JP2002080221A - Hollow oxide superconductor and method of producing the same - Google Patents
Hollow oxide superconductor and method of producing the sameInfo
- Publication number
- JP2002080221A JP2002080221A JP2001017855A JP2001017855A JP2002080221A JP 2002080221 A JP2002080221 A JP 2002080221A JP 2001017855 A JP2001017855 A JP 2001017855A JP 2001017855 A JP2001017855 A JP 2001017855A JP 2002080221 A JP2002080221 A JP 2002080221A
- Authority
- JP
- Japan
- Prior art keywords
- precursor
- oxide superconductor
- plate
- producing
- cylindrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000002243 precursor Substances 0.000 claims abstract description 199
- 239000013078 crystal Substances 0.000 claims abstract description 75
- 239000000203 mixture Substances 0.000 claims abstract description 48
- 238000002844 melting Methods 0.000 claims abstract description 41
- 230000008018 melting Effects 0.000 claims abstract description 41
- 150000001875 compounds Chemical class 0.000 claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 claims abstract description 26
- 239000002994 raw material Substances 0.000 claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 238000001816 cooling Methods 0.000 claims abstract description 14
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 14
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 10
- 229910002480 Cu-O Inorganic materials 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 5
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims description 4
- 229910052772 Samarium Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 229910052762 osmium Inorganic materials 0.000 claims description 3
- 229910052702 rhenium Inorganic materials 0.000 claims description 3
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 239000000463 material Substances 0.000 description 32
- 239000012071 phase Substances 0.000 description 31
- 239000000843 powder Substances 0.000 description 29
- 230000004907 flux Effects 0.000 description 20
- 239000002245 particle Substances 0.000 description 15
- 238000002425 crystallisation Methods 0.000 description 14
- 230000008025 crystallization Effects 0.000 description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 10
- 238000000137 annealing Methods 0.000 description 10
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 8
- 229910001882 dioxygen Inorganic materials 0.000 description 8
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000004453 electron probe microanalysis Methods 0.000 description 5
- 238000010030 laminating Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 238000010583 slow cooling Methods 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 3
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 2
- 244000046052 Phaseolus vulgaris Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910000108 silver(I,III) oxide Inorganic materials 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
(57)【要約】
【課題】 電気特性、磁気特性、機械強度に優れた大型
で中空の酸化物超電導体およびこのような酸化物超電導
体を低コストで製造できる酸化物超電導体の製造方法を
提供する。
【解決手段】 RE化合物(REはYを含む1種または
2種以上の希土類金属元素)とBa化合物とCu化合物
とを含む原料混合体を、この原料混合体の融点より高い
温度で加熱溶融した後に、徐冷して結晶を成長させるこ
とによりRE−Ba−Cu−O系酸化物超電導体を製造
する方法において、原料混合体から筒状の前駆体とこの
筒状の前駆体の開口部を塞ぐ大きさの板状の前駆体とを
製造し、筒状の前駆体の上部に板状の前駆体を積層し、
これらの前駆体を加熱溶融した後に、徐冷して板状の前
駆体から筒状の前駆体側に向かって結晶成長させる。
PROBLEM TO BE SOLVED: To provide a large-sized hollow oxide superconductor excellent in electric characteristics, magnetic characteristics and mechanical strength and a method for producing such an oxide superconductor at low cost. provide. SOLUTION: A raw material mixture containing an RE compound (RE is one or more rare earth metal elements containing Y), a Ba compound and a Cu compound is heated and melted at a temperature higher than the melting point of the raw material mixture. Later, in a method of producing an RE-Ba-Cu-O-based oxide superconductor by gradually cooling and growing a crystal, a tubular precursor and an opening of the tubular precursor are mixed from a raw material mixture. Produce a plate-shaped precursor of the size to close, laminate the plate-shaped precursor on top of the cylindrical precursor,
After heating and melting these precursors, they are gradually cooled to grow crystals from the plate-like precursor toward the cylindrical precursor.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、中空の酸化物超電
導体およびその製造方法に関し、特に、バルクマグネッ
ト、磁気軸受け、電流リード、磁気シールド、限流機な
どに用いられるRE系の中空の酸化物超電導体およびそ
の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow oxide superconductor and a method of manufacturing the same, and more particularly, to a hollow oxide superconductor of RE system used for a bulk magnet, a magnetic bearing, a current lead, a magnetic shield, a current limiter, and the like. The present invention relates to an article superconductor and a method for manufacturing the same.
【0002】[0002]
【従来の技術】従来、RE元素(希土類元素)とBa元
素の固溶体を作る元素(La、Nd、Pm、Sm、E
u、Gd、Tb、Dy、Hoまたはこれらの混合物)を
選択して、RE化合物、Ba化合物およびCu化合物を
含む原料混合体を、この原料混合体の融点以上の温度で
加熱溶融した後に、温度勾配を加えながら徐冷工程を行
って結晶を成長させることにより、RE−Ba−Cu−
O系酸化物超電導体を製造する方法として、前駆体を板
状に成形し、この前駆体を溶融した後、結晶化直前の温
度で種結晶を前駆体の上部に設置して、その後、温度を
保持または徐冷することによって、種結晶を反映した大
きな配向結晶を作製する方法が知られている。2. Description of the Related Art Conventionally, elements (La, Nd, Pm, Sm, and E) forming a solid solution of an RE element (rare earth element) and a Ba element.
u, Gd, Tb, Dy, Ho or a mixture thereof), and after heating and melting the raw material mixture containing the RE compound, the Ba compound and the Cu compound at a temperature equal to or higher than the melting point of the raw material mixture, By performing a slow cooling step while adding a gradient to grow crystals, RE-Ba-Cu-
As a method for producing an O-based oxide superconductor, a precursor is formed into a plate shape, and after melting this precursor, a seed crystal is placed on top of the precursor at a temperature immediately before crystallization, and then the temperature is lowered. There is known a method of producing a large oriented crystal reflecting a seed crystal by holding or slowly cooling the crystal.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記の従来の
方法では、前駆体を例えば直径60mm以上に大型化し
て溶融結晶化を行うと、結晶化後の徐冷工程で熱収縮に
よる応力が大きくなり、材料端部にマイクロクラックの
発生が起こってしまうという問題点があった。また、リ
ニアモーターカー、磁気分離およびMRIなどに用いる
バルクマグネットとしては、軽量化および用途の都合
上、中心をくり抜いたリング状のバルクマグネットが必
要とされているが、板状に結晶化させた材料から中心部
分をくり抜いてリング状とした場合には、非常にコスト
が高くなってしまう。また、円筒状の前駆体のみを用い
て、溶融した後、種付けを行い、結晶化させて均一に配
向させようとしても、結晶成長の終端部での結合部が弱
い結合となって、中空部分を囲むように流れる超電導電
流が非常に低くなってしまい、中空内に高い磁場を発生
させることができない。However, in the above-mentioned conventional method, when the precursor is melted and crystallized with a diameter of, for example, 60 mm or more, the stress due to heat shrinkage in the slow cooling step after crystallization is large. In other words, there is a problem that microcracks occur at the edges of the material. In addition, as a bulk magnet used for a linear motor car, magnetic separation, MRI, etc., a ring-shaped bulk magnet with a hollow center is required for the sake of weight reduction and use, but it is crystallized into a plate shape. If the central portion is cut out of the material to form a ring, the cost becomes very high. Also, using only a cylindrical precursor, after melting, seeding, crystallizing and evenly orienting, the bonding portion at the end of crystal growth becomes a weak bonding, and the hollow portion , The superconducting current flowing so as to surround the space becomes very low, and a high magnetic field cannot be generated in the hollow space.
【0004】したがって、本発明は、このような従来の
問題点に鑑み、電気特性、磁気特性、機械強度に優れた
大型で中空の酸化物超電導体およびこのような中空の酸
化物超電導体を低コストで製造できる中空の酸化物超電
導体の製造方法を提供することを目的とする。Accordingly, the present invention has been made in view of the above-mentioned conventional problems, and has been made to reduce the size of a large hollow oxide superconductor excellent in electric characteristics, magnetic characteristics and mechanical strength, and to reduce such a hollow oxide superconductor. It is an object of the present invention to provide a method for manufacturing a hollow oxide superconductor that can be manufactured at low cost.
【0005】[0005]
【課題を解決するための手段】本発明者らは、上記課題
を達成するために鋭意研究した結果、RE化合物(RE
はYを含む1種または2種以上の希土類金属元素)とB
a化合物とCu化合物とを含む原料混合体を、この原料
混合体の融点より高い温度で加熱溶融した後に、徐冷し
て結晶を成長させることによりRE−Ba−Cu−O系
酸化物超電導体を製造する方法において、筒状の前駆体
の上部に、この筒状の前駆体と熱収縮率が近くなるよう
に調整され(あるいはこの筒状の前駆体の組成と同一の
組成を有し)且つ筒状の前駆体の開口部を塞ぐ大きさの
板状の前駆体を積層し、これらの前駆体を加熱溶融した
後に、徐冷して板状の前駆体から筒状の前駆体側に向か
って結晶成長させることにより、電気特性、磁気特性、
機械強度に優れた大型で中空のRE−Ba−Cu−O系
酸化物超電導体を低コストで製造できることを見出し、
本発明を完成するに至った。Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that RE compounds (RE
Is one or more rare earth metal elements containing Y) and B
A RE-Ba-Cu-O-based oxide superconductor is obtained by heating and melting a raw material mixture containing the compound a and the Cu compound at a temperature higher than the melting point of the raw material mixture, and then gradually cooling the crystal to grow crystals. In the method for producing the above, the thermal contraction rate is adjusted to be close to that of the tubular precursor on the top of the tubular precursor (or has the same composition as that of the tubular precursor) And a plate-like precursor of a size to close the opening of the tubular precursor is laminated, and after heating and melting these precursors, gradually cooling from the plate-like precursor toward the tubular precursor side. The electrical and magnetic properties,
Finding that large, hollow RE-Ba-Cu-O-based oxide superconductors with excellent mechanical strength can be manufactured at low cost,
The present invention has been completed.
【0006】すなわち、本発明による中空の酸化物超電
導体の製造方法は、RE化合物(REはYを含む1種ま
たは2種以上の希土類金属元素)とBa化合物とCu化
合物とを含む原料混合体を、この原料混合体の融点より
高い温度で加熱溶融した後に、徐冷して結晶を成長させ
ることによりRE−Ba−Cu−O系の中空の酸化物超
電導体を製造する方法において、原料混合体から筒状の
前駆体を製造するとともに、この筒状の前駆体のREと
同一の元素を含み且つ筒状の前駆体の開口部を塞ぐ大き
さの板状の前駆体を製造し、筒状の前駆体の上部に板状
の前駆体を積層し、これらの前駆体を加熱溶融した後
に、徐冷して板状の前駆体から筒状の前駆体側に向かっ
て結晶成長させることを特徴とする。That is, the method for producing a hollow oxide superconductor according to the present invention comprises a raw material mixture containing an RE compound (RE is one or more rare earth metal elements containing Y), a Ba compound and a Cu compound. Is heated and melted at a temperature higher than the melting point of the raw material mixture, and then gradually cooled to grow crystals, thereby producing a RE-Ba-Cu-O-based hollow oxide superconductor. While producing a tubular precursor from the body, a plate-shaped precursor containing the same element as the RE of the tubular precursor and having a size to close the opening of the tubular precursor is produced, A plate-shaped precursor is laminated on the top of a plate-shaped precursor, and after heating and melting these precursors, they are gradually cooled to grow crystals from the plate-shaped precursor toward the cylindrical precursor. And
【0007】この中空の酸化物超電導体の製造方法にお
いて、板状の前駆体の組成が筒状の前駆体の組成と同一
であるのが好ましく、少なくとも両前駆体の熱収縮率が
近くなるように両前駆体が同一のRE元素を含むのが好
ましい。また、板状の前駆体は、筒状の前駆体の開口部
が開口する面と同一の大きさで同一の形状の面を有する
のが好ましい。In this method for producing a hollow oxide superconductor, the composition of the plate-like precursor is preferably the same as the composition of the cylindrical precursor, and at least the thermal shrinkage of both precursors is close to each other. Preferably, both precursors contain the same RE element. In addition, the plate-shaped precursor preferably has a surface having the same size and the same shape as the surface on which the opening of the cylindrical precursor is opened.
【0008】また、上記の中空の酸化物超電導体の製造
方法において、加熱溶融する温度を、円筒状および板状
の前駆体がRE2+rBa1+s(Cu1−dAgd)
O5 −y相およびRE4+rBa2+s( Cu1−d
Agd )2O10−y相(−0.2≦r≦0.2、−
0.2≦s≦0.2、0≦d≦0.05、−0.2≦y
≦0.2)の少なくとも一方の相と液相になる温度とす
るのが好ましい。In the above method for producing a hollow oxide superconductor, the temperature at which the precursor is heated and melted is adjusted so that the cylindrical and plate-like precursors are formed of RE 2 + r Ba 1 + s (Cu 1-d Ag d ).
O 5 -y phase and RE 4 + r Ba 2 + s (Cu 1-d
Ag d ) 2 O 10-y phase (−0.2 ≦ r ≦ 0.2, −
0.2 ≦ s ≦ 0.2, 0 ≦ d ≦ 0.05, -0.2 ≦ y
.Ltoreq.0.2).
【0009】この場合、加熱溶融工程の後に、板状の前
駆体の上部が低温側になるように板状および筒状の前駆
体の上下に1乃至30℃/cmの温度勾配を加え、その
後、板状および筒状の前駆体を徐冷して結晶成長させる
のが好ましい。また、加熱溶融工程の後に、種結晶を設
置して、その後、板状および筒状の前駆体を徐冷して結
晶成長させるようにしてもよい。あるいは、加熱溶融工
程の後に、板状の前駆体の上部が低温側になるように板
状および筒状の前駆体の上下に1乃至30℃/cmの温
度勾配を加えた後、種結晶を設置して、その後、板状お
よび筒状の前駆体を徐冷して結晶成長させるようにして
もよい。In this case, after the heating and melting step, a temperature gradient of 1 to 30 ° C./cm is applied above and below the plate-like and tubular precursors so that the upper part of the plate-like precursor is on the low temperature side. It is preferable that the plate-like and cylindrical precursors are gradually cooled to grow crystals. After the heating and melting step, a seed crystal may be provided, and then the plate-like and tubular precursors may be gradually cooled to grow the crystal. Alternatively, after the heating and melting step, a temperature gradient of 1 to 30 ° C./cm is applied above and below the plate-like and tubular precursors so that the upper part of the plate-like precursor is on the low temperature side. After installation, the plate-like and cylindrical precursors may be gradually cooled to grow crystals.
【0010】また、上記の中空の酸化物超電導体の製造
方法において、板状の前駆体の厚さを5乃至20mmと
するのが好ましい。[0010] In the above method for producing a hollow oxide superconductor, the thickness of the plate-like precursor is preferably 5 to 20 mm.
【0011】また、本発明による中空の酸化物超電導体
の製造方法は、RE化合物(REはYを含む1種または
2種以上の希土類金属元素)とBa化合物とCu化合物
とを含む原料混合体に、この原料混合体の融点より高い
温度で加熱溶融した後に、徐冷して結晶を成長させるこ
とによりRE−Ba−Cu−O系の中空の酸化物超電導
体を製造する方法において、原料混合体から一方の面に
凹部を有する前駆体を製造し、この前駆体を加熱溶融し
た後、凹部とは反対側の面に種結晶を設置して、その
後、前駆体を徐冷して結晶成長させ、その後、種結晶を
設置した側を切断または凹部を貫通させることを特徴と
する。Further, the method for producing a hollow oxide superconductor according to the present invention provides a raw material mixture containing a RE compound (RE is one or more rare earth metal elements containing Y), a Ba compound and a Cu compound. A method for producing a RE-Ba-Cu-O-based hollow oxide superconductor by heating and melting at a temperature higher than the melting point of the raw material mixture and then gradually cooling the crystal to produce a RE-Ba-Cu-O-based hollow oxide superconductor. A precursor having a concave portion on one surface is manufactured from the body, and after heating and melting the precursor, a seed crystal is placed on the surface opposite to the concave portion, and then the precursor is gradually cooled to grow the crystal. Then, the side on which the seed crystal is placed is cut or penetrated through the concave portion.
【0012】さらに、本発明による中空の酸化物超電導
体は、RE1+pBa2+q(Cu 1−bAgb)3O
7−x(REは1種または2種以上の希土類金属元素、
−0.2≦p≦0.2、−0.2≦q≦0.2、0≦b
≦0.05、−0.2≦x≦0.6)相中に、RE
2+rBa1+s(Cu1−dAgd)O5−y相およ
びRE4+rBa2+s( Cu1−dAgd )2O
10−y相(−0.2≦r≦0.2、−0.2≦s≦
0.2、0≦d≦0.05、−0.2≦y≦0.2)の
少なくとも一方の相が微細に分散した筒状の酸化物超電
導体と、この筒状の酸化物超電導体のREと同一の元素
を含み且つ筒状の酸化物超電導体の開口部を塞ぐ板状の
酸化物超電導体とが積層されて一体に結晶化しているこ
とを特徴とする。Further, the hollow oxide superconductor according to the present invention
The body is RE1 + pBa2 + q(Cu 1-bAgb)3O
7-x(RE is one or more rare earth metal elements,
-0.2≤p≤0.2, -0.2≤q≤0.2, 0≤b
≦ 0.05, -0.2 ≦ x ≦ 0.6)
2 + rBa1 + s(Cu1-dAgd) O5-yPhase
And RE4 + rBa2 + s(Cu1-dAgd )2O
10-yPhase (-0.2≤r≤0.2, -0.2≤s≤
0.2, 0 ≦ d ≦ 0.05, −0.2 ≦ y ≦ 0.2)
A cylindrical oxide superconductor in which at least one phase is finely dispersed
Conductor and the same element as RE in this cylindrical oxide superconductor
And a plate-like member that covers the opening of the cylindrical oxide superconductor
The oxide superconductor is laminated and crystallized integrally.
And features.
【0013】この中空の酸化物超電導体において、板状
の前駆体の組成が筒状の前駆体の組成と同一であるのが
好ましく、少なくとも両前駆体の熱収縮率が近くなるよ
うに両前駆体が同一のRE元素を含むのが好ましい。In this hollow oxide superconductor, the composition of the plate-like precursor is preferably the same as the composition of the cylindrical precursor, and the two precursors are at least close to each other in heat shrinkage. Preferably, the bodies contain the same RE element.
【0014】上記の中空の酸化物超電導体において、R
EがNd、Sm、Gd、Dyから選ばれる1種または2
種以上の元素を少なくとも50%以上含むのが好まし
い。また、中空の酸化物超電導体が、8wt%乃至60
wt%のAgを含むのが好ましい。さらに、中空の酸化
物超電導体が、Pt、Pd、Ru、Rh、Ir、Os、
Re、Ceの金属およびこれらの金属の化合物から選ば
れる1種以上を0.05wt%乃至5wt%(化合物の
場合はその金属のみの元素重量で示す)含むのが好まし
い。In the above hollow oxide superconductor, R
E is one or two selected from Nd, Sm, Gd and Dy
It is preferable that at least 50% or more of the elements are contained. Also, the hollow oxide superconductor contains 8 wt% to 60 wt%.
It preferably contains wt% Ag. Further, the hollow oxide superconductor is made of Pt, Pd, Ru, Rh, Ir, Os,
It is preferable to contain 0.05 wt% to 5 wt% (in the case of a compound, the metal is represented by the element weight of the metal alone) of at least one selected from Re and Ce metals and compounds of these metals.
【0015】[0015]
【発明の実施の形態】本発明による中空の酸化物超電導
体の製造方法の実施の形態では、RE化合物(REはY
を含む1種または2種以上の希土類金属元素)とBa化
合物とCu化合物とを含む原料混合体を、この原料混合
体の融点より高い温度で加熱溶融した後に、徐冷して結
晶を成長させることによりRE−Ba−Cu−O系の中
空の酸化物超電導体を製造する方法において、原料混合
体から筒状の前駆体とこの筒状の前駆体の開口部を塞ぐ
大きさの板状の前駆体とを製造し、筒状の前駆体の上部
に板状の前駆体を積層した後、これらの前駆体がRE
2+rBa1+s(Cu1 −dAgd)O5−y相およ
びRE4+rBa2+s( Cu1−dAgd )2O
10−y相(−0.2≦r≦0.2、−0.2≦s≦
0.2、0≦d≦0.05、−0.2≦y≦0.2)の
少なくとも一方の相と液相になる温度Tm以上(好まし
くはTm+50℃からTm+200℃の範囲)でこれら
の前駆体を溶融し、その後、これらの相の包晶反応によ
りRE1+pBa2+q(Cu1−bAg b)3O
7−x相が晶出する温度Tmの直前(好ましくはTm+
20℃からTm+0℃)まで降温し、板状の前駆体の上
部が低温側になるように板状および筒状の前駆体の上下
に温度勾配を加えた後、板状の前駆体側に種結晶を設置
して、その後、RE1+pBa2+q(Cu1−bAg
b)3O7−x相が晶出する温度よりやや低い温度(好
ましくはTm−2℃からTm−20℃)まで降温して温
度保持することにより板状の前駆体を水平方向に結晶成
長させ、その後、徐冷することにより筒状の前駆体を上
から下に結晶成長させる。DETAILED DESCRIPTION OF THE INVENTION Hollow oxide superconductor according to the invention
In an embodiment of the method for producing a body, the RE compound (RE is Y
Or two or more rare earth metal elements containing
The raw material mixture containing the compound and the Cu compound is mixed with the raw material mixture.
After heating and melting at a temperature higher than the melting point of the body,
By growing crystals in the RE-Ba-Cu-O system
In the method for producing an empty oxide superconductor, the raw material mixture
Plug the tubular precursor from the body and the opening of this tubular precursor
Manufacture a sized plate-shaped precursor and the top of the cylindrical precursor
After laminating plate-like precursors on the
2 + rBa1 + s(Cu1 -DAgd) O5-yPhase
And RE4 + rBa2 + s(Cu1-dAgd )2O
10-yPhase (-0.2≤r≤0.2, -0.2≤s≤
0.2, 0 ≦ d ≦ 0.05, −0.2 ≦ y ≦ 0.2)
At least the temperature Tm at which at least one phase becomes a liquid phase (preferably
(Tm + 50 ° C to Tm + 200 ° C)
Is melted and then peritectic reaction of these phases
RE1 + pBa2 + q(Cu1-bAg b)3O
7-xJust before the temperature Tm at which the phase crystallizes (preferably Tm +
The temperature is lowered from 20 ° C. to Tm + 0 ° C.), and the
Up and down the plate and tubular precursors so that the part is on the low temperature side
After applying a temperature gradient to the plate, a seed crystal is placed on the plate-like precursor side
And then RE1 + pBa2 + q(Cu1-bAg
b)3O7-xSlightly lower than the temperature at which
(Tm-2 ° C to Tm-20 ° C)
Crystallization of the plate-like precursor in the horizontal direction
And then gradually cooled to raise the cylindrical precursor.
The crystal is grown from below.
【0016】ここで、必要に応じて結晶化後の試料から
板状の前駆体の部分を切断し、または板状の前駆体の部
分に貫通孔を形成して前駆体全体を筒状の前駆体にする
と、円周方向に沿って全く粒界の無い、高い臨界電流密
度を示す筒状の酸化物超電導体を製造することができ
る。このような筒状の酸化物超電導体は、例えば、積層
することによりソレノイド状のマグネットなどに使用す
ることもできる。Here, if necessary, a plate-shaped precursor portion is cut from the crystallized sample, or a through-hole is formed in the plate-shaped precursor portion to convert the entire precursor into a cylindrical precursor. When it is made into a body, a cylindrical oxide superconductor having a high critical current density without any grain boundaries along the circumferential direction can be manufactured. Such a cylindrical oxide superconductor can be used, for example, for a solenoid magnet by laminating.
【0017】また、前駆体がRE2+rBa1+s(C
u1−dAgd)O5−y相およびRE4+rBa
2+s( Cu1−dAgd )2O10−y相の少なく
とも一方の相と液相になる温度Tm(溶融状態から降温
した場合のRE1+pBa2+q(Cu1−bAgb)
3O7−x相の結晶化温度と同じ)は、各希土類元素を
用いた場合には、図1に示すような温度であり、さらに
Agを添加した場合には、各温度を基準にして、Agの
添加量とともに図2に示すように変化する。なお、希土
類元素を複数混合した場合には、図1に示す温度に各希
土類元素のモル比率を掛けて加えた値になる。The precursor is RE 2 + r Ba 1 + s (C
u 1-d Ag d ) O 5-y phase and RE 4 + r Ba
Temperature Tm at which at least one phase of 2 + s (Cu 1-d Ag d ) 2 O 10-y phase becomes a liquid phase (RE 1 + p Ba 2 + q (Cu 1-b Ag b ) when the temperature is lowered from a molten state)
The crystallization temperature of the 3 O 7-x phase is the temperature as shown in FIG. 1 when each rare earth element is used, and when Ag is further added, the temperature is based on each temperature. , And the amount of Ag added as shown in FIG. When a plurality of rare earth elements are mixed, the temperature is a value obtained by multiplying the temperature shown in FIG. 1 by the molar ratio of each rare earth element.
【0018】このような手法によると、前駆体の容積を
低く抑えることが可能になり、結晶化後の徐冷工程にお
いて発生する熱収縮による応力が緩和され、クラックの
発生を抑制できる。また、板状の前駆体を積層すること
により、リング全体を結晶粒界などの繋ぎ目無く種結晶
の方位を完全に反映させることができ、電磁気特性に優
れた大型で中空の酸化物超電導体を低コストで製造する
ことができる。According to such a method, the volume of the precursor can be kept low, the stress due to the heat shrinkage generated in the slow cooling step after crystallization is alleviated, and the generation of cracks can be suppressed. In addition, by laminating plate-like precursors, the entire ring can completely reflect the orientation of the seed crystal without any seams such as grain boundaries, and is a large, hollow oxide superconductor with excellent electromagnetic characteristics. Can be manufactured at low cost.
【0019】上記の手法において、板状の前駆体と筒状
の前駆体の融点や熱収縮が著しく異なると、昇温や冷却
の際にクラックが発生し易くなるので、これらの前駆体
が同一の組成または少なくとも同一のRE元素を含むの
が好ましい。In the above-described method, if the melting point and the heat shrinkage of the plate-shaped precursor and the cylindrical precursor are significantly different, cracks are likely to occur at the time of heating or cooling. Or at least the same RE element.
【0020】また、板状の前駆体が中空の前駆体と同一
形状であると板状の前駆体から中空の前駆体に結晶の配
向性が反映し易くなるので、板状の前駆体は、筒状の前
駆体の開口部が開口する面と同一の大きさで同一の形状
の面を有するのが好ましい。さらに、板状の前駆体の厚
さは、コストおよび配向の再現性の点で12mm±5m
m程度が最適であり、5mm以下にすると支持材との反
応により多結晶体になり易く、20mmより厚くすると
厚さ方向の結晶育成に時間を要し、製造コストが高くな
ってしまう。Further, when the plate-like precursor has the same shape as the hollow precursor, the orientation of the crystal tends to be reflected from the plate-like precursor to the hollow precursor. It is preferable that the surface of the cylindrical precursor has the same size and the same shape as the surface where the opening of the precursor is opened. Further, the thickness of the plate-like precursor is 12 mm ± 5 m in terms of cost and reproducibility of orientation.
When the thickness is less than 5 mm, a polycrystalline body is apt to be formed due to the reaction with the support material. When the thickness is more than 20 mm, it takes time to grow the crystal in the thickness direction and the production cost increases.
【0021】また、前駆体の加熱溶融工程の後に、板状
の前駆体の上部が低温側になるように板状および筒状の
前駆体の上下に1乃至30℃/cmの温度勾配を加えた
後、種結晶を設置して、その後、板状および筒状の前駆
体を徐冷して結晶成長させることにより、結晶の配向性
が向上し、臨界電流密度も向上する。After the step of heating and melting the precursor, a temperature gradient of 1 to 30 ° C./cm is applied above and below the plate-like and tubular precursors so that the upper part of the plate-like precursor is on the low temperature side. After that, a seed crystal is provided, and then the plate-like and cylindrical precursors are gradually cooled to grow the crystal, thereby improving the crystal orientation and the critical current density.
【0022】また、上記の手法において、前駆体の大き
さが例えば直径φ60mm以下で比較的小さい場合に
は、前駆体を一方の面に凹部を有する形状に成形し、凹
部とは反対側の面に種結晶を設置して、同様に溶融結晶
化処理を行い、結晶化後に種結晶側の面を切断し、ある
いは凹部を貫通させて貫通孔にすることにより、比較的
高特性の中空の超電導体を作製することも可能である。In the above method, when the size of the precursor is relatively small, for example, a diameter of φ60 mm or less, the precursor is formed into a shape having a concave portion on one surface, and the surface on the opposite side to the concave portion is formed. In the same way, the seed crystal is placed and subjected to the melt crystallization treatment. After the crystallization, the surface on the seed crystal side is cut or the recess is penetrated to form a through hole, so that a hollow superconducting material having relatively high characteristics is obtained. It is also possible to make a body.
【0023】上記の中空の酸化物超電導体において、R
EがNd、Sm、Gd、Dyから選ばれる1種または2
種以上の元素を少なくとも50%以上含むようにする
と、結晶成長速度が速くなり、大きな結晶を比較的短時
間で製造することが可能になる。In the above hollow oxide superconductor, R
E is one or two selected from Nd, Sm, Gd and Dy
When at least 50% or more of the element is contained, the crystal growth rate is increased, and a large crystal can be manufactured in a relatively short time.
【0024】さらに、8wt%以上のAgを含有させる
と、AgがRE1+pBa2+q(Cu1−bAgb)
3O7−x相中に微細に分散して機械強度が向上すると
ともに、上下方向の組成ズレが抑制されて、より大型で
結晶欠陥の少ない中空の酸化物超電導体を製造すること
ができる。一方、60wt%以上のAgを含むようにす
ると、超電導体の体積分率が低すぎて、臨界電流密度な
どの特性が低くなる。Further, when Ag is contained in an amount of 8 wt% or more, Ag becomes RE 1 + p Ba 2 + q (Cu 1-b Ag b ).
With mechanical strength is improved 3 O 7-x phase in finely dispersed, it is vertical composition deviation is suppressed can be manufactured less hollow oxide superconductor having large crystal defects. On the other hand, when Ag is contained in an amount of 60 wt% or more, the volume fraction of the superconductor is too low, and characteristics such as critical current density are lowered.
【0025】さらに、上記の中空の酸化物超電導体が、
Pt、Pd、Ru、Rh、Ir、Os、Re、Ceの金
属およびこれらの金属の化合物から選ばれる1種以上を
0.05〜5wt%(化合物の場合はその金属のみの元
素重量で示す)含むようにすると、RE2+rBa
1+s(Cu1−dAgd)O5−y相やRE4+rB
a 2+s( Cu1−dAgd )2O10−y相を微細
にする効果がある。Further, the above-mentioned hollow oxide superconductor comprises:
Gold of Pt, Pd, Ru, Rh, Ir, Os, Re, Ce
Genus and one or more compounds selected from these metal compounds
0.05 to 5 wt% (in the case of a compound, only the metal
(Indicated by elementary weight)2 + rBa
1 + s(Cu1-dAgd) O5-yPhase and RE4 + rB
a 2 + s(Cu1-dAgd )2O10-yFine phase
Has the effect of
【0026】[0026]
【実施例】以下、実施例に基づいて本発明による中空の
酸化物超電導体およびその製造方法について詳細に説明
する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The hollow oxide superconductor according to the present invention and a method for producing the same will be described in detail below with reference to examples.
【0027】[実施例1]Sm2O3、BaCO3、C
uOの各原料粉末をSm:Ba:Cu=1.6:2.
3:3.3になるように秤量した後、BaCO3とCu
Oのみを880℃で30時間焼成して、BaCuO2と
CuOの仮焼粉を得た(モル比でBaCuO 2:CuO
=2.3:1.0)。次に、この仮焼粉に、予め秤量し
ておいたSm 2O3とPt粉末(平均粒径0.01μ
m)およびAg2O粉末(平均粒径13.8μm)を、
Pt含有量が0.42wt%、Ag含有量が15wt%
になるように加えて混合して、大気中900℃で10時
間焼成した。この仮焼粉をライカイ機で粉砕して、平均
粒径約2μmとした。[Example 1] Sm2O3, BaCO3, C
Each raw material powder of uO was prepared as Sm: Ba: Cu = 1.6: 2.
3: After weighing to 3.3, BaCO3And Cu
O alone at 880 ° C. for 30 hours to obtain BaCuO2When
A calcined powder of CuO was obtained (by molar ratio, BaCuO 2: CuO
= 2.3: 1.0). Next, weigh this calcined powder in advance
Sm that we put 2O3And Pt powder (average particle size 0.01μ)
m) and Ag2O powder (average particle size of 13.8 μm)
Pt content 0.42wt%, Ag content 15wt%
And mix at 900 ° C in air for 10 hours
Firing for a while. This calcined powder is pulverized with a raikai machine,
The particle size was about 2 μm.
【0028】得られた仮焼粉の組成分析を行ったとこ
ろ、図3に示すような値であった。また、得られた仮焼
粉を粉末X線回折により分析したところ、Sm1+pB
a2+ q(Cu1−bAgb)3O7−x相およびSm
2+rBa1+s(Cu1−dAgd)O5−r相が確
認された。ここで、Tmは、図1および図2から計算す
ると、1060−40=1020℃である。The composition of the calcined powder obtained was analyzed, and the results were as shown in FIG. When the obtained calcined powder was analyzed by powder X-ray diffraction, it was found that Sm 1 + p B
a 2+ q (Cu 1-b Ag b ) 3 O 7-x phase and Sm
2 + r Ba 1 + s (Cu 1-d Ag d ) O 5-r phase was confirmed. Here, Tm is 1060-40 = 1020 ° C., calculated from FIG. 1 and FIG.
【0029】このようにして作製された合成粉を外径8
0mm、内径30mm、厚さ26mmの円筒状にプレス
成形して前駆体1を作製するとともに、外径80mm、
厚さ10mmのディスク状にプレス成形して前駆体2を
作製し、前駆体2を前駆体1の上に積層した(図4およ
び図5を参照)。次に、図4および図5に示すように、
アルミナ基板3上に、外径17mm、内径13mm、高
さ20mmの円筒状のアルミナパイプ4を載置するとと
もに、予め溶融法により作製しておいたSm1 .6Ba
2.3Cu3.3Ox組成の厚さ2mm程度の複数のペレ
ット片5を敷いた。次に、その上に、前駆体1がアルミ
ナパイプ4を取り囲むように前駆体1および前駆体2を
載置し、2ゾーン型の炉体内に設置して以下の工程を行
った。[0029] The synthetic powder thus produced was prepared with an outer diameter of 8
0 mm, an inner diameter of 30 mm and a thickness of 26 mm were press-molded into a cylinder to produce a precursor 1 and an outer diameter of 80 mm.
Precursor 2 was prepared by press-forming into a disk having a thickness of 10 mm, and precursor 2 was laminated on precursor 1 (see FIGS. 4 and 5). Next, as shown in FIGS. 4 and 5,
A cylindrical alumina pipe 4 having an outer diameter of 17 mm, an inner diameter of 13 mm, and a height of 20 mm was placed on the alumina substrate 3 and Sm 1 . 6 Ba
A plurality of pellet pieces 5 having a composition of 2.3 Cu 3.3 O x and a thickness of about 2 mm were laid. Next, the precursor 1 and the precursor 2 were placed thereon so that the precursor 1 surrounds the alumina pipe 4, and the precursor 1 and the precursor 2 were placed in a two-zone furnace, and the following steps were performed.
【0030】まず、室温から50時間で1100℃まで
昇温させ、この温度で20分間保持して半溶融状態にし
た後、前駆体2の上部が低温側になるように前駆体1お
よび前駆体2の上下に10℃/cmの温度勾配を加え
て、前駆体2の上部の温度が1025℃になるまで1℃
/minで降温させた。次いで、予め溶融法で作製して
おいたAgを含まない縦横2mm、厚さ1mmのSm
1.8Ba2.4Cu3. 4Ox組成の種結晶を、成長
方向がc軸と平行になるように前駆体2の上部の中心に
接触させ、1025℃から1℃/hrの速度で1015
℃まで降温させた。この温度で80時間保持した後、9
45℃まで70時間かけて徐冷し、その後、上下の温度
勾配が0℃/cmになるように前駆体1の下部を20時
間で945℃になるように冷却し、その後、室温まで1
00時間かけて徐冷して結晶化を行った。First, the temperature is raised from room temperature to 1100 ° C. in 50 hours, and the temperature is maintained at this temperature for 20 minutes to be in a semi-molten state. A temperature gradient of 10 ° C./cm was added above and below the temperature of 2 ° C. until the temperature at the top of the precursor 2 reached 1025 ° C.
/ Min. Next, an Sm of 2 mm in length and 1 mm in thickness, not containing Ag, prepared in advance by a melting method.
1.8 Ba 2.4 Cu 3. A seed crystal having a composition of 4 O x is brought into contact with the center of the upper part of the precursor 2 so that the growth direction is parallel to the c-axis, and 1015 ° C. to 1015 ° C. at a rate of 1 ° C./hr.
The temperature was lowered to ° C. After holding at this temperature for 80 hours, 9
The mixture was gradually cooled to 45 ° C. over 70 hours, and then the lower part of the precursor 1 was cooled to 945 ° C. in 20 hours so that the upper and lower temperature gradients became 0 ° C./cm.
Crystallization was performed by slow cooling over 00 hours.
【0031】このようにして結晶化した材料をガス置換
可能な別の炉の中に設置し、以下のようにアニール処理
を行った。まず、ロータリーポンプで0.1Torrま
で炉内を排気した後、炉内に酸素ガスを流し込んで、酸
素分圧が99%以上である大気圧の雰囲気にした。その
後も0.5L/minの流量で酸素ガスを炉内に流しな
がら、室温から450℃まで10時間で昇温させ、45
0℃から250℃まで200時間かけて徐冷し、250
℃から室温まで10時間で降温させた。その後、同様の
アニール処理をもう一回行った。The material thus crystallized was placed in another gas-replaceable furnace and annealed as follows. First, the inside of the furnace was evacuated to 0.1 Torr by a rotary pump, and then oxygen gas was poured into the furnace to make the atmosphere at an atmospheric pressure where the oxygen partial pressure was 99% or more. Thereafter, while flowing oxygen gas into the furnace at a flow rate of 0.5 L / min, the temperature was raised from room temperature to 450 ° C. for 10 hours, and 45 ° C.
Cool slowly from 0 ° C to 250 ° C over 200 hours.
The temperature was lowered from ° C. to room temperature in 10 hours. Thereafter, the same annealing treatment was performed once again.
【0032】このアニール処理の後、前駆体1は、焼き
縮みのため、外径67mm、内径26mm、厚さ22m
mになり、前駆体2は、外径67mm、厚さ8mmにな
っていた。この前駆体1を上下方向の中心付近で切断し
て断面をEPMAで観察したところ、Sm1+pBa
2+q(Cu1−bAgb)3O7−x相中に0.1〜
30μm程度のSm2+rBa1+s(Cu1−dAg
d)O5−y相が微細に分散していた。ここで、p、
q、r、s、yはそれぞれ−0.2〜0.2の値であ
り、xは−0.2〜0.6の値であった。また、b、d
は0.0〜0.05の値であり、平均的には0.008
程度であった。この材料の中心付近でAgが存在しない
部分を選んで、偏光顕微鏡を用いて倍率1000倍で撮
影し、この写真から70×90μmの範囲を画像解析し
たところ、Sm2+rBa1+s(Cu 1−dAgd)
O5−y相の平均粒径は1.5μmであり、全体の面積
に占める割合は約25%であった。さらに、試料全体に
わたって0.1〜100μm程度のAgが微細に分散し
ていた。また、この材料の中心付近を偏光顕微鏡を用い
て倍率50倍で撮影し、この写真から1.4×1.8m
mの範囲を画像解析したところ、このAgの平均粒径は
27μmであり、空孔を除いた部分の全体の面積に占め
る割合は17%であった。さらに、粒径5〜200μm
程度の空孔が全体の面積に対して6%分散して存在して
いた。また、前駆体1と前駆体2は融着し、種結晶を反
映して円筒状およびディスク状材料の軸方向がc軸と平
行であるように材料全体が均一に配向し、隣接する結晶
間の方位のずれが3°以下であり、実質的に単結晶状の
超電導材料が得られた。After this annealing treatment, the precursor 1 is baked.
Outer diameter 67mm, inner diameter 26mm, thickness 22m due to shrinkage
m, and the precursor 2 has an outer diameter of 67 mm and a thickness of 8 mm.
I was Cut this precursor 1 near the center in the vertical direction
When the cross section was observed with EPMA,1 + pBa
2 + q(Cu1-bAgb)3O7-x0.1 ~
Sm of about 30μm2 + rBa1 + s(Cu1-dAg
d) O5-yThe phases were finely dispersed. Where p,
q, r, s, and y are values of -0.2 to 0.2, respectively.
X was a value of -0.2 to 0.6. B, d
Is a value of 0.0 to 0.05, and is 0.008 on average.
It was about. No Ag near the center of this material
Select a part and take it at 1000x magnification using a polarizing microscope
The image was analyzed from this photograph in the area of 70 × 90 μm.
Where Sm2 + rBa1 + s(Cu 1-dAgd)
O5-yThe average particle size of the phase is 1.5 μm and the total area
Was about 25%. In addition, the entire sample
Ag of about 0.1-100 μm is finely dispersed
I was Also, use a polarizing microscope near the center of this material.
And photographed at a magnification of 50 ×, and from this photograph, 1.4 × 1.8m
When the range of m was analyzed by image, the average particle size of this Ag was
27 μm, occupying the entire area of the part excluding the holes
Was 17%. Further, the particle size is 5 to 200 μm.
Vacancies are dispersed by 6% of the total area
Was. Further, the precursor 1 and the precursor 2 are fused and the seed crystal is
The axial direction of the cylindrical and disc-shaped material is
The whole material is uniformly oriented as if it were a row, adjacent crystals
The misorientation between the directions is 3 ° or less, and is substantially a single crystal.
A superconducting material was obtained.
【0033】次に、前駆体1の部分から前駆体2および
下部側2mmをスライス加工により切り離して、外径6
7mm、内径26mm、厚さ20mmの円筒状にした。
この円筒状の超電導体の軸方向に外部磁場2.1T(テ
スラ)を加えながら室温から温度77Kまで冷却した
後、磁場を取り去って超電導体中に捕捉される磁束密度
を測定した。この測定は、ホール素子をXYステージに
取り付けて超電導体表面から約1mmの距離で超電導体
表面に沿って移動させ、材料の軸方向の磁束密度分布を
測定することによって行った。その結果、リング全体に
結晶粒界が存在しなかったために、図6および図7に示
すように、リングの内径φ26mm上でほぼ均一に約1
Tの捕捉磁束密度が得られた。Next, the precursor 2 and the lower portion 2 mm were separated from the precursor 1 by slicing to obtain an outer diameter 6 mm.
The cylindrical shape was 7 mm, the inner diameter was 26 mm, and the thickness was 20 mm.
After cooling from room temperature to a temperature of 77 K while applying an external magnetic field of 2.1 T (tesla) in the axial direction of the cylindrical superconductor, the magnetic field was removed and the magnetic flux density captured in the superconductor was measured. This measurement was carried out by mounting the Hall element on an XY stage and moving it along the superconductor surface at a distance of about 1 mm from the superconductor surface, and measuring the axial magnetic flux density distribution of the material. As a result, since there was no crystal grain boundary in the entire ring, as shown in FIGS.
A trapped magnetic flux density of T was obtained.
【0034】次に、このリング状材料から2.5×2.
5×2mmの試料を切り出して、振動試料型磁力計によ
り磁化率を測定した。得られた磁化率曲線よりBean
モデルを適用して、温度77Kにおける臨界電流密度J
cを見積もったところ、図8に示すように高い臨界電流
密度を示していた。Next, 2.5 × 2.
A sample of 5 × 2 mm was cut out, and the magnetic susceptibility was measured with a vibrating sample magnetometer. From the obtained susceptibility curve, Bean
Applying the model, the critical current density J at 77K
When c was estimated, it showed a high critical current density as shown in FIG.
【0035】[実施例2]Gd2O3、BaCO3、C
uOの各原料粉末をGd:Ba:Cu=1.8:2.
4:3.4になるように秤量した後、BaCO3とCu
Oのみを880℃で30時間焼成して、BaCuO2と
CuOの仮焼粉を得た(モル比でBaCuO 2:CuO
=2.4:1.0)。次に、この仮焼粉に、予め秤量し
ておいたGd 2O3とPt粉末(平均粒径0.01μ
m)およびAg2O粉末(平均粒径13.8μm)をP
t含有量が0.42wt%、Ag含有量が10wt%に
なるように加えて混合して、大気中900℃で10時間
焼成した。この仮焼粉をライカイ機で粉砕して、平均粒
径約2μmとした。[Example 2] Gd2O3, BaCO3, C
Each raw material powder of uO is Gd: Ba: Cu = 1.8: 2.
4: After weighing to 3.4, BaCO3And Cu
O alone at 880 ° C. for 30 hours to obtain BaCuO2When
A calcined powder of CuO was obtained (by molar ratio, BaCuO 2: CuO
= 2.4: 1.0). Next, weigh this calcined powder in advance
Gd 2O3And Pt powder (average particle size 0.01μ)
m) and Ag2O powder (average particle size 13.8 μm)
t content 0.42wt%, Ag content 10wt%
Add and mix as needed, and in air at 900 ° C for 10 hours
Fired. This calcined powder is pulverized with a raikai machine,
The diameter was about 2 μm.
【0036】得られた仮焼粉の組成分析を行ったとこ
ろ、図9に示すような値であった。また、得られた仮焼
粉を粉末X線回折により分析したところ、Gd1+pB
a2+ q(Cu1−bAgb)3O7−x相およびGd
2+rBa1+s(Cu1−dAgd)O5−r相が確
認された。ここで、Tmは、図1および図2から計算す
ると、1030−40=990℃である。Analysis of the composition of the calcined powder obtained showed values as shown in FIG. When the obtained calcined powder was analyzed by powder X-ray diffraction, Gd 1 + p B
a 2+ q (Cu 1-b Ag b ) 3 O 7-x phase and Gd
2 + r Ba 1 + s (Cu 1-d Ag d ) O 5-r phase was confirmed. Here, Tm is 1030-40 = 990 ° C., calculated from FIG. 1 and FIG.
【0037】このようにして作製された合成粉を外径8
0mm、内径44mm、厚さ26mmの円筒状にプレス
成形して前駆体1を作製するとともに、外径80mm、
厚さ10mmのディスク状にプレス成形して前駆体2を
作製し、前駆体2を前駆体1の上に積層した(図4およ
び図5を参照)。次に、 図4および図5に示すよう
に、アルミナ基板3上に、外径30mm、内径24m
m、高さ20mmのアルミナパイプ4を載置するととも
に、予め溶融法により作製しておいたGd1.8Ba
2.4Cu3.4Ox組成の厚さ2mm程度の複数のペレ
ット片5を敷いて、その上に実施例1と同様に前駆体1
および前駆体2を載置して、2ゾーン型の炉体内に設置
して以下の工程を行った。The synthetic powder produced in this manner was applied to an outer diameter of 8
0 mm, an inner diameter of 44 mm and a thickness of 26 mm were press-molded into a cylinder to produce the precursor 1 and an outer diameter of 80 mm.
Precursor 2 was prepared by press-forming into a disk having a thickness of 10 mm, and precursor 2 was laminated on precursor 1 (see FIGS. 4 and 5). Next, as shown in FIGS. 4 and 5, an outer diameter of 30 mm and an inner diameter of 24 m
An alumina pipe 4 having a height of 20 mm and a height of 20 mm is placed, and Gd 1.8 Ba prepared in advance by a melting method.
A plurality of pellet pieces 5 each having a thickness of about 2 mm having a composition of 2.4 Cu 3.4 O x were laid, and the precursor 1 was placed thereon in the same manner as in Example 1.
The precursor 2 was placed and placed in a two-zone furnace, and the following steps were performed.
【0038】まず、室温から50時間で1100℃まで
昇温させ、この温度で20分間保持して半溶融状態にし
た後、前駆体2の上部が低温側になるように前駆体1お
よび前駆体2の上下に10℃/cmの温度勾配を加え
て、前駆体2の上部の温度が995℃になるまで1℃/
minで降温させた。次いで、予め溶融法で作製してお
いたAgを含まないGd1.8Ba2.4Cu3.4O
x組成の種結晶を、成長方向がc軸と平行になるように
前駆体2の上部に接触させ、995℃から1℃/hrの
速度で985℃まで降温させた。この温度で100時間
保持した後、915℃まで70時間かけて徐冷し、その
後、上下の温度勾配が0℃/cmになるように前駆体1
の下部を20時間で915℃になるように冷却し、その
後、室温まで100時間かけて徐冷して結晶化を行っ
た。First, the temperature is raised from room temperature to 1100 ° C. in 50 hours, and the temperature is maintained at this temperature for 20 minutes to be in a semi-molten state. A temperature gradient of 10 ° C./cm was applied above and below the temperature of the precursor 2 until the temperature at the top of the precursor 2 reached 995 ° C.
The temperature was lowered in min. Next, Ag-free Gd 1.8 Ba 2.4 Cu 3.4 O prepared in advance by a melting method.
A seed crystal having an x composition was brought into contact with the upper part of the precursor 2 so that the growth direction was parallel to the c-axis, and the temperature was lowered from 995 ° C. to 985 ° C. at a rate of 1 ° C./hr. After maintaining at this temperature for 100 hours, the temperature was gradually cooled to 915 ° C. over 70 hours, and then the precursor 1 was heated so that the upper and lower temperature gradients became 0 ° C./cm.
Was cooled to 915 ° C. in 20 hours, and then slowly cooled to room temperature over 100 hours to perform crystallization.
【0039】このようにして結晶化した材料をガス置換
可能な別の炉の中に設置し、以下のようにアニール処理
を行った。まず、ロータリーポンプで0.1Torrま
で炉内を排気した後、炉内に酸素ガスを流し込んで、酸
素分圧が99%以上である大気圧の雰囲気にした。その
後も0.5L/minの流量で酸素ガスを炉内に流しな
がら、室温から450℃まで10時間で昇温させ、45
0℃から250℃まで200時間かけて徐冷し、250
℃から室温まで10時間で降温させた。その後、同様の
アニール処理をもう一回行った。The thus crystallized material was placed in another gas-replaceable furnace and annealed as follows. First, the inside of the furnace was evacuated to 0.1 Torr by a rotary pump, and then oxygen gas was poured into the furnace to make the atmosphere at an atmospheric pressure where the oxygen partial pressure was 99% or more. Thereafter, while flowing oxygen gas into the furnace at a flow rate of 0.5 L / min, the temperature was raised from room temperature to 450 ° C. for 10 hours, and 45 ° C.
Cool slowly from 0 ° C to 250 ° C over 200 hours.
The temperature was lowered from ° C. to room temperature in 10 hours. Thereafter, the same annealing treatment was performed once again.
【0040】このアニール処理の後、前駆体1は、焼き
縮みのため、外径67mm、内径37mm、厚さ22m
mになり、前駆体2は、外径67mm、厚さ8mmにな
っていた。この前駆体1を上下方向の中心付近で切断し
て断面をEPMAで観察したところ、Gd1+pBa
2+q(Cu1−bAgb)3O7−x相中に0.1〜
30μm程度のGd2+rBa1+s(Cu1−dAg
d)O5−y相が微細に分散していた。ここで、p、
q、r、s、yはそれぞれ−0.2〜0.2の値であ
り、xは−0.2〜0.6の値であった。また、b、d
は0.0〜0.05の値であり、平均的には0.008
程度であった。この材料の中心付近でAgが存在しない
部分を選んで、偏光顕微鏡を用いて倍率1000倍で撮
影し、この写真から70×90μmの範囲を画像解析し
たところ、Gd2+rBa1+s(Cu 1−dAgd)
O5−y相の平均粒径は1.0μmであり、全体の面積
に占める割合は約30%であった。さらに、試料全体に
わたって0.1〜100μm程度のAgが微細に分散し
ていた。また、この材料の中心付近を偏光顕微鏡を用い
て倍率50倍で撮影し、この写真から1.4×1.8m
mの範囲を画像解析したところ、このAgの平均粒径は
24μmであり、空孔を除いた部分の全体の面積に占め
る割合は7%であった。さらに、粒径5〜200μm程
度の空孔が全体の面積に対して7%分散して存在してい
た。また、前駆体1と前駆体2は融着し、種結晶を反映
して円筒状およびディスク状材料の軸方向がc軸と平行
であるように材料全体が均一に配向し、隣接する結晶間
の方位のずれが3°以下であり、実質的に単結晶状の超
電導材料が得られた。After this annealing treatment, the precursor 1 is baked.
Outer diameter 67mm, inner diameter 37mm, thickness 22m for shrinkage
m, and the precursor 2 has an outer diameter of 67 mm and a thickness of 8 mm.
I was Cut this precursor 1 near the center in the vertical direction
When the cross section was observed by EPMA, Gd1 + pBa
2 + q(Cu1-bAgb)3O7-x0.1 ~
Gd of about 30 μm2 + rBa1 + s(Cu1-dAg
d) O5-yThe phases were finely dispersed. Where p,
q, r, s, and y are values of -0.2 to 0.2, respectively.
X was a value of -0.2 to 0.6. B, d
Is a value of 0.0 to 0.05, and is 0.008 on average.
It was about. No Ag near the center of this material
Select a part and take it at 1000x magnification using a polarizing microscope
The image was analyzed from this photograph in the area of 70 × 90 μm.
Gd2 + rBa1 + s(Cu 1-dAgd)
O5-yThe average particle size of the phase is 1.0 μm and the total area
Was about 30%. In addition, the entire sample
Ag of about 0.1-100 μm is finely dispersed
I was Also, use a polarizing microscope near the center of this material.
And photographed at a magnification of 50 ×, and from this photograph, 1.4 × 1.8m
When the range of m was analyzed by image, the average particle size of this Ag was
24 μm, occupying the entire area of the area excluding holes
Was 7%. Further, the particle size is about 5 to 200 μm.
Vacancies are dispersed at 7% of the total area.
Was. In addition, the precursor 1 and the precursor 2 are fused and the seed crystal is reflected.
The axial direction of the cylindrical and disk-shaped material is parallel to the c-axis
So that the whole material is uniformly oriented and between adjacent crystals
Is less than 3 ° and is substantially a single crystal
A conductive material was obtained.
【0041】次に、前駆体1の部分から前駆体2および
下部側2mmをスライス加工により切り離して、外径6
7mm、内径37mm、厚さ20mmの円筒状にした。
この円筒状の超電導体の軸方向に外部磁場2.1Tを加
えながら室温から温度77Kまで冷却した後、磁場を取
り去って超電導体中に捕捉される磁束密度を実施例1と
同様に測定した。その結果、リング全体に結晶粒界が存
在しなかったために、図10に示すように、リングの内
径φ37mm上でほぼ均一に約1.0Tの捕捉磁束密度
が得られた。Next, the precursor 2 and the lower side 2 mm from the part of the precursor 1 were cut off by slicing to obtain an outer diameter 6 mm.
The cylindrical shape was 7 mm, the inner diameter was 37 mm, and the thickness was 20 mm.
After cooling from room temperature to a temperature of 77 K while applying an external magnetic field of 2.1 T in the axial direction of the cylindrical superconductor, the magnetic field was removed and the magnetic flux density captured in the superconductor was measured in the same manner as in Example 1. As a result, since there was no crystal grain boundary in the whole ring, as shown in FIG. 10, a trapped magnetic flux density of about 1.0 T was obtained almost uniformly on the inner diameter φ37 mm of the ring.
【0042】次に、実施例1と同様に温度77Kにおけ
る臨界電流密度Jcを見積もったところ、図11に示す
ように高い臨界電流密度が得られた。Next, when the critical current density Jc at a temperature of 77 K was estimated in the same manner as in Example 1, a high critical current density was obtained as shown in FIG.
【0043】[実施例3]RE2O3(REはモル比で
Sm50%、Gd50%)、BaCO3、CuOの各原
料粉末をRE:Ba:Cu=1.6:2.3:3.3に
なるように秤量した後、BaCO3とCuOのみを88
0℃で30時間焼成して、BaCuO2とCuOの仮焼
粉を得た(モル比でBaCuO2:CuO=2.3:
1.0)。次に、この仮焼粉に、予め秤量しておいたR
E2O3および0.45wt%のPt粉末を加えるとと
もに、Ag元素量で10wt%になるようにAg2O粉
末を加えて混合して、大気中900℃で10時間焼成し
た。得られた仮焼粉をライカイ機で粉砕して、平均粒径
約2μmとした。Example 3 Each raw material powder of RE 2 O 3 (RE is Sm 50%, Gd 50% in molar ratio), BaCO 3 , and CuO was prepared as RE: Ba: Cu = 1.6: 2.3: 3. 3 and weighed only 88 BaCO 3 and CuO.
By calcining at 0 ° C. for 30 hours, a calcined powder of BaCuO 2 and CuO was obtained (BaCuO 2 : CuO = 2.3 by molar ratio:
1.0). Next, the calcined powder was added to R
E 2 O 3 and 0.45 wt% of Pt powder were added, and Ag 2 O powder was added and mixed so that the amount of Ag element became 10 wt%, followed by firing at 900 ° C. in the atmosphere for 10 hours. The obtained calcined powder was pulverized with a raikai machine to have an average particle size of about 2 μm.
【0044】得られた仮焼粉の組成分析を行ったとこ
ろ、図12に示すような値であった。また、得られた仮
焼粉を粉末X線回折により分析したところ、RE1+p
Ba2 +q(Cu1−bAgb)3O7−x相およびR
E2+rBa1+s(Cu1− dAgd)O5−r相が
確認された。ここで、Tmは、図1および図2から計算
すると、(1060×1/2+1030×1/2)−40
=1005℃である。Analysis of the composition of the obtained calcined powder showed values as shown in FIG. When the obtained calcined powder was analyzed by powder X-ray diffraction, RE 1 + p
Ba 2 + q (Cu 1- b Ag b) 3 O 7-x phase and R
E 2 + r Ba 1 + s (Cu 1- d Ag d ) O 5-r phase was confirmed. Here, Tm is calculated from FIG. 1 and FIG. 2 to be (1060 × 1 / + 1030 × 1 /) − 40.
= 1005 ° C.
【0045】このようにして作製された合成粉を外径5
3mm、内径16mm、厚さ26mmの円筒状にプレス
成形して前駆体1を作製するとともに、外径53mm、
厚さ7mmのディスク状にプレス成形して前駆体2を作
製し、実施例1と同様に前駆体2を前駆体1の上に積層
した。次に、アルミナ基板3上に、予め溶融法により作
製しておいたSm1.6Ba2.3Cu3.3Ox組成の
厚さ2mm程度の複数のペレット片5を敷いて、その上
に、アルミナパイプ4を使用しない点を除いて、実施例
1と同様に前駆体1および前駆体2を載置して、2ゾー
ン型の炉体内に設置して以下の工程を行った。The synthetic powder produced in this manner was prepared by adding an outer diameter of 5
3 mm, an inner diameter of 16 mm and a thickness of 26 mm were press-molded into a cylinder to produce a precursor 1 and an outer diameter of 53 mm.
Precursor 2 was prepared by press-forming into a disk having a thickness of 7 mm, and precursor 2 was laminated on precursor 1 in the same manner as in Example 1. Next, a plurality of pellet pieces 5 having a thickness of about 2 mm and having a composition of Sm 1.6 Ba 2.3 Cu 3.3 O x prepared in advance by a melting method are laid on the alumina substrate 3, Then, the precursor 1 and the precursor 2 were placed in the same manner as in Example 1 except that the alumina pipe 4 was not used, and the precursor 1 and the precursor 2 were placed in a two-zone furnace, and the following steps were performed.
【0046】まず、室温から50時間で1100℃まで
昇温させ、この温度で20分間保持して半溶融状態にし
た後、前駆体2の上部が低温側になるように前駆体1お
よび前駆体2の上下に10℃/cmの温度勾配を加え
て、前駆体2の上部の温度が1010℃になるまで1℃
/minで降温させた。次いで、予め溶融法で作製して
おいたAgを含まないSm1.8Ba2.4Cu3.4
Ox組成の種結晶を、成長方向がc軸と平行になるよう
に前駆体2の上部に接触させ、1010℃から1℃/h
rの速度で1000℃まで降温させた。この温度で90
時間保持した後、930℃まで70時間かけて徐冷し、
その後、上下の温度勾配が0℃/cmになるように前駆
体の下部を20時間で930℃になるように冷却し、そ
の後、室温まで100時間かけて徐冷して結晶化を行っ
た。First, the temperature is raised from room temperature to 1100 ° C. in 50 hours, and the temperature is maintained at this temperature for 20 minutes to be in a semi-molten state. A temperature gradient of 10 ° C./cm was applied above and below the temperature of the precursor 2 until the temperature at the top of the precursor 2 reached 1010 ° C.
/ Min. Next, Ag-free Sm 1.8 Ba 2.4 Cu 3.4 prepared in advance by a melting method.
A seed crystal having an O x composition is brought into contact with the upper part of the precursor 2 so that the growth direction is parallel to the c-axis, and 1010 ° C. to 1 ° C./h
The temperature was lowered to 1000 ° C. at a rate of r. 90 at this temperature
After holding for a while, slowly cool down to 930 ° C over 70 hours,
Thereafter, the lower part of the precursor was cooled to 930 ° C. in 20 hours so that the upper and lower temperature gradients became 0 ° C./cm, and then gradually cooled to room temperature over 100 hours to perform crystallization.
【0047】このようにして結晶化した材料をガス置換
可能な別の炉の中に設置し、以下のようにアニール処理
を行った。まず、ロータリーポンプで0.1Torrま
で炉内を排気した後、炉内に酸素ガスを流し込んで、酸
素分圧が99%以上である大気圧の雰囲気にした。その
後も0.5L/minの流量で酸素ガスを炉内に流しな
がら、室温から450℃まで10時間で昇温させ、45
0℃から250℃まで200時間かけて徐冷し、250
℃から室温まで10時間で降温させた。その後、同様の
アニール処理をもう一回行った。The material thus crystallized was placed in another gas-replaceable furnace and annealed as follows. First, the inside of the furnace was evacuated to 0.1 Torr by a rotary pump, and then oxygen gas was poured into the furnace to make the atmosphere at an atmospheric pressure where the oxygen partial pressure was 99% or more. Thereafter, while flowing oxygen gas into the furnace at a flow rate of 0.5 L / min, the temperature was raised from room temperature to 450 ° C. for 10 hours, and 45 ° C.
Cool slowly from 0 ° C to 250 ° C over 200 hours.
The temperature was lowered from ° C. to room temperature in 10 hours. Thereafter, the same annealing treatment was performed once again.
【0048】このアニール処理の後、前駆体1は、焼き
縮みのため、外径45mm、内径14mm、厚さ22m
mになり、前駆体2は、外径45mm、厚さ6mmにな
っていた。この前駆体1を上下方向の中心付近で切断し
て断面をEPMAで観察したところ、RE1+pBa
2+q(Cu1−bAgb)3O7−x相中に0.1〜
30μm程度のRE2+rBa1+s(Cu1−dAg
d)O5−y相が微細に分散していた。ここで、p、
q、r、s、yはそれぞれ−0.2〜0.2の値であ
り、xは−0.2〜0.6の値であった。また、b、d
は0.0〜0.05の値であり、平均的には0.008
程度であった。この材料の中心付近でAgが存在しない
部分を選んで、偏光顕微鏡を用いて倍率1000倍で撮
影し、この写真から70×90μmの範囲を画像解析し
たところ、RE2+rBa1+s(Cu 1−dAgd)
O5−y相の平均粒径は1.1μmであり、全体の面積
に占める割合は約24%であった。さらに、試料全体に
わたって0.1〜100μm程度のAgが微細に分散し
ていた。また、この材料の中心付近を偏光顕微鏡を用い
て倍率50倍で撮影し、この写真から1.4×1.8m
mの範囲を画像解析したところ、このAgの平均粒径は
49μmであり、空孔を除いた部分の全体の面積に占め
る割合は19%であった。さらに、粒径5〜200μm
程度の空孔が全体の面積に対して5%分散して存在して
いた。また、前駆体1と前駆体2は融着し、種結晶を反
映して円筒状およびディスク状材料の軸方向がc軸と平
行であるように材料全体が配向し、隣接する結晶間の方
位のずれが3°以下であり、実質的に単結晶状の超電導
材料が得られた。After this annealing treatment, the precursor 1 is baked.
For shrinkage, outer diameter 45mm, inner diameter 14mm, thickness 22m
m, and the precursor 2 has an outer diameter of 45 mm and a thickness of 6 mm.
I was Cut this precursor 1 near the center in the vertical direction
When the cross section was observed with EPMA,1 + pBa
2 + q(Cu1-bAgb)3O7-x0.1 ~
RE of about 30μm2 + rBa1 + s(Cu1-dAg
d) O5-yThe phases were finely dispersed. Where p,
q, r, s, and y are values of -0.2 to 0.2, respectively.
X was a value of -0.2 to 0.6. B, d
Is a value of 0.0 to 0.05, and is 0.008 on average.
It was about. No Ag near the center of this material
Select a part and take it at 1000x magnification using a polarizing microscope
The image was analyzed from this photograph in the area of 70 × 90 μm.
After that, RE2 + rBa1 + s(Cu 1-dAgd)
O5-yThe average particle size of the phase is 1.1 μm and the total area
Was about 24%. In addition, the entire sample
Ag of about 0.1-100 μm is finely dispersed
I was Also, use a polarizing microscope near the center of this material.
And photographed at a magnification of 50 ×, and from this photograph, 1.4 × 1.8m
When the range of m was analyzed by image, the average particle size of this Ag was
49 μm, occupying the entire area of the part excluding the holes
Was 19%. Further, the particle size is 5 to 200 μm.
About 5% of pores are dispersed in the whole area
Was. Further, the precursor 1 and the precursor 2 are fused and the seed crystal is
The axial direction of the cylindrical and disc-shaped material is
The whole material is oriented as if it were a row, with the direction between adjacent crystals
Substrate displacement of 3 ° or less and superconductivity of substantially single crystal
The material was obtained.
【0049】次に、前駆体1の部分から前駆体2および
下部側2mmをスライス加工により切り離して、外径4
5mm、内径14mm、厚さ20mmの円筒状にした。
この円筒状の超電導体の軸方向に外部磁場2.1Tを加
えながら室温から温度77Kまで冷却した後、磁場を取
り去って超電導体中に捕捉される磁束密度を測定した。
この測定は、ホール素子をXYステージに取り付けて超
電導体表面から約1mmの距離で超電導体表面に沿って
移動させ、材料の軸方向の磁束密度分布を測定すること
によって行った。その結果、リング全体に結晶粒界が存
在しなかったために、図13に示すように、リングの内
径φ14mm上でほぼ均一に約1.3Tの捕捉磁束密度
が得られた。Next, the precursor 2 and the lower side 2 mm were separated from the precursor 1 portion by slicing to obtain an outer diameter 4 mm.
It was formed into a cylindrical shape having a diameter of 5 mm, an inner diameter of 14 mm, and a thickness of 20 mm.
After cooling from room temperature to a temperature of 77 K while applying an external magnetic field of 2.1 T in the axial direction of the cylindrical superconductor, the magnetic field was removed and the magnetic flux density captured in the superconductor was measured.
This measurement was carried out by mounting the Hall element on an XY stage and moving it along the superconductor surface at a distance of about 1 mm from the superconductor surface, and measuring the axial magnetic flux density distribution of the material. As a result, since there was no grain boundary in the entire ring, as shown in FIG. 13, a trapped magnetic flux density of about 1.3 T was obtained almost uniformly on the inner diameter of the ring of φ14 mm.
【0050】次に、このリング状材料から2.5×2.
5×2mmの試料を切り出して、振動試料型磁力計によ
り磁化率を測定した。得られた磁化率曲線よりBean
モデルを適用して、温度77Kにおける臨界電流密度J
cを見積もったところ、図14に示すように高い臨界電
流密度を示していた。Next, 2.5.times.2.
A sample of 5 × 2 mm was cut out, and the magnetic susceptibility was measured with a vibrating sample magnetometer. From the obtained susceptibility curve, Bean
Applying the model, the critical current density J at 77K
When c was estimated, a high critical current density was shown as shown in FIG.
【0051】[実施例4]実施例1と同様の方法により
作製された合成粉を、外径53mm、厚さ33mmのデ
ィスク状の一方の面に内径16mm、深さ23mmの凹
部が形成された形状にプレス成形して前駆体を作製し
た。次に、予め溶融法により作製しておいたSm1.6
Ba2.3Cu3.3Ox組成の厚さ2mm程度の複数の
ペレット片をアルミナ基板上に敷いて、その上に前駆体
を凹部が下になるように載置して、2ゾーン型の炉体内
に設置して以下の工程を行った。Example 4 A synthetic powder produced in the same manner as in Example 1 was formed by forming a disc having an outer diameter of 53 mm and a thickness of 33 mm on one surface of a disk with a recess having an inner diameter of 16 mm and a depth of 23 mm. The precursor was formed by press molding into a shape. Next, Sm 1.6 prepared in advance by a melting method.
Laying a Ba 2.3 Cu 3.3 O x plurality of pellets pieces having a thickness of about 2mm composition on an alumina substrate, the recess of the precursor is placed so that the lower thereon, 2 Zoned And the following steps were performed.
【0052】まず、室温から50時間で1100℃まで
昇温させ、この温度で20分間保持して半溶融状態にし
た後、前駆体の上部が低温側となるように前駆体の上下
に10℃/cmの温度勾配を加えて、前駆体の上部の温
度が1025℃となるまで1℃/minで降温させた。
次いで、予め溶融法で作製しておいたAgを含まない縦
横2mm、厚さ1mmのSm1.8Ba2.4Cu
3.4Ox組成の種結晶を、成長方向がc軸と平行にな
るように前駆体の上部の中心に接触させ、1025℃か
ら1℃/hrの速度で1015℃まで降温させた。この
温度で70時間保持した後、945℃まで70時間かけ
て徐冷し、その後、上下の温度勾配が0℃/cmになる
ように前駆体の下部を20時間で945℃になるように
冷却し、その後、室温まで100時間かけて徐冷して結
晶化を行った。First, the temperature is raised from room temperature to 1100 ° C. in 50 hours, and maintained at this temperature for 20 minutes to obtain a semi-molten state, and then 10 ° C. above and below the precursor so that the upper part of the precursor is on the low temperature side. The temperature was lowered at 1 ° C./min until the temperature at the top of the precursor reached 1025 ° C. by applying a temperature gradient of / cm.
Next, Sm 1.8 Ba 2.4 Cu of 2 mm in length and width and 1 mm in thickness, not containing Ag, prepared in advance by a melting method.
A seed crystal of 3.4 O x composition was brought into contact with the center of the upper part of the precursor so that the growth direction became parallel to the c-axis, and the temperature was lowered from 1025 ° C. to 1015 ° C. at a rate of 1 ° C./hr. After maintaining at this temperature for 70 hours, the temperature is gradually cooled to 945 ° C. over 70 hours, and then the lower part of the precursor is cooled to 945 ° C. in 20 hours so that the upper and lower temperature gradients become 0 ° C./cm. Thereafter, the resultant was gradually cooled to room temperature over 100 hours to perform crystallization.
【0053】このようにして結晶化された材料につい
て、実施例1と同様のアニール処理を行った。The material thus crystallized was subjected to the same annealing treatment as in Example 1.
【0054】このアニール処理の後、前駆体は、焼き縮
みのため、外径45mm、凹部の内径28mm、厚さ3
0mmとなっていた。この前駆体を上下方向の中心付
近、径方向の端部付近で切断して断面をEPMAで観察
したところ、実施例1とほぼ同様な組織が得られた。ま
た、種結晶を反映して材料の軸方向がc軸と平行である
ように材料全体が配向し、隣接する結晶間の方位のずれ
が3°以下であり、実質的に単結晶状の超電導材料が得
られた。After this annealing treatment, the precursor had an outer diameter of 45 mm, an inner diameter of the concave portion of 28 mm, and a thickness of 3 mm due to shrinkage.
It was 0 mm. The precursor was cut near the center in the vertical direction and near the end in the radial direction, and the cross section was observed by EPMA. As a result, a structure almost similar to that of Example 1 was obtained. In addition, the entire material is oriented so that the axial direction of the material is parallel to the c-axis reflecting the seed crystal, and the misorientation of the orientation between adjacent crystals is 3 ° or less. The material was obtained.
【0055】次に、この前駆体から上部側8mmおよび
下部側2mmを切断して、外径45mm、内径28m
m、厚さ20mmの円筒状にした。この円筒状の超電導
体の軸方向に外部磁場2.1Tを加えながら室温から温
度77Kまで冷却した後、磁場を取り去って超電導体中
に捕捉される磁束密度を実施例1と同様に測定した。そ
の結果、端部に一部マイクロクラックが存在したが、リ
ング全体に結晶粒界が存在しなかったために、図16に
示すように、リングの内径φ28mm上でほぼ均一に約
0.35Tの捕捉磁束密度が得られた。Next, 8 mm of the upper side and 2 mm of the lower side were cut from this precursor to obtain an outer diameter of 45 mm and an inner diameter of 28 m.
m, a cylindrical shape having a thickness of 20 mm. After cooling from room temperature to a temperature of 77 K while applying an external magnetic field of 2.1 T in the axial direction of the cylindrical superconductor, the magnetic field was removed and the magnetic flux density captured in the superconductor was measured in the same manner as in Example 1. As a result, microcracks were partially present at the ends, but no crystal grain boundaries were present in the entire ring. As shown in FIG. 16, approximately 0.35 T was trapped almost uniformly on the inner diameter φ28 mm of the ring. Magnetic flux density was obtained.
【0056】また、臨界電流密度Jcを実施例1と同様
に測定したところ、実施例1とほぼ同程度の値が得られ
た。When the critical current density Jc was measured in the same manner as in Example 1, a value substantially equal to that in Example 1 was obtained.
【0057】[比較例]実施例1と同様の方法により作
製された合成粉を外径80mm、内径30mm、厚さ2
6mmの円筒状にプレス成形して前駆体1を作製した。
次に、図16に示すように、アルミナ基板3上に、予め
溶融法により作製しておいたSm1.6Ba2.3Cu
3.3Oxの厚さ2mm程度の複数のペレット片5を敷
いて、その上に前駆体1を載置して、2ゾーン型の炉体
内に設置して以下の工程を行った。[Comparative Example] A synthetic powder produced in the same manner as in Example 1 was prepared by mixing an outer diameter of 80 mm, an inner diameter of 30 mm, and a thickness of 2 mm.
Precursor 1 was prepared by press molding into a 6 mm cylindrical shape.
Next, as shown in FIG. 16, on the alumina substrate 3, Sm 1.6 Ba 2.3 Cu prepared in advance by a melting method.
3.3 laying a plurality of pellets pieces 5 having a thickness of about 2mm of O x, by placing the precursor 1 thereon, was subjected to the following steps be installed in the furnace body 2 Zoned.
【0058】まず、室温から50時間で1100℃まで
昇温させ、この温度で20分間保持して半溶融状態にし
た後、前駆体1の上部が低温側になるように前駆体1の
上下に10℃/cmの温度勾配を加えて、前駆体1の上
部の温度が1025℃になるまで1℃/minで降温さ
せた。次いで、予め溶融法で作製しておいたAgを含ま
ない縦横2mm、厚さ1mmのSm1.8Ba2.4C
u3.4Ox組成の種結晶6を、成長方向がc軸と平行
になるように、図16に示すように前駆体1の上部の一
部に接触させ、1025℃から1℃/hrの速度で10
15℃まで降温させた。この温度で80時間保持した
後、945℃まで70時間かけて徐冷し、その後、上下
の温度勾配が0℃/cmになるように前駆体1の下部を
20時間で945℃になるように冷却し、その後、室温
まで100時間かけて徐冷して結晶化を行った。First, the temperature is raised from room temperature to 1100 ° C. in 50 hours, and maintained at this temperature for 20 minutes to make a semi-molten state. By applying a temperature gradient of 10 ° C./cm, the temperature of the precursor 1 was lowered at a rate of 1 ° C./min until the temperature at the upper portion became 1025 ° C. Then, Sm 1.8 Ba 2.4 C of 2 mm in length and width and 1 mm in thickness, not containing Ag, prepared in advance by a melting method.
The seed crystal 6 having a composition of u 3.4 O x is brought into contact with a part of the upper portion of the precursor 1 as shown in FIG. 16 so that the growth direction is parallel to the c-axis, and 1025 ° C. to 1 ° C./hr. 10 at the speed of
The temperature was lowered to 15 ° C. After maintaining at this temperature for 80 hours, the temperature is gradually cooled to 945 ° C. over 70 hours, and then the lower part of the precursor 1 is heated to 945 ° C. in 20 hours so that the upper and lower temperature gradients become 0 ° C./cm. After cooling, the resultant was gradually cooled to room temperature over 100 hours to perform crystallization.
【0059】このようにして結晶化した材料をガス置換
可能な別の炉の中に設置し、以下のようにアニール処理
を行った。まず、ロータリーポンプで0.1Torrま
で炉内を排気した後、炉内に酸素ガスを流し込んで、酸
素分圧が99%以上である大気圧の雰囲気にした。その
後も0.5L/minの流量で酸素ガスを炉内に流しな
がら、室温から450℃まで10時間で昇温させ、45
0℃から250℃まで200時間かけて徐冷し、250
℃から室温まで10時間で降温させた。その後、同様の
アニール処理をもう一回行った。The material crystallized in this manner was placed in another gas-replaceable furnace and annealed as follows. First, the inside of the furnace was evacuated to 0.1 Torr by a rotary pump, and then oxygen gas was poured into the furnace to make the atmosphere at an atmospheric pressure where the oxygen partial pressure was 99% or more. Thereafter, while flowing oxygen gas into the furnace at a flow rate of 0.5 L / min, the temperature was raised from room temperature to 450 ° C. for 10 hours, and 45 ° C.
Cool slowly from 0 ° C to 250 ° C over 200 hours.
The temperature was lowered from ° C. to room temperature in 10 hours. Thereafter, the same annealing treatment was performed once again.
【0060】このアニール処理の後、前駆体1は、焼き
縮みのため、外径67mm、内径26mm、厚さ22m
mになっていた。この前駆体1を上下方向の中心付近で
切断して断面をEPMAで観察したところ、実施例1と
ほぼ同様な組織が得られた。しかしながら、結晶は図1
7の矢印Aに示すように種結晶6からリングに沿って成
長し、円筒状材料の軸方向がc軸と平行であるように材
料全体が均一に配向していた。しかしながら、結晶成長
の終端部がつながる部分8では結晶成長時に押し出され
た余分なBa元素およびCu元素を主成分とする液相成
分などの析出があった。After this annealing treatment, the precursor 1 has an outer diameter of 67 mm, an inner diameter of 26 mm, and a thickness of 22 m due to shrinkage.
m. This precursor 1 was cut near the center in the vertical direction and the cross section was observed by EPMA. As a result, a structure almost similar to that of Example 1 was obtained. However, the crystal in FIG.
As shown by the arrow A of 7, the seed material 6 grew along the ring, and the entire material was uniformly oriented such that the axial direction of the cylindrical material was parallel to the c-axis. However, in the portion 8 to which the terminal portion of the crystal growth is connected, there was precipitation of a liquid phase component mainly composed of the extra Ba element and Cu element extruded during the crystal growth.
【0061】次に、前駆体1の上部をスライス加工によ
り切り離して、外径67mm、内径26mm、厚さ20
mmの円筒状にした。この円筒状の超電導体の軸方向に
外部磁場2.1Tを加えながら室温から温度77Kまで
冷却した後、磁場を取り去って超電導体中に捕捉される
磁束密度を実施例1と同様に測定した。その結果、結晶
成長の終端部が結晶粒界となり、ここから空洞内に磁束
の侵入が起こり、図18および図19に示すように、最
大でも0.3T弱と捕捉磁束密度が低かった。Next, the upper portion of the precursor 1 was cut off by slicing to obtain an outer diameter of 67 mm, an inner diameter of 26 mm, and a thickness of 20 mm.
mm cylindrical shape. After cooling from room temperature to a temperature of 77 K while applying an external magnetic field of 2.1 T in the axial direction of the cylindrical superconductor, the magnetic field was removed and the magnetic flux density captured in the superconductor was measured in the same manner as in Example 1. As a result, the terminal end of the crystal growth became a crystal grain boundary, from which magnetic flux penetrated into the cavity, and as shown in FIGS. 18 and 19, the trapped magnetic flux density was as low as 0.3 T at the maximum.
【0062】次に、この粒界付近から試料を切り出し
て、実施例1と同様に温度77Kにおける臨界電流密度
Jcを見積もったところ、図20に示すように臨界電流
密度が低かった。Next, a sample was cut out from the vicinity of the grain boundary, and the critical current density Jc at a temperature of 77 K was estimated in the same manner as in Example 1. As shown in FIG. 20, the critical current density was low.
【0063】[0063]
【発明の効果】以上詳述したように、本発明によれば、
筒状の前駆体の上部に、この筒状の前駆体の開口部を塞
ぐ大きさの板状の前駆体を積層し、これらの前駆体を加
熱溶融した後に、徐冷して板状の前駆体から筒状の前駆
体側に向かって結晶成長させることにより、電気特性、
磁気特性、機械強度に優れた大型で中空の酸化物超電導
体を低コストで製造することができる。As described in detail above, according to the present invention,
On top of the cylindrical precursor, a plate-shaped precursor having a size to cover the opening of the cylindrical precursor is laminated, and after heating and melting these precursors, the plate-shaped precursor is gradually cooled. By growing crystals from the body toward the cylindrical precursor, electrical properties,
A large hollow oxide superconductor having excellent magnetic properties and mechanical strength can be manufactured at low cost.
【図1】REとして各希土類金属元素を用いた場合のR
E1+pBa2+q(Cu1− bAgb)3O7−x相
の融点(結晶化温度)Tmを示す図。FIG. 1 shows R when each rare earth metal element is used as RE.
E 1 + p Ba 2 + q (Cu 1- b Ag b) 3 O 7-x phase melting (crystallization temperature) diagram showing the Tm.
【図2】Agの添加量とRE1+pBa2+q(Cu
1−bAgb)3O7−x相の融点(結晶化温度)Tm
の補正値との関係を示す図。FIG. 2 shows the addition amount of Ag and RE 1 + p Ba 2 + q (Cu
Melting point (crystallization temperature) Tm of 1-b Ag b ) 3 O 7-x phase
FIG. 4 is a diagram showing a relationship between the correction value and the correction value.
【図3】実施例1で製造した前駆体1および前駆体2の
組成を示す図。FIG. 3 is a view showing the compositions of precursor 1 and precursor 2 produced in Example 1.
【図4】実施例1の前駆体1および前駆体2を積層する
手法を示す斜視図。FIG. 4 is a perspective view showing a technique for laminating a precursor 1 and a precursor 2 of Example 1.
【図5】実施例1の前駆体1および前駆体2を積層する
手法を示す断面図。FIG. 5 is a cross-sectional view showing a method for laminating a precursor 1 and a precursor 2 of Example 1.
【図6】実施例1で製造した円筒状の酸化物超電導体の
捕捉磁束密度の面内分布を測定した結果を示す図。FIG. 6 is a view showing a result of measuring an in-plane distribution of a trapped magnetic flux density of the cylindrical oxide superconductor manufactured in Example 1.
【図7】実施例1で製造した円筒状の酸化物超電導体の
径方向に沿って捕捉磁束密度を測定した結果を示す図。FIG. 7 is a view showing a result of measuring a trapped magnetic flux density along a radial direction of the cylindrical oxide superconductor manufactured in Example 1.
【図8】実施例1で製造した円筒状の酸化物超電導体の
臨界電流密度の磁場依存性を示す図。FIG. 8 is a diagram showing the magnetic field dependence of the critical current density of the cylindrical oxide superconductor manufactured in Example 1.
【図9】実施例2で製造した前駆体1および前駆体2の
組成を示す図。FIG. 9 is a view showing the compositions of precursor 1 and precursor 2 produced in Example 2.
【図10】実施例2で製造した円筒状の酸化物超電導体
の径方向に沿って捕捉磁束密度を測定した結果を示す
図。FIG. 10 is a view showing a result of measuring a trapped magnetic flux density along a radial direction of a cylindrical oxide superconductor manufactured in Example 2.
【図11】実施例2で製造した円筒状の酸化物超電導体
の臨界電流密度の磁場依存性を示す図。FIG. 11 is a diagram showing the magnetic field dependence of the critical current density of the cylindrical oxide superconductor manufactured in Example 2.
【図12】実施例3で製造した前駆体1および前駆体2
の組成を示す図。FIG. 12 shows precursor 1 and precursor 2 produced in Example 3.
FIG.
【図13】実施例3で製造した円筒状の酸化物超電導体
の径方向に沿って捕捉磁束密度を測定した結果を示す
図。FIG. 13 is a view showing a result of measuring a trapped magnetic flux density along a radial direction of the cylindrical oxide superconductor manufactured in Example 3.
【図14】実施例3で製造した円筒状の酸化物超電導体
の臨界電流密度の磁場依存性を示す図。FIG. 14 is a diagram showing the magnetic field dependence of the critical current density of the cylindrical oxide superconductor manufactured in Example 3.
【図15】実施例4で製造した円筒状の酸化物超電導体
の径方向に沿って捕捉磁束密度を測定した結果を示す
図。FIG. 15 is a view showing a result of measuring a trapped magnetic flux density along a radial direction of the cylindrical oxide superconductor manufactured in Example 4.
【図16】比較例の前駆体を載置する手法を示す斜視
図。FIG. 16 is a perspective view showing a method for mounting a precursor of a comparative example.
【図17】比較例の材料の結晶成長後の組織を示す図。FIG. 17 is a view showing a structure of a material of a comparative example after crystal growth.
【図18】比較例で製造した円筒状の酸化物超電導体の
捕捉磁束密度の面内分布を測定した結果を示す図。FIG. 18 is a view showing a result of measuring an in-plane distribution of a trapped magnetic flux density of a cylindrical oxide superconductor manufactured in a comparative example.
【図19】比較例で製造した円筒状の酸化物超電導体の
径方向に沿って捕捉磁束密度を測定した結果を示す図。FIG. 19 is a view showing a result of measuring a trapped magnetic flux density along a radial direction of a cylindrical oxide superconductor manufactured in a comparative example.
【図20】比較例で製造した円筒状の酸化物超電導体の
臨界電流密度の磁場依存性を示す図。FIG. 20 is a diagram showing the magnetic field dependence of the critical current density of a cylindrical oxide superconductor manufactured in a comparative example.
1、2 前駆体 3 アルミナ基板 4 アルミナパイプ 5 ペレット片 6 種結晶 7 結晶成長のファセット 8 結晶成長の終端部の結合部 Reference Signs List 1, 2 Precursor 3 Alumina substrate 4 Alumina pipe 5 Pellet piece 6 Seed crystal 7 Crystal growth facet 8 Crystal growth termination
───────────────────────────────────────────────────── フロントページの続き (72)発明者 長屋 重夫 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 Fターム(参考) 4G047 JA10 JC02 JC03 KB20 ────────────────────────────────────────────────── ─── Continued from the front page (72) Inventor Shigeo Nagaya 20 Kitakanyama, Odaka-cho, Midori-ku, Nagoya-shi, Aichi F-term in Chubu Electric Power Co., Inc. Electric Power Research Laboratory 4G047 JA10 JC02 JC03 KBC20
Claims (14)
b)3O7−x(REは1種または2種以上の希土類金
属元素、−0.2≦p≦0.2、−0.2≦q≦0.
2、0≦b≦0.05、−0.2≦x≦0.6)相中
に、RE2+rBa1+s(Cu1−dAgd)O
5−y相およびRE4+rBa2+s( Cu1−dA
gd )2O10−y相(−0.2≦r≦0.2、−
0.2≦s≦0.2、0≦d≦0.05、−0.2≦y
≦0.2)の少なくとも一方の相が微細に分散した筒状
の酸化物超電導体と、この筒状の酸化物超電導体の前記
REと同一の元素を含み且つ前記筒状の酸化物超電導体
の開口部を塞ぐ板状の酸化物超電導体とが積層されて一
体に結晶化していることを特徴とする中空の酸化物超電
導体。1. RE 1 + p Ba 2 + q (Cu 1-b Ag
b ) 3 O 7-x (RE is one or more rare earth metal elements, −0.2 ≦ p ≦ 0.2, −0.2 ≦ q ≦ 0.
2, 0 ≦ b ≦ 0.05, −0.2 ≦ x ≦ 0.6) In the phase, RE 2 + r Ba 1 + s (Cu 1-d Ag d ) O
5-y phase and RE 4 + r Ba 2 + s (Cu 1-d A
g d ) 2 O 10-y phase (−0.2 ≦ r ≦ 0.2, −
0.2 ≦ s ≦ 0.2, 0 ≦ d ≦ 0.05, -0.2 ≦ y
≦ 0.2) at least one phase is finely dispersed, and the tubular oxide superconductor contains the same element as RE of the tubular oxide superconductor. A hollow oxide superconductor characterized by being laminated and integrally crystallized with a plate-shaped oxide superconductor that closes the opening.
筒状の酸化物超電導体の組成と同一であることを特徴と
する、請求項1に記載の中空の酸化物超電導体。2. The hollow oxide superconductor according to claim 1, wherein the composition of the plate-shaped oxide superconductor is the same as the composition of the cylindrical oxide superconductor.
選ばれる1種または2種以上の元素を少なくとも50%
以上含むことを特徴とする、請求項1または2に記載の
中空の酸化物超電導体。3. The method according to claim 1, wherein the RE contains at least 50% of one or more elements selected from Nd, Sm, Gd and Dy.
The hollow oxide superconductor according to claim 1, wherein the oxide superconductor includes the above.
乃至60wt%のAgを含むことを特徴とする、請求項
1乃至3のいずれかに記載の中空の酸化物超電導体。4. The method according to claim 1, wherein said hollow oxide superconductor comprises 8 wt%.
The hollow oxide superconductor according to claim 1, wherein the hollow oxide superconductor contains Ag in an amount of from about 60 wt% to about 60 wt%.
d、Ru、Rh、Ir、Os、Re、Ceの金属および
これらの金属の化合物から選ばれる1種以上を0.05
wt%乃至5wt%(化合物の場合はその金属のみの元
素重量で示す)含むことを特徴とする、請求項1乃至4
のいずれかに記載の中空の酸化物超電導体。5. The method according to claim 1, wherein the hollow oxide superconductor comprises Pt, Pt,
d, Ru, Rh, Ir, Os, Re, Ce and at least one compound selected from the compounds of these metals are added at 0.05
5 to 5 wt% (in the case of a compound, indicated by the element weight of only the metal).
The hollow oxide superconductor according to any one of the above.
2種以上の希土類金属元素)とBa化合物とCu化合物
とを含む原料混合体を、この原料混合体の融点より高い
温度で加熱溶融した後に、徐冷して結晶を成長させるこ
とによりRE−Ba−Cu−O系の中空の酸化物超電導
体を製造する方法において、前記原料混合体から筒状の
前駆体を製造するとともに、この筒状の前駆体の前記R
Eと同一の元素を含み且つ前記筒状の前駆体の開口部を
塞ぐ大きさの板状の前駆体を製造し、前記筒状の前駆体
の上部に前記板状の前駆体を積層し、これらの前駆体を
加熱溶融した後に、徐冷して前記板状の前駆体から前記
筒状の前駆体側に向かって結晶成長させることを特徴と
する、中空の酸化物超電導体の製造方法。6. A raw material mixture containing an RE compound (RE is one or more rare earth metal elements containing Y), a Ba compound and a Cu compound at a temperature higher than the melting point of the raw material mixture. After that, in a method of producing a RE-Ba-Cu-O-based hollow oxide superconductor by gradually cooling and growing crystals, while producing a cylindrical precursor from the raw material mixture, R of the cylindrical precursor
A plate-shaped precursor containing the same element as E and having a size to close the opening of the cylindrical precursor is produced, and the plate-shaped precursor is laminated on the cylindrical precursor, A method for producing a hollow oxide superconductor, characterized in that after heating and melting these precursors, they are gradually cooled to grow crystals from the plate-like precursor toward the cylindrical precursor.
駆体の組成と同一であることを特徴とする、請求項6に
記載の中空の酸化物超電導体の製造方法。7. The method for producing a hollow oxide superconductor according to claim 6, wherein the composition of the plate-like precursor is the same as the composition of the tubular precursor.
の開口部が開口する面と同一の大きさで同一の形状の面
を有することを特徴とする、請求項6または7に記載の
中空の酸化物超電導体の製造方法。8. The plate-shaped precursor has a surface having the same size and the same shape as a surface on which an opening of the cylindrical precursor is opened. 3. The method for producing a hollow oxide superconductor according to item 1.
よび板状の前駆体がRE2+rBa1+s(Cu1−d
Agd)O5−y相およびRE4+rBa 2+s( C
u1−dAgd )2O10−y相(−0.2≦r≦
0.2、−0.2≦s≦0.2、0≦d≦0.05、−
0.2≦y≦0.2)の少なくとも一方の相と液相にな
る温度であることを特徴とする、請求項6乃至8のいず
れかに記載の中空の酸化物超電導体の製造方法。9. The method according to claim 1, wherein the heating and melting temperature is the same as the cylindrical shape.
And the plate-like precursor is RE2 + rBa1 + s(Cu1-d
Agd) O5-yPhase and RE4 + rBa 2 + s(C
u1-dAgd )2O10-yPhase (-0.2 ≦ r ≦
0.2, -0.2≤s≤0.2, 0≤d≤0.05,-
0.2 ≦ y ≦ 0.2)
9. The method according to claim 6, wherein the temperature is
A method for producing a hollow oxide superconductor according to any of the above.
前駆体の上部が低温側になるように前記板状および筒状
の前駆体の上下に1乃至30℃/cmの温度勾配を加
え、その後、前記板状および筒状の前駆体を徐冷して結
晶成長させることを特徴とする、請求項6乃至9のいず
れかに記載の中空の酸化物超電導体の製造方法。10. After the heating and melting step, a temperature gradient of 1 to 30 ° C./cm is applied above and below the plate-like and tubular precursors so that the upper part of the plate-like precursor is on the low temperature side. The method for producing a hollow oxide superconductor according to any one of claims 6 to 9, wherein the plate-like and cylindrical precursors are gradually cooled to grow crystals.
置して、その後、前記板状および筒状の前駆体を徐冷し
て結晶成長させることを特徴とする、請求項6乃至9の
いずれかに記載の中空の酸化物超電導体の製造方法。11. The method according to claim 6, wherein a seed crystal is provided after the heating and melting step, and thereafter, the plate-like and cylindrical precursors are gradually cooled to grow crystals. The method for producing a hollow oxide superconductor according to any one of the above.
前駆体の上部が低温側になるように前記板状および筒状
の前駆体の上下に1乃至30℃/cmの温度勾配を加え
た後、種結晶を設置して、その後、前記板状および筒状
の前駆体を徐冷して結晶成長させることを特徴とする、
請求項6乃至9のいずれかに記載の中空の酸化物超電導
体の製造方法。12. After the heating and melting step, a temperature gradient of 1 to 30 ° C./cm is applied above and below the plate-like and tubular precursors so that the upper part of the plate-like precursor is on the low temperature side. After that, a seed crystal is provided, and thereafter, the plate-like and tubular precursors are gradually cooled to grow crystals.
A method for producing a hollow oxide superconductor according to any one of claims 6 to 9.
mmであることを特徴とする、請求項6乃至12のいず
れかに記載の中空の酸化物超電導体の製造方法。13. The plate-like precursor has a thickness of 5 to 20.
The method for producing a hollow oxide superconductor according to any one of claims 6 to 12, wherein the diameter is 0.1 mm.
は2種以上の希土類金属元素)とBa化合物とCu化合
物とを含む原料混合体に、この原料混合体の融点より高
い温度で加熱溶融した後に、徐冷して結晶を成長させる
ことによりRE−Ba−Cu−O系の中空の酸化物超電
導体を製造する方法において、前記原料混合体から一方
の面に凹部を有する前駆体を製造し、この前駆体を加熱
溶融した後、前記凹部とは反対側の面に種結晶を設置し
て、その後、前記前駆体を徐冷して結晶成長させ、その
後、前記種結晶を設置した側を切断または前記凹部を貫
通させることを特徴とする、中空の酸化物超電導体の製
造方法。14. A raw material mixture containing an RE compound (RE is one or more rare earth metal elements containing Y), a Ba compound and a Cu compound, is heated and melted at a temperature higher than the melting point of the raw material mixture. And then gradually cooling the crystal to grow the crystal, thereby producing a RE-Ba-Cu-O-based hollow oxide superconductor, producing a precursor having a concave portion on one surface from the raw material mixture. Then, after heating and melting this precursor, a seed crystal is placed on the surface opposite to the concave portion, and then the precursor is gradually cooled to grow a crystal, and then the seed crystal is placed. Or a method for producing a hollow oxide superconductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001017855A JP4967173B2 (en) | 2000-06-28 | 2001-01-26 | Hollow oxide superconductor and method for producing the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-200091 | 2000-06-28 | ||
JP2000200091 | 2000-06-28 | ||
JP2000200091 | 2000-06-28 | ||
JP2001017855A JP4967173B2 (en) | 2000-06-28 | 2001-01-26 | Hollow oxide superconductor and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002080221A true JP2002080221A (en) | 2002-03-19 |
JP4967173B2 JP4967173B2 (en) | 2012-07-04 |
Family
ID=26595208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001017855A Expired - Fee Related JP4967173B2 (en) | 2000-06-28 | 2001-01-26 | Hollow oxide superconductor and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4967173B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003095653A (en) * | 2001-09-21 | 2003-04-03 | Dowa Mining Co Ltd | Oxide superconductor and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01153525A (en) * | 1987-12-11 | 1989-06-15 | Tokin Corp | Oxide superconductor of ag fine particle-containing oxygen deficient triple structure perovskite type and production thereof |
JPH0812497A (en) * | 1994-06-22 | 1996-01-16 | Nippon Steel Corp | Superconducting material having high floating characteristics and high damping characteristics, and method for manufacturing the same |
JP2000026159A (en) * | 1998-07-10 | 2000-01-25 | Dowa Mining Co Ltd | Oxide superconductor, its manufacturing method and its manufacturing apparatus |
-
2001
- 2001-01-26 JP JP2001017855A patent/JP4967173B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01153525A (en) * | 1987-12-11 | 1989-06-15 | Tokin Corp | Oxide superconductor of ag fine particle-containing oxygen deficient triple structure perovskite type and production thereof |
JPH0812497A (en) * | 1994-06-22 | 1996-01-16 | Nippon Steel Corp | Superconducting material having high floating characteristics and high damping characteristics, and method for manufacturing the same |
JP2000026159A (en) * | 1998-07-10 | 2000-01-25 | Dowa Mining Co Ltd | Oxide superconductor, its manufacturing method and its manufacturing apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003095653A (en) * | 2001-09-21 | 2003-04-03 | Dowa Mining Co Ltd | Oxide superconductor and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4967173B2 (en) | 2012-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0562640B1 (en) | Production of oxide superconductors having large magnetic levitation force | |
EP0423375B1 (en) | Oxide superconductor and method of producing the same | |
JP4113113B2 (en) | Oxide superconductor joining method and oxide superconductor joined body | |
JP6772674B2 (en) | Manufacturing method of superconducting bulk joint and superconducting bulk joint | |
JP4101903B2 (en) | Oxide superconducting bulk material and manufacturing method thereof | |
JP4967173B2 (en) | Hollow oxide superconductor and method for producing the same | |
JP2967154B2 (en) | Oxide superconductor containing Ag and having uniform crystal orientation and method for producing the same | |
JP4669998B2 (en) | Oxide superconductor and manufacturing method thereof | |
JP2007131510A (en) | Manufacturing method of oxide superconducting bulk body and oxide superconducting bulk body | |
JP5098802B2 (en) | Bulk oxide superconducting material and manufacturing method thereof | |
JP2001114576A (en) | Bonded body and oxide superconductor used for the same | |
CN100538918C (en) | RE-Ba-Cu-O is the manufacture method of oxide superconductor | |
JP5114642B2 (en) | Oxide superconductor and manufacturing method thereof | |
JP4203582B2 (en) | RE-Ba-Cu-O-based oxide superconducting bulk material manufacturing method and apparatus | |
JP3889139B2 (en) | Oxide superconductor containing silver and method for producing the same | |
JP2001114595A (en) | High temperature oxide superconducting material and method for producing the same | |
JP4101930B2 (en) | Oxide bulk superconductor | |
JP3912890B2 (en) | Oxide superconductor laminate and method for producing the same | |
JP4951790B2 (en) | Manufacturing method of oxide superconductivity | |
JP2001180932A (en) | Oxide superconductor and manufacturing method thereof | |
JPH0791057B2 (en) | Rare earth oxide superconductor | |
JP3242350B2 (en) | Oxide superconductor and manufacturing method thereof | |
JP4071860B2 (en) | Superconducting bulk material and manufacturing method thereof | |
JP3471443B2 (en) | Manufacturing method of oxide superconductor material | |
JP4660326B2 (en) | Manufacturing method of oxide superconducting material and substrate for supporting precursor thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110329 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120228 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20120315 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120315 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |