: a capacitor that integrates a differential change output of the operating voltage and accumulates charging power when the operating voltage is equal to or lower than a predetermined value; A charging device provided on the output side. 請求項1〜3の何れかに記載の充電装置は、さらに、該充電装置が有する直流/直流変換器(DC/DCコンバータ)の出力側に、前記蓄電池からの電流の逆流を防止するための逆流防止ダイオードを備えることを特徴とする充電装置。   The charging device according to any one of claims 1 to 3, further for preventing a backflow of current from the storage battery on an output side of a DC / DC converter (DC / DC converter) included in the charging device. A charging device comprising a backflow prevention diode. 前記の自然エネルギーを活用する発電装置が、太陽光発電装置であることを特徴とする請求項1〜4の何れかに記載の充電装置。   The charging device according to claim 1, wherein the power generation device that utilizes natural energy is a solar power generation device. 自然エネルギーを活用する発電装置によって発電する電力を蓄電池に充電する方法であって、
前記発電装置のパワーコンディショナー(PCS)の動作電圧範囲を検出し、該動作電圧が所定の値未満と判定する工程と、
前記の動作電圧が所定の値以上のときには、前記PCSの入力側DC回路と前記蓄電池とは電気的に接続されず、前記の動作電圧が所定の値未満と判定されたときに、前記PCSの入力側DC回路と前記蓄電池とを電気的に接続することによって、前記蓄電池へ前記発電装置からの電力を充電する工程とを有することを特徴とする充電方法。
A method of charging a storage battery with power generated by a power generation device that utilizes natural energy,
Detecting an operating voltage range of a power conditioner (PCS) of the power generator, and determining that the operating voltage is less than a predetermined value;
When the operating voltage is greater than or equal to a predetermined value, the input side DC circuit of the PCS and the storage battery are not electrically connected, and when the operating voltage is determined to be less than the predetermined value, And charging the storage battery with electric power from the power generation device by electrically connecting the input-side DC circuit and the storage battery.
請求項6に記載の充電方法は、さらに、前記PCSの内部制御部の動作範囲外条件接点及び/又は日照計によって、前記PCSの動作の有無及び/又は日照量の多さを確認する工程を有し、
前記蓄電池へ前記発電装置からの電力を充電する工程において、前記の動作電圧が所定の値未満と判定されるともに、前記PCSの動作が無いこと、及び前記日照量が所定の値未満であること、の少なくとも何れか一つが確認されたときに、前記PCSの入力側DC回路と前記蓄電池とを電気的に接続することを特徴とする充電方法。
The charging method according to claim 6 further includes a step of confirming the presence / absence of the operation of the PCS and / or the amount of sunshine by the contact outside the operating range of the internal control unit of the PCS and / or a sunshine meter. Have
In the step of charging power from the power generator to the storage battery, the operating voltage is determined to be less than a predetermined value, the PCS is not operating, and the amount of sunshine is less than a predetermined value. When at least any one of these is confirmed, the DCS input side DC circuit and the storage battery are electrically connected to each other.
前記の自然エネルギーを活用する発電装置が、太陽光発電装置であることを特徴とする請求項6又は7に記載の充電方法。   The charging method according to claim 6 or 7, wherein the power generation device utilizing the natural energy is a solar power generation device. パワーコンディショナー(PCS)を備える自然エネルギーを活用する発電装置と、請求項1〜5の何れかに記載の充電装置と、蓄電池と
前記の充電装置と前記の蓄電池との間に電気的に配置して接続され、前記の蓄電池の外部端子部に電流検出器を設けることによって蓄電池の残留容量を検知して表示する充放電量計測部とを有する電力供給システム。
A power generation device that utilizes natural energy including a power conditioner (PCS), the charging device according to any one of claims 1 to 5, a storage battery, and the charging device and the storage battery are electrically disposed. And a charge / discharge amount measuring unit that detects and displays a remaining capacity of the storage battery by providing a current detector at an external terminal of the storage battery.
請求項9に記載の電力供給システムは、さらに、前記の充電装置と前記の充放電量計測部との間に電気的に配置して接続され、起動及び停止の信号を前記の充放電検出部に蓄積されるデータと連動させることによって前記蓄電池の蓄電残量を制御しながら、前記蓄電池からの直流を交流に変換して商用電力系統へ発電を行わせるための交流給電部を有することを特徴とする電力供給システム。   The power supply system according to claim 9 is further electrically connected and connected between the charging device and the charge / discharge amount measuring unit, and signals for starting and stopping are supplied to the charge / discharge detecting unit. An AC power supply unit for converting the direct current from the storage battery into alternating current and generating power to the commercial power system while controlling the remaining amount of storage of the storage battery by interlocking with data stored in the storage battery And power supply system. 請求項10に記載の電力供給システムは、さらに、前記の充電装置と前記の充放電量計測部との間に電気的に配置して接続され、商用電力系統からの交流電圧をAC/DC変換器によって前記の蓄電池へ給電するための交流給電部を有することを特徴とする電力供給システム。   The power supply system according to claim 10 is further electrically connected and connected between the charging device and the charge / discharge amount measuring unit, and converts an AC voltage from a commercial power system into an AC / DC converter. A power supply system comprising: an AC power supply unit for supplying power to the storage battery by means of a battery. 請求項9〜11の何れかに記載の電力供給システムに備わる前記蓄電池の残存容量を計測する方法であって、前記の充電装置と前記の蓄電池との間に電気的に配置して接続され、前記の蓄電池の外部端子部に設けた電流検出器によって充放電時の電流を検知する工程と、充電量と放電量をそれぞれの累積積分値として取得する工程と、前記充電量の累積積分値から前記放電量のの累積積分値を減算する処理を行って蓄電池の残存容量値を算出する工程と、前記残存容量値を表示する工程とからなることを特徴とする電力供給システムの蓄電残量計測方法。   A method for measuring a remaining capacity of the storage battery provided in the power supply system according to claim 9, wherein the storage battery is electrically arranged and connected between the charging device and the storage battery. From the step of detecting the current at the time of charging / discharging by the current detector provided in the external terminal portion of the storage battery, the step of acquiring the charge amount and the discharge amount as respective cumulative integral values, and the cumulative integral value of the charge amount A process for subtracting a cumulative integral value of the discharge amount to calculate a remaining capacity value of the storage battery, and a process for displaying the remaining capacity value, and measuring the remaining amount of power stored in the power supply system Method. 前記電流検出器より得られる充電時又は放電時の電流値において、充電時の電流(A)×時間(h)の積算容量(ΣAh)は、1未満で0.8以上である補正値(k)を乗算することによって、k×ΣAhとして計測し、放電時の電流(A)×時間(h)の積算容量(ΣAh)は、そのままΣAhとして計測することを特徴とする請求項12に記載の電力供給システムの蓄電残量計測方法。   In the current value at the time of charge or discharge obtained from the current detector, the accumulated capacity (ΣAh) of current (A) × time (h) at the time of charge is less than 1 and is a correction value (k) of 0.8 or more ), And the integrated capacity (ΣAh) of current (A) × time (h) during discharge is directly measured as ΣAh. A method for measuring the remaining amount of electricity stored in a power supply system.
JP2012255906A 2012-11-22 2012-11-22 Charging device, charging method, power supply system and residual stored power amount measuring method thereof Pending JP2014103819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012255906A JP2014103819A (en) 2012-11-22 2012-11-22 Charging device, charging method, power supply system and residual stored power amount measuring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012255906A JP2014103819A (en) 2012-11-22 2012-11-22 Charging device, charging method, power supply system and residual stored power amount measuring method thereof

Publications (1)

Publication Number Publication Date
JP2014103819A true JP2014103819A (en) 2014-06-05

Family

ID=51025868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012255906A Pending JP2014103819A (en) 2012-11-22 2012-11-22 Charging device, charging method, power supply system and residual stored power amount measuring method thereof

Country Status (1)

Country Link
JP (1) JP2014103819A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992575A (en) * 2017-05-25 2017-07-28 武汉理工大学 Shore-based power system and shore-based charging method based on recycled secondary batteries
CN110718940A (en) * 2019-10-11 2020-01-21 江苏科技大学 Method and device for intelligent power distribution of multi-energy ships based on load forecasting
WO2024053653A1 (en) * 2022-09-06 2024-03-14 日本ケミコン株式会社 Photovoltaic power generation system, control method for same, program, and power storage control apparatus
US12032005B2 (en) 2020-01-30 2024-07-09 Lg Energy Solution, Ltd. Device and method for monitoring common mode voltage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369406A (en) * 2001-06-08 2002-12-20 Hitachi Ltd Grid-connected power supply system
JP2003079068A (en) * 2001-08-30 2003-03-14 Hitachi Ltd Solar power system
JP2008042999A (en) * 2006-08-02 2008-02-21 Matsushita Electric Works Ltd Power supply device
JP2011192425A (en) * 2010-03-12 2011-09-29 Panasonic Corp Memory effect reducing circuit, battery power supply device, battery utilization system, and memory effect reducing method
WO2012049915A1 (en) * 2010-10-15 2012-04-19 三洋電機株式会社 Power management system
JP2012110170A (en) * 2010-11-19 2012-06-07 Hitachi Ltd Controller for power storage device, power storage device, charging/discharging method of power storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369406A (en) * 2001-06-08 2002-12-20 Hitachi Ltd Grid-connected power supply system
JP2003079068A (en) * 2001-08-30 2003-03-14 Hitachi Ltd Solar power system
JP2008042999A (en) * 2006-08-02 2008-02-21 Matsushita Electric Works Ltd Power supply device
JP2011192425A (en) * 2010-03-12 2011-09-29 Panasonic Corp Memory effect reducing circuit, battery power supply device, battery utilization system, and memory effect reducing method
WO2012049915A1 (en) * 2010-10-15 2012-04-19 三洋電機株式会社 Power management system
JP2012110170A (en) * 2010-11-19 2012-06-07 Hitachi Ltd Controller for power storage device, power storage device, charging/discharging method of power storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992575A (en) * 2017-05-25 2017-07-28 武汉理工大学 Shore-based power system and shore-based charging method based on recycled secondary batteries
CN110718940A (en) * 2019-10-11 2020-01-21 江苏科技大学 Method and device for intelligent power distribution of multi-energy ships based on load forecasting
US12032005B2 (en) 2020-01-30 2024-07-09 Lg Energy Solution, Ltd. Device and method for monitoring common mode voltage
WO2024053653A1 (en) * 2022-09-06 2024-03-14 日本ケミコン株式会社 Photovoltaic power generation system, control method for same, program, and power storage control apparatus

Similar Documents

Publication Publication Date Title
US20210359527A1 (en) Systems and methods for series battery charging
JP5584763B2 (en) DC power distribution system
JP6028499B2 (en) Power supply
JP3469228B2 (en) Power storage device charge / discharge control device, charge / discharge control method, and power storage system
EP2605359B1 (en) Battery system and its control method
KR101775957B1 (en) Power applying system for connecting photovoltaic power generating apparatus
KR101146670B1 (en) Energy management system and method for controlling thereof
CN102593884B (en) Battery system and the energy storage system comprising it
EP2325970A2 (en) Energy management system and grid-connected energy storage system including the energy management system
US20130187466A1 (en) Power management system
EP2660943A1 (en) Power controller
CN118117563A (en) Independent DC power system and method
JP2012161190A (en) Photovoltaic power generation system
JP2011182503A (en) Energy storage system
JP2013042627A (en) Dc power supply control device and dc power supply control method
JP2012175864A (en) Power storage system
KR20150106694A (en) Energy storage system and method for driving the same
KR101550304B1 (en) Appratus for portable self-electric generation
US9086461B2 (en) Circuit for measuring voltage of battery and power storage system using the same
JP2014103819A (en) Charging device, charging method, power supply system and residual stored power amount measuring method thereof
US9929571B1 (en) Integrated energy storage system
JP6183465B2 (en) Power storage system
JP2014230366A (en) Power generation device
Bampoulas et al. A novel dynamic demand control of an electric vehicle integrated in a solar nanogrid with energy storage
KR20140058770A (en) Method and system for operation mode decision of power management system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170612