[go: up one dir, main page]

JP2001114595A - High temperature oxide superconducting material and method for producing the same - Google Patents

High temperature oxide superconducting material and method for producing the same

Info

Publication number
JP2001114595A
JP2001114595A JP29458799A JP29458799A JP2001114595A JP 2001114595 A JP2001114595 A JP 2001114595A JP 29458799 A JP29458799 A JP 29458799A JP 29458799 A JP29458799 A JP 29458799A JP 2001114595 A JP2001114595 A JP 2001114595A
Authority
JP
Japan
Prior art keywords
phase
oxide superconductor
temperature
growth rate
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29458799A
Other languages
Japanese (ja)
Inventor
Shuichi Kobayashi
秀一 小早志
Hideetsu Haseyama
秀悦 長谷山
Shigeo Nagaya
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Dowa Mining Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP29458799A priority Critical patent/JP2001114595A/en
Publication of JP2001114595A publication Critical patent/JP2001114595A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】 【課題】 電気特性、磁気特性、機械強度に優れた大型
の酸化物超電導体およびこのような酸化物超電導体を低
コストで再現性良く製造できる酸化物超電導体の製造方
法を提供する。 【解決手段】 構成元素としてRE(REはYを含む1種
または2種以上の希土類金属元素)とBaとCuを含む
とともに成長率が0.1mm/h/℃以下または0.5m
m/h/℃以上のRE1+pBa2+q(Cu1−b
−x(−0.2≦p≦0.2、−0.2≦q
≦0.2、0≦b≦0.05、−0.2≦x≦0.6)相を
含む第1の成形体と、構成元素としてREとBaとCuを含む
とともに成長率が0.1mm/h/℃より大きく且つ0.
5mm/h/℃より小さいRE1+pBa2+q(Cu
1−bAg7−x相を含む第2の成形体とを積
層し、 RE1+pBa2+q(Cu1−bAg
7−x相の融点以上の温度で焼成した後、第2の成形
体側に種結晶を載置し、徐冷または温度保持により第2
の成形体側から第1の成形体側に向かって結晶化させる
ことによって酸化物超電導体を製造する。
PROBLEM TO BE SOLVED: To provide a large-sized oxide superconductor excellent in electric properties, magnetic properties, and mechanical strength, and a method of manufacturing such an oxide superconductor at low cost and with good reproducibility. I will provide a. SOLUTION: It contains RE (RE is one or more rare earth metal elements including Y), Ba and Cu as constituent elements, and has a growth rate of 0.1 mm / h / ° C or less or 0.5 m.
RE 1 + p Ba 2 + q (Cu 1-b A
g b ) 3 O 7 -x (−0.2 ≦ p ≦ 0.2, −0.2 ≦ q
≤ 0.2, 0 ≤ b ≤ 0.05, -0.2 ≤ x ≤ 0.6) A first compact containing a phase, RE, Ba and Cu as constituent elements, and a growth rate of 0.2. Greater than 1 mm / h / ° C and
RE 1 + p Ba 2 + q (Cu less than 5 mm / h / ° C.
1-b Ag b) 3 O 7-x phase by laminating a second shaped body containing, RE 1 + p Ba 2 + q (Cu 1-b Ag b) 3
After firing at a temperature equal to or higher than the melting point of the O 7-x phase, a seed crystal is placed on the side of the second molded body, and the second crystal is gradually cooled or maintained at a temperature to maintain the second crystal.
The oxide superconductor is manufactured by crystallizing from the molded body side to the first molded body side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物超電導体お
よびその製造方法に関し、特に、電流リード、磁気軸受
け、磁気シールド、バルクマグネット等に用いられる酸
化物超電導体およびその製造方法に関する。
The present invention relates to an oxide superconductor and a method of manufacturing the same, and more particularly to an oxide superconductor used for a current lead, a magnetic bearing, a magnetic shield, a bulk magnet, and the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、RE化合物(REはY(イットリ
ウム)を含む1種または2種以上の希土類金属元素)、
Ba化合物およびCu化合物を含む原料混合体を、この
原料混合体の融点より高い温度に加熱溶融した後に、温
度勾配を加えながら徐冷工程を行って結晶を成長させる
ことにより、RE−Ba−Cu−O系酸化物超電導体を
製造する方法として、例えば、特開平10−53415
号公報に記載の方法が知られている。この方法は、RE
化合物、Ba化合物およびCu化合物にAg、Ptを所
定の比率で混合して焼成し、得られた焼成粉を成形した
後、溶融して、Agを添加していないREBaCuO結
晶を種結晶として載置し、温度勾配中で徐冷工程を施し
て結晶化させることにより、配向した高い臨界電流密度
を有するRE−Ba−Cu−O系酸化物超電導体を製造
する方法である。
2. Description of the Related Art Conventionally, RE compounds (RE is one or more rare earth metal elements containing Y (yttrium)),
After heating and melting a raw material mixture containing a Ba compound and a Cu compound to a temperature higher than the melting point of the raw material mixture, a crystal is grown by performing a slow cooling step while applying a temperature gradient, whereby RE-Ba-Cu As a method for producing a -O-based oxide superconductor, for example, Japanese Patent Application Laid-Open No. 10-53415
Is known. This method uses the RE
The compound, Ba compound and Cu compound are mixed with Ag and Pt in a predetermined ratio and fired. The obtained fired powder is molded, melted, and the REBaCuO crystal to which Ag is not added is placed as a seed crystal. This is a method for producing an oriented RE-Ba-Cu-O-based oxide superconductor having a high critical current density by performing a slow cooling step in a temperature gradient to cause crystallization.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の従来の
方法では、結晶を大型化した場合に、RE1+pBa
+q(Cu1−bAg7−x相結晶のab面内
に幅0.1〜10μm程度のマイクロクラックが発生
し、超電導電流が寸断されて、臨界電流密度および磁化
が小さくなってしまう部分が発生するという問題があっ
た。このマイクロクラックはAgを添加することによっ
て抑制されるが、比較的機械強度が高いY系や他の希土
類金属元素とY系の混合系にAgを添加すると、結晶の
成長速度が成長率0.1mm/h/℃以下程度に遅くな
り、大型のものを作製する場合に結晶育成に長時間を要
し、コストがかかり、さらに、RE2+rBa
1+s(Cu −dAg)O5−y相またはRE
4+rBa2+s(Cu1−dAg 10−y
やAgの凝集粗大化が起こり、磁気特性や機械強度特性
が劣化するという問題があった。
SUMMARY OF THE INVENTION However, the conventional
In the method, when the crystal is enlarged, the RE1 + pBa2
+ Q(Cu1-bAgb)3O7-xIn ab plane of phase crystal
Micro cracks with a width of about 0.1 to 10 μm
And the superconducting current is disrupted, critical current density and magnetization
There is a problem that some parts become smaller
Was. This microcrack can be prevented by adding Ag.
Y-based and other rare earth materials with relatively high mechanical strength
When Ag is added to a mixed system of a class metal element and a Y system,
The growth rate is as low as about 0.1 mm / h / ° C or less.
It takes a long time to grow crystals when manufacturing large
Costly and, in addition, RE2 + rBa
1 + s(Cu1 -DAgd) O5-yPhase or RE
4 + rBa2 + s(Cu1-dAgd)2O 10-yphase
And Ag aggregation and coarsening occur, and magnetic properties and mechanical strength properties
However, there is a problem in that the metal is deteriorated.

【0004】また、La系やNd系およびこれらの元素
と他の希土類金属元素の混合系では、臨界温度および高
磁場中の臨界電流密度特性は高いが、結晶の成長速度が
成長率0.5mm/h/℃以上と速すぎるため、結晶の
核発生が起こり易く、配向した大きな結晶を得ることが
困難であるという問題があった。
In the La-based and Nd-based and mixed systems of these elements and other rare earth metal elements, the critical temperature and critical current density characteristics in a high magnetic field are high, but the crystal growth rate is 0.5 mm. / H / ° C. or more, which is too fast, so that nucleation of crystals is likely to occur, and it is difficult to obtain large oriented crystals.

【0005】したがって、本発明は、このような従来の
問題点に鑑み、電気特性、磁気特性、機械強度に優れた
大型の酸化物超電導体およびこのような酸化物超電導体
を低コストで再現性良く製造できる酸化物超電導体の製
造方法を提供することを目的とする。
[0005] Accordingly, the present invention has been made in view of the above-mentioned conventional problems, and a large-sized oxide superconductor having excellent electrical characteristics, magnetic characteristics, and mechanical strength, and a reproducible low-cost oxide superconductor. It is an object of the present invention to provide a method of manufacturing an oxide superconductor that can be manufactured well.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究した結果、RE化合物(RE
はYを含む1種または2種以上の希土類金属元素)、B
a化合物およびCu化合物を含む原料混合体を、この原
料混合体の融点より高い温度に加熱溶融した後に、温度
勾配を加えながら徐冷工程を行って結晶を成長させるこ
とによりRE−Ba−Cu−O系酸化物超電導体を製造
する方法において、成長率が0.1mm/h/℃より大
きく且つ0.5mm/h/℃より小さい範囲の系の材料
を上部に積層して結晶育成を行うことにより、RE−B
a−Cu−O系酸化物超電導材料を短時間で歩留まり良
く製造できることを見出し、本発明を完成するに至っ
た。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have found that RE compounds (RE compounds)
Is one or more rare earth metal elements containing Y), B
The raw material mixture containing the compound a and the Cu compound is heated and melted to a temperature higher than the melting point of the raw material mixture, and then a crystal is grown by performing a slow cooling step while applying a temperature gradient to thereby obtain RE-Ba-Cu-. In a method of manufacturing an O-based oxide superconductor, a crystal is grown by laminating a material of a system having a growth rate of more than 0.1 mm / h / ° C. and less than 0.5 mm / h / ° C. As a result, RE-B
The inventors have found that an a-Cu-O-based oxide superconducting material can be manufactured in a short time and with good yield, and have completed the present invention.

【0007】すなわち、本発明による酸化物超電導体の
製造方法は、構成元素としてRE(REはYを含む1種
または2種以上の希土類金属元素)とBaとCuを含む
とともに成長率が0.1mm/h/℃以下または0.5m
m/h/℃以上の第1の相を含む第1の成形体と、構成
元素としてREとBaとCuを含むとともに成長率が
0.1mm/h/℃より大きく且つ0.5mm/h/℃よ
り小さい第2の相を含む第2の成形体とを積層し、第1
および第2の相の融点以上の温度で焼成した後、第2の
成形体側に種結晶を載置し、徐冷または温度保持により
第2の成形体側から第1の成形体側に向かって結晶化さ
せることによって酸化物超電導体を製造することを特徴
とする。
That is, the method of manufacturing an oxide superconductor according to the present invention includes RE (RE is one or more rare earth metal elements including Y), Ba and Cu as constituent elements, and has a growth rate of 0.5. 1mm / h / ° C or less or 0.5m
a first molded body containing a first phase of m / h / ° C. or more, containing RE, Ba, and Cu as constituent elements, and having a growth rate of more than 0.1 mm / h / ° C. and 0.5 mm / h / And a second compact containing a second phase smaller than
After firing at a temperature equal to or higher than the melting point of the second phase, a seed crystal is placed on the side of the second compact and crystallized from the second compact toward the first compact by slow cooling or maintaining the temperature. The oxide superconductor is thus manufactured.

【0008】上記の製造方法において、第1および第2
の相は、RE1+pBa2+q(Cu1−bAg
7−x(−0.2≦p≦0.2、−0.2≦q≦0.2、
0≦b≦0.05、−0.2≦x≦0.6)相とするのが
好ましい。また、上記の結晶化工程において、酸化物超
電導体がRE1+pBa2+q(Cu1−bAg
7−x(−0.2≦p≦0.2、−0.2≦q≦0.2、
0≦b≦0.05、−0.2≦x≦0.6)相を含むよう
に結晶化させるのが好ましい。また、第1および第2の
成形体は、RE化合物(REはYを含む1種または2種
以上の希土類金属元素)、Ba化合物およびCu化合物
を混合して、焼成、粉砕、成形することにより製造する
ことができる。また、第1の成形体のREがY、Nd、
0.5Gd0.5の場合には、第2の成形体のREとし
て、それぞれSm、Sm、Gdを使用するのが好まし
い。さらに、第1および第2の成形体は、5wt%乃至
60wt%のAgを含むのが好ましい。このAgは、A
g元素量で5wt%乃至60wt%のAg化合物でもよ
く、平均粒径0.3μm乃至1.8μmのAgまたはAg
化合物の粉末を用いるのが好ましい。 また、第1およ
び第2の成形体は、Pt、Pd、Ru、Rh、Ir、O
sおよびReから選ばれた少なくとも一種の元素を0.
05wt%乃至5wt%含むのが好ましく、特にPtを
含むのが好ましい。
In the above manufacturing method, the first and second
The phase of RE1 + pBa2 + q(Cu1-bAgb)3
O7-x(-0.2 ≦ p ≦ 0.2, −0.2 ≦ q ≦ 0.2,
0 ≦ b ≦ 0.05, −0.2 ≦ x ≦ 0.6)
preferable. In the crystallization step, the oxide
The conductor is RE1 + pBa2 + q(Cu1-bAgb) 3
O7-x(-0.2 ≦ p ≦ 0.2, −0.2 ≦ q ≦ 0.2,
0 ≦ b ≦ 0.05, −0.2 ≦ x ≦ 0.6)
It is preferable to crystallize to. In addition, the first and second
The molded body is made of an RE compound (RE is one or two types including Y
Rare earth metal elements described above), Ba compound and Cu compound
Is manufactured by mixing, baking, pulverizing and molding.
be able to. Also, RE of the first molded body is Y, Nd,
Y0.5Gd0.5In the case of, the RE of the second compact is
And it is preferable to use Sm, Sm and Gd respectively.
No. Further, the first and second compacts are 5 wt% to
Preferably, it contains 60 wt% Ag. This Ag is A
An Ag compound of 5 wt% to 60 wt% in g element amount may be used.
Ag or Ag having an average particle size of 0.3 μm to 1.8 μm
Preferably, a compound powder is used. In addition, the first and
And the second compact are Pt, Pd, Ru, Rh, Ir, O
at least one element selected from s and Re.
It is preferable to contain from 05 wt% to 5 wt%, especially Pt.
It is preferred to include.

【0009】また、上記の製造方法において、第2の成
形体が第1の成形体の上部に積層され、結晶化工程にお
いて、第2の成形体の上部が低温側になるように上下に
温度勾配を加えて降温させるのが好ましい。
In the above manufacturing method, the second compact is laminated on the first compact, and in the crystallization step, the temperature is raised and lowered so that the upper portion of the second compact is on the low temperature side. It is preferable to lower the temperature by adding a gradient.

【0010】さらに、上記の製造方法において、種結晶
として、Agを含まないRE1.8Ba2.4Cu3.4
組成(REはYを含む1種または2種以上の希土類
金属元素)の溶融体の種結晶を使用するのが好ましい。
また、第1の成形体と第2の成形体は、同一の外径を有
するのが好ましい。
Further, in the above-mentioned production method, Ag-free RE 1.8 Ba 2.4 Cu 3.4 as a seed crystal is used.
O x composition (RE is one or more rare earth metal elements including Y) is preferable to use seed crystals melt.
Further, it is preferable that the first molded body and the second molded body have the same outer diameter.

【0011】また、本発明による酸化物超電導体は、R
1+pBa2+q(Cu1−bAg
7−x(REはYを含む1種または2種以上の希土類金
属元素、−0.2≦p≦0.2、−0.2≦q≦0.2、0
≦b≦0.05、−0.2≦x≦0.6)相を含み、この
相中にAgが微細に分散した酸化物超電導体であって、
縦横40mm以上、厚さ2mm以上にわたって隣接する
結晶間の方位のずれが±5°以下、好ましくは±1°以
下であることを特徴とする。
Further, the oxide superconductor according to the present invention has an R
E 1 + p Ba 2 + q (Cu 1-b Ag b ) 3 O
7-x (RE is one or more rare earth metal elements including Y, -0.2≤p≤0.2, -0.2≤q≤0.2, 0
≦ b ≦ 0.05, −0.2 ≦ x ≦ 0.6) phase, in which Ag is finely dispersed in the phase,
It is characterized in that the misorientation of the orientation between adjacent crystals over a length of 40 mm or more and a thickness of 2 mm or more is ± 5 ° or less, preferably ± 1 ° or less.

【0012】上記の酸化物超電導体において、RE
1+pBa2+q(Cu1−bAg 7−x相中
に、RE2+rBa1+s(Cu1−dAg)O
5−y相またはRE4+rBa2+s(Cu1−dAg
10−y相(−0.2≦r≦0.2、−0.2≦
s≦0.2、0≦d≦0.05、−0.2≦y≦0.2)が
微細に分散するのが好ましい。また、Agの平均粒径を
30μm以下とするのが好ましい。さらに、RE2+r
Ba1+s(Cu1−dAg)O5−y相の平均粒径
を0.5μm乃至3μmとし、RE4+rBa
2+s(Cu1−dAg 10−y相の平均粒径
を1μm乃至5μmとするのが好ましい。
In the above oxide superconductor, RE
1 + pBa2 + q(Cu1-bAgb) 3O7-xAnaka
And RE2 + rBa1 + s(Cu1-dAgd) O
5-yPhase or RE4 + rBa2 + s(Cu1-dAg
d)2O10-yPhase (−0.2 ≦ r ≦ 0.2, −0.2 ≦
s ≦ 0.2, 0 ≦ d ≦ 0.05, −0.2 ≦ y ≦ 0.2)
It is preferred to be finely dispersed. Also, the average particle size of Ag
The thickness is preferably 30 μm or less. Furthermore, RE2 + r
Ba1 + s(Cu1-dAgd) O5-yAverage particle size of phase
Is set to 0.5 μm to 3 μm, and RE4 + rBa
2 + s(Cu1-dAgd)2O 10-yAverage particle size of phase
Is preferably 1 μm to 5 μm.

【0013】さらに、本発明による酸化物超電導体の材
料としての積層体は、構成元素としてRE(REはYを
含む1種または2種以上の希土類金属元素)とBaとC
uを含むとともに成長率が0.1mm/h/℃以下また
は0.5mm/h/℃以上の第1の相を含む第1の成形
体と、構成元素としてREとBaとCuを含むとともに
成長率が0.1mm/h/℃より大きく且つ0.5mm/
h/℃より小さい第2の相を含む第2の成形体とからな
ることを特徴とする。この場合、第1および第2の相
は、RE1+pBa2+q(Cu1−bAg
7−x(−0.2≦p≦0.2、−0.2≦q≦0.2、0
≦b≦0.05、−0.2≦x≦0.6)相とするのが好
ましい。
Further, the laminated body as a material of the oxide superconductor according to the present invention is characterized in that RE (RE is one or more rare earth metal elements containing Y), Ba and C
a first compact including u and a first phase having a growth rate of 0.1 mm / h / ° C. or less or 0.5 mm / h / ° C. or more, and RE and Ba and Cu as constituent elements and growing Rate is greater than 0.1 mm / h / ° C. and 0.5 mm /
and a second compact containing a second phase smaller than h / ° C. In this case, the first and second phases are RE 1 + p Ba 2 + q (Cu 1-b Ag b ) 3 O
7-x (-0.2 ≦ p ≦ 0.2, −0.2 ≦ q ≦ 0.2, 0
≤ b ≤ 0.05, -0.2 ≤ x ≤ 0.6).

【0014】[0014]

【発明の実施の形態】本発明による酸化物超電導体の製
造方法の実施の形態では、構成元素としてRE(REは
Yを含む1種または2種以上の希土類金属元素)とBa
とCuを含むとともに成長率が0.1mm/h/℃以下
または0.5mm/h/℃以上のRE +pBa2+q
(Cu1−bAg7−x(−0.2≦p≦0.
2、−0.2≦q≦0.2、0≦b≦0.05、−0.2≦
x≦0.6)相を含む第1の成形体と、構成元素として
REとBaとCuを含むとともに成長率が0.1mm/
h/℃より大きく且つ0.5mm/h/℃より小さいR
1+pBa2+q(Cu −bAg7−x
を含む第2の成形体とを積層し、 RE1+pBa
+q(Cu1−bAg7−x相の融点以上の温
度で焼成した後、第2の成形体側に種結晶を載置し、徐
冷、温度保持により第2の成形体側から第1の成形体側
に向かって結晶化させることによって酸化物超電導体を
製造する。このように第1の成形体に積層される第2の
成形体のRE1+pBa2+q(Cu1− Ag
7−x相の成長率を0.1mm/h/℃より大きく且
つ0.5mm/h/℃より小さい範囲とするのは、以下
の理由による。
BEST MODE FOR CARRYING OUT THE INVENTION In the embodiment of the method of manufacturing an oxide superconductor according to the present invention, RE (RE is one or more rare earth metal elements containing Y) and Ba are used as constituent elements.
RE 1 + p Ba 2 + q containing 0.1% / h / ° C. or less and 0.5 mm / h / ° C. or more and containing Cu and Cu
(Cu 1-b Ag b ) 3 O 7-x (−0.2 ≦ p ≦ 0.
2, -0.2≤q≤0.2, 0≤b≤0.05, -0.2≤
x ≦ 0.6) A first compact containing a phase, containing RE, Ba, and Cu as constituent elements and having a growth rate of 0.1 mm /
R greater than h / ° C and less than 0.5 mm / h / ° C
E 1 + p Ba 2 + q (Cu 1- b Ag b ) 3 O 7-x A second compact containing a 7-x phase is laminated, and RE 1 + p Ba 2
After baking at a temperature equal to or higher than the melting point of the + q (Cu 1-b Ag b ) 3 O 7-x phase, a seed crystal is placed on the second compact side, and gradually cooled, and the temperature is kept from the second compact side. An oxide superconductor is manufactured by crystallization toward the first molded body. Thus, RE 1 + p Ba 2 + q (Cu 1− b Ag b ) 3 of the second molded body laminated on the first molded body
The reason why the growth rate of the O 7-x phase is in the range of more than 0.1 mm / h / ° C. and less than 0.5 mm / h / ° C. is as follows.

【0015】RE1+pBa2+q(Cu1−b
7−x相結晶の融点および結晶成長速度は、
RE元素のイオン半径に依存しており、イオン半径が大
きな元素を用いた方が融点は高くなり、結晶成長速度は
速くなる。また、RE1+pBa 2+q(Cu1−b
b−17−x相結晶の融点および結晶成長速度
は、Ag添加量にも依存しており、Ag添加量を増加さ
せると融点が下がり結晶成長速度も遅くなる。 このよ
うなAg添加量とRE1+pBa2+q(Cu1−
7−x相結晶の融点との関係は、特開平10
−53415号公報に記載されている。また、過冷却度
とRE1+pBa2+q(Cu1−bAg
7−x相結晶の成長速度との関係は、REがY、Gd、
SmおよびNdの場合、それぞれ図1、図2、図3およ
び図4に示されるようになることが確認された。また、
これらの混合系は、各々の成長速度の成分比を乗じて足
した値となる。ここで、過冷却度に対する成長速度の変
化率を成長率とする(成長率=成長速度/過冷却度)
と、各REについてのAg添加量を変えたときの成長率
を計算すると、図5に示されるようになる。この成長率
が低すぎると、大きな結晶を作製する場合に結晶育成に
長時間を要するため、コストが増大する。さらに、長時
間溶融状態にさらされる部分では、RE2+rBa
1+s(Cu1−dAg)O5−y相またはRE
4+rBa2+s(Cu1−dAg10−y
Agなどが凝集粗大化して、特性を著しく劣化させてし
まう。これは、成長率が遅い系の材料は、たとえ大きな
過冷却度を与えても、結晶の無秩序な核発生が起こり易
くなって、歩留まりが悪くなってしまうからである。ま
た、成長率が大きいほど結晶成長速度を速くすることが
できるが、この成長率が大きすぎると、温度の微少な変
化に対して成長速度が急激に変化してしまうため、無秩
序な核発生が起こり易くなり、歩留まりが低下する。し
たがって、製造時間の短縮および高い歩留まりを得るた
めには、成長率を0.1mm/h/℃より大きく且つ0.
5mm/h/℃より小さい範囲にするのが望ましい。
RE1 + pBa2 + q(Cu1-bA
gb)3O7-xThe melting point and crystal growth rate of phase crystals are
It depends on the ionic radius of the RE element, and the ionic radius is large.
The melting point is higher when using a suitable element, and the crystal growth rate is
Be faster. Also, RE1 + pBa 2 + q(Cu1-bA
gb-1)3O7-xPhase crystal melting point and crystal growth rate
Depends on the amount of Ag added, and the amount of Ag added is increased.
This lowers the melting point and lowers the crystal growth rate. This
Ag addition amount and RE1 + pBa2 + q(Cu1- bA
gb)3O7-xThe relationship with the melting point of phase crystals is described in
-53415. Also, the degree of supercooling
And RE1 + pBa2 + q(Cu1-bAgb)3O
7-xThe relationship between the phase crystal growth rate and RE is Y, Gd,
In the case of Sm and Nd, FIG. 1, FIG. 2, FIG.
4 and that shown in FIG. Also,
These mixed systems are multiplied by the component ratio of each growth rate.
Value. Here, the growth rate changes with respect to the degree of supercooling.
The growth rate is defined as the growth rate (growth rate = growth rate / degree of supercooling)
And the growth rate when the amount of Ag added for each RE is changed
Is calculated as shown in FIG. This growth rate
Is too low, it may be necessary to grow large crystals.
Since it takes a long time, the cost increases. Furthermore, long hours
In the part exposed to the molten state during2 + rBa
1 + s(Cu1-dAgd) O5-yPhase or RE
4 + rBa2 + s(Cu1-dAgd)2O10-yAnd
Ag, etc., agglomerates and coarsens, resulting in significant deterioration of properties.
I will. This is because materials with a slow growth rate
Disordered nucleation of crystals is likely to occur even when supercooling is applied
This is because the yield becomes worse. Ma
Also, the higher the growth rate, the faster the crystal growth rate
Yes, but if this growth rate is too high
Growth rate changes drastically with
Premature nucleation is likely to occur, and the yield decreases. I
Therefore, it is necessary to reduce production time and obtain high yield.
To achieve this, the growth rate should be greater than 0.1 mm / h / ° C. and
It is desirable to make the range smaller than 5 mm / h / ° C.

【0016】また、RE1+pBa2+q(Cu1−b
Ag7−x相中にRE2+ Ba1+s(Cu
1−dAg)O5−y相またはRE4+rBa2+s
(Cu1−dAg10−y相が微細に分散した
結晶を製造する場合には、Agを5〜60wt%添加し
て一方向凝固を行うことにより、配向した結晶中に0.
1〜100μmのAgが微細に分散して、その平均粒径
が30μm以下になるとRE1+pBa2+q(Cu
1−bAg7−x相結晶中の応力が緩和され、
マイクロクラックの発生を抑制することができる。この
際、Ag添加により、磁気特性、機械強度および耐水性
が向上するが、Agの添加量が5wt%より少ないとそ
の効果は低く、60wt%より多いと超電導電流が流れ
にくくなり特性が低下してしまう。そして、溶融状態か
らの冷却工程において、凝固までの時間が100時間を
超えると、急速にAgの凝集粗大化が進み、この際、A
gの平均粒径が50μmを超えてしまうと、機械的強度
特性の劣化が著しくなる。
Also, RE 1 + p Ba 2 + q (Cu 1-b
Ag b) 3 O 7-x RE 2+ during phase r Ba 1 + s (Cu
1-d Ag d ) O 5-y phase or RE 4 + r Ba 2 + s
In the case of producing a crystal in which (Cu 1-d Ag d ) 2 O 10-y phase is finely dispersed, Ag is added in an amount of 5 to 60 wt% to perform unidirectional solidification, so that 0% in the oriented crystal. .
When Ag of 1 to 100 μm is finely dispersed and its average particle size becomes 30 μm or less, RE 1 + p Ba 2 + q (Cu
The stress in the 1-b Ag b ) 3 O 7-x phase crystal is relaxed,
Generation of micro cracks can be suppressed. At this time, the addition of Ag improves the magnetic properties, mechanical strength, and water resistance. However, if the addition amount of Ag is less than 5 wt%, the effect is low. If the addition amount is more than 60 wt%, the superconducting current becomes difficult to flow and the characteristics are deteriorated. Would. Then, in the cooling step from the molten state, if the time until solidification exceeds 100 hours, Ag agglomeration and coarsening rapidly progress.
When the average particle size of g exceeds 50 μm, the mechanical strength characteristics are significantly deteriorated.

【0017】また、溶融法を用いるとAgの凝集粗大化
が起こり、RE1+pBa2+q(Cu1−bAg
7−x相中のCuサイトへのAgの均一な置換が抑
制されるが、Agとして粒径が0.3μm〜1.8μmの
AgまたはAg化合物の粉末を用いて、結晶化の際に比
較的緩い3〜8℃/cm程度の温度勾配を加え、結晶成
長速度を1.5〜3mm/hとして種結晶から一方向に
結晶成長を行うと、Agの凝集粗大化が抑制され、RE
1+pBa2+q(Cu1−bAg −x相に
おいてCuサイトへのAgの置換量を好適な範囲である
0.005≦b≦0.05とすることができ、結晶間の傾
きが1〜5°程度ずれた小傾角粒界を減少させ、臨界温
度(Tc)、臨界電流密度(Jc)および機械強度を上
げることができる。
Further, when the melting method is used, Ag is coarsened and coarsened, and RE 1 + p Ba 2 + q (Cu 1−b Ag b )
The uniform substitution of Ag at the Cu site in the 3 O 7-x phase is suppressed, but Ag or a powder of an Ag compound having a particle size of 0.3 μm to 1.8 μm is used for crystallization. When a relatively gentle temperature gradient of about 3 to 8 ° C./cm is added to the crystal to grow the crystal in one direction from the seed crystal at a crystal growth rate of 1.5 to 3 mm / h, coarsening of Ag is suppressed, RE
1 + p Ba 2 + q ( Cu 1-b Ag b) 3 O 7 in -x phase can be 0.005 ≦ b ≦ 0.05 is preferable ranges substitution amount of Ag to Cu sites between crystal It is possible to reduce the small-angle grain boundaries having an inclination of about 1 to 5 ° and to increase the critical temperature (Tc), the critical current density (Jc), and the mechanical strength.

【0018】また、REとして比較的イオン半径が大き
な元素を選択し、Agを添加して高品質のREBaCu
O系の超電導体を製造する場合には、必然的に結晶成長
速度が低く抑えられてしまうが、後述する工程におい
て、第1層前駆体として結晶成長速度が適度な速さのS
m、Eu、Gd、Dy系またはこれらの混合系を選択す
れば、成長速度が速く且つ多結晶体になりにくい効率的
な速度にでき、したがって、結晶育成時間を短縮できる
とともに、RE2+rBa1+s(Cu1−dAg
5−y相またはRE4+rBa2+s(Cu1−d
10− 相やAgの凝集粗大化を抑えて、高
特性で大型の超電導体を低コストで製造することができ
る。
Also, an element having a relatively large ionic radius is selected as RE, and Ag is added thereto to obtain high-quality REBaCu.
When an O-based superconductor is manufactured, the crystal growth rate is necessarily kept low. However, in a process described later, the S layer having a moderate crystal growth rate as the first layer precursor is used.
If an m, Eu, Gd, Dy system or a mixture thereof is selected, the growth rate can be increased and an efficient rate can be obtained that is less likely to be a polycrystal. Therefore, the crystal growth time can be shortened and RE 2 + r Ba 1 + s can be obtained. (Cu 1-d Ag d )
O 5-y phase or RE 4 + r Ba 2 + s (Cu 1-d A
g d) 2 O 10- suppressing aggregation coarsening of y phase and Ag, it is possible to produce a large superconductor at low cost with high performance.

【0019】また、同一径の第1層前駆体と第2層前駆
体からなる積層体を用いると、第2層前駆体の全体にわ
たって結晶育成速度を同一にすることができるので、結
晶内の応力の発生を抑制し、クラックを減少させること
ができる。
Further, when a laminate composed of the first layer precursor and the second layer precursor having the same diameter is used, the crystal growth rate can be made the same over the entire second layer precursor. Generation of stress can be suppressed and cracks can be reduced.

【0020】さらに、積層する上部の前駆体中には、以
下の2つの理由から、Agを少なくとも5%以上添加す
ることが望ましい。その1つの理由は、両者の前駆体中
にAgが含有されると、溶融した時に積層した前駆体間
の隙間の密着性が良くなることから、異方位の結晶の核
発生や結晶中の応力発生を抑制できるためである。もう
1つの理由は、上部の前駆体中のAg含有量が少ない
と、下部からAgが拡散し、上部の前駆体の結晶化温度
が安定しないため、多結晶体になり易くなるためであ
る。
Further, it is desirable to add at least 5% or more of Ag to the upper precursor to be laminated for the following two reasons. One of the reasons is that when Ag is contained in both precursors, the adhesion of the gap between the laminated precursors when molten is improved, so that nucleation of crystals in different directions and stress in the crystals are caused. This is because generation can be suppressed. Another reason is that if the Ag content in the upper precursor is small, Ag diffuses from the lower portion, and the crystallization temperature of the upper precursor is not stable, so that the precursor tends to be polycrystalline.

【0021】なお、Pt、Pd、Ru、Rh、Ir、O
s、Reの元素を0.05〜5wt%の範囲で金属また
は化合物の粉末として添加するか、これらの金属坩堝中
で原料混合体を作製する処理を行って混入させると、R
2+rBa1+s(Cu −dAg)O5−y相ま
たはRE4+rBa2+s(Cu1−dAg
10−y相が微細になり、高特性を示すことが確認され
ている。また、これらの元素は、溶融した際にAgやB
aと反応して化合物化しても同様な効果を示すことが確
認されている。
Note that Pt, Pd, Ru, Rh, Ir, O
s and Re in the range of 0.05 to 5% by weight of metal or
Are added as compound powders or in these metal crucibles.
When the mixture is mixed by performing a process of preparing a raw material mixture at
E2 + rBa1 + s(Cu1 -DAgd) O5-yAcquaintance
Or RE4 + rBa2 + s(Cu1-dAgd)2O
10-yIt was confirmed that the phase became fine and showed high characteristics.
ing. In addition, when these elements melt, Ag or B
It is confirmed that the same effect can be obtained even when
It has been certified.

【0022】[0022]

【実施例】以下、実施例に基づいて本発明による酸化物
超電導体およびその製造方法について詳細に説明する。
The oxide superconductor according to the present invention and the method for producing the same will be described in detail below with reference to examples.

【0023】[実施例1]本実施例は、成長率が遅いY
系にAgを20wt%添加した材料(成長率0.05)
を製造する際に、成長率が速いSm系にAgを10wt
%添加した材料(成長率0.45)を上部に積層して結
晶育成を行う例である。
[Embodiment 1] In this embodiment, the growth rate of Y is low.
Material with 20 wt% Ag added to the system (growth rate 0.05)
Ag is added to Sm-based material with fast growth rate
This is an example in which a material (% growth rate: 0.45) with% addition is laminated on the upper portion to grow crystals.

【0024】まず、RE(本実施例ではY
とSm)、BaCO、CuOの各原料粉末をR
E:Ba:Cu=1.8:2.4:3.4になるように秤
量した後、BaCOとCuOのみを880℃で30時
間焼成して、BaCuOとCuOの仮焼粉を得た(モ
ル比でBaCuO:CuO=2.4:1.0)。次に、
この仮焼粉に、予め秤量しておいたYと0.5w
t%のPt粉末(平均粒径0.01μm)と20wt%
のAg粉末(平均粒径0.45μm)とを混合して大気
中900℃で10時間焼成した。同様に、上記のBaC
uOとCuOの仮焼粉に、予め秤量しておいたSm
と0.5wt%のPt粉末と10wt%のAg粉末
とを混合して大気中900℃で10時間焼成した。得ら
れた仮焼粉をそれぞれライカイ機で粉砕して平均粒径約
2μmとした。また、得られた仮焼粉を粉末X線回折に
より分析したところ、RE1+pBa2+q(Cu
1−bAg7−x相およびRE2+rBa
1+s(Cu1−dAg)O5−y相が確認された。
First, RE 2 O 3 (in this embodiment, Y 2 O 3
And Sm 2 O 3 ), BaCO 3 , and CuO as raw material powders.
E: After weighing Ba: Cu = 1.8: 2.4: 3.4, only BaCO 3 and CuO were calcined at 880 ° C. for 30 hours to obtain a calcined powder of BaCuO 2 and CuO. (Molar ratio: BaCuO 2 : CuO = 2.4: 1.0). next,
This calcined powder is mixed with Y 2 O 3 weighed in advance and 0.5 w
t% Pt powder (average particle size 0.01μm) and 20wt%
Ag powder (average particle size 0.45 μm) was mixed and fired at 900 ° C. in the air for 10 hours. Similarly, the above BaC
Sm 2 weighed in advance on calcined powder of uO 2 and CuO
O 3 , 0.5 wt% of Pt powder and 10 wt% of Ag powder were mixed and fired at 900 ° C. in the air for 10 hours. The obtained calcined powder was pulverized with a raikai machine to obtain an average particle size of about 2 μm. When the obtained calcined powder was analyzed by powder X-ray diffraction, it was confirmed that RE 1 + p Ba 2 + q (Cu
1-b Ag b ) 3 O 7-x phase and RE 2 + r Ba
A 1 + s (Cu 1-d Ag d ) O 5-y phase was confirmed.

【0025】このようにして作製された合成粉のうち、
REがYのものについては外径80mm、厚さ25mm
のディスク状にプレス成形して前駆体1を作製し、RE
がSmのものについては外径80mm、厚さ10mmの
ディスク状にプレス成形して前駆体2を作製した。
Of the synthetic powder thus produced,
For those with RE of Y, outer diameter 80 mm, thickness 25 mm
The precursor 1 was prepared by press molding into a disk shape of
For Sm, precursor 2 was prepared by press-forming into a disk having an outer diameter of 80 mm and a thickness of 10 mm.

【0026】次に、図6に示すように、前駆体2を前駆
体1の上部に積層して、Y23粉末を敷いたアルミナ基
板上に載せ、2ゾーン型の炉体内に設置して以下の工程
を行った。
Next, as shown in FIG. 6, the precursor 2 is laminated on the top of the precursor 1, placed on an alumina substrate on which Y 2 O 3 powder is spread, and placed in a two-zone furnace. The following steps were performed.

【0027】まず、室温から50時間で1100℃まで
昇温させ、この温度で20分間保持して半溶融状態にし
た後、前駆体2の上部が低温側となるように上下に5℃
/cmの温度勾配を加えて1015℃まで10℃/mi
nで降温させた。次いで、予め作製しておいたAgを含
まないSm1.8Ba2.4Cu3.4組成の溶融体
の種結晶を成長方向がc軸と平行になるように前駆体2
の上部に接触させ、1015℃から0.5℃/hrの速
度で1010℃まで降温させた。この温度で60時間保
持した後、980℃まで30時間で降温させ、この温度
で10時間保持した。その後、910℃まで70時間か
けて徐冷し(冷却速度1℃/h/温度勾配5℃/cm=
成長速度2mm/h)、その後、室温まで100時間で
徐冷して結晶化を行った。
First, the temperature is raised from room temperature to 1100 ° C. in 50 hours, kept at this temperature for 20 minutes to make a semi-molten state, and then raised and lowered by 5 ° C. so that the upper part of the precursor 2 is on the low temperature side.
/ Cm to 1015 ° C with a temperature gradient of 10 ° C / mi
The temperature was lowered at n. Next, a precursor crystal of a melt having a composition of Sm 1.8 Ba 2.4 Cu 3.4 O x containing no Ag and prepared in advance was prepared so that the growth direction was parallel to the c-axis.
And the temperature was lowered from 1015 ° C. to 1010 ° C. at a rate of 0.5 ° C./hr. After maintaining at this temperature for 60 hours, the temperature was lowered to 980 ° C. in 30 hours and maintained at this temperature for 10 hours. Thereafter, it is gradually cooled to 910 ° C. over 70 hours (cooling rate 1 ° C./h/temperature gradient 5 ° C./cm=
The growth rate was 2 mm / h), and then the temperature was gradually lowered to room temperature in 100 hours to perform crystallization.

【0028】このようにして結晶化した材料をガス置換
可能な別の炉の中に設置し、ロータリーポンプで0.1
Torrまで炉内を排気した後、炉内に酸素ガスを流し
込んで、酸素分圧が95%以上である大気圧の雰囲気に
した。その後も0.5L/minの流量で酸素ガスを炉
内に流しながら、室温から500℃まで10時間で昇温
させ、500℃から300℃まで200時間かけて徐冷
し、300℃から200℃まで200時間で徐冷し、室
温まで10時間で降温させた。
The material crystallized in this way is placed in another gas-replaceable furnace, and is set to 0.1 by a rotary pump.
After evacuation of the furnace to Torr, oxygen gas was flowed into the furnace to create an atmospheric pressure atmosphere where the oxygen partial pressure was 95% or more. Thereafter, while flowing oxygen gas into the furnace at a flow rate of 0.5 L / min, the temperature was raised from room temperature to 500 ° C. in 10 hours, and gradually cooled from 500 ° C. to 300 ° C. over 200 hours, and then from 300 ° C. to 200 ° C. Until 200 hours, and then cooled to room temperature in 10 hours.

【0029】得られた材料の外径および厚さは、焼き縮
みのため、外径約66mm、厚さ約28mmとなってい
た。この材料を切断して断面をEPMAで観察したとこ
ろ、(Sm1−a1+pBa2+q(Cu1−b
Ag7−x相中に0.1〜30μm程度の(S
1−c2+rBa1+s(Cu1−dAg
5−y相が微細に分散していた。ここで、p、q、
r、s、yはそれぞれ−0.2〜0.2の値であり、xは
−0.2〜0.6の値であった。また、a、cは前駆体2
の上面から下へ6mm程度までは1.0〜0.9の値であ
り、そこから前駆体1と前駆体2の界面から前駆体1側
に2mm程度までは0.9から0.1程度まで徐々に濃度
が変化し、そこから前駆体1の下までは0.1〜0の値
であった。また、bは0.021〜0.045の値であ
り、平均的には0.03程度であった。また、dは測定
限界程度の0.002であった。この材料の中心付近を
偏光顕微鏡を用いて倍率1000倍で撮影し、70×9
0μmの範囲を画像解析したところ、この(Sm
1−c2+rBa1+s(Cu1−dAg)O
5−y相の平均粒径は1.2μmであった。さらに、試
料全体にわたって0.1〜100μm程度のAgが微細
に分散していた。この材料の中心付近を偏光顕微鏡を用
いて倍率100倍で撮影し、700×900μmの範囲
を画像解析したところ、Agの平均粒径は26μmであ
った。また、このAg粒がない(Sm1−a
1+pBa2+q(Cu1−bAg7−x相付
近をXPS(X-ray Photoelectron Spectroscopy)によ
りAgの3dピーク付近で測定したところ、図7に示す
ように、金属AgやAgO、AgO等には見られない
サテライトピークが観測された。これは、Cuサイトに
Agが部分置換したことによるピーク変化である。比較
として、Ag金属、AgO、AgOの測定結果をそれ
ぞれ図8、図9および図10に示す。また、種結晶を反
映してディスク状材料の軸方向がc軸であるように材料
全体が配向し、隣接する結晶間の方位のずれが1°以下
であり、小傾角粒界の無い実質的に単結晶状の超電導材
料が得られた。
The outer diameter and the thickness of the obtained material were about 66 mm in outer diameter and about 28 mm in thickness due to shrinkage. Observation of the cross section with EPMA to cutting the material, (Sm a Y 1-a ) 1 + p Ba 2 + q (Cu 1-b
Ag b) 3 O 7-x phase in the order of 0.1 to 30 [mu] m (S
mc Y 1-c ) 2 + r Ba 1 + s (Cu 1-d Ag d )
The O 5-y phase was finely dispersed. Where p, q,
r, s, and y were values of -0.2 to 0.2, respectively, and x was a value of -0.2 to 0.6. A and c are precursor 2
The value is 1.0 to 0.9 from the upper surface to about 6 mm downward, and from about 0.9 to 0.1 from the interface between precursor 1 and precursor 2 to about 2 mm from precursor 1 to precursor 1 side. The concentration gradually changed from 0.1 to 0 under the precursor 1 from there. B was a value of 0.021 to 0.045, and was about 0.03 on average. Also, d was 0.002, which is about the measurement limit. The vicinity of the center of this material was photographed at a magnification of 1000 times using a polarizing microscope, and 70 × 9
Image analysis of the range of 0 μm showed that (Sm c Y
1-c ) 2 + r Ba 1 + s (Cu 1-d Ag d ) O
The average particle size of the 5-y phase was 1.2 μm. Further, Ag of about 0.1 to 100 μm was finely dispersed throughout the entire sample. The vicinity of the center of this material was photographed at a magnification of 100 using a polarizing microscope, and image analysis was performed on an area of 700 × 900 μm. The average particle diameter of Ag was 26 μm. Further, there is no the Ag particle (Sm a Y 1-a)
1 + p Ba 2 + q ( Cu 1-b Ag b) 3 O 7-x phase near the XPS (X-ray Photoelectron Spectroscopy) pursuant measured in the vicinity of 3d peak of Ag, as shown in FIG. 7, the metal Ag and AgO, Satellite peaks not observed in Ag 2 O and the like were observed. This is a peak change due to partial substitution of Ag at the Cu site. As a comparison, the measurement results of Ag metal, AgO, and Ag 2 O are shown in FIGS. 8, 9, and 10, respectively. In addition, the entire material is oriented so that the axial direction of the disc-shaped material is the c-axis reflecting the seed crystal, the misorientation of the orientation between adjacent crystals is 1 ° or less, and there is substantially no small-angle grain boundary. Thus, a single-crystal superconducting material was obtained.

【0030】次に、この材料の前駆体1と前駆体2の界
面から前駆体1側に1mmのところでスライス加工して
上部の前駆体2の部分を切断した。この切断表面側にロ
ードセルの先端に取り付けた直径39.2mm、内径1
6mm、厚さ49mmのNd−Fe−B系磁石(表面最
大磁束密度0.53T(テスラ))を近づけて、オート
グラフによって以下のように磁気反発力を測定した。ま
ず、リング磁石の軸方向とディスク状超電導体の軸方向
がほぼ一致するように、磁石を超電導体から300mm
離して設置した。超電導体を液体窒素中に漬けて温度7
7Kに冷却した後、磁石を軸方向に沿って速度5mm/
minで超電導体に近づけた。超電導体と磁石との間隔
が0.1mmとなるまで磁石を近づけて、この時発生す
る反発力を測定したところ、超電導体と磁石との間隔が
0.1mmのとき、22kg・fの磁気反発力が得られ
た。
Next, the material was sliced at a distance of 1 mm from the interface between the precursor 1 and the precursor 2 of the material toward the precursor 1 to cut off the upper part of the precursor 2. A diameter of 39.2 mm, an inside diameter of 1
A Nd-Fe-B-based magnet (surface maximum magnetic flux density: 0.53 T (tesla)) having a thickness of 6 mm and a thickness of 49 mm was approached, and the magnetic repulsion was measured by an autograph as follows. First, the magnet was moved 300 mm from the superconductor so that the axial direction of the ring magnet and the axial direction of the disc-shaped superconductor almost coincided.
It was set apart. Superconductor is immersed in liquid nitrogen and temperature is 7
After cooling to 7K, the magnet was moved along the axial direction at a speed of 5 mm /
Min brought close to the superconductor. When the magnet was approached until the distance between the superconductor and the magnet was 0.1 mm, the repulsive force generated at this time was measured. When the distance between the superconductor and the magnet was 0.1 mm, a magnetic repulsion of 22 kg · f was observed. Power was gained.

【0031】次に、このディスク状材料から2.5×2.
5×2mmの試料を切り出して、振動試料型磁力計によ
り磁化率を測定した。得られた磁化率曲線よりBean
モデルを適用して温度77K、外部磁場1Tにおける臨
界電流密度(Jc)を見積もったところ、2×10
/cmであった。
Next, 2.5 × 2.
A sample of 5 × 2 mm was cut out, and the magnetic susceptibility was measured with a vibrating sample magnetometer. From the obtained susceptibility curve, Bean
When the critical current density (Jc) at a temperature of 77 K and an external magnetic field of 1 T was estimated by applying the model, 2 × 10 4 A
/ Cm 2 .

【0032】さらに、このディスク状材料の中心付近か
ら15×2×3mmの試料を厚さ方向(2mmの方向)
が結晶のc軸方向と略平行になるように切り出し、長さ
方向(15mmの方向)に電流を流して四端子法により
臨界温度(Tc)を測定したところ、91.2Kと高い
Tcを示した(通常Y系では90K程度)。
Further, a sample of 15.times.2.times.3 mm from the vicinity of the center of the disc-shaped material was placed in the thickness direction (2 mm direction).
Was cut out so as to be substantially parallel to the c-axis direction of the crystal, and a critical current (Tc) was measured by a four-terminal method by applying a current in the length direction (direction of 15 mm). (Usually about 90K for Y-system).

【0033】次に、この超電導体に外部磁場2Tを加え
ながら室温から温度77Kまで冷却した後、磁場を取り
去って超電導体中に捕捉される磁束密度を測定した。こ
の測定は、ホール素子をXYステージに取り付けて超電
導体表面から約1mmの距離で超電導体表面に沿って移
動させ、ディスク状材料の軸方向の磁束密度分布を測定
することによって行った。その結果、図11に示すよう
に最大1.47Tの捕捉磁束密度が得られた。また、デ
ィスク材料の垂直方向の平均磁束密度は0.49Tであ
り、総磁束(平均磁束密度×面積)は17Wbであっ
た。
Next, the superconductor was cooled from room temperature to a temperature of 77 K while applying an external magnetic field of 2T, and then the magnetic field was removed to measure the magnetic flux density captured in the superconductor. This measurement was performed by mounting the Hall element on an XY stage and moving it along the superconductor surface at a distance of about 1 mm from the superconductor surface, and measuring the axial magnetic flux density distribution of the disc-shaped material. As a result, as shown in FIG. 11, a maximum trapped magnetic flux density of 1.47T was obtained. The average magnetic flux density in the vertical direction of the disk material was 0.49 T, and the total magnetic flux (average magnetic flux density × area) was 17 Wb.

【0034】また、結晶の c軸に平行に力を加えた場合
の機械強度を3点曲げ試験によって評価した。全長20
mmの試料を用いて、測定上の長さL=14.2mm、
幅W=3.5mm、厚さt=1mm、最大負荷をPとする
と、曲げ強度σはσ=3PL/(2Wt)から求める
ことができる。ここで、クロスヘッドの速度は0.5m
m/minとした。この試料の機械強度は95MPaで
あった。
The mechanical strength when a force was applied parallel to the c-axis of the crystal was evaluated by a three-point bending test. Total length 20
mm sample, the measured length L = 14.2 mm,
When the width W is 3.5 mm, the thickness t is 1 mm, and the maximum load is P, the bending strength σ can be obtained from σ = 3PL / (2Wt 2 ). Here, the speed of the crosshead is 0.5 m
m / min. The mechanical strength of this sample was 95 MPa.

【0035】このように、本実施例では、成長率が速い
Sm系にAgを10wt%添加した材料を積層している
ので、径方向の結晶育成時間の短縮が可能となり、(S
1−c)2+rBa1+s(Cu1−dAg)O
5−y相やAgの凝集粗大化を防ぎ、低コストで機械強
度が高く且つ高磁気特性を有する大型の酸化物超電導体
を製造することができる。
As described above, in this embodiment, since the material in which 10 wt% of Ag is added to the Sm-based material having a high growth rate is laminated, the crystal growth time in the radial direction can be shortened, and (S
m c Y 1-c) 2 + r Ba 1 + s (Cu 1-d Ag d) O
A large-sized oxide superconductor having high mechanical strength and high magnetic properties at low cost can be manufactured by preventing the 5-y phase and Ag from agglomerating and coarsening.

【0036】[実施例2]本実施例は、臨界電流密度特
性は高いが成長率が速いNd系にAgを20wt%添加
した材料(成長率約1.10)を製造する際に、成長率
が適度な速さのSm系にAgを10wt%添加した材料
(成長率0.45)を上部に積層して結晶育成を行う例
である。
Example 2 In this example, when a material (growth rate of about 1.10) in which 20 wt% of Ag was added to an Nd-based material having a high critical current density characteristic but a high growth rate, the growth rate was increased. Is an example in which a material (growth rate: 0.45) obtained by adding 10 wt% of Ag to an Sm-based material having an appropriate speed is stacked on the upper portion to grow a crystal.

【0037】まず、RE(本実施例ではNd
およびSm)、BaCO、CuOの各原料粉
末をRE:Ba:Cu=1.8:2.4:3.4になるよ
うに秤量した後、BaCOとCuOのみを880℃で
30時間焼成して、BaCuOとCuOの仮焼粉を得
た(モル比でBaCuO:CuO=2.4:1.0)。次
に、この仮焼粉に、予め秤量しておいたNd
0.5wt%のPt粉末と20wt%のAg粉末(平均
粒径0.35μm)とを混合して大気中900℃で10
時間焼成した。同様に、上記のBaCuOとCuOの
仮焼粉に、予め秤量しておいたSmと0.5wt
%のPt粉末と10wt%のAg粉末とを混合して大気
中900℃で10時間焼成した。得られた仮焼粉をそれ
ぞれライカイ機で粉砕して平均粒径約2μmとした。ま
た、得られた仮焼粉を粉末X線回折により分析したとこ
ろ、RE1+pBa2+q(Cu1−bAg
7−x相およびSm2+rBa1+s(Cu1−dAg
)O5−y相およびNd4+ Ba2+s(Cu
1−dAg10−y相が確認された。
First, RE 2 O 3 (Nd 2 O in this embodiment)
3 and Sm 2 O 3 ), BaCO 3 , and CuO were weighed so that RE: Ba: Cu = 1.8: 2.4: 3.4, and then only BaCO 3 and CuO were treated at 880 ° C. For 30 hours to obtain a calcined powder of BaCuO 2 and CuO (BaCuO 2 : CuO = 2.4: 1.0 in molar ratio). Next, Nd 2 O 3 weighed in advance, 0.5 wt% of Pt powder, and 20 wt% of Ag powder (average particle size: 0.35 μm) were mixed with the calcined powder, and the mixture was heated to 900 ° C. in the atmosphere. At 10
Fired for hours. Similarly, the previously calcined powder of BaCuO 2 and CuO was added to the previously weighed Sm 2 O 3 and 0.5 wt.
% Pt powder and 10 wt% Ag powder were mixed and fired at 900 ° C. in the air for 10 hours. The obtained calcined powder was pulverized with a raikai machine to obtain an average particle size of about 2 μm. Further, when the obtained calcined powder was analyzed by powder X-ray diffraction, RE 1 + p Ba 2 + q (Cu 1-b Ag b ) 3 O
7-x phase and Sm 2 + r Ba 1 + s (Cu 1-d Ag
d) O 5-y phase and Nd 4+ r Ba 2 + s ( Cu
A 1-d Ag d ) 2 O 10-y phase was confirmed.

【0038】このようにして作製された合成粉のうち、
REがNdのものについては外径80mm、厚さ25m
mのディスク状にプレス成形して前駆体1を作製し、R
EがSmのものについては外径80mm、厚さ4mmの
ディスク状にプレス成形して前駆体2を作製した。
Of the synthetic powders thus produced,
For those with RE of Nd, outer diameter 80 mm, thickness 25 m
m to form a precursor 1
When E was Sm, the precursor 2 was prepared by press-forming into a disk shape having an outer diameter of 80 mm and a thickness of 4 mm.

【0039】次に、図6に示すように、前駆体2を前駆
体1の上部に積層して、Nd粉末を敷いたアルミ
ナ基板上に載せ、2ゾーン型の炉体内に設置した。 次
いで、ガス排気口から炉体内部のガスを排気し、炉内を
0.1Torrの真空状態にした後、ガス導入口よりO
1%とAr99%の混合ガスを流し込んで大気圧にし
た。その後も0.2L/minの流量で混合ガスを流し
ながら以下の工程を行った。
Next, as shown in FIG. 6, the precursor 2 was laminated on the precursor 1, placed on an alumina substrate on which Nd 2 O 3 powder was spread, and placed in a two-zone furnace. . Next, the gas inside the furnace body was evacuated from the gas exhaust port, and the furnace was evacuated to 0.1 Torr.
And the atmospheric pressure by pouring 2 1% and Ar99% of the mixed gas. Thereafter, the following steps were performed while flowing the mixed gas at a flow rate of 0.2 L / min.

【0040】まず、室温から50時間で1100℃まで
昇温させ、この温度で20分間保持して半溶融状態にし
た後、前駆体2の上部が低温側となるように上下に5℃
/cmの温度勾配を加えて960℃まで10℃/min
で降温させた。次いで、予め作製しておいたAgを含ま
ないSm1.8Ba2.4Cu3.4組成の溶融体の
種結晶を成長方向がc軸と平行になるように前駆体2の
上部に接触させ、960℃から0.5℃/hrの速度で
955℃まで降温させた。この温度で60時間保持した
後、885゜Cまで70時間で徐冷し、その後、室温まで
100時間かけて徐冷して結晶化を行った。
First, the temperature was raised from room temperature to 1100 ° C. in 50 hours, kept at this temperature for 20 minutes to make a semi-molten state, and then moved up and down 5 ° C. so that the upper part of the precursor 2 was on the low temperature side.
/ Cm up to 960 ° C with a temperature gradient of 10 ° C / min
To lower the temperature. Next, a seed crystal of a melt having a composition of Sm 1.8 Ba 2.4 Cu 3.4 O x containing no Ag prepared in advance is placed on the top of the precursor 2 so that the growth direction is parallel to the c-axis. And the temperature was lowered from 960 ° C. to 955 ° C. at a rate of 0.5 ° C./hr. After maintaining at this temperature for 60 hours, the mixture was gradually cooled to 885 ° C. for 70 hours, and then gradually cooled to room temperature over 100 hours for crystallization.

【0041】このようにして結晶化した材料をガス置換
可能な別の炉の中に設置し、ロータリーポンプで0.1
Torrまで炉内を排気した後、炉内に酸素ガスを流し
込んで、酸素分圧が95%以上である大気圧の雰囲気に
した。その後も0.5L/minの流量で酸素ガスを炉
内に流しながら、室温から700℃まで10時間で昇温
させた。この温度で80時間保持し、700℃から50
0℃まで100時間で降温させ、500℃から300℃
まで200時間で徐冷し、300℃から200℃まで2
00時間で徐冷し、その後、室温まで10時間で降温さ
せた。
The material crystallized in this way is placed in another gas-replaceable furnace, and is set to 0.1 by a rotary pump.
After evacuation of the furnace to Torr, oxygen gas was flowed into the furnace to create an atmospheric pressure atmosphere where the oxygen partial pressure was 95% or more. Thereafter, the temperature was raised from room temperature to 700 ° C. for 10 hours while flowing oxygen gas into the furnace at a flow rate of 0.5 L / min. Hold at this temperature for 80 hours,
Cool down to 0 ° C in 100 hours, then 500 ° C to 300 ° C
Cool slowly in 200 hours until 300 ° C to 200 ° C
The mixture was gradually cooled in 00 hours, and then cooled to room temperature in 10 hours.

【0042】得られた材料の外径および厚さは、焼き縮
みのため、外径約64mm、厚さ約24mmとなってい
た。この材料を切断して断面をEPMAで観察したとこ
ろ、(NdSm1−a1+pBa2+q(Cu
1−bAg7−x相中に0.1〜30μm程度
の(NdSm1−c4+rBa2+s(Cu1−d
Ag10−y相が微細に分散していた。ここ
で、p、q、r、s、yはそれぞれ−0.2〜0.2の値
であり、xは−0.2〜0.6の値であった。また、a、
cは前駆体2の上面から下へ3mm程度までは1.0〜
0.9の値であり、そこから前駆体1と前駆体2の界面
から前駆体1側に2mmまでは0.9から0.1程度まで
徐々に濃度が変化し、そこから前駆体1の下までは0.
1〜0の値であった。また、bは0.024〜0.05の
値であり、平均的には0.035程度であった。また、
dは測定限界程度の0.0024であった。この材料の
中心付近を偏光顕微鏡を用いて倍率1000倍で撮影
し、70×90μmの範囲を画像解析したところ、この
(NdSm1−c4+rBa2+s(Cu1−d
10−y相の平均粒径は3.2μmであっ
た。さらに、試料全体にわたって0.1〜100μm程
度のAgが微細に分散していた。この材料の中心付近を
偏光顕微鏡を用いて倍率100倍で撮影し、700×9
00μmの範囲を画像解析したところ、Agの平均粒径
は24μmであった。また、種結晶を反映してディスク
状材料の軸方向がc軸であるように材料全体が配向し、
隣接する結晶間の方位のずれが1°以下であり、小傾角
粒界の無い実質的に単結晶状の超電導材料が得られた。
The outer diameter and thickness of the obtained material are
Only about 64mm in outer diameter and about 24mm in thickness
Was. This material was cut and the cross section was observed with EPMA.
(NdaSm1-a)1 + pBa2 + q(Cu
1-bAgb)3O7-xAbout 0.1 to 30 μm in phase
(NdcSm1-c)4 + rBa2 + s(Cu1-d
Agd)2O10-yThe phases were finely dispersed. here
Where p, q, r, s, and y are values of -0.2 to 0.2, respectively.
And x was a value of -0.2 to 0.6. Also, a,
c is 1.0 to 1.0 mm from the upper surface of the precursor 2 to about 3 mm below.
0.9, from which the interface between precursor 1 and precursor 2
From 0.9 to 0.1 on the precursor 1 side up to 2 mm
The concentration gradually changes, and from there to under the precursor 1, the concentration is 0.1.
The value was 1 to 0. Also, b is 0.024 to 0.05.
It was about 0.035 on average. Also,
d was 0.0024, which is about the measurement limit. Of this material
Photographed near the center with a polarizing microscope at 1000x magnification
Then, when the image analysis of the area of 70 × 90 μm was performed,
(NdcSm1-c)4 + rBa2 + s(Cu1-dA
gd) 2O10-yThe average particle size of the phase was 3.2 μm.
Was. Further, about 0.1 to 100 μm over the entire sample
Of Ag was finely dispersed. Near the center of this material
Photographed at 100 × magnification using a polarizing microscope, 700 × 9
Image analysis of the range of 00 μm showed the average particle size of Ag.
Was 24 μm. Also, the disk reflecting the seed crystal
The entire material is oriented such that the axial direction of the shaped material is the c-axis,
The misorientation of the orientation between adjacent crystals is 1 ° or less, and the inclination is small.
A substantially single crystal superconducting material without grain boundaries was obtained.

【0043】次に、この材料の前駆体1と前駆体2の界
面から前駆体1側に1mmのところでスライス加工して
上部の前駆体2の部分を切断した。この切断表面側にロ
ードセルの先端に取り付けた直径39.2mm、内径1
6mm、厚さ49mmのNd−Fe−B系磁石(表面最
大磁束密度0.53T)を近づけて、オートグラフによっ
て以下のように磁気反発力を測定した。まず、リング磁
石の軸方向とディスク状超電導体の軸方向がほぼ一致す
るように、磁石を超電導体から300mm離して設置し
た。超電導体を液体窒素中に漬けて温度77Kに冷却し
た後、磁石を軸方向に沿って速度5mm/minで超電
導体に近づけた。超電導体と磁石との間隔が0.1mm
となるまで磁石を近づけて、この時発生する反発力を測
定したところ、超電導体と磁石との間隔が0.1mmの
とき、21kg・fの磁気反発力が得られた。
Next, a slice was formed at a distance of 1 mm from the interface between the precursor 1 and the precursor 2 of the material toward the precursor 1 to cut off the upper part of the precursor 2. A diameter of 39.2 mm, an inside diameter of 1
An Nd-Fe-B-based magnet (maximum surface magnetic flux density: 0.53 T) having a thickness of 6 mm and a thickness of 49 mm was approached, and the magnetic repulsion was measured by an autograph as follows. First, the magnet was installed at a distance of 300 mm from the superconductor so that the axial direction of the ring magnet and the axial direction of the disk-shaped superconductor almost coincided. After the superconductor was immersed in liquid nitrogen and cooled to a temperature of 77K, the magnet was approached to the superconductor at a speed of 5 mm / min along the axial direction. The distance between the superconductor and the magnet is 0.1 mm
When the repulsive force generated at this time was measured by bringing the magnet close to the above, when the distance between the superconductor and the magnet was 0.1 mm, a magnetic repulsive force of 21 kg · f was obtained.

【0044】次に、この切断したディスク状材料から
2.5×2.5×2mmの試料を切り出して、振動試料型
磁力計により磁化率を測定した。得られた磁化率曲線よ
りBeanモデルを適用して温度77K、外部磁場1T
における臨界電流密度(Jc)を見積もったところ、3
×10A/cmであった。
Next, a sample of 2.5 × 2.5 × 2 mm was cut out from the cut disk-shaped material, and the magnetic susceptibility was measured with a vibrating sample magnetometer. Applying a Bean model from the obtained magnetic susceptibility curve, the temperature is 77K, the external magnetic field is 1T.
The critical current density (Jc) at
× 10 4 A / cm 2 .

【0045】さらに、このディスク状材料の中心付近か
ら15×2×3mmの試料を厚さ方向(2mmの方向)
が結晶のc軸方向と略平行になるように切り出し、長さ
方向(15mmの方向)に電流を流して四端子法により
臨界温度(Tc)を測定したところ、95.0Kと高い
Tcを示した(通常Nd系では94K程度)。
Further, a sample of 15 × 2 × 3 mm was placed in the thickness direction (2 mm direction) from the vicinity of the center of the disc-shaped material.
Was cut out so as to be substantially parallel to the c-axis direction of the crystal, and a critical temperature (Tc) was measured by a four-terminal method by passing a current in the length direction (direction of 15 mm). (Usually about 94K for Nd system).

【0046】次に、この超電導体に外部磁場2Tを加え
ながら室温から温度77Kまで冷却した後、磁場を取り
去って超電導体中に捕捉される磁束密度を測定した。こ
の測定は、ホール素子をXYステージに取り付けて超電
導体表面から約0.1mmの距離で超電導体表面に沿っ
て移動させ、ディスク状材料の軸方向の磁束密度分布を
測定することによって行った。その結果、図12に示す
ように最大1.6Tの捕捉磁束密度が得られた。また、
ディスク材料の垂直方向の平均磁束密度は0.47T、
総磁束(平均磁束密度×面積)は15Wbであった。
Next, the superconductor was cooled from room temperature to a temperature of 77 K while applying an external magnetic field of 2T, and the magnetic field was removed to measure the magnetic flux density captured in the superconductor. This measurement was performed by mounting the Hall element on an XY stage, moving the Hall element along the superconductor surface at a distance of about 0.1 mm from the superconductor surface, and measuring the axial magnetic flux density distribution of the disc-shaped material. As a result, as shown in FIG. 12, a maximum trapped magnetic flux density of 1.6 T was obtained. Also,
The average magnetic flux density in the vertical direction of the disk material is 0.47T,
The total magnetic flux (average magnetic flux density x area) was 15 Wb.

【0047】また、結晶のc軸に平行に力を加えた場合
の機械強度を3点曲げ試験によって評価した。全長20
mmの試料を用いて、測定上の長さL=14.2mm、
幅W=3.5mm、厚さt=1mm、最大負荷をPとする
と、曲げ強度σはσ=3PL/(2Wt)から求める
ことができる。ここで、クロスヘッドの速度は0.5m
m/minとした。この試料の機械強度は75MPaで
あった。
The mechanical strength when a force was applied in parallel to the c-axis of the crystal was evaluated by a three-point bending test. Total length 20
mm sample, the measured length L = 14.2 mm,
When the width W is 3.5 mm, the thickness t is 1 mm, and the maximum load is P, the bending strength σ can be obtained from σ = 3PL / (2Wt 2 ). Here, the speed of the crosshead is 0.5 m
m / min. The mechanical strength of this sample was 75 MPa.

【0048】このように、本実施例では、成長率が適度
な速さのSm系にAgを10wt%添加した材料を積層
しているので、結晶方位の制御が可能となり、高磁気特
性を有する大型の酸化物超電導体を製造することができ
る。
As described above, in this embodiment, since the material obtained by adding 10 wt% of Ag to the Sm-based material having a moderate growth rate is laminated, the crystal orientation can be controlled and the magnetic material has high magnetic properties. A large oxide superconductor can be manufactured.

【0049】[実施例3]本実施例は、成長率が遅いG
d(50%)Y(50%)系にAgを20wt%添加した材
料(成長率約0.085)を製造する際に、成長率が速
いGd系にAgを20wt%添加した材料(成長率0.
12)を上部に積層して結晶育成を行う例である。
[Embodiment 3] In this embodiment, the growth rate of G
When manufacturing a material in which 20 wt% of Ag is added to a d (50%) Y (50%)-based material (growth rate about 0.085), a material in which 20 wt% of Ag is added to a Gd-based material having a fast growth rate (growth rate) 0.
This is an example in which crystal growth is performed by laminating 12) on top.

【0050】まず、RE(本実施例ではGd(5
0%)Y(50%)とGd)、BaCO 、CuOの各原
料粉末をRE:Ba:Cu=1.8:2.4:3.4にな
るように秤量した後、BaCOとCuOのみを880
℃で30時間焼成して、BaCuOとCuOの仮焼粉
を得た(モル比でBaCuO:CuO=2.4:1.
0)。次に、この仮焼粉に、予め秤量しておいたRE
と0.5wt%のPt粉末とを混合し、さらにAg
元素量で20wt%となるようにAgO粉末(平均粒
径1.8μm)を混合して、大気中900゜Cで10時間
焼成した。得られた仮焼粉をそれぞれライカイ機で粉砕
して平均粒径約2μmとした。また、得られた仮焼粉を
粉末X線回折により分析したところ、RE1+pBa
2+q(Cu −bAg7−x相およびRE
2+rBa1+s(Cu1−dAg)O 5−y相が確
認された。
First, RE2O3(In this embodiment, Gd (5
0%) Y (50%) and Gd), BaCO 3, CuO source
The raw material powder becomes RE: Ba: Cu = 1.8: 2.4: 3.4.
After weighing, BaCO3And CuO only 880
Baking at 30 ° C. for 30 hours.2And CuO calcined powder
(A molar ratio of BaCuO2: CuO = 2.4: 1.
0). Next, the calcined powder was added to the previously weighed RE2
O3And 0.5 wt% of Pt powder, and further Ag
Ag so that the element amount becomes 20 wt%2O powder (average grain
(1.8 μm in diameter) and mixed in air at 900 ° C for 10 hours
Fired. The obtained calcined powder is crushed by a raikai machine.
The average particle diameter was set to about 2 μm. In addition, the obtained calcined powder
Analysis by powder X-ray diffraction showed that RE1 + pBa
2 + q(Cu1 -BAgb)3O7-xPhase and RE
2 + rBa1 + s(Cu1-dAgd) O 5-ySure
It has been certified.

【0051】このようにして作製された合成粉のうち、
REがGd(50%)Y(50%)のものについては外径8
0mm、厚さ25mmのディスク状にプレス成形して前
駆体1を作製し、REがGdのものについては外径80
mm、厚さ4mmのディスク状にプレス成形して前駆体
2を作製した。
Of the synthetic powder thus produced,
Outer diameter of 8 for RE with Gd (50%) and Y (50%)
The precursor 1 was prepared by press-molding into a disk shape having a thickness of 0 mm and a thickness of 25 mm.
The precursor 2 was prepared by press-forming into a disk having a thickness of 4 mm and a thickness of 4 mm.

【0052】次に、図6に示すように、前駆体2を前駆
体1の上部に積層して、Y23粉末を敷いたアルミナ基
板上に載せ、2ゾーン型の炉体内に設置して以下の工程
を行った。
Next, as shown in FIG. 6, the precursor 2 is laminated on the precursor 1, placed on an alumina substrate on which Y 2 O 3 powder is spread, and placed in a two-zone furnace. The following steps were performed.

【0053】まず、室温から50時間で1100℃まで
昇温させ、この温度で20分間保持して半溶融状態にし
た後、前駆体2の上部が低温側となるように上下に5℃
/cmの温度勾配を加えて1015℃まで10℃/mi
nで降温させた。次いで、予め作製しておいたAgを含
まないGd1.8Ba2.4Cu3.4組成の溶融体
の種結晶を成長方向がc軸と平行になるように前駆体2
の上部に接触させ、1015℃から0.5℃/hrの速
度で1010℃まで降温させた。この温度で60時間保
持した後、990℃まで20時間で降温させ、この温度
で10時間保持した。その後、920℃まで70時間か
けて徐冷し、その後、室温まで100時間で徐冷して結
晶化を行った。
First, the temperature was raised from room temperature to 1100 ° C. in 50 hours, kept at this temperature for 20 minutes to make a semi-molten state, and then moved up and down 5 ° C. so that the upper part of the precursor 2 was on the low temperature side.
/ Cm to 1015 ° C with a temperature gradient of 10 ° C / mi
The temperature was lowered at n. Next, a precursor of a melt prepared in advance and having a composition of Gd 1.8 Ba 2.4 Cu 3.4 O x containing no Ag was prepared so that the growth direction was parallel to the c-axis.
And the temperature was lowered from 1015 ° C. to 1010 ° C. at a rate of 0.5 ° C./hr. After maintaining at this temperature for 60 hours, the temperature was lowered to 990 ° C. in 20 hours, and maintained at this temperature for 10 hours. Thereafter, the mixture was gradually cooled to 920 ° C. over 70 hours, and then gradually cooled to room temperature for 100 hours to perform crystallization.

【0054】このようにして結晶化した材料をガス置換
可能な別の炉の中に設置し、ロータリーポンプで0.1
Torrまで炉内を排気した後、炉内に酸素ガスを流し
込んで、酸素分圧が95%以上である大気圧の雰囲気に
した。その後も0.5L/minの流量で酸素ガスを炉
内に流しながら、室温から500℃まで10時間で昇温
させ、500℃から300℃まで200時間かけて徐冷
し、300℃から200℃まで200時間で徐冷し、室
温まで10時間で降温させた。
The material crystallized in this manner is placed in another gas-replaceable furnace, and is set to 0.1 by a rotary pump.
After evacuation of the furnace to Torr, oxygen gas was flowed into the furnace to create an atmospheric pressure atmosphere where the oxygen partial pressure was 95% or more. Thereafter, while flowing oxygen gas into the furnace at a flow rate of 0.5 L / min, the temperature was raised from room temperature to 500 ° C. in 10 hours, and gradually cooled from 500 ° C. to 300 ° C. over 200 hours, and then from 300 ° C. to 200 ° C. Until 200 hours, and then cooled to room temperature in 10 hours.

【0055】得られた材料の外径および厚さは、焼き縮
みのため、外径約66mm、厚さ約24mmとなってい
た。この材料を切断して断面をEPMAで観察したとこ
ろ、(Gd(Y0.5Gd0.51−a1+pBa
2+q(Cu1−bAg 7−x相中に0.1〜
30μm程度の(Gd(Y0.5Gd0.51−c
2+rBa1+s(Cu1−dAg)O5−y相が微
細に分散していた。ここで、p、q、r、s、yはそれ
ぞれ−0.2〜0.2の値であり、xは−0.2〜0.6の
値であった。また、a、cは前駆体2の上面から下へ3
mm程度までは1.0〜0.9の値であり、そこから前駆
体1と前駆体2の界面から前駆体1側に2mm程度まで
は0.9から0.1程度まで徐々に濃度が変化し、そこか
ら前駆体1の下までは0.1〜0の値であった。また、
bは0.005〜0.025の値であり、平均的には0.
015程度であった。また、dは測定限界程度の0.0
02であった。この材料の中心付近を偏光顕微鏡を用い
て倍率1000倍で撮影し、70×90μmの範囲を画
像解析したところ、この(Gd(Y0.5Gd0.
1−c2+rBa1+s(Cu1−dAg)O
5−y相の平均粒径は約0.9μmであった。さらに、
試料全体にわたって0.1〜100μm程度のAgが微
細に分散していた。この材料の中心付近を偏光顕微鏡を
用いて倍率100倍で撮影し、700×900μmの範
囲を画像解析したところ、Agの平均粒径は20μmで
あった。また、種結晶を反映してディスク状材料の軸方
向がc軸であるように材料全体が配向し、隣接する結晶
間の方位のずれが1°以下であり、小傾角粒界の無い実
質的に単結晶状の超電導材料が得られた。
The outer diameter and thickness of the obtained material are
Only about 66mm in outside diameter and about 24mm in thickness
Was. This material was cut and the cross section was observed with EPMA.
(Gda(Y0.5Gd0.5)1-a)1 + pBa
2 + q(Cu1-bAgb) 3O7-x0.1 ~
(Gd of about 30 μmc(Y0.5Gd0.5)1-c)
2 + rBa1 + s(Cu1-dAgd) O5-yPhase is fine
It was finely dispersed. Where p, q, r, s, y are
X is -0.2 to 0.6, respectively.
Value. A and c are 3 from the upper surface of the precursor 2 to the lower side.
The value is 1.0 to 0.9 up to about mm,
From the interface between body 1 and precursor 2 to about 2 mm toward precursor 1
The concentration gradually changes from 0.9 to about 0.1,
The values from 0.1 to 0 under the precursor 1 were 0.1 to 0. Also,
b is a value of 0.005 to 0.025, and on average is 0.005.
It was about 015. D is about the measurement limit of 0.0.
02. Near the center of this material using a polarizing microscope
Image at a magnification of 1000 × to cover an area of 70 × 90 μm.
When the image was analyzed, this (Gdc(Y0.5Gd0. 5)
1-c)2 + rBa1 + s(Cu1-dAgd) O
5-yThe average particle size of the phase was about 0.9 μm. further,
Ag of about 0.1 to 100 μm is fine over the entire sample.
It was finely dispersed. Near the center of this material, use a polarizing microscope
And photographed at a magnification of 100 × with a size of 700 × 900 μm.
Image analysis of the box shows that the average particle size of Ag is 20 μm.
there were. Also, the direction of the axis of the disc-shaped material reflects the seed crystal.
The whole material is oriented so that the direction is the c-axis, and adjacent crystals
Azimuth deviation of 1 ° or less and no small tilt boundaries
A qualitatively single-crystal superconducting material was obtained.

【0056】次に、この材料の前駆体1と前駆体2の界
面から前駆体1側に1mmのところでスライス加工して
上部の前駆体2の部分を切断した。この切断表面側にロ
ードセルの先端に取り付けた直径39.2mm、内径1
6mm、厚さ49mmのNd−Fe−B系磁石(表面最
大磁束密度0.53T)を近づけて、オートグラフによ
って以下のように磁気反発力を測定した。まず、リング
磁石の軸方向とディスク状超電導体の軸方向がほぼ一致
するように、磁石を超電導体から300mm離して設置
した。超電導体を液体窒素中に漬けて温度77Kに冷却
した後、磁石を軸方向に沿って速度5mm/minで超
電導体に近づけた。超電導体と磁石との間隔が0.1m
mとなるまで磁石を近づけて、この時発生する反発力を
測定したところ、超電導体と磁石との間隔が0.1mm
のとき、20kg・fの磁気反発力が得られた。
Next, this material was sliced at a distance of 1 mm from the interface between the precursor 1 and the precursor 2 toward the precursor 1 to cut the upper part of the precursor 2. A diameter of 39.2 mm, an inside diameter of 1
An Nd-Fe-B-based magnet (surface maximum magnetic flux density: 0.53 T) having a thickness of 6 mm and a thickness of 49 mm was approached, and the magnetic repulsion was measured by an autograph as follows. First, the magnet was installed at a distance of 300 mm from the superconductor so that the axial direction of the ring magnet and the axial direction of the disk-shaped superconductor almost coincided. After the superconductor was immersed in liquid nitrogen and cooled to a temperature of 77K, the magnet was approached to the superconductor at a speed of 5 mm / min along the axial direction. The distance between the superconductor and the magnet is 0.1m
m and the repulsive force generated at this time was measured, and the distance between the superconductor and the magnet was 0.1 mm.
At this time, a magnetic repulsion of 20 kg · f was obtained.

【0057】次に、このディスク状材料から2.5×2.
5×2mmの試料を切り出して、振動試料型磁力計によ
り磁化率を測定した。得られた磁化率曲線よりBean
モデルを適用して温度77K、外部磁場1Tにおける臨
界電流密度(Jc)を見積もったところ、2.6×10
A/cmであった。
Next, 2.5 × 2.
A sample of 5 × 2 mm was cut out, and the magnetic susceptibility was measured with a vibrating sample magnetometer. From the obtained susceptibility curve, Bean
When the critical current density (Jc) at a temperature of 77 K and an external magnetic field of 1 T was estimated by applying the model, 2.6 × 10
It was 4 A / cm 2 .

【0058】さらに、このディスク状材料の中心付近か
ら15×2×3mmの試料を厚さ方向(2mmの方向)
が結晶のc軸方向と略平行になるように切り出し、長さ
方向(15mmの方向)に電流を流して四端子法により
臨界温度(Tc)を測定したところ、93.0Kと高い
Tcを示した(通常大気中で作製したGd系では91.
5K程度)。
Further, a sample of 15 × 2 × 3 mm was placed in the thickness direction (2 mm direction) from the vicinity of the center of the disc-shaped material.
Was cut out so as to be substantially parallel to the c-axis direction of the crystal, and a critical temperature (Tc) was measured by a four-terminal method by flowing a current in the length direction (direction of 15 mm). (In the case of a Gd system produced in the normal atmosphere, 91.
About 5K).

【0059】次に、この超電導体に外部磁場2Tを加え
ながら室温から温度77Kまで冷却した後、磁場を取り
去って超電導体中に捕捉される磁束密度を測定した。こ
の測定は、ホール素子をXYステージに取り付けて超電
導体表面から約1mmの距離で超電導体表面に沿って移
動させ、ディスク状材料の軸方向の磁束密度分布を測定
することによって行った。その結果、図13に示すよう
に最大1.52Tの捕捉磁束密度が得られた。また、デ
ィスク材料の垂直方向の平均磁束密度は0.5Tであ
り、総磁束(平均磁束密度×面積)は17Wbであっ
た。
Next, the superconductor was cooled from room temperature to a temperature of 77 K while applying an external magnetic field of 2T, and the magnetic field was removed to measure the magnetic flux density captured in the superconductor. This measurement was performed by mounting the Hall element on an XY stage and moving it along the superconductor surface at a distance of about 1 mm from the superconductor surface, and measuring the axial magnetic flux density distribution of the disc-shaped material. As a result, as shown in FIG. 13, a maximum trapped magnetic flux density of 1.52T was obtained. The average magnetic flux density in the vertical direction of the disk material was 0.5 T, and the total magnetic flux (average magnetic flux density × area) was 17 Wb.

【0060】また、結晶のc軸に平行に力を加えた場合
の機械強度を3点曲げ試験によって評価した。全長20
mmの試料を用いて、測定上の長さL=14.2mm、
幅W=3.5mm、厚さt=1mm、最大負荷をPとする
と、曲げ強度σはσ=3PL/(2Wt)から求める
ことができる。ここで、クロスヘッドの速度は0.5m
m/minとした。この試料の機械強度は85MPaで
あった。
The mechanical strength when a force was applied in parallel to the c-axis of the crystal was evaluated by a three-point bending test. Total length 20
mm sample, the measured length L = 14.2 mm,
When the width W is 3.5 mm, the thickness t is 1 mm, and the maximum load is P, the bending strength σ can be obtained from σ = 3PL / (2Wt 2 ). Here, the speed of the crosshead is 0.5 m
m / min. The mechanical strength of this sample was 85 MPa.

【0061】このように、本実施例では、成長率が適切
なGd系にAgを10wt%添加した材料を積層してい
るので、径方向の結晶育成時間の短縮が可能となり、
(Gd (Y0.5Gd0.51−c2+rBa
1+s(Cu1−dAg)O5− 相やAgの凝集粗
大化を防ぎ、低コストで機械強度が高く且つ高磁気特性
を有する大型の酸化物超電導体を製造することができ
る。
As described above, in this embodiment, the growth rate is appropriate.
Material containing 10 wt% of Ag added to a natural Gd-based material
Therefore, the crystal growth time in the radial direction can be reduced,
(Gd c(Y0.5Gd0.5)1-c)2 + rBa
1 + s(Cu1-dAgd) O5- yAggregation of phase and Ag
Prevents large size, low cost, high mechanical strength and high magnetic properties
Can produce large oxide superconductors with
You.

【0062】[実施例4]Ag粉末の平均粒径を10μ
m、温度勾配を10℃/cm(成長速度1mm/h)と
して、その他は実施例1と同様にして材料を作製した。
Example 4 The average particle size of Ag powder was 10 μm.
m, and the temperature gradient was set to 10 ° C./cm (growth rate: 1 mm / h).

【0063】得られた材料の外径および厚さは、焼き縮
みのため、外径約66mm、厚さ約28mmとなってい
た。この材料を切断して断面をEPMAで観察したとこ
ろ、(Sm1−a1+pBa2+q(Cu1−b
Ag7−x相中に0.1〜30μm程度の(S
1−c2+rBa1+s(Cu1−dAg
5−y相が微細に分散していた。ここで、p、q、
r、s、yはそれぞれ−0.2〜0.2の値であり、xは
−0.2〜0.6の値であった。また、a、cは前駆体2
の上面から下へ3mm程度までは1.0〜0.9の値であ
り、そこから前駆体1と前駆体2の界面から前駆体1側
に2mm程度までは0.9から0.1程度まで徐々に濃度
が変化し、そこから前駆体1の下までは0.1〜0の値
であった。また、bは0.0〜0.009の値であり、平
均的には0.003程度であった。また、dは測定限界
程度の0.002であった。この材料の中心付近を偏光
顕微鏡を用いて倍率1000倍で撮影し、70×90μ
mの範囲を画像解析したところ、この(Sm
1−c2+rBa1+s(Cu1−dAg)O
5−y相の平均粒径は1.5μmであった。さらに、試
料全体にわたって0.1〜100μm程度のAgが微細
に分散していた。この材料の中心付近を偏光顕微鏡を用
いて倍率100倍で撮影し、700×900μmの範囲
を画像解析したところ、Agの平均粒径は31μmであ
った。また、種結晶を反映してディスク状材料の軸方向
がc軸であるように材料全体が配向していたが、隣接す
る結晶間の方位のずれが1°以下である小傾角粒界の無
い結晶粒の大きさは5〜10mm程度であり、この小傾
角粒界の無い結晶粒が1〜5°程度の小傾角をもってつ
ながって配向した超電導材料が得られた。
The outer diameter and thickness of the obtained material were about 66 mm in outer diameter and about 28 mm in thickness due to shrinkage. Observation of the cross section with EPMA to cutting the material, (Sm a Y 1-a ) 1 + p Ba 2 + q (Cu 1-b
Ag b) 3 O 7-x phase in the order of 0.1 to 30 [mu] m (S
mc Y 1-c ) 2 + r Ba 1 + s (Cu 1-d Ag d )
The O 5-y phase was finely dispersed. Where p, q,
r, s, and y were values of -0.2 to 0.2, respectively, and x was a value of -0.2 to 0.6. A and c are precursor 2
The value is 1.0 to 0.9 from the upper surface to about 3 mm downward, and from about 0.9 to 0.1 from the interface between the precursor 1 and the precursor 2 to about 2 mm from the interface between the precursor 1 and the precursor 2. The concentration gradually changed from 0.1 to 0 under the precursor 1 from there. Further, b was a value of 0.0 to 0.009, and was about 0.003 on average. Also, d was 0.002, which is about the measurement limit. An image of the vicinity of the center of this material was taken at a magnification of 1000 using a polarizing microscope, and 70 × 90 μm
The image analysis of the range of m
c Y 1-c) 2 + r Ba 1 + s (Cu 1-d Ag d) O
The average particle size of the 5-y phase was 1.5 μm. Further, Ag of about 0.1 to 100 μm was finely dispersed throughout the entire sample. The vicinity of the center of this material was photographed at a magnification of 100 using a polarizing microscope, and image analysis was performed on an area of 700 × 900 μm. The average particle diameter of Ag was 31 μm. In addition, the entire material was oriented so that the axial direction of the disc-shaped material was the c-axis, reflecting the seed crystal, but there was no small-angle grain boundary in which the misalignment between adjacent crystals was 1 ° or less. The size of the crystal grains was about 5 to 10 mm, and a superconducting material was obtained in which crystal grains having no small-angle grain boundaries were connected with a small angle of about 1 to 5 ° and oriented.

【0064】次に、この材料の前駆体1と前駆体2の界
面から前駆体1側に1mmのところでスライス加工して
上部の前駆体2の部分を切断した。この切断表面側にロ
ードセルの先端に取り付けた直径39.2mm、内径1
6mm、厚さ49mmのNd−Fe−B系磁石(表面最
大磁束密度0.53T)を近づけて、オートグラフによ
って以下のように磁気反発力を測定した。まず、リング
磁石の軸方向とディスク状超電導体の軸方向がほぼ一致
するように、磁石を超電導体から300mm離して設置
した。超電導体を液体窒素中に漬けて温度77Kに冷却
した後、磁石を軸方向に沿って速度5mm/minで超
電導体に近づけた。超電導体と磁石との間隔が0.1m
mとなるまで磁石を近づけて、この時発生する反発力を
測定したところ、超電導体と磁石との間隔が0.1mm
のとき、20kg・fの磁気反発力が得られた。
Next, a slice was formed at a distance of 1 mm from the interface between the precursor 1 and the precursor 2 of the material toward the precursor 1 to cut the upper part of the precursor 2. A diameter of 39.2 mm, an inside diameter of 1
An Nd-Fe-B-based magnet (surface maximum magnetic flux density: 0.53 T) having a thickness of 6 mm and a thickness of 49 mm was approached, and the magnetic repulsion was measured by an autograph as follows. First, the magnet was installed at a distance of 300 mm from the superconductor so that the axial direction of the ring magnet and the axial direction of the disk-shaped superconductor almost coincided. After the superconductor was immersed in liquid nitrogen and cooled to a temperature of 77K, the magnet was approached to the superconductor at a speed of 5 mm / min along the axial direction. The distance between the superconductor and the magnet is 0.1m
m and the repulsive force generated at this time was measured, and the distance between the superconductor and the magnet was 0.1 mm.
At this time, a magnetic repulsion of 20 kg · f was obtained.

【0065】次に、このディスク状材料から2.5×2.
5×2mmの試料を切り出して、振動試料型磁力計によ
り磁化率を測定した。得られた磁化率曲線よりBean
モデルを適用して温度77K、外部磁場1Tにおける臨
界電流密度(Jc)を見積もったところ、1.8×10
A/cmであった。
Next, 2.5 × 2.
A sample of 5 × 2 mm was cut out, and the magnetic susceptibility was measured with a vibrating sample magnetometer. From the obtained susceptibility curve, Bean
When the critical current density (Jc) at a temperature of 77 K and an external magnetic field of 1 T was estimated by applying the model, 1.8 × 10
It was 4 A / cm 2 .

【0066】さらに、このディスク状材料の中心付近か
ら15×2×3mmの試料を厚さ方向(2mmの方向)
が結晶のc軸方向と略平行になるように切り出し、長さ
方向(15mmの方向)に電流を流して四端子法により
臨界温度(Tc)を測定したところ、90.1Kであっ
た。
Further, a sample of 15 × 2 × 3 mm was placed in the thickness direction (2 mm direction) from the vicinity of the center of the disc-shaped material.
Was cut out so as to be substantially parallel to the c-axis direction of the crystal, and a critical temperature (Tc) was measured by a four-terminal method by applying a current in a length direction (direction of 15 mm).

【0067】次に、この超電導体に外部磁場2Tを加え
ながら室温から温度77Kまで冷却した後、磁場を取り
去って超電導体中に捕捉される磁束密度を測定した。こ
の測定は、ホール素子をXYステージに取り付けて超電
導体表面から約1mmの距離で超電導体表面に沿って移
動させ、ディスク状材料の軸方向の磁束密度分布を測定
することによって行った。その結果、図14に示すよう
に最大1.34Tの捕捉磁束密度が得られた。また、デ
ィスク材料の垂直方向の平均磁束密度は0.48Tであ
り、総磁束(平均磁束密度×面積)は16.5Wbであ
った。
Next, the superconductor was cooled from room temperature to a temperature of 77 K while applying an external magnetic field of 2T, and then the magnetic field was removed to measure the magnetic flux density captured in the superconductor. This measurement was performed by mounting the Hall element on an XY stage and moving it along the superconductor surface at a distance of about 1 mm from the superconductor surface, and measuring the axial magnetic flux density distribution of the disc-shaped material. As a result, as shown in FIG. 14, a maximum trapped magnetic flux density of 1.34 T was obtained. The average magnetic flux density in the vertical direction of the disk material was 0.48 T, and the total magnetic flux (average magnetic flux density × area) was 16.5 Wb.

【0068】また、結晶の c軸に平行に力を加えた場合
の機械強度を3点曲げ試験によって評価した。全長20
mmの試料を用いて、測定上の長さL=14.2mm、
幅W=3.5mm、厚さt=1mm、最大負荷をPとする
と、曲げ強度σはσ=3PL/(2Wt)から求める
ことができる。ここで、クロスヘッドの速度は0.5m
m/minとした。この試料の機械強度は81MPaで
あった。
The mechanical strength when a force was applied in parallel to the c-axis of the crystal was evaluated by a three-point bending test. Total length 20
mm sample, the measured length L = 14.2 mm,
When the width W is 3.5 mm, the thickness t is 1 mm, and the maximum load is P, the bending strength σ can be obtained from σ = 3PL / (2Wt 2 ). Here, the speed of the crosshead is 0.5 m
m / min. The mechanical strength of this sample was 81 MPa.

【0069】このように、本実施例では、Agの粒径を
大きくしたために臨界温度(Tc)、臨界電流密度(J
c)および機械強度がやや落ちるが、成長率が速いSm
系にAgを10wt%添加した材料を積層しているの
で、径方向の結晶育成時間の短縮が可能となり、(Sm
1−c)2+rBa1+s(Cu1−dAg)O
5− 相やAgの凝集粗大化を防ぎ、低コストで機械強
度が高く且つ高磁気特性を有する大型の酸化物超電導体
を製造することができる。
As described above, in the present embodiment, the critical temperature (Tc) and the critical current density (J
c) and Sm whose mechanical strength is slightly reduced, but whose growth rate is fast
Since a material in which 10 wt% of Ag is added to the system is laminated, the crystal growth time in the radial direction can be reduced, and (Sm
c Y 1-c) 2 + r Ba 1 + s (Cu 1-d Ag d) O
A large-sized oxide superconductor having high mechanical strength and high magnetic properties at low cost can be manufactured by preventing the 5- y phase and Ag from agglomerating and coarsening.

【0070】[比較例1]本比較例は、外径66mm程
度のAgを20wt%添加したYBaCuO系の超電導
体を製造する例である。
Comparative Example 1 This comparative example is an example of manufacturing a YBaCuO-based superconductor to which 20 wt% of Ag having an outer diameter of about 66 mm is added.

【0071】まず、Y、BaCO、CuOの各
原料粉末をY:Ba:Cu=1.8:2.4:3.4にな
るように秤量した後、BaCOとCuOのみを880
℃で30時間焼成して、BaCuOとCuOの仮焼粉
を得た(モル比でBaCuO :CuO=2.4:1.
0)。次に、この仮焼粉に、予め秤量しておいたY
、0.5wt%のPt粉末、20wt%のAg粉末
(平均粒径0.45μm)を混合して大気中900゜Cで
10時間焼成した。得られた仮焼粉をライカイ機で粉砕
して平均粒径約2μmとした。また、得られた仮焼粉を
粉末X線回折により分析したところ、Y1+pBa
2+q(Cu1−bAg7−x相およびY
2+rBa1+s(Cu1−dAg)O5−y相が確
認された。
First, Y2O3, BaCO3, CuO
The raw material powder was changed to Y: Ba: Cu = 1.8: 2.4: 3.4.
After weighing, BaCO3And CuO only 880
Baking at 30 ° C. for 30 hours.2And CuO calcined powder
(A molar ratio of BaCuO 2: CuO = 2.4: 1.
0). Next, the calcined powder was added to Y2O
3, 0.5 wt% Pt powder, 20 wt% Ag powder
(Average particle size 0.45μm) mixed in air at 900 ° C
It was baked for 10 hours. The obtained calcined powder is crushed with a raikai machine
The average particle diameter was set to about 2 μm. In addition, the obtained calcined powder
Analysis by powder X-ray diffraction showed that Y1 + pBa
2 + q(Cu1-bAgb)3O7-xPhase and Y
2 + rBa1 + s(Cu1-dAgd) O5-ySure
It has been certified.

【0072】このようにして作製された合成粉を外径8
0mm、厚さ25mmのディスク状にプレス成形して前
駆体を作製した。
The synthetic powder produced in this way is
A precursor was prepared by press-forming into a disk having a thickness of 0 mm and a thickness of 25 mm.

【0073】この前駆体をY粉末を敷いたアルミ
ナ基板上に載せて、2ゾーン型の炉体内に設置して以下
の工程を行った。
This precursor was placed on an alumina substrate on which Y 2 O 3 powder was spread, and was placed in a two-zone furnace, and the following steps were performed.

【0074】まず、室温から50時間で1100℃まで
昇温させ、この温度で20分間保持して半溶融状態にし
た後、前駆体上部が低温側となるように上下に5℃/c
mの温度勾配を加えて1005℃まで10℃/minで
降温させた。次いで、予め作製しておいたY1.8Ba
2.4Cu3.4組成の溶融体の種結晶を成長方向が
c軸と平行になるように前駆体の上部に接触させ、10
05℃から0.5℃/hrの速度で1000℃まで降温
させた。この温度で200時間保持した後、930℃ま
で70時間かけて徐冷し、その後、室温まで100時間
で徐冷して結晶化を行った。
First, the temperature was raised from room temperature to 1100 ° C. in 50 hours, kept at this temperature for 20 minutes to make a semi-molten state, and then moved up and down 5 ° C./c so that the upper part of the precursor was on the low temperature side.
m, and the temperature was lowered to 1005 ° C. at a rate of 10 ° C./min. Next, Y 1.8 Ba that has been prepared in advance
A seed crystal of a melt having a composition of 2.4 Cu 3.4 O x is brought into contact with the top of the precursor so that the growth direction is parallel to the c-axis, and
The temperature was lowered from 05 ° C to 1000 ° C at a rate of 0.5 ° C / hr. After maintaining at this temperature for 200 hours, the solution was gradually cooled to 930 ° C. over 70 hours, and then gradually cooled to room temperature for 100 hours to perform crystallization.

【0075】このようにして結晶化した材料をガス置換
可能な別の炉の中に設置し、ロータリーポンプで0.1
Torrまで炉内を排気した後、炉内に酸素ガスを流し
込んで、酸素分圧が95%以上である大気圧の雰囲気に
した。その後も0.5L/minの流量で酸素ガスを炉
内に流しながら、室温から500℃まで10時間で昇温
させ、500℃から300℃まで200時間かけて徐冷
し、300℃から200℃まで200時間で徐冷し、室
温まで10時間で降温させた。
The material crystallized in this manner is placed in another gas-replaceable furnace, and is set to 0.1 by a rotary pump.
After evacuation of the furnace to Torr, oxygen gas was flowed into the furnace to create an atmospheric pressure atmosphere where the oxygen partial pressure was 95% or more. Thereafter, while flowing oxygen gas into the furnace at a flow rate of 0.5 L / min, the temperature was raised from room temperature to 500 ° C. in 10 hours, and gradually cooled from 500 ° C. to 300 ° C. over 200 hours, and then from 300 ° C. to 200 ° C. Until 200 hours, and then cooled to room temperature in 10 hours.

【0076】得られた材料の外径および厚さは、焼き縮
みのため、外径約66mm、厚さ約24mmとなってい
た。この材料を切断して断面をEPMAで観察したとこ
ろ、Y1+pBa2+q(Cu1−bAg
7−x相中に0.1〜30μm程度のY2+rBa
1+sCuO5−y相が微細に分散していた。ここで、
p、q、yはそれぞれ−0.2〜0.2の値であり、xは
−0.2〜0.6の値であった。また、bは0.02〜0.
043の値であり、平均的には0.028程度であっ
た。また、dは測定限界程度の0.002であった。こ
の材料の中心付近を偏光顕微鏡を用いて倍率1000倍
で撮影し、70×90μmの範囲を画像解析したとこ
ろ、結晶育成の際に保持時間を100時間と長時間を要
したために、このY +rBa1+sCuAgd−1
5−y相の平均粒径は約3.2μmであり、REとし
てYを用いた系としては比較的大きくなっていた。さら
に、試料全体にわたって0.1〜100μm程度のAg
が微細に分散していた。しかしながら、この材料の中心
付近を偏光顕微鏡を用いて倍率100倍で撮影し、70
0×900μmの範囲を画像解析したところ、上記と同
様の理由から、このAgの平均粒径は60μmと大きか
った。また結晶の配向性としては、種結晶を反映してデ
ィスク状材料の軸方向がc軸であるように材料全体が配
向し、隣接する結晶間の方位のずれが5°以下であった
が、方位のずれが1°以下である小傾角粒界の無い結晶
粒の大きさは5〜30mm程度であり、この小傾角粒界
の無い結晶粒が1〜5°程度の小傾角をもってつながっ
て配向していた。また、種結晶を中心に40mm程度か
ら径方向の結晶成長速度が変わった跡があり、成長速度
が遅いために100時間の温度保持を行っても40mm
程度付近までしか結晶成長が行われずに、そこから急成
長していたことがわかった。
The obtained material had an outer diameter of about 66 mm and a thickness of about 24 mm due to shrinkage due to shrinkage. When this material was cut and the cross section was observed by EPMA, Y 1 + p Ba 2 + q (Cu 1-b Ag b ) 3 O
Y 2 + r Ba of about 0.1 to 30 μm in the 7-x phase
The 1 + s CuO 5-y phase was finely dispersed. here,
p, q, and y were values of -0.2 to 0.2, respectively, and x was a value of -0.2 to 0.6. Also, b is 0.02-0.0.
043, which was about 0.028 on average. Also, d was 0.002, which is about the measurement limit. Near the center of the material taken at 1000 × magnification using a polarization microscope, the range of 70 × 90 [mu] m was image analysis, the retention time at the time of crystal growth because it took 100 hours and a long time, the Y 2 + R Ba 1 + s Cu d Ag d-1
The average particle size of the O 5-y phase was about 3.2 μm, which was relatively large for a system using Y as the RE. Furthermore, Ag of about 0.1 to 100 μm
Was finely dispersed. However, the vicinity of the center of this material was photographed with a polarizing microscope at a magnification of 100 times,
Image analysis of the range of 0 × 900 μm revealed that the average particle size of Ag was as large as 60 μm for the same reason as described above. As for the crystal orientation, the entire material was oriented so that the axial direction of the disc-shaped material was the c-axis, reflecting the seed crystal, and the misorientation between adjacent crystals was 5 ° or less. The size of a crystal grain without a small tilt grain boundary having a misorientation of 1 ° or less is about 5 to 30 mm, and the crystal grains without a small tilt grain boundary are connected with a small tilt angle of about 1 to 5 ° to be oriented. Was. In addition, there is a trace that the crystal growth rate in the radial direction has changed from about 40 mm centering on the seed crystal.
It was found that the crystal was grown only up to about the extent, and the crystal grew rapidly from there.

【0077】次に、種結晶設置表面側から1mmのとこ
ろでスライス加工し、この切断表面側にロードセルの先
端に取り付けた直径39.2mm、内径16mm、厚さ
49mmのNd−Fe−B系磁石(表面最大磁束密度
0.53T)を近づけて、オートグラフによって以下の
ように磁気反発力を測定した。まず、リング磁石の軸方
向とディスク状超電導体の軸方向がほぼ一致するよう
に、磁石を超電導体から300mm離して設置した。超
電導体を液体窒素中に漬けて温度77Kに冷却した後、
磁石を軸方向に沿って速度5mm/minで超電導体に
近づけた。超電導体と磁石との間隔が0.1mmとなる
まで磁石を近づけて、この時発生する反発力を測定した
ところ、超電導体と磁石との間隔が0.1mmのとき、
18kg・fとやや磁気反発力が低かった。
Next, slice processing was performed at 1 mm from the seed crystal installation surface side, and a 39.2 mm diameter, 16 mm inner diameter, 49 mm thick Nd-Fe-B-based magnet ( With the maximum surface magnetic flux density (0.53 T) approached, the magnetic repulsion was measured by an autograph as follows. First, the magnet was installed at a distance of 300 mm from the superconductor so that the axial direction of the ring magnet and the axial direction of the disk-shaped superconductor almost coincided. After immersing the superconductor in liquid nitrogen and cooling to a temperature of 77K,
The magnet was approached to the superconductor at a speed of 5 mm / min along the axial direction. When the distance between the superconductor and the magnet was approached until the distance between the superconductor and the magnet was 0.1 mm, and the repulsive force generated at this time was measured, when the distance between the superconductor and the magnet was 0.1 mm,
The magnetic repulsion was slightly low at 18 kg · f.

【0078】次に、このディスク状材料から2.5×2.
5×2mmの試料を切り出して、振動試料型磁力計によ
り磁化率を測定した。得られた磁化率曲線よりBean
モデルを適用して温度77K、外部磁場1Tにおける臨
界電流密度(Jc)を見積もったところ、1.5×10
A/cmであった。
Next, 2.5 × 2.
A sample of 5 × 2 mm was cut out, and the magnetic susceptibility was measured with a vibrating sample magnetometer. From the obtained susceptibility curve, Bean
When the critical current density (Jc) at a temperature of 77 K and an external magnetic field of 1 T was estimated by applying the model, 1.5 × 10
It was 4 A / cm 2 .

【0079】さらに、このディスク状材料の中心付近か
ら15×2×3mmの試料を厚さ方向(2mmの方向)
が結晶のc軸方向と略平行になるように切り出し、長さ
方向(15mmの方向)に電流を流して四端子法により
臨界温度(Tc)を測定したところ、90.9Kであ
り、Agとして細かいAg粉末を用いたため、高い値を
示した。
Further, a sample of 15 × 2 × 3 mm was placed in the thickness direction (2 mm direction) from the vicinity of the center of the disc-shaped material.
Was cut out so as to be substantially parallel to the c-axis direction of the crystal, and a critical current (Tc) was measured by a four-terminal method by flowing a current in the length direction (direction of 15 mm). Since a fine Ag powder was used, a high value was shown.

【0080】次に、この超電導体に外部磁場2Tを加え
ながら室温から温度77Kまで冷却した後、磁場を取り
去って超電導体中に捕捉される磁束密度を測定した。こ
の測定は、ホール素子をXYステージに取り付けて超電
導体表面から約1mmの距離で超電導体表面に沿って移
動させ、ディスク状材料の軸方向の磁束密度分布を測定
することによって行った。その結果、図15に示すよう
に急成長した端部付近での磁束密度の勾配が緩やかにな
ってしまい、最大1.0Tの捕捉磁束密度しか得られな
かった。また、ディスク材料の垂直方向の平均磁束密度
は0.30Tであり、総磁束(平均磁束密度×面積)は
10Wbであった。
Next, the superconductor was cooled from room temperature to a temperature of 77 K while applying an external magnetic field of 2T, and the magnetic field was removed to measure the magnetic flux density captured in the superconductor. This measurement was performed by mounting the Hall element on an XY stage and moving it along the superconductor surface at a distance of about 1 mm from the superconductor surface, and measuring the axial magnetic flux density distribution of the disc-shaped material. As a result, as shown in FIG. 15, the gradient of the magnetic flux density in the vicinity of the rapidly grown end became gentle, and only a trapped magnetic flux density of 1.0 T at the maximum was obtained. The average magnetic flux density in the vertical direction of the disk material was 0.30 T, and the total magnetic flux (average magnetic flux density × area) was 10 Wb.

【0081】また、結晶のc軸に平行に力を加えた場合
の機械強度を3点曲げ試験によって評価した。全長20
mmの試料を用いて、測定上の長さL=14.2mm、
幅W=3.5mm、厚さt=1mm、最大負荷をPとする
と、曲げ強度σはσ=3PL/(2Wt)から求める
ことができる。ここで、クロスヘッドの速度は0.5m
m/minとした。この試料の機械強度は55MPaで
あり、AgやY2+rBa1+sCuAgd−1
5−y相の凝集粗大化のために低かった。
The mechanical strength when a force was applied parallel to the c-axis of the crystal was evaluated by a three-point bending test. Total length 20
mm sample, the measured length L = 14.2 mm,
When the width W is 3.5 mm, the thickness t is 1 mm, and the maximum load is P, the bending strength σ can be obtained from σ = 3PL / (2Wt 2 ). Here, the speed of the crosshead is 0.5 m
m / min. The mechanical strength of this sample is 55 MPa, and Ag or Y 2 + r Ba 1 + s Cu d Ag d-1 O
Low due to coarsening of the 5-y phase.

【0082】[比較例2]本比較例は、成長率が速いN
d系にAgを20wt%添加した材料を製造する例であ
る。
[Comparative Example 2] In this comparative example, the growth rate of N
This is an example of manufacturing a material in which 20 wt% of Ag is added to d-system.

【0083】まず、Nd、BaCO、CuOの
各原料粉末をNd:Ba:Cu=1.8:2.4:3.4
になるように秤量した後、BaCOとCuOのみを8
80℃で30時間焼成して、BaCuOとCuOの仮
焼粉を得た(モル比でBaCuO:CuO=2.4:
1.0)。次に、この仮焼粉に、予め秤量しておいたN
と0.5wt%のPt粉末と20wt%のAg
粉末(平均粒径10μm)とを混合して大気中900゜C
で10時間焼成した。得られた仮焼粉をライカイ機で粉
砕して平均粒径約2μmとした。また、得られた仮焼粉
を粉末X線回折により分析したところ、Nd1+pBa
2+q(Cu1−bAg7−x相およびNd
4+rBa2+s(Cu1−dAg10−y
が確認された。
First, each raw material powder of Nd 2 O 3 , BaCO 3 , and CuO was mixed with Nd: Ba: Cu = 1.8: 2.4: 3.4.
After weighing, only BaCO 3 and CuO were added to 8
By calcining at 80 ° C. for 30 hours, a calcined powder of BaCuO 2 and CuO was obtained (BaCuO 2 : CuO = 2.4 by molar ratio:
1.0). Next, the calcined powder was weighed in advance with N
d 2 O 3 , 0.5 wt% Pt powder and 20 wt% Ag
Mixed with powder (average particle size 10μm)
For 10 hours. The obtained calcined powder was pulverized with a raikai machine to an average particle size of about 2 μm. Further, when the obtained calcined powder was analyzed by powder X-ray diffraction, Nd 1 + p Ba
2 + q (Cu 1-b Ag b ) 3 O 7-x phase and Nd
4 + r Ba 2 + s (Cu 1-d Ag d ) 2 O 10-y phase was confirmed.

【0084】このようにして作製された合成粉を外径8
0mm、厚さ25mmのディスク状にプレス成形して前
駆体を作製した。
The synthetic powder produced in this manner was used to prepare an outer diameter of 8
A precursor was prepared by press-forming into a disk having a thickness of 0 mm and a thickness of 25 mm.

【0085】次に、この前駆体をNd粉末を敷い
たアルミナ基板上に載せて、2ゾーン型の炉体内に設置
した。次いで、ガス排気口から炉体内部のガスを排気
し、炉内を0.1Torrの真空状態にした後、ガス導
入口よりO1%とAr99%の混合ガスを流し込んで
大気圧にした。その後も0.2L/minの流量で混合
ガスを流しながら以下の工程を行った。
Next, this precursor was placed on an alumina substrate on which Nd 2 O 3 powder was spread, and placed in a two-zone furnace. Next, the gas inside the furnace body was evacuated from the gas exhaust port, and the inside of the furnace was evacuated to 0.1 Torr. After that, a mixed gas of 1% O 2 and 99% Ar was poured from the gas inlet to atmospheric pressure. Thereafter, the following steps were performed while flowing the mixed gas at a flow rate of 0.2 L / min.

【0086】まず、室温から50時間で1100℃まで
昇温させ、この温度で20分間保持して半溶融状態にし
た後、前駆体2の上部が低温側となるように上下に10
℃/cmの温度勾配を加えて968℃まで10℃/mi
nで降温させた。次いで、予め作製しておいたAgを含
まないNd1.8Ba2.4Cu3.4組成の溶融体
の種結晶を成長方向がc軸と平行になるように前駆体の
上部に接触させ、968℃から0.5℃/hrの速度で
963℃まで降温させた。この温度で60時間保持した
後、893゜Cまで70時間で徐冷し(冷却速度1℃/h
/温度勾配10℃/cm=成長速度1mm/h)、その
後、室温まで100時間かけて徐冷して結晶化を行っ
た。
First, the temperature is raised from room temperature to 1100 ° C. in 50 hours, kept at this temperature for 20 minutes to make it a semi-molten state, and then moved up and down so that the upper part of the precursor 2 is on the low temperature side.
10 ° C / mi to 968 ° C by adding a temperature gradient of 10 ° C / cm
The temperature was lowered at n. Next, a seed crystal of a Nd 1.8 Ba 2.4 Cu 3.4 O x composition containing no Ag previously prepared is placed on top of the precursor so that the growth direction is parallel to the c-axis. The temperature was lowered from 968 ° C to 963 ° C at a rate of 0.5 ° C / hr. After maintaining at this temperature for 60 hours, it is gradually cooled to 893 ° C. in 70 hours (cooling rate 1 ° C./h)
/ Temperature gradient 10 ° C./cm=growth rate 1 mm / h), and then slowly cooled to room temperature over 100 hours to perform crystallization.

【0087】このようにして結晶化した材料をガス置換
可能な別の炉の中に設置し、ロータリーポンプで0.1
Torrまで炉内を排気した後、炉内に酸素ガスを流し
込んで、酸素分圧が95%以上である大気圧の雰囲気に
した。その後も0.5L/minの流量で酸素ガスを炉
内に流しながら、室温から700℃まで10時間で昇温
させ、この温度で80時間保持し、700℃から500
℃まで100時間で降温させ、500゜Cから300゜Cま
で200時間かけて徐冷し、300℃から200゜Cまで
200時間で徐冷し、その後、室温まで10時間で降温
させた。
The material crystallized in this way is placed in another gas-replaceable furnace, and is set to 0.1 by a rotary pump.
After evacuation of the furnace to Torr, oxygen gas was flowed into the furnace to create an atmospheric pressure atmosphere where the oxygen partial pressure was 95% or more. Thereafter, while flowing oxygen gas into the furnace at a flow rate of 0.5 L / min, the temperature was raised from room temperature to 700 ° C. in 10 hours, and maintained at this temperature for 80 hours.
The temperature was lowered to 100 ° C. in 100 hours, gradually cooled from 500 ° C. to 300 ° C. over 200 hours, gradually cooled from 300 ° C. to 200 ° C. in 200 hours, and then lowered to room temperature in 10 hours.

【0088】得られた材料の外径および厚さは、焼き縮
みのため、外径約66mm、厚さ約24mmとなってい
た。この材料を切断して断面をEPMAで観察したとこ
ろ、Nd1+pBa2+q(Cu1−bAg
7−x相中に0.1〜30μm程度のNd4+rBa
2+s(Cu1−dAg10−y相が微細に分
散していた。ここで、p、q、r、s、yはそれぞれ−
0.2〜0.2の値であり、xは−0.2〜0.6の値であ
った。また、bは0〜0.007の値であり、平均的に
は0.003程度であった。また、dは測定限界程度の
0.002であった。この材料の中心付近を偏光顕微鏡
を用いて倍率1000倍で撮影し、70×90μmの範
囲を画像解析したところ、このNd4+rBa
2+s(Cu1−dAg 10−y相の平均粒径
は約4μmであった。さらに、試料全体にわたって0.
1〜100μm程度のAgが微細に分散していた。この
材料の中心付近を偏光顕微鏡を用いて倍率100倍で撮
影し、700×900μmの範囲を画像解析したとこ
ろ、このAgの平均粒径は28μmであった。しかし、
結晶成長速度が速いために、育成された結晶は種結晶か
ら放射状に成長していたが、種結晶の方位は反映せず、
多結晶体となっていた。
The outer diameter and thickness of the obtained material are
Only about 66mm in outside diameter and about 24mm in thickness
Was. This material was cut and the cross section was observed with EPMA.
Nd1 + pBa2 + q(Cu1-bAgb)3O
7-xNd of about 0.1 to 30 μm in the phase4 + rBa
2 + s(Cu1-dAgd)2O10-yFine phase
Was scattered. Here, p, q, r, s, and y are each-
Is a value between 0.2 and 0.2, and x is a value between -0.2 and 0.6.
Was. B is a value of 0 to 0.007, and on average,
Was about 0.003. D is about the measurement limit.
0.002. Polarized light microscope near the center of this material
The image was taken at a magnification of 1000 × using a 70 × 90 μm
When the image analysis of the box4 + rBa
2 + s(Cu1-dAg d)2O10-yAverage particle size of phase
Was about 4 μm. In addition, 0.
Ag of about 1 to 100 μm was finely dispersed. this
Photographed near the center of the material at 100x magnification using a polarizing microscope
The area of 700 × 900μm was image-analyzed.
The average particle size of the Ag was 28 μm. But,
Is the grown crystal a seed crystal because of the high crystal growth rate?
But it did not reflect the orientation of the seed crystal,
It was polycrystalline.

【0089】次に、この材料の種結晶を設置した側から
1mmのところでスライス加工し、この切断表面側にロ
ードセルの先端に取り付けた直径39.2mm、内径1
6mm、厚さ49mmのNd−Fe−B系磁石(表面最
大磁束密度0.53T)を近づけて、オートグラフによ
って以下のように磁気反発力を測定した。まず、リング
磁石の軸方向とディスク状超電導体の軸方向がほぼ一致
するように、磁石を超電導体から300mm離して設置
した。超電導体を液体窒素中に漬けて温度77Kに冷却
した後、磁石を軸方向に沿って速度5mm/minで超
電導体に近づけた。超電導体と磁石との間隔が0.1m
mとなるまで磁石を近づけて、この時発生する反発力を
測定したところ、超電導体と磁石との間隔が0.1mm
のとき、15kg・f程度と磁気反発力が非常に低かっ
た。
Next, slice processing was performed at a point 1 mm from the side where the seed crystal of this material was placed, and a 39.2 mm diameter and an inner diameter of 1 mm attached to the tip of the load cell on the cut surface side.
An Nd-Fe-B-based magnet (surface maximum magnetic flux density: 0.53 T) having a thickness of 6 mm and a thickness of 49 mm was approached, and the magnetic repulsion was measured by an autograph as follows. First, the magnet was installed at a distance of 300 mm from the superconductor so that the axial direction of the ring magnet and the axial direction of the disk-shaped superconductor almost coincided. After the superconductor was immersed in liquid nitrogen and cooled to a temperature of 77K, the magnet was approached to the superconductor at a speed of 5 mm / min along the axial direction. The distance between the superconductor and the magnet is 0.1m
m and the repulsive force generated at this time was measured, and the distance between the superconductor and the magnet was 0.1 mm.
At that time, the magnetic repulsion was as low as about 15 kg · f.

【0090】次に、この切断したディスク状材料から
2.5×2.5×2mmの試料を切り出して、振動試料型
磁力計により磁化率を測定した。得られた磁化率曲線よ
りBeanモデルを適用して温度77K、外部磁場1T
における臨界電流密度(Jc)を見積もったところ、
1.5×10A/cmと値が低かった。
Next, a sample of 2.5 × 2.5 × 2 mm was cut out from the cut disk-shaped material, and the magnetic susceptibility was measured using a vibrating sample magnetometer. Applying a Bean model from the obtained magnetic susceptibility curve, the temperature is 77K, the external magnetic field is 1T.
When the critical current density (Jc) at was estimated,
The value was as low as 1.5 × 10 4 A / cm 2 .

【0091】さらに、このディスク状材料の中心付近か
ら15×2×3mmの試料を厚さ方向(2mmの方向)
が結晶のc軸方向と略平行になるように切り出し、長さ
方向(15mmの方向)に電流を流して四端子法により
臨界温度(Tc)を測定したところ、93.5Kであっ
た。
Further, a sample of 15 × 2 × 3 mm was placed in the thickness direction (2 mm direction) from the vicinity of the center of the disc-shaped material.
Was cut out so as to be substantially parallel to the c-axis direction of the crystal, and a critical temperature (Tc) was measured by a four-terminal method by applying a current in a length direction (direction of 15 mm).

【0092】次に、この超電導体に外部磁場2Tを加え
ながら室温から温度77Kまで冷却した後、磁場を取り
去って超電導体中に捕捉される磁束密度を測定した。こ
の測定は、ホール素子をXYステージに取り付けて超電
導体表面から約0.1mmの距離で超電導体表面に沿っ
て移動させ、ディスク状材料の軸方向の磁束密度分布を
測定することによって行った。その結果、図16に示す
ように最大0.7Tの捕捉磁束密度が得られた。また、
ディスク材料の垂直方向の平均磁束密度は0.19Tで
あり、総磁束(平均磁束密度×面積)は6Wbであっ
た。
Next, the superconductor was cooled from room temperature to a temperature of 77 K while applying an external magnetic field of 2T, and then the magnetic field was removed to measure the magnetic flux density captured in the superconductor. This measurement was performed by mounting the Hall element on an XY stage, moving the Hall element along the superconductor surface at a distance of about 0.1 mm from the superconductor surface, and measuring the axial magnetic flux density distribution of the disc-shaped material. As a result, as shown in FIG. 16, a maximum trapped magnetic flux density of 0.7 T was obtained. Also,
The average magnetic flux density in the vertical direction of the disc material was 0.19 T, and the total magnetic flux (average magnetic flux density × area) was 6 Wb.

【0093】また、多結晶体である試料から適当な方位
に試料を切り出し、3点曲げ試験によって機械強度を評
価した。全長20mmの試料を用いて、測定上の長さL
=14.2mm、幅W=3.5mm、厚さt=1mm、最
大負荷をPとすると、曲げ強度σはσ=3PL/(2W
)から求めることができる。ここで、クロスヘッド
の速度は0.5mm/minとした。この試料の機械強
度は25MPaであり、多結晶体であるために低かっ
た。
A sample was cut out from the polycrystalline sample in an appropriate direction, and the mechanical strength was evaluated by a three-point bending test. Using a sample with a total length of 20 mm, the measurement length L
= 14.2 mm, width W = 3.5 mm, thickness t = 1 mm, and maximum load P, the bending strength σ is σ = 3PL / (2W
t 2 ). Here, the speed of the crosshead was 0.5 mm / min. The mechanical strength of this sample was 25 MPa, which was low because it was polycrystalline.

【0094】[比較例3]本比較例は、Ag無添加のY
系材料(成長率0.1)を製造する際に、Ag無添加の
Sm系材料(成長率0.7)を上部に積層して結晶育成
を行う例である。
[Comparative Example 3] In this comparative example, Y without Ag was added.
This is an example in which a crystal growth is performed by stacking an Ag-free Sm-based material (growth rate 0.7) on the top when manufacturing a system material (growth rate 0.1).

【0095】まず、RE(本比較例ではY
とSm)、BaCO、CuOの各原料粉末をR
E:Ba:Cu=1.8:2.4:3.4になるように秤
量した後、BaCOとCuOのみを880℃で30時
間焼成して、BaCuOとCuOの仮焼粉を得た(モ
ル比でBaCuO:CuO=2.4:1.0)。次に、
この仮焼粉に、予め秤量しておいたREと0.5
wt%のPt粉末(平均粒径0.01μm)とを混合し
て大気中900℃で10時間焼成した。得られた仮焼粉
をライカイ機で粉砕して平均粒径約2μmとした。ま
た、得られた仮焼粉を粉末X線回折により分析したとこ
ろ、RE1+pBa2+q(Cu1−bAg
7−x相およびRE2+rBa1+s(Cu1−dAg
)O5−y相が確認された。
First, RE 2 O 3 (Y 2 O 3 in this comparative example)
And Sm 2 O 3 ), BaCO 3 , and CuO as raw material powders.
E: After weighing Ba: Cu = 1.8: 2.4: 3.4, only BaCO 3 and CuO were calcined at 880 ° C. for 30 hours to obtain a calcined powder of BaCuO 2 and CuO. (Molar ratio: BaCuO 2 : CuO = 2.4: 1.0). next,
To this calcined powder, pre-weighed RE 2 O 3 and 0.5 were added.
The mixture was mixed with Pt powder (average particle size: 0.01 μm) of wt% and fired at 900 ° C. in the air for 10 hours. The obtained calcined powder was pulverized with a raikai machine to an average particle size of about 2 μm. Further, when the obtained calcined powder was analyzed by powder X-ray diffraction, RE 1 + p Ba 2 + q (Cu 1-b Ag b ) 3 O
7-x phase and RE 2 + r Ba 1 + s (Cu 1-d Ag
d ) O5 -y phase was observed.

【0096】このようにして作製された合成粉のうち、
REがYのものについては外径80mm、厚さ25mm
のディスク状にプレス成形して前駆体1を作製し、RE
がSmのものについては外径80mm、厚さ8mmのデ
ィスク状にプレス成形して前駆体2を作製した。
[0096] Of the synthetic powder thus produced,
For those with RE of Y, outer diameter 80 mm, thickness 25 mm
The precursor 1 was prepared by press molding into a disk shape of
For Sm, precursor 2 was prepared by press-forming into a disk having an outer diameter of 80 mm and a thickness of 8 mm.

【0097】次に、図6に示すように、前駆体2を前駆
体1の上部に積層して、Y粉末を敷いたアルミナ
基板上に載せ、2ゾーン型の炉体内に設置して以下の工
程を行った。
Next, as shown in FIG. 6, the precursor 2 was laminated on the upper part of the precursor 1, placed on an alumina substrate on which Y 2 O 3 powder was spread, and placed in a two-zone furnace. The following steps were performed.

【0098】まず、室温から50時間で1100℃まで
昇温させ、この温度で20分間保持して半溶融状態にし
た後、前駆体2の上部が低温側となるように上下に5℃
/cmの温度勾配を加えて1065℃まで10℃/mi
nで降温させた。次いで、予め作製しておいたSm
1.8(Ba0.75Sr0.252.4Cu3.4
組成の溶融体の種結晶を成長方向がc軸と平行になるよ
うに前駆体2の上部に接触させ、1065℃から0.5
℃/hrの速度で1060℃まで降温させた。この温度
で60時間保持した後、1000℃まで60時間で降温
させ、この温度で10時間保持した。その後、930℃
まで70時間かけて徐冷し、その後、室温まで100時
間で徐冷して結晶化を行った。
First, the temperature was raised from room temperature to 1100 ° C. in 50 hours, kept at this temperature for 20 minutes to make a semi-molten state, and then moved up and down 5 ° C. so that the upper part of the precursor 2 was on the low temperature side.
/ Cm to 1065 ° C with a temperature gradient of 10 ° C / mi
The temperature was lowered at n. Next, Sm
1.8 (Ba 0.75 Sr 0.25 ) 2.4 Cu 3.4 O x
A seed crystal of a melt having a composition is brought into contact with the upper part of the precursor 2 so that the growth direction is parallel to the c-axis.
The temperature was lowered to 1060 ° C at a rate of ° C / hr. After maintaining at this temperature for 60 hours, the temperature was lowered to 1000 ° C. in 60 hours and maintained at this temperature for 10 hours. Then 930 ° C
Until 70 hours, and then slowly to room temperature for 100 hours for crystallization.

【0099】このようにして結晶化した材料をガス置換
可能な別の炉の中に設置し、ロータリーポンプで0.1
Torrまで炉内を排気した後、炉内に酸素ガスを流し
込んで、酸素分圧が95%以上である大気圧の雰囲気に
した。その後も0.5L/minの流量で酸素ガスを炉
内に流しながら、室温から500℃まで10時間で昇温
させ、500℃から300℃まで200時間かけて徐冷
し、300℃から200℃まで200時間で徐冷し、室
温まで10時間で降温させた。
The material crystallized in this manner is placed in another gas-replaceable furnace, and is set to 0.1 by a rotary pump.
After evacuation of the furnace to Torr, oxygen gas was flowed into the furnace to create an atmospheric pressure atmosphere where the oxygen partial pressure was 95% or more. Thereafter, while flowing oxygen gas into the furnace at a flow rate of 0.5 L / min, the temperature was raised from room temperature to 500 ° C. in 10 hours, and gradually cooled from 500 ° C. to 300 ° C. over 200 hours, and then from 300 ° C. to 200 ° C. Until 200 hours, and then cooled to room temperature in 10 hours.

【0100】得られた材料の外径および厚さは、焼き縮
みのため、外径約68mm、厚さ約28mmとなってい
た。この材料を切断して断面をEPMAで観察したとこ
ろ、(Sm1−a1+pBa2+qCu
7−x相中に0.1〜30μm程度の(Sm
1−c2+rBa1+sCuO5−y相が微細に
分散していた。ここで、p、q、r、s、yはそれぞれ
−0.2〜0.2の値であり、xは−0.2〜0.6の値で
あった。また、a、cは前駆体2の上面から下へ3mm
程度までは1.0〜0.9の値であり、そこから前駆体1
と前駆体2の界面から前駆体1側に2mm程度までは
0.9から0.1程度まで徐々に濃度が変化し、そこから
前駆体1の下までは0.1〜0の値であった。この材料
の中心付近を偏光顕微鏡を用いて倍率1000倍で撮影
し、70×90μmの範囲を画像解析したところ、この
(Sm1−c2+rBa1+sCuO5−y相の
平均粒径は1.2μmであった。しかし、結晶成長速度
が速いために、育成された結晶は種結晶から放射状に成
長していたが、種結晶の方位は反映せず、多結晶体とな
っていた。
The outer diameter and thickness of the obtained material were about 68 mm in outer diameter and about 28 mm in thickness due to shrinkage. Observation of the cross section with EPMA to cutting the material, (Sm a Y 1-a ) 1 + p Ba 2 + q Cu 3 O
In the 7-x phase, about 0.1 to 30 μm (Sm
cY1 -c ) 2 + rBa1 + sCuO5 -y phase was finely dispersed. Here, p, q, r, s, and y were values of -0.2 to 0.2, respectively, and x was a value of -0.2 to 0.6. Also, a and c are 3 mm downward from the upper surface of the precursor 2.
To the extent it is a value of 1.0-0.9, from which precursor 1
From the interface of the precursor 2 to the precursor 1 side, the concentration gradually changes from 0.9 to about 0.1 up to about 2 mm, and from there to below the precursor 1, the concentration is 0.1 to 0. Was. The vicinity of the center of this material was photographed at a magnification of 1000 using a polarizing microscope, and the area of 70 × 90 μm was image-analyzed. The average particle size of the (Sm c Y 1-c ) 2 + r Ba 1 + s CuO 5-y phase Was 1.2 μm. However, because of the high crystal growth rate, the grown crystal grew radially from the seed crystal, but did not reflect the orientation of the seed crystal and was in a polycrystalline form.

【0101】次に、この材料の前駆体1と前駆体2の界
面から前駆体2側に1mmのところでスライス加工して
上部の前駆体2の部分を切断した。この切断表面側にロ
ードセルの先端に取り付けた直径39.2mm、内径1
6mm、厚さ49mmのNd−Fe−B系磁石(表面最
大磁束密度0.53T)を近づけて、オートグラフによ
って以下のように磁気反発力を測定した。まず、リング
磁石の軸方向とディスク状超電導体の軸方向がほぼ一致
するように、磁石を超電導体から300mm離して設置
した。超電導体を液体窒素中に漬けて温度77Kに冷却
した後、磁石を軸方向に沿って速度5mm/minで超
電導体に近づけた。超電導体と磁石との間隔が0.1m
mとなるまで磁石を近づけて、この時発生する反発力を
測定したところ、超電導体と磁石との間隔が0.1mm
のとき、14kg・fの磁気反発力が得られた。
Next, this material was sliced at a distance of 1 mm from the interface between the precursor 1 and the precursor 2 toward the precursor 2 to cut off the upper part of the precursor 2. A diameter of 39.2 mm, an inside diameter of 1
An Nd-Fe-B-based magnet (surface maximum magnetic flux density: 0.53 T) having a thickness of 6 mm and a thickness of 49 mm was approached, and the magnetic repulsion was measured by an autograph as follows. First, the magnet was installed at a distance of 300 mm from the superconductor so that the axial direction of the ring magnet and the axial direction of the disk-shaped superconductor almost coincided. After the superconductor was immersed in liquid nitrogen and cooled to a temperature of 77K, the magnet was approached to the superconductor at a speed of 5 mm / min along the axial direction. The distance between the superconductor and the magnet is 0.1m
m and the repulsive force generated at this time was measured, and the distance between the superconductor and the magnet was 0.1 mm.
At this time, a magnetic repulsion of 14 kg · f was obtained.

【0102】次に、このディスク状材料から2.5×2.
5×2mmの試料を切り出して、振動試料型磁力計によ
り磁化率を測定した。得られた磁化率曲線よりBean
モデルを適用して温度77K、外部磁場1Tにおける臨
界電流密度(Jc)を見積もったところ、1.3×10
A/cmであった。
Next, 2.5 × 2.
A sample of 5 × 2 mm was cut out, and the magnetic susceptibility was measured with a vibrating sample magnetometer. From the obtained susceptibility curve, Bean
When the critical current density (Jc) at a temperature of 77 K and an external magnetic field of 1 T was estimated by applying the model, 1.3 × 10
It was 4 A / cm 2 .

【0103】さらに、このディスク状材料の中心付近か
ら15×2×3mmの試料を厚さ方向(2mmの方向)
が結晶のc軸方向と略平行になるように切り出し、長さ
方向(15mmの方向)に電流を流して四端子法により
臨界温度(Tc)を測定したところ、89.9Kであっ
た。
Further, a sample of 15 × 2 × 3 mm was placed in the thickness direction (2 mm direction) from the vicinity of the center of the disc-shaped material.
Was cut out so as to be substantially parallel to the c-axis direction of the crystal, and a critical temperature (Tc) was measured by a four-terminal method by applying a current in a length direction (direction of 15 mm).

【0104】次に、この超電導体に外部磁場2Tを加え
ながら室温から温度77Kまで冷却した後、磁場を取り
去って超電導体中に捕捉される磁束密度を測定した。こ
の測定は、ホール素子をXYステージに取り付けて超電
導体表面から約1mmの距離で超電導体表面に沿って移
動させ、ディスク状材料の軸方向の磁束密度分布を測定
することによって行った。その結果、図17に示すよう
に最大0.67Tの捕捉磁束密度が得られた。またディ
スク材料の垂直方向の平均磁束密度は0.25T、総磁
束(平均磁束密度×面積)は9Wbであった。
Next, the superconductor was cooled from room temperature to a temperature of 77 K while applying an external magnetic field of 2T, and then the magnetic field was removed to measure the magnetic flux density captured in the superconductor. This measurement was performed by mounting the Hall element on an XY stage and moving it along the superconductor surface at a distance of about 1 mm from the superconductor surface, and measuring the axial magnetic flux density distribution of the disc-shaped material. As a result, a trapped magnetic flux density of 0.67 T at the maximum was obtained as shown in FIG. The average magnetic flux density in the vertical direction of the disk material was 0.25 T, and the total magnetic flux (average magnetic flux density × area) was 9 Wb.

【0105】また、多結晶体である試料から適当な方位
に試料を切り出し、3点曲げ試験によって機械強度を評
価した。全長20mmの試料を用いて、測定上の長さL
=14.2mm、幅W=3.5mm、厚さt=1mm、最
大負荷をPとすると、曲げ強度σはσ=3PL/(2W
)から求めることができる。ここで、クロスヘッド
の速度は0.5mm/minとした。この試料の機械強
度は28MPaであり、多結晶体であるために低かっ
た。
A sample was cut out from a polycrystalline sample in an appropriate direction, and the mechanical strength was evaluated by a three-point bending test. Using a sample with a total length of 20 mm, the measurement length L
= 14.2 mm, width W = 3.5 mm, thickness t = 1 mm, and maximum load P, the bending strength σ is σ = 3PL / (2W
t 2 ). Here, the speed of the crosshead was 0.5 mm / min. The mechanical strength of this sample was 28 MPa, which was low because it was polycrystalline.

【0106】以上の実施例では、BaCuOとCuO
の仮焼粉に、予め秤量しておいたRE、Pt粉末
およびAg粉末を混合した後、900℃で焼成すること
により、RE1+pBa2+q(Cu1−bAg
7−x相およびRE2+rBa1+s(Cu1−d
)O5−y相を主相とする仮焼粉としているが、こ
の仮焼を行わずに、BaCuO、CuO、RE
、Pt粉末およびAg粉末の混合粉末の状態で成
形して同様の溶融結晶化を行っても、昇温過程の800
℃〜1000℃の範囲で固相反応によりRE1+pBa
2+q(Cu1−bAg7−x相およびRE
2+rBa1+s(Cu1−dAg)O5−y相を経
由するため、同様の効果が得られる。
In the above embodiments, BaCuO 2 and CuO
RE 2 O 3 , Pt powder, and Ag powder weighed in advance are mixed with the calcined powder of No. 1 and calcined at 900 ° C. to obtain RE 1 + p Ba 2 + q (Cu 1-b Ag b ) 3
O 7-x phase and RE 2 + r Ba 1 + s (Cu 1-d A
g d ) Although the calcined powder is mainly composed of the O 5-y phase, BaCuO 2 , CuO, RE
Even if the same melt crystallization is performed by molding in the state of a mixed powder of 2 O 3 , Pt powder and Ag powder, 800
RE 1 + p Ba by solid phase reaction in the range of
2 + q (Cu 1-b Ag b ) 3 O 7-x phase and RE
The same effect can be obtained because the light passes through the 2 + r Ba 1 + s (Cu 1-d Ag d ) O 5-y phase.

【0107】[0107]

【発明の効果】以上詳述したように、本発明によれば、
RE化合物(REはYを含む1種または2種以上の希土
類金属元素)、Ba化合物およびCu化合物を含む原料
混合体を、この原料混合体の融点より高い温度に加熱溶
融した後に、温度勾配を加えながら徐冷工程を行って結
晶を成長させることによりRE−Ba−Cu−O系酸化
物超電導体を製造する方法において、成長率が0.1〜
0.5mm/h/℃の範囲である系の材料を上部に積層
して結晶育成を行うことにより、高特性のRE−Ba−
Cu−O系酸化物超電導材料を短時間で歩留まり良く製
造することができる
As described in detail above, according to the present invention,
A raw material mixture containing an RE compound (RE is one or more rare earth metal elements containing Y), a Ba compound, and a Cu compound is heated and melted at a temperature higher than the melting point of the raw material mixture. In the method of producing a RE-Ba-Cu-O-based oxide superconductor by performing a slow cooling step and growing a crystal while adding, the growth rate is 0.1 to 0.1.
By stacking a material of a system having a range of 0.5 mm / h / ° C. on the upper portion and growing the crystal, RE-Ba-
A Cu-O-based oxide superconducting material can be manufactured in a short time with high yield.

【0108】また、上述したように、本発明によれば、
成長率が適度な速さのRE系を成長率が遅いRE系材料
または速すぎるRE系材料の上に積層して結晶育成を行
うことにより、径方向の結晶育成時間の制御が可能とな
り、RE2+rBa1+s(Cu1−dAg)O
5−y相またはRE4+rBa2+s(Cu1−dAg
10−y相やAgの凝集粗大化を防ぎ、低コス
トで、機械強度が高く、高磁気特性を有する大型の酸化
物超電導体を製造することができる。
As described above, according to the present invention,
By laminating an RE-based material having an appropriate growth rate on an RE-based material having a slow growth rate or an RE-based material having a too high growth rate and performing crystal growth, the crystal growth time in the radial direction can be controlled. 2 + r Ba 1 + s (Cu 1-d Ag d ) O
5-y phase or RE 4 + r Ba 2 + s (Cu 1-d Ag
d) prevents 2 O 10-y phase and agglomeration coarsening of Ag, at low cost, high mechanical strength, can be produced a large oxide superconductor having high magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】過冷却度とY1+pBa2+qCu7−x
相結晶の成長速度との関係を示す図。
FIG. 1. Degree of supercooling and Y 1 + p Ba 2 + q Cu 3 O 7-x
The figure which shows the relationship with the growth rate of a phase crystal.

【図2】過冷却度とGd1+pBa2+qCu
7−x相結晶の成長速度との関係を示す図。
FIG. 2 Degree of supercooling and Gd 1 + p Ba 2 + q Cu 3 O
The figure which shows the relationship with the growth rate of a 7-x phase crystal.

【図3】過冷却度とSm1+pBa2+qCu
7−x相結晶の成長速度との関係を示す図。
FIG. 3 shows the degree of supercooling and Sm 1 + p Ba 2 + q Cu 3 O
The figure which shows the relationship with the growth rate of a 7-x phase crystal.

【図4】過冷却度とNd1+pBa2+qCu
7−x相結晶の成長速度との関係を示す図。
FIG. 4 shows the degree of supercooling and Nd 1 + p Ba 2 + q Cu 3 O
The figure which shows the relationship with the growth rate of a 7-x phase crystal.

【図5】各REについてのAg添加量を変えたときの成
長率を示す図。
FIG. 5 is a diagram showing a growth rate when the amount of Ag added to each RE is changed.

【図6】前駆体2を前駆体1の上部に積層した状態を示
す図。
FIG. 6 is a view showing a state in which a precursor 2 is laminated on a precursor 1;

【図7】実施例1において製造した酸化物超電導体のX
PS測定結果を示す図。
FIG. 7 shows X of the oxide superconductor produced in Example 1.
The figure which shows a PS measurement result.

【図8】金属AgのXPS測定結果を示す図。FIG. 8 is a view showing an XPS measurement result of metal Ag.

【図9】AgOのXPS測定結果を示す図。FIG. 9 is a view showing an XPS measurement result of AgO.

【図10】AgOのXPS測定結果を示す図。FIG. 10 is a graph showing an XPS measurement result of Ag 2 O;

【図11】実施例1において製造した酸化物超電導体の
捕捉磁束密度を示す図。
FIG. 11 is a diagram showing a trapped magnetic flux density of the oxide superconductor manufactured in Example 1.

【図12】実施例2において製造した酸化物超電導体の
捕捉磁束密度を示す図。
FIG. 12 is a diagram showing a trapped magnetic flux density of the oxide superconductor manufactured in Example 2.

【図13】実施例3において製造した酸化物超電導体の
捕捉磁束密度を示す図。
FIG. 13 is a diagram showing a trapped magnetic flux density of the oxide superconductor manufactured in Example 3.

【図14】実施例4おいて製造した酸化物超電導体の捕
捉磁束密度を示す図。
FIG. 14 is a graph showing a trapped magnetic flux density of an oxide superconductor manufactured in Example 4.

【図15】比較例1において製造した酸化物超電導体の
捕捉磁束密度を示す図。
FIG. 15 is a diagram showing a trapped magnetic flux density of the oxide superconductor manufactured in Comparative Example 1.

【図16】比較例2において製造した酸化物超電導体の
捕捉磁束密度を示す図。
FIG. 16 is a diagram showing a trapped magnetic flux density of an oxide superconductor manufactured in Comparative Example 2.

【図17】比較例3において製造した酸化物超電導体の
捕捉磁束密度を示す図。
FIG. 17 is a diagram showing a trapped magnetic flux density of an oxide superconductor manufactured in Comparative Example 3.

【符号の説明】[Explanation of symbols]

1、2 前駆体 1,2 precursor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷山 秀悦 東京都千代田区丸の内一丁目8番2号 同 和鉱業株式会社内 (72)発明者 長屋 重夫 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 Fターム(参考) 4G047 JA02 JB02 JC02 JC03 KA01 KA18 KB01 KB04 KB17 KC06 LB03 4G077 BC53 CA05 CA09 EC02 EC07 5G321 AA01 AA04 BA03 BA05 BA11 CA04 CA05 DB02 DB17 DB44 DB46 DB47 DB48  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideyoshi Haseyama 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Shigeo Nagaya Kita-Sekiyama 20 No. 1 Chubu Electric Power Co., Inc. Power Technology Research Laboratory F term (reference) 4G047 JA02 JB02 JC02 JC03 KA01 KA18 KB01 KB04 KB17 KC06 LB03 4G077 BC53 CA05 CA09 EC02 EC07 5G321 AA01 AA04 BA03 BA05 BA11 CA04 CA05 DB02 DB17 DB44 DB47 DB47 DB48

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 構成元素としてRE(REはYを含む1
種または2種以上の希土類金属元素)とBaとCuを含
むとともに成長率が0.1mm/h/℃以下または0.5
mm/h/℃以上の第1の相を含む第1の成形体と、構
成元素としてREとBaとCuを含むとともに成長率が
0.1mm/h/℃より大きく且つ0.5mm/h/℃よ
り小さい第2の相を含む第2の成形体とを積層し、前記
第1および第2の相の融点以上の温度で焼成した後、前
記第2の成形体側に種結晶を載置し、徐冷または温度保
持により前記第2の成形体側から前記第1の成形体側に
向かって結晶化させることによって酸化物超電導体を製
造することを特徴とする酸化物超電導体の製造方法。
1. RE (RE is 1 containing Y)
Or two or more rare earth metal elements), Ba and Cu, and a growth rate of 0.1 mm / h / ° C. or less or 0.5 or less.
a first compact containing a first phase of not less than mm / h / ° C. and RE, Ba and Cu as constituent elements, and having a growth rate of more than 0.1 mm / h / ° C. and 0.5 mm / h / After laminating a second compact containing a second phase smaller than 0 ° C. and firing at a temperature not lower than the melting point of the first and second phases, a seed crystal is placed on the second compact side. A method for producing an oxide superconductor by crystallizing from the second molded body side to the first molded body side by slow cooling or temperature holding.
【請求項2】 前記第1および第2の相がRE1+p
2+q(Cu −bAg7−x(−0.2≦
p≦0.2、−0.2≦q≦0.2、0≦b≦0.05、−
0.2≦x≦0.6)相であることを特徴とする、請求項
1に記載の酸化物超電導体の製造方法。
2. The method according to claim 1, wherein said first and second phases are RE 1 + p B
a 2 + q (Cu 1− b Ag b ) 3 O 7−x (−0.2 ≦
p ≦ 0.2, −0.2 ≦ q ≦ 0.2, 0 ≦ b ≦ 0.05, −
2. The method for producing an oxide superconductor according to claim 1, wherein 0.2 ≦ x ≦ 0.6) phase.
【請求項3】 前記結晶化工程において、前記酸化物超
電導体がRE1+ Ba2+q(Cu1−bAg
7−x(−0.2≦p≦0.2、−0.2≦q≦0.2、
0≦b≦0.05、−0.2≦x≦0.6)相を含むよう
に結晶化させることを特徴とする、請求項1または2に
記載の酸化物超電導体の製造方法。
3. In the crystallization step, the oxide superconductor is made of RE 1+ p Ba 2 + q (Cu 1-b Ag b ) 3
O 7-x (−0.2 ≦ p ≦ 0.2, −0.2 ≦ q ≦ 0.2,
3. The method for producing an oxide superconductor according to claim 1, wherein crystallization is performed so as to include 0 ≦ b ≦ 0.05 and −0.2 ≦ x ≦ 0.6) phase. 4.
【請求項4】 前記第1および第2の成形体が5wt%
乃至60wt%のAgを含むこと特徴とする、請求項1
乃至3のいずれかに記載の酸化物超電導体の製造方法。
4. The method according to claim 1, wherein the first and second compacts are 5 wt%.
2. The composition of claim 1, wherein the composition contains about 60 wt% of Ag.
4. The method for producing an oxide superconductor according to any one of claims 1 to 3.
【請求項5】 前記AgがAg元素量で5wt%乃至6
0wt%のAg化合物であることを特徴とする、請求項
4に記載の酸化物超電導体の製造方法。
5. The method according to claim 5, wherein the Ag is 5 wt% to 6 wt.
The method for producing an oxide superconductor according to claim 4, wherein the compound is a 0 wt% Ag compound.
【請求項6】 前記Agが、平均粒径0.3μm乃至1.
8μmのAgまたはAg化合物の粉末、または平均粒径
0.3μm乃至1.8μmのAgおよびAg化合物の粉末
として、前記第1および第2の成形体中に分散している
ことを特徴とする、請求項1乃至5のいずれかに記載の
酸化物超電導体の製造方法。
6. The method according to claim 1, wherein the Ag has an average particle size of 0.3 μm to 1.0 μm.
8 μm of a powder of Ag or an Ag compound, or a powder of Ag and an Ag compound having an average particle diameter of 0.3 μm to 1.8 μm, being dispersed in the first and second compacts. A method for producing an oxide superconductor according to claim 1.
【請求項7】 前記第1および第2の成形体が、Pt、
Pd、Ru、Rh、Ir、OsおよびReから選ばれた
少なくとも一種以上の元素を0.05wt%乃至5wt
%含むこと特徴とする、請求項1乃至6のいずれかに記
載の酸化物超電導体の製造方法。
7. The method according to claim 1, wherein the first and second molded bodies are Pt,
0.05 wt% to 5 wt% of at least one element selected from Pd, Ru, Rh, Ir, Os and Re
The method for producing an oxide superconductor according to any one of claims 1 to 6, wherein
【請求項8】 前記第1および第2の成形体が、0.0
5wt%乃至5wt%のPtを含むこと特徴とする、請
求項1乃至6のいずれかに記載の酸化物超電導体の製造
方法。
8. The method according to claim 1, wherein the first and second molded bodies are 0.0
The method for producing an oxide superconductor according to any one of claims 1 to 6, comprising 5 wt% to 5 wt% of Pt.
【請求項9】 前記第2の成形体が前記第1の成形体の
上部に積層され、前記結晶化工程において、前記第2の
成形体の上部が低温側になるように上下に温度勾配を加
えて降温させることを特徴とする、請求項1乃至8のい
ずれかに記載の酸化物超電導体の製造方法。
9. The second compact is laminated on top of the first compact, and in the crystallization step, a temperature gradient is set up and down so that the upper portion of the second compact is at a lower temperature side. The method for producing an oxide superconductor according to any one of claims 1 to 8, wherein the temperature is additionally lowered.
【請求項10】 前記種結晶が、Agを含まないRE
1.8Ba2.4Cu 3.4組成(REはYを含む1
種または2種以上の希土類金属元素)の溶融体の種結晶
であることを特徴とする、請求項1乃至9のいずれかに
記載の酸化物超電導体の製造方法。
10. The method according to claim 1, wherein the seed crystal does not contain Ag.
1.8Ba2.4Cu 3.4OxComposition (RE is 1 containing Y
Seed crystal of melt of seed or two or more rare earth metal elements)
The method according to any one of claims 1 to 9, wherein
The method for producing an oxide superconductor according to the above.
【請求項11】 RE1+pBa2+q(Cu1−b
7−x(REはYを含む1種または2種以上
の希土類金属元素、−0.2≦p≦0.2、−0.2≦q
≦0.2、0.005≦b≦0.05、−0.2≦x≦0.
6)相を含み、この相中にAgが微細に分散した酸化物
超電導体において、隣接する結晶間の方位のずれが±5
°以下であることを特徴とする酸化物超電導体。
11. RE 1 + p Ba 2 + q (Cu 1-b A
g b ) 3 O 7-x (RE is one or more rare earth metal elements including Y, -0.2 ≦ p ≦ 0.2, −0.2 ≦ q
≤0.2, 0.005≤b≤0.05, -0.2≤x≤0.2.
6) In an oxide superconductor containing a phase in which Ag is finely dispersed, the misalignment of the orientation between adjacent crystals is ± 5.
° or less, an oxide superconductor.
【請求項12】 前記RE1+pBa2+q(Cu
1−bAg −x相中に、RE2+rBa
1+s(Cu1−dAg)O5−y相またはRE
4+rBa2+s(Cu1−dAg10−y
(−0.2≦r≦0.2、−0.2≦s≦0.2、0≦d≦
0.05、−0.2≦y≦0.2)が微細に分散している
ことを特徴とする、請求項11に記載の酸化物超電導
体。
12. The RE1 + pBa2 + q(Cu
1-bAgb)3O7 -XDuring the phase, RE2 + rBa
1 + s(Cu1-dAgd) O5-yPhase or RE
4 + rBa2 + s(Cu1-dAgd)2O10-yphase
(-0.2 ≦ r ≦ 0.2, −0.2 ≦ s ≦ 0.2, 0 ≦ d ≦
0.05, -0.2 ≦ y ≦ 0.2) is finely dispersed
The oxide superconductivity according to claim 11, characterized in that:
body.
【請求項13】 前記Agの平均粒径が30μm以下で
あることを特徴とする、請求項11または12に記載の
酸化物超電導体。
13. The oxide superconductor according to claim 11, wherein the Ag has an average particle size of 30 μm or less.
【請求項14】 前記RE2+rBa1+s(Cu
1−dAg)O5− 相の平均粒径が0.5μm乃至
3μmであり、前記RE4+rBa2+s(Cu1−d
Ag10−y相の平均粒径が1μm乃至5μm
であることを特徴とする、請求項12に記載の酸化物超
電導体。
14. The RE 2 + r Ba 1 + s (Cu
The average particle size of the 1-d Ag d ) O 5- y phase is 0.5 μm to 3 μm, and the RE 4 + r Ba 2 + s (Cu 1-d
Ag d ) 2 O 10-y phase has an average particle size of 1 μm to 5 μm
The oxide superconductor according to claim 12, wherein:
【請求項15】 前記隣接する結晶間の方位のずれが±
1°以下であることを特徴とする、請求項11乃至14
のいずれかに記載の酸化物超電導体。
15. The method according to claim 15, wherein the misalignment between the adjacent crystals is ±
The angle is not more than 1 °.
The oxide superconductor according to any one of the above.
【請求項16】 構成元素としてRE(REはYを含む
1種または2種以上の希土類金属元素)とBaとCuを
含むとともに成長率が0.1mm/h/℃以下または0.
5mm/h/℃以上の第1の相を含む第1の成形体と、
構成元素としてREとBaとCuを含むとともに成長率
が0.1mm/h/℃より大きく且つ0.5mm/h/℃
より小さい第2の相を含む第2の成形体とからなる積層
体。
16. RE (RE is one or more rare earth metal elements including Y), Ba and Cu as constituent elements and a growth rate of 0.1 mm / h / ° C. or less or 0.1 mm / h / ° C. or less.
A first molded body containing a first phase of 5 mm / h / ° C. or more;
It contains RE, Ba and Cu as constituent elements and has a growth rate of more than 0.1 mm / h / ° C. and 0.5 mm / h / ° C.
A second compact comprising a smaller second phase.
【請求項17】 前記第1および第2の相がRE1+p
Ba2+q(Cu 1−bAg7−x(−0.2
≦p≦0.2、−0.2≦q≦0.2、0≦b≦0.05、
−0.2≦x≦0.6)相であることを特徴とする、請求
項16に記載の積層体。
17. The method according to claim 17, wherein said first and second phases are RE.1 + p
Ba2 + q(Cu 1-bAgb)3O7-x(-0.2
≦ p ≦ 0.2, −0.2 ≦ q ≦ 0.2, 0 ≦ b ≦ 0.05,
-0.2 ≦ x ≦ 0.6) phase
Item 17. The laminate according to Item 16.
JP29458799A 1999-03-31 1999-10-15 High temperature oxide superconducting material and method for producing the same Pending JP2001114595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29458799A JP2001114595A (en) 1999-03-31 1999-10-15 High temperature oxide superconducting material and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP9318199 1999-03-31
JP11-228217 1999-08-12
JP22821799 1999-08-12
JP11-93181 1999-08-12
JP29458799A JP2001114595A (en) 1999-03-31 1999-10-15 High temperature oxide superconducting material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001114595A true JP2001114595A (en) 2001-04-24

Family

ID=27307240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29458799A Pending JP2001114595A (en) 1999-03-31 1999-10-15 High temperature oxide superconducting material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001114595A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306692A (en) * 2005-03-28 2006-11-09 Railway Technical Res Inst Manufacturing method of oxide superconducting bulk material
JP2007131510A (en) * 2005-09-08 2007-05-31 Railway Technical Res Inst Manufacturing method of oxide superconducting bulk body and oxide superconducting bulk body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306692A (en) * 2005-03-28 2006-11-09 Railway Technical Res Inst Manufacturing method of oxide superconducting bulk material
JP2007131510A (en) * 2005-09-08 2007-05-31 Railway Technical Res Inst Manufacturing method of oxide superconducting bulk body and oxide superconducting bulk body

Similar Documents

Publication Publication Date Title
JP4113113B2 (en) Oxide superconductor joining method and oxide superconductor joined body
JPH04224111A (en) Rare earth type oxide superconductor and its production
JPH1121126A (en) Manufacturing method of oxide superconducting bulk
JP4101903B2 (en) Oxide superconducting bulk material and manufacturing method thereof
JP2001114595A (en) High temperature oxide superconducting material and method for producing the same
JP4628041B2 (en) Oxide superconducting material and manufacturing method thereof
JP5098802B2 (en) Bulk oxide superconducting material and manufacturing method thereof
Zhang et al. Tunable Density of FeSe $ _ {1-x} $ Te $ _x $ Targets With High Pressure Sintering
JP2001114576A (en) Bonded body and oxide superconductor used for the same
JP4967173B2 (en) Hollow oxide superconductor and method for producing the same
JP2001180932A (en) Oxide superconductor and manufacturing method thereof
JP4071860B2 (en) Superconducting bulk material and manufacturing method thereof
JPH1053415A (en) Oxide superconductor containing Ag with uniform crystal orientation and method for producing the same
US10468580B2 (en) Bulk oxide superconductor and method of production of bulk oxide superconductor
JP4669998B2 (en) Oxide superconductor and manufacturing method thereof
WO1991005087A1 (en) Single crystal oxide substrate, superconductor device produced therefrom, and producing thereof
JP4628042B2 (en) Oxide superconducting material and manufacturing method thereof
JP3912890B2 (en) Oxide superconductor laminate and method for producing the same
JP3889139B2 (en) Oxide superconductor containing silver and method for producing the same
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JP4101930B2 (en) Oxide bulk superconductor
JP3471443B2 (en) Manufacturing method of oxide superconductor material
JP3623829B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JP2004161504A (en) RE-Ba-Cu-O-based superconducting material precursor, RE-Ba-Cu-O-based superconducting material and method for producing the same
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106