[go: up one dir, main page]

JP2002113367A - Catalyst for saturated hydrocarbon oxidation - Google Patents

Catalyst for saturated hydrocarbon oxidation

Info

Publication number
JP2002113367A
JP2002113367A JP2000309577A JP2000309577A JP2002113367A JP 2002113367 A JP2002113367 A JP 2002113367A JP 2000309577 A JP2000309577 A JP 2000309577A JP 2000309577 A JP2000309577 A JP 2000309577A JP 2002113367 A JP2002113367 A JP 2002113367A
Authority
JP
Japan
Prior art keywords
catalyst
noble metal
supported
oxidizing
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000309577A
Other languages
Japanese (ja)
Inventor
Akira Morikawa
彰 森川
Akihiko Suda
明彦 須田
Takao Tani
孝夫 谷
Tadashi Suzuki
正 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000309577A priority Critical patent/JP2002113367A/en
Publication of JP2002113367A publication Critical patent/JP2002113367A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】 【課題】低温域における飽和炭化水素の酸化活性をさら
に向上させ、高温耐久性も向上させる。 【解決手段】Pd,Pt,Rh,Au及びIrから選ばれる少なく
とも一種の貴金属と、Fe,Co,Ni,Sn,Mo,W,Zn,
V,Nb,Ta及びCrから選ばれる少なくとも一種の遷移金
属とを酸化物担体に担持した。貴金属と遷移金属を複合
担持することにより、介在する粒子同士が互いの粒成長
を抑制し、また一部の貴金属と遷移金属とが複合体を形
成すると考えられ、貴金属の熱安定性が向上する。
[PROBLEMS] To further improve the activity of oxidizing saturated hydrocarbons in a low temperature range and to improve the durability at high temperatures. SOLUTION: At least one noble metal selected from Pd, Pt, Rh, Au and Ir, and Fe, Co, Ni, Sn, Mo, W, Zn,
At least one transition metal selected from V, Nb, Ta and Cr was supported on an oxide carrier. By carrying the composite of the noble metal and the transition metal, the intervening particles suppress the grain growth of each other, and it is considered that a part of the noble metal and the transition metal form a complex, and the thermal stability of the noble metal is improved. .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、飽和炭化水素を酸
化して分解する触媒に関する。本発明の触媒は、自動車
排ガスの浄化、工場排ガスの浄化などに有用であり、酸
化浄化が困難とされているメタンの酸化浄化にも用いる
ことができる。
[0001] The present invention relates to a catalyst for oxidizing and decomposing a saturated hydrocarbon. INDUSTRIAL APPLICABILITY The catalyst of the present invention is useful for purification of automobile exhaust gas, purification of factory exhaust gas, and the like, and can also be used for oxidative purification of methane, which is considered difficult to purify by oxidation.

【0002】[0002]

【従来の技術】自動車の排ガスを浄化する排ガス浄化用
触媒として、従来より三元触媒が広く用いられている。
この三元触媒は、アルミナなどの多孔質担体に白金(P
t)などの貴金属を担持してなり、理論空燃比近傍でC
O,HC及びNOx を効率よく浄化することができる。
2. Description of the Related Art Three-way catalysts have been widely used as exhaust gas purifying catalysts for purifying automobile exhaust gas.
This three-way catalyst uses platinum (P) on a porous carrier such as alumina.
t) and other precious metals.
O, it is possible to efficiently purify HC and NO x.

【0003】ところで三元触媒に担持されている貴金属
は、その活性化温度より低い温度域では触媒反応が生じ
ない。そのためエンジン始動時など低温域の排ガス中で
は三元触媒が充分に機能せず、HCの排出量が多いという
不具合があった。またコールドスタート時には、空燃比
が燃料リッチ雰囲気とされる場合が多く、排ガス中のHC
量が多いということも上記不具合の一因である。
By the way, the noble metal supported on the three-way catalyst does not cause a catalytic reaction in a temperature range lower than its activation temperature. Therefore, the three-way catalyst does not function sufficiently in exhaust gas in a low temperature range such as when the engine is started, and there is a problem that a large amount of HC is emitted. At the time of cold start, the air-fuel ratio is often set to a fuel-rich atmosphere, and the HC in the exhaust gas
The large amount also contributes to the above problem.

【0004】そこで三元触媒の低温活性の向上が課題と
なり、例えば触媒をエンジン直下に配置することが行わ
れている。このようにすれば排ガスの熱が速やかに触媒
に伝わるため、活性化温度までの昇温を速やかに行うこ
とができる。また触媒の排ガス流の上流側端部に貴金属
を高濃度に担持することも行われている。上流側端部は
下流側に比べて早期に活性化温度まで上昇し、活性化温
度まで上昇した上流側端部では反応が活発に起こるた
め、その反応熱によって触媒の下流側も速やかに昇温さ
れ、触媒全体として低温域における活性が向上する。
[0004] Therefore, improvement of the low-temperature activity of the three-way catalyst has become an issue. For example, the catalyst has been arranged immediately below the engine. In this case, since the heat of the exhaust gas is quickly transmitted to the catalyst, the temperature can be quickly raised to the activation temperature. Precious metals are also supported at a high concentration at the upstream end of the exhaust gas stream of the catalyst. The upstream end rises to the activation temperature earlier than the downstream end, and the reaction is active at the upstream end where the activation temperature is raised. As a result, the activity of the catalyst as a whole in a low temperature range is improved.

【0005】HCの中でもオレフィン系炭化水素は比較的
浄化しやすいが、飽和炭化水素はオレフィン系炭化水素
に比べて浄化しにくく、中でもメタンは特に酸化浄化し
にくい飽和炭化水素である。そこでメタンを浄化できる
触媒の開発が進められ、触媒金属としてパラジウム(P
d)が有効であることがわかっている。そして例えば特
開平11−137998号公報には、アルミナ担体にPdと、Ru,
Ir及びCuから選ばれる少なくとも一種が担持され、メタ
ン浄化能を示す触媒が開示されている。また特開平7-05
3976号公報には、PdとCoの共沈物を触媒金属として用い
たメタン酸化用触媒が開示されている。
[0005] Among HCs, olefinic hydrocarbons are relatively easy to purify, but saturated hydrocarbons are more difficult to purify than olefinic hydrocarbons, and methane is a saturated hydrocarbon that is particularly difficult to purify by oxidation. Therefore, the development of a catalyst capable of purifying methane has been promoted, and palladium (P
d) has been found to be effective. For example, JP-A-11-137998 discloses that Pd, Ru,
A catalyst that supports at least one selected from Ir and Cu and exhibits methane purification ability is disclosed. In addition, JP-A-7-05
Japanese Patent No. 3976 discloses a methane oxidation catalyst using a coprecipitate of Pd and Co as a catalyst metal.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記した
手段を用いても、低温域の排ガスにおけるHCの浄化はま
だ不十分であり、さらなる低温活性化の向上が求められ
ている。
However, even if the above-mentioned means are used, purification of HC in exhaust gas in a low-temperature region is still insufficient, and further improvement in low-temperature activation is required.

【0007】例えば特開平11−137998号公報に開示され
た触媒では、 700℃以上の高温耐久試験を行うとPdが大
きく粒成長し、活性の劣化が著しいという問題がある。
For example, the catalyst disclosed in Japanese Patent Application Laid-Open No. 11-137998 has a problem that when a high-temperature durability test at 700 ° C. or more is performed, Pd grows in a large grain size and the activity is significantly deteriorated.

【0008】また特開平7-053976号公報に開示の触媒で
は、担体を用いていないためPdとCoの共沈物中の粒子が
粗大化し、とりわけ耐久試験後の活性低下が大きいとい
う不具合がある。また同公報には、共沈物にバインダー
を加えてスラリー状とし、ハニカム形状のアルミナ、マ
グネシア、コージェライトなどの耐火性基材に塗布して
から使用してもよいと記載されている。しかしこの場合
もPdとCoの共沈物はアルミナなどの基材表面に乗ってい
る状態であり、担持されている状態ではないため、基材
と共沈物との間の相互作用が弱く粗大化による耐久試験
後の活性低下が著しい。
Further, the catalyst disclosed in Japanese Patent Application Laid-Open No. 7-053976 has a drawback that the particles in the coprecipitate of Pd and Co become coarse because no carrier is used, and the activity is particularly greatly reduced after the durability test. The publication also discloses that a binder may be added to the coprecipitate to form a slurry, which may be used after being applied to a honeycomb-shaped refractory substrate such as alumina, magnesia, or cordierite. However, also in this case, the co-precipitate of Pd and Co is on the surface of the substrate such as alumina, and is not supported, so that the interaction between the substrate and the co-precipitate is weak and coarse. The activity is significantly reduced after the durability test due to the formation of the resin.

【0009】本発明はこのような事情に鑑みてなされた
ものであり、低温域における飽和炭化水素の酸化活性を
さらに向上させ、高温耐久性も向上させることを目的と
する。
The present invention has been made in view of such circumstances, and an object of the present invention is to further improve the activity of oxidizing saturated hydrocarbons in a low temperature range and improve the durability at high temperatures.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の飽和炭化水素酸化用触媒の特徴は、酸化物担体と、
酸化物担体に担持されPd,Pt,Rh,Au及びIrから選ばれ
る少なくとも一種の貴金属と、酸化物担体に担持されF
e,Co,Ni,Sn,Mo,W,Zn,V,Nb,Ta及びCrから選
ばれる少なくとも一種の遷移金属と、からなることにあ
る。
The feature of the catalyst for oxidizing saturated hydrocarbons of the present invention that solves the above-mentioned problems is that an oxide carrier,
At least one noble metal selected from Pd, Pt, Rh, Au and Ir supported on an oxide carrier;
e, at least one transition metal selected from Co, Ni, Sn, Mo, W, Zn, V, Nb, Ta and Cr.

【0011】[0011]

【発明の実施の形態】本発明の触媒では、酸化物担体に
貴金属と遷移金属とを担持している。貴金属と遷移金属
を複合担持することにより、互いの粒成長を抑制し合う
ため活性が向上するとともに高温耐久性が向上する。ま
た一部の貴金属と遷移金属とが複合体を形成すると考え
られ、貴金属の熱安定性が向上する。
BEST MODE FOR CARRYING OUT THE INVENTION In the catalyst of the present invention, a noble metal and a transition metal are supported on an oxide carrier. By supporting the noble metal and the transition metal in a composite manner, the activity of each other is improved and the high-temperature durability is improved because the growth of each other is suppressed. Further, it is considered that a part of the noble metal and the transition metal form a composite, and the thermal stability of the noble metal is improved.

【0012】さらに遷移金属は貴金属に比べ酸化物の安
定性が高く、貴金属酸化物が分解するような高温域では
遷移金属酸化物中の格子酸素を放出するため、遷移金属
酸化物が貴金属近傍に存在することにより、貴金属上に
活性酸素を供給でき、活性種である貴金属酸化物を安定
化させ、炭化水素の酸化活性を維持できる。
Further, the transition metal has higher oxide stability than the noble metal, and releases the lattice oxygen in the transition metal oxide in a high temperature range where the noble metal oxide is decomposed. By virtue of the presence, active oxygen can be supplied onto the noble metal, the noble metal oxide as an active species can be stabilized, and the oxidizing activity of the hydrocarbon can be maintained.

【0013】酸化物担体としては、 Al2O3,SiO2,Zr
O2,TiO2,CeO2, MgOあるいはこれらの複数種の複合酸
化物などから選択して用いることができるが、比表面積
が大きく耐熱性にも優れているγ-Al2O3が望ましい。酸
化物担体の比表面積は40m2/g以上であることが望まし
い。比表面積がこれより小さくなると、活性が低くなっ
てメタンなどの酸化が困難となる。
As the oxide carrier, Al 2 O 3 , SiO 2 , Zr
It can be selected from O 2 , TiO 2 , CeO 2 , MgO, or a combination of a plurality of these oxides, but γ-Al 2 O 3 having a large specific surface area and excellent heat resistance is desirable. The specific surface area of the oxide carrier is desirably 40 m 2 / g or more. If the specific surface area is smaller than this, the activity becomes low and oxidation of methane or the like becomes difficult.

【0014】酸化物担体として中実状の酸化物粉末を用
いてもよいが、特開平11−314035号公報に開示されてい
るような中空状酸化物粉末を用いることが好ましい。中
空状酸化物粉末を担体とすれば、担体層内部へのガス拡
散性が向上し、かつ中空対内部を反応場として利用でき
るため、担持されている貴金属及び遷移金属とガスとの
接触確率が向上し活性がさらに向上する。
Although a solid oxide powder may be used as the oxide carrier, it is preferable to use a hollow oxide powder as disclosed in JP-A-11-314035. When the hollow oxide powder is used as a carrier, gas diffusion into the carrier layer is improved, and the inside of the hollow layer can be used as a reaction field, so that the contact probability between the supported noble metal and transition metal and the gas is reduced. The activity is further improved.

【0015】貴金属はPd,Pt,Rh,Au及びIrから選ばれ
る少なくとも一種であり、このうち一種でもよいし複数
種類を担持することもできる。飽和炭化水素の酸化活性
が特に高いPdが最も望ましい。また遷移金属はFe,Co,
Ni,Sn,Mo,W,Zn,V,Nb,Ta及びCrから選ばれる少
なくとも一種であり、このうち一種でもよいし複数種類
を担持することもできる。中でもFe,Co,Ni及びSnから
選ばれる少なくとも一種が特に活性が高い。
The noble metal is at least one selected from Pd, Pt, Rh, Au and Ir, and one or more of them can be supported. Pd, which has a particularly high oxidation activity for saturated hydrocarbons, is most desirable. The transition metals are Fe, Co,
It is at least one selected from the group consisting of Ni, Sn, Mo, W, Zn, V, Nb, Ta, and Cr. Among them, one type or a plurality of types can be supported. Among them, at least one selected from Fe, Co, Ni and Sn has particularly high activity.

【0016】貴金属の担持量は少しでも担持されていれ
ばそれなりの活性が認められるが、触媒全体の 0.5〜15
重量%の範囲とすることが望ましい。貴金属の担持量が
この範囲より少ないと飽和炭化水素の酸化活性が低すぎ
て実用的でなく、この範囲より多く担持しても活性が飽
和するとともにコスト面で不具合が生じる。
Although the activity of the noble metal is recognized if the amount of the noble metal supported is small, the noble metal is supported in an amount of 0.5 to 15%.
It is desirable to be in the range of weight%. If the amount of the noble metal carried is less than this range, the oxidation activity of the saturated hydrocarbon is too low to be practical, and if the amount is more than this range, the activity is saturated and the cost is disadvantageous.

【0017】また遷移金属の担持量は、貴金属に対して
原子比で 0.1〜20倍の範囲とすることが望ましい。貴金
属に対して原子比で 0.1倍未満では担持した効果が得ら
れず活性が低く、貴金属に対して原子比で20倍を超えて
担持すると活性種である貴金属を被覆し活性が低下する
不具合がある。
The amount of the transition metal carried is desirably in the range of 0.1 to 20 times the atomic ratio of the noble metal. If the atomic ratio is less than 0.1 times the noble metal, the effect of supporting is not obtained and the activity is low, and if the atomic ratio is more than 20 times the noble metal, the active species will be coated with the noble metal and the activity will decrease. is there.

【0018】貴金属及び遷移金属を酸化物担体に担持す
るには、貴金属化合物の溶液及び遷移金属化合物の溶液
を用いて、従来の貴金属の担持法と同様に行うことがで
きる。例えば両溶液の混合物を酸化物担体粉末に含浸さ
せて担持する共含浸担持法、あるいは貴金属化合物溶液
又は遷移金属化合物溶液の一方を酸化物担体粉末に含浸
させた後、他方の溶液を含浸させる逐次含浸担持法など
を利用することができる。また場合によっては吸着担持
法を利用することも可能である。中でも共含浸担持法を
用いることが望ましい。これにより貴金属と遷移金属と
が接触した状態で担持される確率が高くなると考えら
れ、逐次含浸担持法に比べて高い活性が発現される。
The loading of the noble metal and the transition metal on the oxide carrier can be carried out by using a solution of the noble metal compound and a solution of the transition metal compound in the same manner as the conventional method of loading a noble metal. For example, a co-impregnation loading method in which a mixture of both solutions is impregnated into an oxide carrier powder and supported, or a method in which one of a noble metal compound solution or a transition metal compound solution is impregnated in the oxide carrier powder, and then the other solution is impregnated. An impregnation carrying method or the like can be used. In some cases, it is also possible to use an adsorption-carrying method. Among them, it is desirable to use the co-impregnation carrying method. This is considered to increase the probability that the noble metal and the transition metal are supported in contact with each other, and a higher activity is exhibited as compared with the sequential impregnation-supporting method.

【0019】貴金属を担持する場合には、貴金属を含む
化合物の溶液とヒドラジンを接触させることで還元反応
によって貴金属を析出させて担持する方法を用いること
も好ましい。この方法によれば、貴金属をさらに微細な
粒子として担持することができ、高温耐久性が一層向上
する。この方法を利用する場合、貴金属化合物溶液中に
酸化物担体を混合しておき、そこへヒドラジンを加えて
撹拌すれば、還元反応によって貴金属を酸化物担体上に
担持することができる。遷移金属はその後に担持すれば
よい。また予め遷移金属が担持された酸化物担体を貴金
属化合物溶液中に混合し、そこへヒドラジンを添加して
貴金属を担持することもできる。また貴金属化合物と遷
移金属化合物の混合溶液に酸化物担体を加えた後に、ヒ
ドラジンを加えてもよい。
When a noble metal is supported, it is also preferable to use a method in which a solution of a compound containing a noble metal is brought into contact with hydrazine to precipitate the noble metal by a reduction reaction and to support the noble metal. According to this method, the noble metal can be supported as finer particles, and the high-temperature durability is further improved. When this method is used, an oxide carrier is mixed in a noble metal compound solution, hydrazine is added thereto, and the mixture is stirred, whereby the noble metal can be supported on the oxide carrier by a reduction reaction. The transition metal may be supported thereafter. Alternatively, an oxide carrier preliminarily supporting a transition metal may be mixed in a noble metal compound solution, and hydrazine may be added thereto to support the noble metal. Hydrazine may be added after the oxide carrier is added to the mixed solution of the noble metal compound and the transition metal compound.

【0020】なお還元剤はヒドラジンに限定されず、ヒ
ドラジン以外にも水素化ホウ素ナトリウム、リチウムア
ルミニウムハイドレート、ホルムアルデヒド,アセトア
ルデヒドなどのアルデヒド類、フルクトース,マルトー
スなどの還元性糖類(アルドース)、エタノールなども
用いることができる。
The reducing agent is not limited to hydrazine, and in addition to hydrazine, sodium borohydride, lithium aluminum hydrate, aldehydes such as formaldehyde and acetaldehyde, reducing sugars (aldose) such as fructose and maltose, and ethanol. Can be used.

【0021】上記のようにして担持された貴金属は10nm
未満の微細な状態で酸化物担体に担持されている。そし
て遷移金属が近接して担持されているため互いの粒成長
が抑制され、例えば 800℃で5時間加熱する耐熱試験後
にも20nm程度となるだけであって、高温耐久後にも高い
活性を示す。
The noble metal supported as described above has a thickness of 10 nm.
Supported on the oxide carrier in a fine state of less than. Since the transition metal is supported in close proximity, the grain growth of each other is suppressed. For example, even after a heat resistance test in which heating is performed at 800 ° C. for 5 hours, the thickness is only about 20 nm, and high activity is exhibited even after high-temperature durability.

【0022】[0022]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。
The present invention will be specifically described below with reference to examples and comparative examples.

【0023】(実施例1)Pd(NO3)3水溶液とFe(NO3)3
9H2O水溶液とを混合した水溶液を調製し、これにγ-Al2
O3粉末を加えて充分に撹拌した後、蒸発乾固しさらに大
気中にて 300℃で2時間焼成して触媒粉末を調製した。
この触媒粉末では、アルミナ 120gに対してPdが5gと
Feが0.24モル担持されている。
(Example 1) Pd (NO 3 ) 3 aqueous solution and Fe (NO 3 ) 3.
An aqueous solution was prepared by mixing with 9H 2 O aqueous solution, and γ-Al 2
After O 3 powder was added and sufficiently stirred, the mixture was evaporated to dryness and calcined at 300 ° C. for 2 hours in the atmosphere to prepare a catalyst powder.
In this catalyst powder, Pd is 5 g for 120 g of alumina.
0.24 mol of Fe is supported.

【0024】得られた触媒粉末を圧粉成形し、粉砕して
粒度 0.5〜1mmのペレット触媒を調製した。
The obtained catalyst powder was compacted and pulverized to prepare a pellet catalyst having a particle size of 0.5 to 1 mm.

【0025】(実施例2)Fe(NO3)3・9H2O水溶液に代え
てCo(NO3)3・6H2O水溶液を用いたこと以外は実施例1と
同様にして、アルミナ 120gに対してPdが5gとCoが0.
24モル担持されたペレット触媒を調製した。
Example 2 In the same manner as in Example 1 except that an aqueous solution of Co (NO 3 ) 3 .6H 2 O was used in place of the aqueous solution of Fe (NO 3 ) 3 .9H 2 O, alumina 120 g was used. On the other hand, Pd is 5g and Co is 0.
A 24 mole supported pellet catalyst was prepared.

【0026】(実施例3)Fe(NO3)3・9H2O水溶液に代え
てNi(NO3)3・6H2O水溶液を用いたこと以外は実施例1と
同様にして、アルミナ 120gに対してPdが5gとNiが
0.001モル担持されたペレット触媒を調製した。
[0026] (Example 3) Fe (NO 3) in place of 3 · 9H 2 O aqueous Ni (NO 3) except for the use of 3 · 6H 2 O aqueous solution in the same manner as in Example 1, the alumina 120g On the other hand, Pd is 5g and Ni is
A pellet catalyst supported by 0.001 mol was prepared.

【0027】(実施例4)Fe(NO3)3・9H2O水溶液に代え
てNi(NO3)3・6H2O水溶液を用いたこと以外は実施例1と
同様にして、アルミナ 120gに対してPdが5gとNiが
0.005モル担持されたペレット触媒を調製した。
[0027] (Example 4) Fe (NO 3) in place of 3 · 9H 2 O aqueous Ni (NO 3) except for the use of 3 · 6H 2 O aqueous solution in the same manner as in Example 1, the alumina 120g On the other hand, Pd is 5g and Ni is
A pellet catalyst loaded with 0.005 mol was prepared.

【0028】(実施例5)Fe(NO3)3・9H2O水溶液に代え
てNi(NO3)3・6H2O水溶液を用いたこと以外は実施例1と
同様にして、アルミナ 120gに対してPdが5gとNiが0.
01モル担持されたペレット触媒を調製した。
[0028] (Example 5) Fe (NO 3) in place of 3 · 9H 2 O aqueous Ni (NO 3) except for the use of 3 · 6H 2 O aqueous solution in the same manner as in Example 1, the alumina 120g On the other hand, Pd is 5g and Ni is 0.
A 01 mol supported pellet catalyst was prepared.

【0029】(実施例6)Fe(NO3)3・9H2O水溶液に代え
てNi(NO3)3・6H2O水溶液を用いたこと以外は実施例1と
同様にして、アルミナ 120gに対してPdが5gとNiが0.
05モル担持されたペレット触媒を調製した。
[0029] Except (Example 6) Fe (NO 3) 3 · 9H 2 in place of the O solution Ni (NO 3) that was used 3 · 6H 2 O aqueous solution in the same manner as in Example 1, the alumina 120g On the other hand, Pd is 5g and Ni is 0.
A 05 mol supported pellet catalyst was prepared.

【0030】(実施例7)Fe(NO3)3・9H2O水溶液に代え
てNi(NO3)3・6H2O水溶液を用いたこと以外は実施例1と
同様にして、アルミナ 120gに対してPdが5gとNiが0.
24モル担持されたペレット触媒を調製した。
[0030] (Example 7) Fe (NO 3) in place of 3 · 9H 2 O aqueous Ni (NO 3) except for the use of 3 · 6H 2 O aqueous solution in the same manner as in Example 1, the alumina 120g On the other hand, Pd is 5g and Ni is 0.
A 24 mole supported pellet catalyst was prepared.

【0031】(実施例8)Ni(NO3)3・6H2O水溶液にγ-A
l2O3粉末を加えて充分に撹拌した後、蒸発乾固しさらに
大気中にて 300℃で2時間焼成した。次いでPd(NO3)3
溶液に得られた粉末を混合して充分に撹拌した後、蒸発
乾固しさらに大気中にて 300℃で2時間焼成して触媒粉
末を調製した。その後実施例1と同様にしてペレット化
し、アルミナ 120gに対してPdが5gとNiが0.24モル担
持されたペレット触媒を調製した。
[0031] (Example 8) Ni (NO 3) 3 · 6H 2 O-aqueous gamma-A
After l 2 O 3 powder was added and sufficiently stirred, the mixture was evaporated to dryness and calcined in air at 300 ° C. for 2 hours. Next, the obtained powder was mixed with an aqueous solution of Pd (NO 3 ) 3 and sufficiently stirred, evaporated to dryness, and calcined in the air at 300 ° C. for 2 hours to prepare a catalyst powder. Thereafter, pelletization was performed in the same manner as in Example 1 to prepare a pellet catalyst in which 5 g of Pd and 0.24 mol of Ni were supported per 120 g of alumina.

【0032】(実施例9)市販の硝酸アルミニウム9水
和物を脱イオン水に溶解させて作製した 0.1〜2モル/
Lの硝酸アルミニウム水溶液と、市販の硝酸ランタン6
水和物を脱イオン水に溶解させて作製した 0.1〜2モル
/Lの硝酸ランタン水溶液を、ランタンのアルミニウム
に対するモル比がLa/Al=0.05となるように所定量ずつ
混合して水相とした。
Example 9 Commercially available aluminum nitrate nonahydrate was dissolved in deionized water to prepare 0.1 to 2 mol / mol.
L of aluminum nitrate aqueous solution and commercially available lanthanum nitrate 6
An aqueous lanthanum nitrate solution of 0.1 to 2 mol / L prepared by dissolving a hydrate in deionized water is mixed with a water phase by a predetermined amount so that the molar ratio of lanthanum to aluminum is La / Al = 0.05. did.

【0033】一方、有機溶媒には市販のケロシンを用
い、分散剤(太陽化学(株)製「サンソフトNo.818H
」)をケロシンに対して5〜10重量%添加して油相と
した。
On the other hand, commercially available kerosene is used as an organic solvent, and a dispersant (“Sunsoft No. 818H” manufactured by Taiyo Kagaku Co., Ltd.) is used.
5) to 10% by weight with respect to kerosene to obtain an oil phase.

【0034】水相と油相を、水相/油相=40〜70/60〜
30(体積%)となるように混合し、ホモジナイザを用い
て1000〜20000rpmの回転数で5〜30分間攪拌することに
より、W/O型エマルジョンを得た。なお、光学顕微鏡
観察の結果から、上記のエマルジョン中の水滴径は、約
1〜2μmであった。
The water phase and the oil phase are defined as water phase / oil phase = 40-70 / 60-
The mixture was mixed so as to have a volume ratio of 30 (% by volume), and the mixture was stirred with a homogenizer at 1,000 to 20,000 rpm for 5 to 30 minutes to obtain a W / O emulsion. From the result of observation with an optical microscope, the diameter of the water droplet in the emulsion was about 1 to 2 μm.

【0035】上記で作製したW/O型エマルジョンを、
特開平11−314035号公報に開示の装置にて噴霧燃焼さ
せ、油相を燃焼させるとともに酸化物粉末を形成した。
この合成は、噴霧したエマルジョンが完全燃焼し、かつ
火炎温度が 650〜 750℃の一定温度になるように、エマ
ルジョンの噴霧流量、空気量(酸素量)などを制御した
状態で行った。
The W / O emulsion prepared above was
Spray combustion was performed using the apparatus disclosed in Japanese Patent Application Laid-Open No. 11-314035 to burn the oil phase and to form oxide powder.
This synthesis was carried out with the spray flow rate of the emulsion and the amount of air (the amount of oxygen) controlled so that the sprayed emulsion completely burned and the flame temperature became a constant temperature of 650 to 750 ° C.

【0036】得られたアルミナ粉末は多数の内部空間を
もつ中空状をなし、その中空殻の厚さは10nmである。ま
たこのアルミナ粉末の一次粒子径は 500nmであり、比表
面積は55m2/gであった。一次粒子径は粉末SEM像か
ら50個の粒子の粒径を測定し、その平均値から求めた。
比表面積はBET法で測定した。
The obtained alumina powder has a hollow shape having a large number of internal spaces, and the thickness of the hollow shell is 10 nm. The primary particle size of this alumina powder was 500 nm, and the specific surface area was 55 m 2 / g. The primary particle diameter was determined from the average value of the particle diameters of 50 particles measured from the powder SEM image.
The specific surface area was measured by the BET method.

【0037】そしてγ-Al2O3粉末に代えて上記の中空状
アルミナ粉末を用いたこと、及びFe(NO3)3・9H2O水溶液
に代えてNi(NO3)3・6H2O水溶液を用いたこと以外は実施
例1と同様にして、中空アルミナ 120gに対してPdが5
gとNiが0.24モル担持されたペレット触媒を調製した。
[0037] The gamma-Al 2 O 3 powder instead be for the use of hollow alumina powder mentioned above, and Fe (NO 3) 3 · 9H 2 in place of the O solution Ni (NO 3) 3 · 6H 2 O Except that an aqueous solution was used, the same procedure as in Example 1 was repeated except that Pd was 5
A pellet catalyst supporting 0.24 mol of g and Ni was prepared.

【0038】(実施例10)Pd(NO3)3水溶液とNi(NO3)3
6H2O水溶液とを混合した水溶液を調製し、これにγ-Al2
O3粉末と所定量のヒドラジン水溶液を加えて充分に撹拌
した後、蒸発乾固しさらに大気中にて 300℃で2時間焼
成して触媒粉末を調製した。この触媒粉末では、実施例
3と同様にアルミナ 120gに対してPdが5gとNiが0.24
モル担持されている。
Example 10 An aqueous solution of Pd (NO 3 ) 3 and Ni (NO 3 ) 3.
6H 2 O aqueous solution was mixed to prepare γ-Al 2
O 3 powder and a predetermined amount of an aqueous hydrazine solution were added, sufficiently stirred, evaporated to dryness, and calcined at 300 ° C. for 2 hours in the atmosphere to prepare a catalyst powder. In this catalyst powder, 5 g of Pd and 0.24 of Ni were added to 120 g of alumina as in Example 3.
Molar supported.

【0039】得られた触媒粉末を圧粉成形し、粉砕して
粒度 0.5〜1mmのペレット触媒を調製した。
The obtained catalyst powder was compacted and pulverized to prepare a pellet catalyst having a particle size of 0.5 to 1 mm.

【0040】(比較例1)Fe(NO3)3・9H2O水溶液を用い
ず、Pd(NO3)3水溶液のみを用いたこと以外は実施例1と
同様にして、アルミナ 120gに対してPdが5g担持され
たペレット触媒を調製した。
Comparative Example 1 The same procedure as in Example 1 was repeated except that an aqueous solution of Pd (NO 3 ) 3 was used without using an aqueous solution of Fe (NO 3 ) 3 .9H 2 O. A pellet catalyst supporting 5 g of Pd was prepared.

【0041】<試験・評価>各実施例及び比較例1の触
媒をそれぞれ評価装置に配置し、表1に示すLean定常モ
デルガスを空間速度SV=200,000h-1の条件で流通させな
がら室温から12℃/分の昇温速度で 550℃まで昇温し、
その間メタンの浄化率を連続的に測定した。そしてメタ
ンの50%浄化温度を算出し、結果を表3に示す。
<Test / Evaluation> The catalysts of Examples and Comparative Example 1 were respectively placed in an evaluation device, and a Lean steady model gas shown in Table 1 was allowed to flow from room temperature while flowing at a space velocity SV = 200,000 h -1. At a heating rate of 12 ° C / min to 550 ° C,
Meanwhile, the purification rate of methane was measured continuously. Then, the 50% purification temperature of methane was calculated, and the results are shown in Table 3.

【0042】また各実施例及び比較例1の触媒につい
て、表2に示すモデルガスをLeanガス2分/Richガス2
分、空間速度SV=10,000h-1の条件で交互に流通させなが
ら、 800℃で5時間保持する耐久試験を行った。そして
耐久試験後の各触媒について、上記と同様にしてメタン
の浄化率を測定し、メタンの50%浄化温度を算出して結
果を表3に示す。
For the catalysts of Examples and Comparative Example 1, the model gas shown in Table 2 was changed to Lean gas 2 minutes / Rich gas 2
An endurance test was performed in which the sample was held at 800 ° C. for 5 hours while alternately flowing under the conditions of space velocity SV = 10,000 h −1 . For each catalyst after the durability test, the methane purification rate was measured in the same manner as above, and the 50% purification temperature of methane was calculated. The results are shown in Table 3.

【0043】さらに耐久試験後の各触媒について、担持
されているPdの粒子径をCOパルス吸着法によって測定し
た。結果を表3に併せて示す。なお耐久試験前のPdの粒
子径は、いずれの触媒も6nm以下であった。
Further, for each of the catalysts after the durability test, the particle size of the supported Pd was measured by a CO pulse adsorption method. The results are shown in Table 3. The particle size of Pd before the durability test was 6 nm or less for each of the catalysts.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】表3より、各実施例の触媒は比較例1に比
べて初期及び耐久後共にメタンの浄化活性が高いことが
わかり、また耐久試験後にもPdの粒径は20nm未満であっ
て、これはPdと遷移金属とを複合担持した効果であるこ
とが明らかである。
From Table 3, it can be seen that the catalysts of the Examples had higher methane purifying activity both in the initial stage and after the endurance than Comparative Example 1, and the Pd particle size was less than 20 nm even after the endurance test. It is clear that this is the effect of complex loading of Pd and transition metal.

【0048】また実施例3〜7の結果を比較すると、遷
移金属の担持量に最適値が存在することが示唆され、実
施例3の触媒のように遷移金属の担持量が 0.001モル
(Pdのモル数に対して0.02倍)では活性が充分でなく、
実施例4の 0.005モル(Pdのモル数に対して 0.1倍)以
上担持することが望ましいことがわかる。
Further, comparison of the results of Examples 3 to 7 suggests that there is an optimum value for the amount of the transition metal supported, and the amount of the supported transition metal is 0.001 mol (Pd of Pd) as in the catalyst of Example 3. 0.02 times the number of moles) is not sufficient,
It can be seen that it is desirable to support 0.005 mol or more of Example 4 (0.1 times the number of mols of Pd).

【0049】さらに実施例7〜10の比較より、逐次含浸
担持法よりも共含浸担持法の方が好ましく、ヒドラジン
を用いた還元担持法が特に好ましいことがわかる。また
中空アルミナを用いることにより、γ-Al2O3を用いた場
合に比べて活性が向上していることも明らかである。
Further, from the comparison of Examples 7 to 10, it can be seen that the co-impregnation loading method is more preferable than the sequential impregnation loading method, and the reduction loading method using hydrazine is particularly preferred. It is also apparent that the activity is improved by using hollow alumina as compared with the case of using γ-Al 2 O 3 .

【0050】[0050]

【発明の効果】すなわち本発明の飽和炭化水素酸化用触
媒によれば、低温域における飽和炭化水素の酸化活性が
きわめて高く、従来は酸化分解が困難であったメタンも
分解除去することができる。そして高温耐久試験後にも
貴金属の粒成長が抑制されているので、耐久性にも優れ
ている。
According to the catalyst for oxidizing saturated hydrocarbons of the present invention, the oxidizing activity of saturated hydrocarbons in a low temperature range is extremely high, and methane which has conventionally been difficult to oxidatively decompose can be decomposed and removed. Since the noble metal grain growth is suppressed even after the high temperature durability test, the durability is excellent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷 孝夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 鈴木 正 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 3G091 AB02 BA15 GA01 GB01W GB05W GB06W GB07W GB10X 4D048 AA18 AB01 AB03 BA03X BA16Y BA18X BA21Y BA23Y BA24Y BA26Y BA27Y BA31X BA33Y BA34Y BA36X BA37X BA38X BA41X BB01 CC38 4G069 AA03 BA01B BC22A BC33A BC35A BC38A BC42B BC54A BC56A BC58A BC59A BC60A BC66A BC66B BC67A BC67B BC68A BC68B BC71A BC72A BC72B BC74A BC75A CA03 CA10 CA15 DA06 EA02Y EC02X EC03X EC04X EC05X ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Takao Tani 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. (72) Inventor Tadashi Suzuki, Nagakute-cho, Aichi-gun, Aichi Prefecture No. 41, Yokomichi 1 Toyota Central Research Laboratory Co., Ltd. F-term (reference) BA01B BC22A BC33A BC35A BC38A BC42B BC54A BC56A BC58A BC59A BC60A BC66A BC66B BC67A BC67B BC68A BC68B BC71A BC72A BC72B BC74A BC75A CA03 CA10 CA15 DA06 EA02Y EC02X EC03X EC04X EC05X

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 酸化物担体と、該酸化物担体に担持され
Pd,Pt,Rh,Au及びIrから選ばれる少なくとも一種の貴
金属と、該酸化物担体に担持されFe,Co,Ni,Sn,Mo,
W,Zn,V,Nb,Ta及びCrから選ばれる少なくとも一種
の遷移金属と、からなることを特徴とする飽和炭化水素
酸化用触媒。
1. An oxide carrier and an oxide carrier
At least one noble metal selected from Pd, Pt, Rh, Au and Ir, and Fe, Co, Ni, Sn, Mo,
A catalyst for oxidizing saturated hydrocarbons, comprising: at least one transition metal selected from W, Zn, V, Nb, Ta and Cr.
【請求項2】 前記遷移金属はFe,Co,Ni及びSnから選
ばれる少なくとも一種であることを特徴とする請求項1
に記載の飽和炭化水素酸化用触媒。
2. The method according to claim 1, wherein the transition metal is at least one selected from Fe, Co, Ni, and Sn.
The catalyst for oxidizing a saturated hydrocarbon according to the above.
【請求項3】 前記遷移金属は前記貴金属に対して原子
比で 0.1〜20倍担持されていることを特徴とする請求項
1に記載の飽和炭化水素酸化用触媒。
3. The catalyst for oxidizing saturated hydrocarbons according to claim 1, wherein the transition metal is supported in an atomic ratio of 0.1 to 20 times the noble metal.
【請求項4】 前記貴金属は触媒全体に 0.5〜15重量%
担持されていることを特徴とする請求項1に記載の飽和
炭化水素酸化用触媒。
4. The catalyst according to claim 1, wherein the noble metal is 0.5 to 15% by weight based on the whole catalyst.
The catalyst for oxidizing a saturated hydrocarbon according to claim 1, wherein the catalyst is supported.
【請求項5】 前記貴金属と前記遷移金属を含む溶液を
用いて前記貴金属と前記遷移金属を同時に担持してなる
ことを特徴とする請求項1に記載の飽和炭化水素酸化用
触媒。
5. The catalyst for oxidizing a saturated hydrocarbon according to claim 1, wherein the noble metal and the transition metal are simultaneously supported using a solution containing the noble metal and the transition metal.
【請求項6】 前記貴金属は、前記貴金属を含む化合物
の溶液とヒドラジンを接触させることで担持されている
ことを特徴とする請求項1に記載の飽和炭化水素酸化用
触媒。
6. The catalyst for oxidizing a saturated hydrocarbon according to claim 1, wherein the noble metal is supported by bringing a solution of the compound containing the noble metal into contact with hydrazine.
【請求項7】 前記酸化物担体は40m2/g以上の比表面
積を有することを特徴とする請求項1に記載の飽和炭化
水素酸化用触媒。
7. The catalyst for oxidizing a saturated hydrocarbon according to claim 1, wherein the oxide carrier has a specific surface area of 40 m 2 / g or more.
【請求項8】 前記酸化物担体は中空状をなすことを特
徴とする請求項1に記載の飽和炭化水素酸化用触媒。
8. The catalyst for oxidizing a saturated hydrocarbon according to claim 1, wherein the oxide carrier has a hollow shape.
【請求項9】 主としてメタンの酸化に用いられること
を特徴とする請求項1に記載の飽和炭化水素酸化用触
媒。
9. The catalyst for oxidizing saturated hydrocarbons according to claim 1, which is mainly used for methane oxidation.
JP2000309577A 2000-10-10 2000-10-10 Catalyst for saturated hydrocarbon oxidation Pending JP2002113367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000309577A JP2002113367A (en) 2000-10-10 2000-10-10 Catalyst for saturated hydrocarbon oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000309577A JP2002113367A (en) 2000-10-10 2000-10-10 Catalyst for saturated hydrocarbon oxidation

Publications (1)

Publication Number Publication Date
JP2002113367A true JP2002113367A (en) 2002-04-16

Family

ID=18789717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000309577A Pending JP2002113367A (en) 2000-10-10 2000-10-10 Catalyst for saturated hydrocarbon oxidation

Country Status (1)

Country Link
JP (1) JP2002113367A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024355A (en) * 2013-07-24 2015-02-05 ダイハツ工業株式会社 Catalyst for exhaust gas purification
JP2016049495A (en) * 2014-08-29 2016-04-11 株式会社キャタラー Method for producing catalyst for exhaust gas purification
WO2022065188A1 (en) * 2020-09-25 2022-03-31 エヌ・イーケムキャット株式会社 Methane oxidation catalyst, methane oxidation multilayer catalyst, exhaust gas purification system using said methane oxidation catalyst or said methane oxidation multilayer catalyst, and method for producing methane oxidation catalyst
CN115805081A (en) * 2021-09-14 2023-03-17 中国科学院大连化学物理研究所 A kind of catalyst and its preparation method and application in cyclopentadiene selective hydrogenation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283017A (en) * 1987-09-21 1990-03-23 Degussa Ag Method and apparatus for catalytic reaction of waste containing hydrocarbon, halogenated hydrocarbon and carbon monoxide
JPH04166228A (en) * 1990-09-28 1992-06-12 Mitsubishi Heavy Ind Ltd Oxidation catalyst
JPH04166227A (en) * 1990-09-28 1992-06-12 Mitsubishi Heavy Ind Ltd Oxidation catalyst
JPH0753976A (en) * 1993-08-20 1995-02-28 Tosoh Corp Methane oxidation method
JPH0768174A (en) * 1993-09-01 1995-03-14 Sekiyu Sangyo Kasseika Center Catalyst for catalytic reduction of nox

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283017A (en) * 1987-09-21 1990-03-23 Degussa Ag Method and apparatus for catalytic reaction of waste containing hydrocarbon, halogenated hydrocarbon and carbon monoxide
JPH04166228A (en) * 1990-09-28 1992-06-12 Mitsubishi Heavy Ind Ltd Oxidation catalyst
JPH04166227A (en) * 1990-09-28 1992-06-12 Mitsubishi Heavy Ind Ltd Oxidation catalyst
JPH0753976A (en) * 1993-08-20 1995-02-28 Tosoh Corp Methane oxidation method
JPH0768174A (en) * 1993-09-01 1995-03-14 Sekiyu Sangyo Kasseika Center Catalyst for catalytic reduction of nox

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024355A (en) * 2013-07-24 2015-02-05 ダイハツ工業株式会社 Catalyst for exhaust gas purification
JP2016049495A (en) * 2014-08-29 2016-04-11 株式会社キャタラー Method for producing catalyst for exhaust gas purification
WO2022065188A1 (en) * 2020-09-25 2022-03-31 エヌ・イーケムキャット株式会社 Methane oxidation catalyst, methane oxidation multilayer catalyst, exhaust gas purification system using said methane oxidation catalyst or said methane oxidation multilayer catalyst, and method for producing methane oxidation catalyst
CN115805081A (en) * 2021-09-14 2023-03-17 中国科学院大连化学物理研究所 A kind of catalyst and its preparation method and application in cyclopentadiene selective hydrogenation

Similar Documents

Publication Publication Date Title
CN102281946A (en) Nitrogen oxide storage catalytic converter for use in a motor vehicle in a position near the engine
JP2007296518A (en) Exhaust gas purification catalyst and exhaust gas purification device
JP5014845B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using such a catalyst
CN108883397B (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification device using the exhaust gas purification catalyst
KR20060100447A (en) Catalyst for diesel particle filter
JP2006181484A (en) Catalyst, exhaust gas cleaning catalyst and method for preparing the catalyst
JP2005000829A (en) Exhaust gas purification catalyst and production method thereof
JP5531567B2 (en) Exhaust gas purification catalyst
JP2002233755A (en) Catalyst for saturated hydrocarbon oxidation
JP5196656B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2005254047A (en) Exhaust gas purification catalyst, metal oxide particles and production method thereof
JP2001347167A (en) Exhaust gas purification catalyst
JP2009208039A (en) Catalyst for removing particulate matter and method for removing particulate matter by using the same
JP2002113367A (en) Catalyst for saturated hydrocarbon oxidation
JP2007000795A (en) Catalyst for cleaning exhaust gas and its manufacturing method
WO2022249847A1 (en) Exhaust gas purification catalyst
JP2006320797A (en) Catalyst and its manufacturing method
JP2009178673A (en) Exhaust gas purification device
JP2006021141A (en) Exhaust gas purifying catalyst and method for preparing it
JP2007203160A (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst and exhaust gas purification method using the same
JP2016043310A (en) Nitrogen oxide occlusion material and catalyst for exhaust gas purification
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JP6096818B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
JP7711046B2 (en) Diesel Oxidation Catalyst
JP5641674B2 (en) Catalyst for treating exhaust gas containing organic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100408