JP2002076197A - Board for semiconductor device and semiconductor device - Google Patents
Board for semiconductor device and semiconductor deviceInfo
- Publication number
- JP2002076197A JP2002076197A JP2000254226A JP2000254226A JP2002076197A JP 2002076197 A JP2002076197 A JP 2002076197A JP 2000254226 A JP2000254226 A JP 2000254226A JP 2000254226 A JP2000254226 A JP 2000254226A JP 2002076197 A JP2002076197 A JP 2002076197A
- Authority
- JP
- Japan
- Prior art keywords
- insulating substrate
- semiconductor device
- substrate
- conductor plate
- outer peripheral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 180
- 239000004020 conductor Substances 0.000 claims abstract description 139
- 239000012212 insulator Substances 0.000 claims abstract description 119
- 239000007787 solid Substances 0.000 claims abstract description 106
- 230000002093 peripheral effect Effects 0.000 claims abstract description 92
- 238000009413 insulation Methods 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims description 220
- 229920005989 resin Polymers 0.000 claims description 24
- 239000011347 resin Substances 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 19
- 229920001296 polysiloxane Polymers 0.000 claims description 17
- 229920001187 thermosetting polymer Polymers 0.000 claims description 10
- 239000011810 insulating material Substances 0.000 claims description 6
- 239000004814 polyurethane Substances 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 230000035882 stress Effects 0.000 description 30
- 239000003822 epoxy resin Substances 0.000 description 20
- 229920000647 polyepoxide Polymers 0.000 description 20
- 230000015556 catabolic process Effects 0.000 description 18
- 230000000694 effects Effects 0.000 description 15
- 230000002829 reductive effect Effects 0.000 description 14
- 239000010949 copper Substances 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 9
- 230000036961 partial effect Effects 0.000 description 9
- 230000008602 contraction Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 6
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 230000008646 thermal stress Effects 0.000 description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000009719 polyimide resin Substances 0.000 description 3
- 238000005382 thermal cycling Methods 0.000 description 3
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013210 evaluation model Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical class C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000012886 linear function Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 102100032566 Carbonic anhydrase-related protein 10 Human genes 0.000 description 1
- 101000867836 Homo sapiens Carbonic anhydrase-related protein 10 Proteins 0.000 description 1
- 102000002508 Peptide Elongation Factors Human genes 0.000 description 1
- 108010068204 Peptide Elongation Factors Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/4847—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
- H01L2224/48472—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1301—Thyristor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30107—Inductance
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、複数の半導体チッ
プを搭載したパワージュールなどのパッケージに係り、
特に高電圧と高い信頼性が必要な電力用半導体装置のパ
ッケージ及び、このパッケージに用いる基板(半導体装
置用基板)に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a package such as a power module having a plurality of semiconductor chips mounted thereon.
In particular, the present invention relates to a power semiconductor device package requiring high voltage and high reliability, and a substrate (semiconductor device substrate) used for the package.
【0002】[0002]
【従来の技術】従来のパワーモジュール等の電力用半導
体装置(パワーデバイス)のパッケージは、図7に示す
ように、絶縁基板1に表側導電体板25及び裏側導電体
板24を付け、表側導電体板25の上に半導体チップ3
3,34,35を取り付け、ボンディングワイヤ44,
45で結んでいる。絶縁基板1は金属製の放熱板5に取
り付けられ、ケース6で囲われている。外部接続用リー
ド71,72のついたターミナルホルダ8を取り付け、
ケース6の内部に、シリコーンゲル9を流し込み、封止
部材10a,10bで密封している。2. Description of the Related Art As shown in FIG. 7, a package of a conventional power semiconductor device (power device) such as a power module has a front-side conductor plate 25 and a back-side conductor plate 24 attached to an insulating substrate 1, and a front-side conductor plate. Semiconductor chip 3 on body plate 25
3, 34, 35 are attached, and bonding wires 44,
It is tied at 45. The insulating substrate 1 is attached to a metal radiator plate 5 and is surrounded by a case 6. Attach the terminal holder 8 with the external connection leads 71 and 72,
Silicone gel 9 is poured into case 6 and sealed with sealing members 10a and 10b.
【0003】パッケージを構成しているケース6の内部
にシリコーンゲル9を充填しているのは、絶縁・封止の
ためである。これにより、外部のゴミやチリの進入を防
ぐだけでなく、空気と比べて絶縁耐圧特性が向上する。
小さな絶縁距離で高耐圧の絶縁仕様を満足することが出
来るので、よりコンパクトなパッケージ構造を提供でき
る。また、シリコーンゲル9は、柔軟な絶縁物であるの
で、温度サイクルの膨張収縮により、ボンディングワイ
ヤ44,45等に機械的な負荷を与え、破損させる危険
性が少ない。The case 6 is filled with a silicone gel 9 for insulation and sealing. This not only prevents the entry of external dust and dust, but also improves the withstand voltage characteristics compared to air.
Since a high-voltage insulation specification can be satisfied with a small insulation distance, a more compact package structure can be provided. Further, since the silicone gel 9 is a flexible insulating material, there is little danger of a mechanical load being applied to the bonding wires 44, 45 and the like due to expansion and contraction in a temperature cycle, thereby causing breakage.
【0004】[0004]
【発明が解決しようとする課題】図7のような従来のパ
ッケージ構造において、高電圧に印加される表側導電体
板25と接地された放熱板5の間に電気的なストレスが
発生する。ここで最も電界が集中するのは、絶縁基板1
上の表側導電体板25の周囲端部である。この周囲端部
から部分放電が発生し、最終的な絶縁破壊の起点となる
ものである。従来の方法で使用するシリコーンゲル9
は、硬い絶縁物(以下において「固体絶縁物」とい
う。)に比べ破壊電圧が低い欠点があり、絶縁耐圧等の
電気的特性の向上に対しては限界がある。そこで、シリ
コーンゲル9の代わりに全面的にエポキシ樹脂等の硬い
樹脂からなる「固体絶縁物」を、図7のようなパッケー
ジを構成しているケース6の内部に充填すると、ボンデ
ィングワイヤ44,45や絶縁基板(セラミックス基
板)1等と良く接着し、絶縁耐圧特性が向上する。しか
しながら、ボンディングワイヤ44,45を構成する金
属や絶縁基板(セラミックス基板)1と固体絶縁物の熱
膨張率には差があり、また、いずれの材料も硬いため、
温度変化による膨張収縮で発生するいわゆる熱応力を、
固体絶縁物が吸収できずに、固体絶縁物にクラックが発
生したり、固体絶縁物の剥離が生じ易い。このため、固
体絶縁物を用いた場合は、機械的・電気的な破壊が問題
となる。In the conventional package structure as shown in FIG. 7, an electric stress is generated between the front-side conductor plate 25 to which a high voltage is applied and the grounded radiator plate 5. Here, the most concentrated electric field is caused by the insulating substrate 1
This is a peripheral end of the upper front-side conductor plate 25. A partial discharge is generated from the peripheral end, and becomes a starting point of a final dielectric breakdown. Silicone gel 9 used by conventional methods
Has a drawback that the breakdown voltage is lower than that of a hard insulator (hereinafter, referred to as a “solid insulator”), and there is a limit to improvement in electrical characteristics such as dielectric strength. Then, instead of the silicone gel 9, a "solid insulator" made entirely of a hard resin such as an epoxy resin is filled into the case 6 constituting the package as shown in FIG. And an insulating substrate (ceramic substrate) 1 and the like, and the withstand voltage characteristics are improved. However, there is a difference in the coefficient of thermal expansion between the metal or the insulating substrate (ceramic substrate) 1 forming the bonding wires 44 and 45 and the solid insulator, and since both materials are hard,
So-called thermal stress generated by expansion and contraction due to temperature change,
Since the solid insulator cannot be absorbed, cracks are generated in the solid insulator, and the solid insulator is easily peeled. Therefore, when a solid insulator is used, mechanical and electrical destruction becomes a problem.
【0005】上記問題点を鑑み、本発明は絶縁耐圧特性
・耐熱サイクル性に優れ、信頼性に富む半導体装置用基
板、及びこの半導体装置用基板を用いた半導体装置を提
供することを目的とする。SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a semiconductor device substrate having excellent withstand voltage characteristics and heat cycle resistance and high reliability, and a semiconductor device using this semiconductor device substrate. .
【0006】本発明の他の目的は、充填剤の熱膨張や熱
収縮により、半導体チップや収納ケース(容器本体)に
熱応力が加わり、モジュールの破損や半導体チップの動
作不良が発生することのない半導体装置用基板、及びこ
の半導体装置用基板を用いた半導体装置を提供すること
である。Another object of the present invention is to prevent a thermal expansion or a thermal shrinkage of a filler from applying a thermal stress to a semiconductor chip or a storage case (container main body), thereby causing damage to a module or malfunction of the semiconductor chip. It is an object of the present invention to provide a semiconductor device substrate that does not have the same, and a semiconductor device using the semiconductor device substrate.
【0007】本発明の更に他の目的は、半導体モジュー
ル内への水分の浸透に対する防湿効果をより十分なもの
とすることが可能な半導体装置を提供することである。It is still another object of the present invention to provide a semiconductor device capable of more effectively preventing moisture from penetrating into a semiconductor module.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に、本発明の第1の特徴は、絶縁基板と、絶縁基板の周
囲部を露出させるように絶縁基板上に選択的に配置され
た導電体板と、導電体板の外周端部に接して、絶縁基板
の上面に配置された固体絶縁物とからなり、固体絶縁物
は、導電体板の熱膨張率と絶縁基板の熱膨張率との中間
の値の熱膨張率を有する材料を、少なくとも一部(又は
全部)に含む半導体装置用基板としたことである。ここ
で、「固体絶縁物」としては、エポキシ樹脂、フェノー
ル樹脂、ポリイミド樹脂等の熱硬化性樹脂を硬化させた
ものを用いれば良い。In order to achieve the above object, a first feature of the present invention is to selectively arrange an insulating substrate and an insulating substrate so as to expose a peripheral portion of the insulating substrate. A conductor plate; and a solid insulator disposed on an upper surface of the insulating substrate in contact with an outer peripheral end of the conductor plate. The solid insulator has a coefficient of thermal expansion of the conductor plate and a coefficient of thermal expansion of the insulating substrate. The semiconductor device substrate includes at least a part (or all) of a material having a coefficient of thermal expansion having an intermediate value between the two. Here, as the “solid insulator”, a material obtained by curing a thermosetting resin such as an epoxy resin, a phenol resin, and a polyimide resin may be used.
【0009】本発明の第1の特徴によれば、導電体板の
外周端部に固体絶縁物を備えたことにより、導電体板の
外周端部と絶縁基板の周囲部とが密着する。更に、両者
の界面に固体絶縁物を存在させることにより、両者の界
面での電界が緩和されて沿面放電が生じ難くなる。図7
のような従来のパッケージ構造においては、最も電界が
集中するのは、絶縁基板1上の表側導電体板25の周囲
端部である。この部分から部分放電が発生し、最終的な
絶縁破壊の起点となるものである。従って、本発明の第
1の特徴においては、この周囲端部を、選択的に、電気
特性に優れた固体絶縁物で被覆し、絶縁特性の強化を達
成している。この結果、絶縁破壊を防止し、電力用半導
体装置の高耐圧化を実現できると共に、信頼性を向上さ
せることが出来る。また特に、固体絶縁物の高さが半導
体チップの表面を越えるようにすれば、厚い固体絶縁物
により、導電体板の外周端部から固体絶縁物を貫通する
貫通破壊を阻止し、沿面破壊を完全に防止することが出
来る。固体絶縁物は、熱サイクルに弱く、剥離・クラッ
クを生じ易いので、必要最小限の部分のみに、選択的に
塗布している。According to the first feature of the present invention, since the outer peripheral edge of the conductor plate is provided with the solid insulator, the outer peripheral edge of the conductor plate and the peripheral portion of the insulating substrate are in close contact with each other. Furthermore, the presence of the solid insulator at the interface between the two reduces the electric field at the interface between the two, and makes it difficult for creeping discharge to occur. FIG.
In the conventional package structure as described above, the electric field is concentrated most at the peripheral edge of the front-side conductor plate 25 on the insulating substrate 1. A partial discharge is generated from this portion, and becomes a starting point of a final dielectric breakdown. Therefore, in the first aspect of the present invention, the peripheral end portion is selectively coated with a solid insulator having excellent electric characteristics to achieve the enhancement of the insulating characteristics. As a result, dielectric breakdown can be prevented, a high breakdown voltage of the power semiconductor device can be realized, and reliability can be improved. In particular, if the height of the solid insulator is set to exceed the surface of the semiconductor chip, the thick solid insulator prevents penetration breakdown from penetrating the solid insulator from the outer peripheral edge of the conductor plate, and prevents surface breakdown. It can be completely prevented. Since the solid insulator is vulnerable to a heat cycle and easily causes peeling and cracking, it is selectively applied only to a necessary minimum portion.
【0010】自動車等、非常に厳しい環境で使用される
電力用半導体装置(パワーデバイス)に対しては、厳し
いヒートサイクル試験等の信頼性試験に合格する必要が
ある。このため、固体絶縁物と絶縁基板、或いは表側導
電体板との異種材料界面における機械的強度(接着力)
や信頼性等の更なる強化が必要となる。通常、表側導電
体板として使用する材料は銅(Cu)板、アルミニウム
(Al)、ニッケル(Ni)等の金属である。一方、絶
縁基板を構成するには絶縁性・熱伝導性に優れた窒化ア
ルミニウム(AlN)、酸化アルミニウム(Al
2O3)、窒化珪素(Si3N4)等のセラミックスであ
る。これら、金属材料・セラミックス材料に比較して、
固体絶縁物を構成するエポキシ樹脂、フェノール樹脂、
ポリイミド樹脂等の熱硬化性樹脂は、その熱膨張率が大
きく、温度変化で大きなストレスを発生する。特に表側
導電体板端部の角部には応力集中により大きなストレス
を発生する。即ち、表側導電体板の外周端部は、一般に
は、製造上の便宜から直角であるので、樹脂/銅板界面
の剥離を生じる可能性が高い。A power semiconductor device (power device) used in a very severe environment such as an automobile must pass a reliability test such as a severe heat cycle test. For this reason, the mechanical strength (adhesion) at the interface between different materials between the solid insulator and the insulating substrate or the front-side conductor plate
And further strengthening of reliability, etc. are needed. Usually, the material used for the front-side conductor plate is a metal such as a copper (Cu) plate, aluminum (Al), nickel (Ni), or the like. On the other hand, to form an insulating substrate, aluminum nitride (AlN) and aluminum oxide (Al
Ceramics such as 2 O 3 ) and silicon nitride (Si 3 N 4 ). Compared to these metal materials and ceramic materials,
Epoxy resin, phenol resin,
A thermosetting resin such as a polyimide resin has a large coefficient of thermal expansion and generates a large stress due to a change in temperature. In particular, a large stress is generated at the corner portion of the end of the front-side conductor plate due to stress concentration. That is, since the outer peripheral end of the front-side conductor plate is generally at a right angle for convenience in manufacturing, there is a high possibility that the resin / copper plate interface will peel off.
【0011】電力用半導体装置(パワーデバイス)やパ
ワーICの実際の運転時(動作時)には、常温の状態
(冬場の寒冷地では−20℃程度)から、通電により、
数分間で100℃以上に達し、大きな温度変化が生じ
る。半導体装置用基板を構成する絶縁基板・導電体板・
固体絶縁物の熱膨張率は異なるため、温度変化の膨張収
縮で異種材料界面に大きな熱応力を発生し、部分的とい
えども固体絶縁物中に微少な剥離やクラックを発生する
可能性がある。わずかな隙間であっても、剥離やクラッ
クが発生すれば、部分放電特性は大きく低下する。絶縁
基板、導電体板、固体絶縁物の熱膨張率をそれぞれ、α
s,αc,αiとすると、通常、熱膨張率の大きさは、 αs<αc<αi ・・・・・(1) の順で大きくなる。固体絶縁物は、構造上絶縁基板、表
側導電体板の双方に接するので、本発明の第1の特徴の
ように、固体絶縁物の熱膨張率αi(x)を、絶縁基板
の熱膨張率αsと、導電体板の熱膨張率αcの中間の値
に設定すると、熱膨張・収縮の差を最低にするのに効果
を発揮する。固体絶縁物は、無機質の粉末を多量に充填
することで、その熱膨張率αi(x)を低減することが
出来る。更に、固体絶縁物が粉末状の酸化アルミニウム
等を含有するようにすれば、電界を緩和し、沿面放電を
生じ難くすることが出来る。When the power semiconductor device (power device) or power IC is actually operated (operated), it is turned on at normal temperature (about −20 ° C. in a cold region in winter) by energization.
It reaches 100 ° C. or more in a few minutes, and a large temperature change occurs. Insulating substrate, conductor plate,
Since the thermal expansion coefficients of solid insulators are different, large thermal stress is generated at the interface between dissimilar materials due to expansion and contraction due to temperature change, and even if it is partial, there is a possibility that minute peeling or cracks may occur in the solid insulator . Even if it is a small gap, if peeling or cracking occurs, the partial discharge characteristics are significantly reduced. The coefficient of thermal expansion of the insulating substrate, the conductor plate, and the solid insulator is α
Assuming that s , α c , and α i , the magnitude of the thermal expansion coefficient generally increases in the order of α s <α c <α i (1). Since the solid insulator is structurally in contact with both the insulating substrate and the front-side conductor plate, the thermal expansion coefficient α i (x) of the solid insulator is determined by the thermal expansion coefficient of the insulating substrate as in the first aspect of the present invention. a rate alpha s, is set to an intermediate value of the thermal expansion coefficient alpha c conductive plate, be effective to the difference in thermal expansion and contraction to a minimum. The solid insulator can be reduced in thermal expansion coefficient α i (x) by filling a large amount of inorganic powder. Furthermore, if the solid insulator contains powdered aluminum oxide or the like, the electric field can be reduced and creeping discharge can be suppressed.
【0012】特に、本発明の第1の特徴に係る半導体装
置用基板において、固体絶縁物の熱膨張率αi(x)
を、空間座標xの関数とし、導電体板の外周端部近傍で
は導電体板の熱膨張率αcに近い値であり、絶縁基板近
傍では絶縁基板の熱膨張率αsに近い値とすることが好
ましい。このように、熱膨張率を、空間座標xに応じて
変化するように選択すれば、それぞれの界面における熱
膨張・収縮の差を最小限に抑えることが出来る。従っ
て、熱サイクル時に固体絶縁物/絶縁基板界面、或い
は、固体絶縁物/導電体板界面が全く同じように体積変
化することになり、結果として機械的な応力の発生は非
常に小さくなる。その結果、固体絶縁物の剥離、クラッ
ク発生は抑制され、温度変化に強い信頼性に富む半導体
装置用基板を提供することが出来る。In particular, in the semiconductor device substrate according to the first aspect of the present invention, the coefficient of thermal expansion α i (x) of the solid insulator is
Is a function of the spatial coordinate x, a value close to the coefficient of thermal expansion α c of the conductive plate near the outer peripheral end of the conductive plate, and a value close to the coefficient of thermal expansion α s of the insulating substrate near the insulating substrate. Is preferred. In this way, if the coefficient of thermal expansion is selected so as to change according to the spatial coordinate x, the difference between the thermal expansion and contraction at each interface can be minimized. Therefore, the volume of the solid insulator / insulating substrate interface or the solid insulator / conductor plate interface changes in exactly the same manner during the thermal cycle, and as a result, the generation of mechanical stress becomes very small. As a result, peeling of solid insulators and generation of cracks are suppressed, and a highly reliable semiconductor device substrate resistant to temperature changes can be provided.
【0013】固体絶縁物の熱膨張率αi(x)の空間座
標xによる変化は、階段状(ステップ状)の変化に限ら
れるものではない。即ち、固体絶縁物の熱膨張率α
i(x)を表側導電体板近傍では表側導電体板構成材料
の熱膨張率αc、絶縁基板近傍では絶縁基板構成材料の
熱膨張率αsに合わせるように、空間座標xに応じて、
熱膨張率の分布に傾斜を持たせるよう調整しても良い。
固体絶縁物の熱膨張率αi(x)の空間座標xによる変
化は、線型(1次関数)でも、2次以上の高次の関数と
して変化しても構わない。The change of the coefficient of thermal expansion α i (x) of the solid insulator according to the spatial coordinates x is not limited to a step-like (step-like) change. That is, the thermal expansion coefficient α of the solid insulator
i (x) the thermal expansion coefficient alpha c of the front conductor plate constituting material on the front side conductive plate near, as will match the thermal expansion coefficient alpha s of the insulating substrate constituting material of an insulating substrate near, depending on the spatial coordinates x,
The distribution of the coefficient of thermal expansion may be adjusted to have a slope.
The change in the coefficient of thermal expansion α i (x) of the solid insulator depending on the spatial coordinates x may be a linear (linear function) or a function of a second or higher order.
【0014】本発明の第2の特徴は、絶縁基板と、絶縁
基板の周囲部を露出させるように絶縁基板上に選択的に
配置された導電体板と、導電体板の外周端部に接して、
絶縁基板の上面に配置された固体絶縁物とからなり、絶
縁基板の主表面に垂直方向の断面において、導電体板の
外周端部が円弧形状をなす半導体装置用基板としたこと
である。ここで、「固体絶縁物」としては、第1の特徴
と同様な、熱硬化性樹脂を硬化させたものを用いれば良
い。A second feature of the present invention resides in that an insulating substrate, a conductive plate selectively disposed on the insulating substrate so as to expose a peripheral portion of the insulating substrate, and an outer peripheral end of the conductive plate are in contact with the conductive plate. hand,
A semiconductor device substrate comprising a solid insulator disposed on an upper surface of an insulating substrate and having an outer peripheral edge of a circular arc shape in a cross section perpendicular to a main surface of the insulating substrate. Here, as the “solid insulator”, a material obtained by curing a thermosetting resin similar to the first feature may be used.
【0015】また、機械的応力は、表側導電体板の端部
の角部において、応力集中が生じる。本発明の第2の特
徴に係る半導体装置用基板においては、円弧状の外周端
部、即ち、この部分に丸みを持たせることにより応力集
中を緩和し、固体絶縁物の剥離、クラック発生を抑制す
ることが出来る。特に、本発明の第2の特徴に係る半導
体装置用基板において、円弧状の外周端部の曲率半径r
が0.2mm以上、20mm以下とすることが好まし
い。但し、外周端部の曲率半径rをあまり大きくすると
表側導電体板の端部の長さが増え、大きな絶縁基板構成
となるので、実用上は、曲率半径rは、1mm以下にす
るのが好ましい。特に、表側導電体板の厚さと同程度の
曲率半径rにすることが好ましい。[0015] Further, mechanical stress causes stress concentration at corners of the end of the front-side conductor plate. In the semiconductor device substrate according to the second aspect of the present invention, the arc-shaped outer peripheral end portion, that is, a rounded portion, relieves stress concentration and suppresses peeling of solid insulators and generation of cracks. You can do it. In particular, in the semiconductor device substrate according to the second aspect of the present invention, the curvature radius r of the arc-shaped outer peripheral end portion is set.
Is preferably 0.2 mm or more and 20 mm or less. However, if the radius of curvature r of the outer peripheral edge is too large, the length of the edge of the front-side conductor plate increases, resulting in a large insulating substrate structure. Therefore, in practice, the radius of curvature r is preferably set to 1 mm or less. . In particular, it is preferable that the radius of curvature r be approximately the same as the thickness of the front-side conductor plate.
【0016】なお、本発明の第1の特徴と、第2の特徴
とを組み合わせても良い。即ち、本発明の第1の特徴に
係る半導体装置用基板において、絶縁基板の主表面に垂
直方向の断面において、導電体板の外周端部が円弧形状
をなすように構成すれば、本発明の第1の特徴の効果を
維持しつつ、更に第2の特徴の効果も得られ、より、温
度変化に強く、信頼性の高い半導体装置用基板を提供す
ることが出来る。Note that the first feature and the second feature of the present invention may be combined. In other words, in the semiconductor device substrate according to the first aspect of the present invention, if the outer peripheral end of the conductor plate is configured to have an arc shape in a cross section perpendicular to the main surface of the insulating substrate, the present invention The effect of the second characteristic can be obtained while maintaining the effect of the first characteristic, and a semiconductor device substrate that is more resistant to temperature changes and highly reliable can be provided.
【0017】本発明の第3の特徴は、絶縁基板と、絶縁
基板の周囲部を露出させるように絶縁基板上に選択的に
配置された導電体板と、導電体板の外周端部に接して、
絶縁基板の上面に配置された固体絶縁物とからなり、導
電体板の外周端部がメサ型(順メサ型))の傾斜端面を
有することを特徴とする半導体装置用基板としたことで
ある。ここで、「固体絶縁物」としては、第1の特徴と
同様な、熱硬化性樹脂を硬化させたものを用いれば良
い。A third feature of the present invention resides in that an insulating substrate, a conductive plate selectively disposed on the insulating substrate so as to expose a peripheral portion of the insulating substrate, and an outer peripheral end of the conductive plate are in contact with the conductive plate. hand,
A semiconductor device substrate comprising a solid insulator disposed on an upper surface of an insulating substrate, wherein an outer peripheral end of the conductor plate has a mesa-type (forward mesa-type) inclined end surface. . Here, as the “solid insulator”, a material obtained by curing a thermosetting resin similar to the first feature may be used.
【0018】既に述べたように、機械的応力は、表側導
電体板の端部の角部の応力集中で増加する。通常、機械
加工の便宜からプレス打ち抜き等で、表側導電体板の端
部は90°のエッジになっている。90°のエッジの場
合は、熱サイクルにより、表側導電体板/固体絶縁物界
面が剥離する方向に応力が発生する。熱サイクルを重ね
ることにより、この界面において、固体絶縁物が剥離
し、絶縁耐圧特性が著しく低下する。本発明の第3の特
徴に係る半導体装置用基板のように、絶縁基板に対する
表側導電体板の外周端部の角度θを、90°よりも小さ
な値に変化させることにより、応力は低下する。詳細な
検討によれば、応力は30°近傍で最低値をとる。この
角度θにおいて、固体絶縁物が剥離しにくくなる。但
し、表側導電体板の角度θをあまり小さくすると表側導
電体板の端部の長さが増え、大きな絶縁基板構成となる
ので、実用上は、傾斜端面が、絶縁基板の主表面に対し
て15〜60°の角度をなすようにすることが好まし
い。As described above, the mechanical stress increases due to the concentration of the stress at the corners at the ends of the front conductor plate. Normally, the end of the front-side conductor plate has a 90 ° edge by press punching or the like for convenience of machining. In the case of a 90 ° edge, stress is generated in the direction in which the interface between the front-side conductor plate and the solid insulator separates due to thermal cycling. By repeating the thermal cycle, the solid insulator is peeled off at this interface, and the withstand voltage characteristics are significantly reduced. As in the semiconductor device substrate according to the third aspect of the present invention, the stress is reduced by changing the angle θ of the outer peripheral end of the front-side conductor plate with respect to the insulating substrate to a value smaller than 90 °. According to a detailed study, the stress takes the minimum value near 30 °. At this angle θ, the solid insulator is less likely to peel. However, if the angle θ of the front-side conductor plate is too small, the length of the end portion of the front-side conductor plate increases, resulting in a large insulating substrate configuration. It is preferable to make an angle of 15 to 60 °.
【0019】なお、本発明の第1の特徴と、第3の特徴
とを組み合わせても良い。即ち、本発明の第1の特徴に
係る半導体装置用基板において、導電体板の外周端部が
メサ型の傾斜端面を有するように構成すれば、本発明の
第1の特徴の効果を維持しつつ、更に第3の特徴の効果
も得られる。このため、より、温度変化に強く、信頼性
の高い半導体装置用基板を提供することが出来る。Note that the first feature and the third feature of the present invention may be combined. That is, in the semiconductor device substrate according to the first aspect of the present invention, if the outer peripheral end of the conductor plate has a mesa-shaped inclined end face, the effect of the first aspect of the present invention is maintained. In addition, the effect of the third characteristic can be obtained. Therefore, a highly reliable semiconductor device substrate that is more resistant to temperature changes can be provided.
【0020】本発明の第4の特徴は、放熱板と、放熱板
上に取付けられた絶縁基板と、絶縁基板の周囲部を露出
させるように絶縁基板上に選択的に配置された導電体板
と、導電体板上に配置された半導体チップと、導電体板
の外周端部に接して、絶縁基板の上面に配置された固体
絶縁物と、絶縁基板を囲うように放熱板上に設けられた
ケースと、このケースの上部に配置されたターミナルホ
ルダと、このターミナルホルダを貫通して保持され、半
導体チップに電気的に接続されるべく配置された外部端
子用リードと、ケース内に充填される柔軟絶縁物とから
なる半導体装置に関する。即ち、本発明の第4の特徴に
係る半導体装置においては、固体絶縁物は、導電体板の
熱膨張率と絶縁基板の熱膨張率との中間の値の熱膨張率
を有する材料を、少なくとも一部に含む。「柔軟な絶縁
物」として、耐熱サイクル性に優れたシリコーン、ポリ
ウレタン等のゲル、或いは、エラストマーを用いれば良
い。また、「固体絶縁物」としては、第1の特徴におい
て述べたように、エポキシ樹脂、フェノール樹脂、ポリ
イミド樹脂等の熱硬化性樹脂を硬化させたものを用いれ
ば良い。これらの熱硬化性樹脂は、絶縁耐圧特性/長期
信頼性を確保する上で、絶縁基板や表側導電体板との接
着性に優れている。A fourth feature of the present invention is that a radiator plate, an insulating substrate mounted on the radiator plate, and a conductor plate selectively disposed on the insulating substrate so as to expose a peripheral portion of the insulating substrate. And a semiconductor chip disposed on the conductor plate, a solid insulator disposed on the upper surface of the insulating substrate in contact with the outer peripheral end of the conductor plate, and provided on the heat sink to surround the insulating substrate. Case, a terminal holder disposed on the upper part of the case, an external terminal lead held through the terminal holder and electrically connected to the semiconductor chip, and filled in the case. The present invention relates to a semiconductor device comprising a flexible insulator. That is, in the semiconductor device according to the fourth aspect of the present invention, the solid insulator includes at least a material having a coefficient of thermal expansion intermediate between the coefficient of thermal expansion of the conductor plate and the coefficient of thermal expansion of the insulating substrate. Include in some. As the "flexible insulator", a gel or an elastomer such as silicone or polyurethane having excellent heat cycle resistance may be used. Further, as described in the first feature, a material obtained by curing a thermosetting resin such as an epoxy resin, a phenol resin, and a polyimide resin may be used as the “solid insulator”. These thermosetting resins are excellent in adhesion to an insulating substrate and a front-side conductor plate in order to ensure dielectric strength characteristics / long-term reliability.
【0021】本発明の第4の特徴に係る半導体装置にお
いては、表側導電体板の周囲の端部(外周端部)のみを
固体絶縁物で被覆している。一方、ボンディングワイヤ
等、熱サイクルに弱い部分の周囲は、柔軟なシリコーン
ゲル等の柔軟絶縁物を充填している。このように、固体
絶縁物と柔軟絶縁物とを組み合わせることにより、優れ
た絶縁耐圧特性と耐熱サイクル性を具備するパッケージ
構造を提供することが出来る。In the semiconductor device according to the fourth aspect of the present invention, only the peripheral edge (outer peripheral edge) of the front-side conductor plate is covered with the solid insulator. On the other hand, the periphery of a portion that is vulnerable to a heat cycle such as a bonding wire is filled with a flexible insulating material such as a flexible silicone gel. Thus, by combining the solid insulator and the flexible insulator, a package structure having excellent withstand voltage characteristics and heat cycle resistance can be provided.
【0022】本発明の第4の特徴に係る半導体装置にお
いては、それぞれの界面における熱膨張・収縮の差を最
小限に抑えることが出来るので、熱サイクル時に固体絶
縁物/絶縁基板、或いは、固体絶縁物/表側導電体板が
全く同じように体積変化することになり、結果として機
械的な応力の発生は非常に小さくなる。その結果、固体
絶縁物の剥離、クラック発生は抑制され、温度変化に強
い信頼性に富む半導体装置を提供することが出来る。特
に、固体絶縁物の熱膨張率αi(x)を、空間座標xの
関数とし、導電体板の外周端部近傍では導電体板の熱膨
張率αcに近い値であり、絶縁基板近傍では絶縁基板の
熱膨張率αsに近い値とすることが好ましい。固体絶縁
物の熱膨張率αi(x)は、無機質の粉末を多量に充填
することで、その熱膨張率αi(x)を低減することが
出来る。固体絶縁物の熱膨張率α i(x)の空間座標x
による変化は、ディスクリート的変化、即ち、階段状
(ステップ状)の変化に限られるものではなく、線型
(1次関数)若しくは2次以上の高次の関数として、滑
らかに変化するように設定しても構わない。In a semiconductor device according to a fourth aspect of the present invention,
The difference between thermal expansion and contraction at each interface.
Because it can be kept to a minimum, solid
Edge / insulating substrate or solid insulator / front-side conductor plate
The volume changes in exactly the same way, and as a result
The generation of mechanical stress is very small. As a result, the solid
Insulation peeling and cracking are suppressed and resistant to temperature changes
A highly reliable semiconductor device can be provided. Special
The thermal expansion coefficient α of the solid insulatori(X) is converted to the spatial coordinate x
The thermal expansion of the conductor plate near the outer peripheral edge of the conductor plate
Elongation factor αcThe value is close to that of the insulating substrate.
Thermal expansion coefficient αsIt is preferable to set the value close to Solid insulation
Thermal expansion coefficient αi(X) Fills a large amount of inorganic powder
The thermal expansion coefficient αi(X) can be reduced
I can do it. Thermal expansion coefficient α of solid insulator iSpatial coordinates x of (x)
Changes are discrete changes, that is, steps
Not limited to (step-like) changes, linear
(Linear function) or a higher-order function of second or higher order
It may be set to change easily.
【0023】本発明の第5の特徴は、放熱板と、放熱板
上に取付けられた絶縁基板と、絶縁基板の周囲部を露出
させるように絶縁基板上に選択的に配置された導電体板
と、導電体板上に配置された半導体チップと、導電体板
の外周端部に接して、絶縁基板の上面に配置された固体
絶縁物と、絶縁基板を囲うように放熱板上に設けられた
ケースと、このケースの上部に配置されたターミナルホ
ルダと、このターミナルホルダを貫通して保持され、半
導体チップに電気的に接続されるべく配置された外部端
子用リードと、ケース内に充填される柔軟絶縁物とから
なる半導体装置に関する。即ち、本発明の第5の特徴に
係る半導体装置においては、絶縁基板の主表面に垂直方
向の断面において、導電体板の外周端部が円弧形状をな
す。「柔軟な絶縁物」としては、シリコーン、ポリウレ
タン等が好適である。また、「固体絶縁物」としては、
第1の特徴において述べた熱硬化性樹脂を硬化させたも
のを用いれば良い。A fifth feature of the present invention is that a heat sink, an insulating substrate mounted on the heat sink, and a conductor plate selectively disposed on the insulating substrate so as to expose a peripheral portion of the insulating substrate. And a semiconductor chip disposed on the conductor plate, a solid insulator disposed on the upper surface of the insulating substrate in contact with the outer peripheral end of the conductor plate, and provided on the heat sink to surround the insulating substrate. Case, a terminal holder disposed on the upper part of the case, an external terminal lead held through the terminal holder and electrically connected to the semiconductor chip, and filled in the case. The present invention relates to a semiconductor device comprising a flexible insulator. That is, in the semiconductor device according to the fifth aspect of the present invention, the outer peripheral end of the conductor plate has an arc shape in a cross section perpendicular to the main surface of the insulating substrate. As the "flexible insulator", silicone, polyurethane and the like are preferable. In addition, as a "solid insulator",
What cured the thermosetting resin described in the first feature may be used.
【0024】機械的応力は、表側導電体板の端部の角部
に応力集中する。通常機械加工の便宜からプレス打ち抜
き等で、表側導電体板の端部はエッジになっている。こ
の部分に丸みを持たせることにより応力集中を緩和し、
固体絶縁物の剥離、クラック発生を抑制することが出来
る。The mechanical stress concentrates on the corner of the end of the front-side conductor plate. Usually, the end of the front-side conductor plate is an edge by press punching or the like for convenience of machining. By giving this part roundness, stress concentration is reduced,
Separation of solid insulators and generation of cracks can be suppressed.
【0025】本発明の第5の特徴に係る半導体装置にお
いて、円弧状の外周端部の曲率半径rが0.2mm以
上、20mm以下とすることが好ましい。但し、外周端
部の曲率半径rをあまり大きくすると表側導電体板の端
部の長さが増え、大きな絶縁基板構成となり、パッケー
ジが大型化する。従って、実用上は、曲率半径rは、1
mm以下にするのが好ましい。特に、表側導電体板の厚
さと同程度の曲率半径rにすることが好ましい。In the semiconductor device according to the fifth aspect of the present invention, it is preferable that the radius of curvature r of the arc-shaped outer peripheral end is 0.2 mm or more and 20 mm or less. However, if the radius of curvature r of the outer peripheral end portion is too large, the length of the end portion of the front-side conductor plate increases, resulting in a large insulating substrate configuration, and a large package. Therefore, in practice, the radius of curvature r is 1
mm or less. In particular, it is preferable that the radius of curvature r be approximately the same as the thickness of the front-side conductor plate.
【0026】なお、本発明の第4の特徴と、第5の特徴
とを組み合わせても良い。即ち、本発明の第4の特徴に
係る半導体装置においても、絶縁基板の主表面に垂直方
向の断面において、導電体板の外周端部が円弧形状をな
すように構成すれば、本発明の第4の特徴の効果を維持
しつつ、更に第5の特徴の効果も得られる。つまり、温
度変化に更に強く、信頼性の更に高い半導体装置を提供
することが出来る。The fourth feature and the fifth feature of the present invention may be combined. That is, in the semiconductor device according to the fourth aspect of the present invention, if the outer peripheral end of the conductor plate is formed to have an arc shape in a cross section perpendicular to the main surface of the insulating substrate, the fourth aspect of the present invention will be described. While maintaining the effect of the fourth characteristic, the effect of the fifth characteristic can be obtained. That is, it is possible to provide a semiconductor device that is more resistant to temperature changes and has higher reliability.
【0027】本発明の第6の特徴は、放熱板と、放熱板
上に取付けられた絶縁基板と、絶縁基板の周囲部を露出
させるように絶縁基板上に選択的に配置された導電体板
と、導電体板上に配置された半導体チップと、導電体板
の外周端部に接して、絶縁基板の上面に配置された固体
絶縁物と、絶縁基板を囲うように放熱板上に設けられた
ケースと、このケースの上部に配置されたターミナルホ
ルダと、このターミナルホルダを貫通して保持され、半
導体チップに電気的に接続されるべく配置された外部端
子用リードと、ケース内に充填される柔軟絶縁物とから
なる半導体装置に関する。即ち、本発明の第6の特徴に
係る半導体装置においては、導電体板の外周端部がメサ
型の傾斜端面を有する。「柔軟な絶縁物」としては、シ
リコーン、ポリウレタン等が好適である。また、「固体
絶縁物」としては、第1の特徴において述べた熱硬化性
樹脂を硬化させたものを用いれば良い。A sixth feature of the present invention is that a heat sink, an insulating substrate mounted on the heat sink, and a conductive plate selectively disposed on the insulating substrate so as to expose a peripheral portion of the insulating substrate. And a semiconductor chip disposed on the conductor plate, a solid insulator disposed on the upper surface of the insulating substrate in contact with the outer peripheral end of the conductor plate, and provided on the heat sink to surround the insulating substrate. Case, a terminal holder disposed on the upper part of the case, an external terminal lead held through the terminal holder and electrically connected to the semiconductor chip, and filled in the case. The present invention relates to a semiconductor device comprising a flexible insulator. That is, in the semiconductor device according to the sixth aspect of the present invention, the outer peripheral end of the conductor plate has a mesa-shaped inclined end surface. As the "flexible insulator", silicone, polyurethane and the like are preferable. As the “solid insulator”, a material obtained by curing the thermosetting resin described in the first feature may be used.
【0028】また、急激な導電体板の外周端部の角度変
化は、機械的損傷を助長する。絶縁基板に対し、表側導
電体板の外周端部が90°の角度を有する場合は、熱サ
イクルにより、表側導電体板/固体絶縁物界面が剥離す
る方向に応力が発生する。そして、熱サイクルを重ねる
ことにより、界面において、剥離が発生し、絶縁耐圧特
性が著しく低下する。第3の特徴で述べたように、絶縁
基板に対する表側導電体板の角度θを変化した場合、応
力は30°近傍で最低値をとり、剥離しにくくなる。但
し、表側導電体板の角度θを低くすると表側導電体板の
端部の長さが増え、大きな絶縁基板構成となるので、実
用上は、傾斜端面が、絶縁基板の主表面に対して15〜
60°の角度とすることが好ましい。Further, a sudden change in the angle of the outer peripheral end of the conductive plate promotes mechanical damage. When the outer peripheral edge of the front-side conductor plate has an angle of 90 ° with respect to the insulating substrate, a stress is generated in a direction in which the interface between the front-side conductor plate and the solid insulator separates due to a heat cycle. Then, by repeating the thermal cycle, peeling occurs at the interface, and the withstand voltage characteristic is significantly reduced. As described in the third feature, when the angle θ of the front-side conductor plate with respect to the insulating substrate is changed, the stress takes the minimum value in the vicinity of 30 °, making it difficult to peel. However, if the angle θ of the front-side conductor plate is reduced, the length of the end portion of the front-side conductor plate increases, resulting in a large insulating substrate configuration. Therefore, in practice, the inclined end face is 15 ° away from the main surface of the insulating substrate. ~
Preferably, the angle is 60 °.
【0029】なお、本発明の第4の特徴と、第6の特徴
とを組み合わせても良い。即ち、本発明の第4の特徴に
係る半導体装置において、導電体板の外周端部がメサ型
の傾斜端面を有するように構成すれば、本発明の第4の
特徴の効果を維持しつつ、更に第6の特徴の効果も得ら
れる。つまり、温度変化に更に強く、信頼性の更に高い
半導体装置を提供することが出来る。The fourth feature and the sixth feature of the present invention may be combined. That is, in the semiconductor device according to the fourth aspect of the present invention, if the outer peripheral end of the conductor plate is configured to have a mesa-shaped inclined end face, while maintaining the effect of the fourth aspect of the present invention, Further, the effect of the sixth characteristic can be obtained. That is, it is possible to provide a semiconductor device that is more resistant to temperature changes and has higher reliability.
【0030】上記の第1乃至第6の特徴において、「電
力用半導体装置」としては、絶縁ゲート型バイポーラト
ランジスタ(IGBT)、パワーMOSFET、パワー
バイポーラトランジスタ(BJT)、パワー静電誘導ト
ランジスタ(SIT)、サイリスタ、ゲートターンオフ
(GTO)サイリスタ、静電誘導(SI)サイリスタ等の
種々のパワーデバイスが含まれる。そして、「半導体チ
ップ」とはこれらの電力用半導体装置の少なくとも一つ
が搭載された半導体チップを意味する。これらの半導体
チップに電力用半導体装置を制御する回路や保護回路を
搭載したチップを含みうることは勿論である。また、制
御用回路と電力用半導体装置とが同一基板上にモノリシ
ックに集積化されたパワーICでもかまわない。これら
の「半導体チップ」は少なくとも、1以上が導電体板上
に配置されれば良い。また、本発明の電力用半導体装置
のパッケージの内部には、抵抗、コンデンサ、インダク
タンス、更には、ボンディングワイヤ等の回路配線やリ
ード等の種々の電子部品が含まれていても良いことは勿
論である。In the first to sixth aspects, the "power semiconductor device" includes an insulated gate bipolar transistor (IGBT), a power MOSFET, a power bipolar transistor (BJT), and a power static induction transistor (SIT). Thyristors, gate turn-off (GTO) thyristors, electrostatic induction (SI) thyristors and the like. The "semiconductor chip" means a semiconductor chip on which at least one of these power semiconductor devices is mounted. Needless to say, these semiconductor chips may include chips on which circuits for controlling the power semiconductor device and protection circuits are mounted. Further, a power IC in which the control circuit and the power semiconductor device are monolithically integrated on the same substrate may be used. At least one of these “semiconductor chips” may be arranged on the conductor plate. Further, the package of the power semiconductor device of the present invention may include various electronic components such as a resistor, a capacitor, an inductance, a circuit wire such as a bonding wire, and a lead. is there.
【0031】[0031]
【発明の実施の形態】次に、図面を参照して、本発明の
第1乃至第3の実施の形態を説明する。以下の図面の記
載において、同一又は類似の部分には同一又は類似の符
号を付している。但し、図面は模式的なものであり、厚
みと平面寸法との関係、各層の厚みの比率等は現実のも
のとは異なることに留意すべきである。従って、具体的
な厚みや寸法は以下の説明を参酌して判断すべきもので
ある。また図面相互間においても互いの寸法の関係や比
率が異なる部分が含まれていることは勿論である。Next, first to third embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimension, the ratio of the thickness of each layer, and the like are different from actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. In addition, it is needless to say that the drawings include portions having different dimensional relationships and ratios.
【0032】(第1の実施の形態)図1は本発明の第1
の実施の形態に係る電力用半導体装置(パッケージ)の
構造を示す断面図である。本発明の第1の実施の形態に
係る電力用半導体装置は、絶縁基板(セラミック基板)
1とその周辺の柔軟絶縁物(シリコーンゲル)9との間
の沿面破壊や沿面放電を防止して信頼性の向上を図るた
めの新規な構造を提供するものである。絶縁基板(セラ
ミック基板)1としては窒化アルミニウム(AlN)、
アルミナ(Al2O3)、ベリリア(BeO2)等のベリ
リウム酸化物等が使用可能であるが、以下の説明におい
ては、厚さ1mmのAlN基板を用いる場合について説
明する。そして、AlN基板(絶縁基板)1の両面に
は、それぞれ、銅(Cu)板直接接合(DBC)技術に
より、厚さ0.2mmの銅板からなる表側導電体板2
1,22,23及び裏側導電体板24が接続されてい
る。即ち、絶縁基板1上の表側導電体板21,22,2
3は、絶縁基板1の上面(表面)において、所定の内部
パターンの形状に構成され、絶縁基板1の上面の周囲部
を露出するように(残して)接続されている。裏側導電
体板24も、絶縁基板1の下面(裏面)に、絶縁基板1
の下面の周囲部を残して接続されている。(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a structure of a power semiconductor device (package) according to the embodiment. The power semiconductor device according to the first embodiment of the present invention includes an insulating substrate (ceramic substrate).
The present invention provides a novel structure for preventing the creeping breakdown and the creeping discharge between the base material 1 and the flexible insulating material (silicone gel) 9 therearound and improving the reliability. Aluminum nitride (AlN) as the insulating substrate (ceramic substrate) 1;
A beryllium oxide such as alumina (Al 2 O 3 ) or beryllia (BeO 2 ) can be used. In the following description, a case where an AlN substrate having a thickness of 1 mm is used will be described. Then, on both surfaces of the AlN substrate (insulating substrate) 1, a front-side conductor plate 2 made of a copper plate having a thickness of 0.2 mm is formed by a copper (Cu) plate direct bonding (DBC) technique.
1, 22, 23 and the back-side conductor plate 24 are connected. That is, the front-side conductor plates 21, 22, 2 on the insulating substrate 1
Reference numeral 3 denotes a predetermined internal pattern on the upper surface (front surface) of the insulating substrate 1 and is connected so as to expose (leave) the periphery of the upper surface of the insulating substrate 1. The back-side conductor plate 24 is also provided on the lower surface (back surface) of the insulating substrate 1.
Are connected except for the peripheral portion of the lower surface of.
【0033】表側導電体板22上には、パワー半導体チ
ップ31,32やこれらのパワー半導体チップを制御す
るための制御回路用半導体チップ(図示省略)が配置さ
れている。仕様によっては、表側導電体板22を更に分
割し、それぞれ分割されたパターン上に、パワー半導体
チップ31,32や制御回路用半導体チップ(図示省
略)を配置する構成でも良い。一方、表側導電体板2
1,23上には、リード用パッド73,74が配置され
ている。パワー半導体チップ31,32等が搭載された
絶縁基板1は、ケース(容器本体)6の中に収納されて
おり、絶縁基板1が取り付けられるケース(容器本体)
6の底板は金属で構成され、放熱板5となっている。ボ
ンディングワイヤ42により、絶縁基板上のパワー半導
体チップ31,32等のそれぞれの表面に設けたボンデ
ィングパッドは、互いに接続されている。ボンディング
ワイヤ41により、リード用パッド73とパワー半導体
チップ31の表面に設けたボンディングパッドとが接続
され、ボンディングワイヤ43により、リード用パッド
74とパワー半導体チップ32の表面に設けたボンディ
ングパッドとが、互いに接続されている。なお、リード
用パッド73,74を省略しても良い。この場合は、ボ
ンディングワイヤ41により、表側導電体板21とパワ
ー半導体チップ31の表面に設けたボンディングパッド
とを直接接続し、ボンディングワイヤ43により表側導
電体板23とパワー半導体チップ32の表面に設けたボ
ンディングパッドとを直接接続する。これらのボンディ
ングワイヤ41,42,43,・・・・としては、金(A
u)、銅(Cu)、アルミニウム(Al)等の金属線を
用いれば良い。或いは、ボンディングワイヤの代わり
に、金(Au)、銅(Cu)、アルミニウム(Al)等
の金属リボンやこれに類似の帯状形状の材料からなるボ
ンディング帯でも良い。On the front-side conductor plate 22, power semiconductor chips 31, 32 and a control circuit semiconductor chip (not shown) for controlling these power semiconductor chips are arranged. Depending on the specification, the configuration may be such that the front-side conductor plate 22 is further divided, and the power semiconductor chips 31, 32 and the control circuit semiconductor chip (not shown) are arranged on the respective divided patterns. On the other hand, the front conductor plate 2
On pads 1 and 23, lead pads 73 and 74 are arranged. The insulating substrate 1 on which the power semiconductor chips 31, 32 and the like are mounted is housed in a case (container main body) 6, and a case (container main body) to which the insulating substrate 1 is attached.
The bottom plate 6 is made of metal and serves as a heat sink 5. The bonding pads provided on the respective surfaces of the power semiconductor chips 31, 32 and the like on the insulating substrate are connected to each other by the bonding wires 42. The bonding wire 41 connects the lead pad 73 to the bonding pad provided on the surface of the power semiconductor chip 31. The bonding wire 43 connects the lead pad 74 and the bonding pad provided on the surface of the power semiconductor chip 32. Connected to each other. Note that the lead pads 73 and 74 may be omitted. In this case, the front-side conductor plate 21 and the bonding pads provided on the surface of the power semiconductor chip 31 are directly connected by the bonding wires 41, and the bonding wires 43 are provided on the surface of the front-side conductor plate 23 and the power semiconductor chip 32. Directly connected to the bonding pad. The bonding wires 41, 42, 43,...
u), copper (Cu), aluminum (Al), or other metal wire may be used. Alternatively, instead of the bonding wire, a metal ribbon such as gold (Au), copper (Cu), or aluminum (Al) or a bonding band made of a band-shaped material similar thereto may be used.
【0034】リード用パッド73,74からは、更にパ
ッケージの外部との電気的な接続を行うために、外部端
子用リード(リード線)71,72がケース(容器本
体)の上蓋部を貫通して、外部に引き出されている。リ
ード用パッド73,74を省略した場合は、表側導電体
板21,23から直接、外部端子用リード(リード線)
71,72をケース(容器本体)外部に引き出しても良
い。或いは、リード用パッド73,74の代わりに、半
導体チップを表側導電体板21,23に搭載し、これら
の半導体チップ上に設けたボンディングパッドに外部端
子用リード(リード線)71,72を接続し、これらの
外部端子用リード(リード線)71,72をケース(容
器本体)外部に引き出す構造でも良い。外部端子用リー
ド71,72は、ボンディングワイヤ41,42,4
3,・・・・を介して、パワー半導体チップ31,32や制
御回路用半導体チップ(図示省略)に電力を供給する端
子である。また、ケース(容器本体)6内には、ボンデ
ィングワイヤ41,42,43,・・・・を保護するため、
柔軟絶縁物としてのシリコーンゲル9が充填されてい
る。ケース(容器本体)6の上部表面は上蓋部としての
ターミナルホルダ8で押さえられ、柔軟絶縁物注入口
(シリコーンゲル注入口)は、通常樹脂性封止部材10
a,10bにより封止されている。半導体装置全体は、
外形寸法が100mm×70mm×10mm程度となっ
ている。From the lead pads 73 and 74, external terminal leads (lead wires) 71 and 72 penetrate through the upper lid of the case (container main body) in order to further electrically connect with the outside of the package. Have been pulled out. When the lead pads 73 and 74 are omitted, external terminal leads (lead wires) are directly provided from the front side conductor plates 21 and 23.
71 and 72 may be drawn out of the case (container main body). Alternatively, instead of the lead pads 73 and 74, semiconductor chips are mounted on the front-side conductor plates 21 and 23, and external terminal leads (lead wires) 71 and 72 are connected to bonding pads provided on these semiconductor chips. The external terminal leads (lead wires) 71 and 72 may be drawn out of the case (container body). The external terminal leads 71, 72 are connected to bonding wires 41, 42, 4
Are terminals for supplying power to the power semiconductor chips 31, 32 and a control circuit semiconductor chip (not shown) via 3,. Further, in the case (container main body) 6, in order to protect the bonding wires 41, 42, 43,.
A silicone gel 9 as a flexible insulator is filled. The upper surface of the case (container main body) 6 is held down by a terminal holder 8 as an upper lid, and a flexible insulator injection port (silicone gel injection port) is usually made of a resinous sealing member 10.
a and 10b. The whole semiconductor device
The outer dimensions are about 100 mm × 70 mm × 10 mm.
【0035】ここで、パワー半導体チップ31,32と
しては、IGBT、パワーMOSFET、パワーBJ
T、パワーSIT、サイリスタ、GTOサイリスタ、S
Iサイリスタ等の種々のパワーデバイスが使用可能であ
る。制御回路は、nMOS制御回路、pMOS制御回
路、CMOS制御回路、バイポーラ制御回路、BiCM
OS制御回路、SIT制御回路等が使用できる。また、
これらの制御回路には過電圧保護回路、過電流保護回
路、過熱保護回路が含まれていても構わない。また、本
発明の第1の実施の形態に係る電力用半導体装置のパッ
ケージにおいては、パワー半導体チップ31,32、制
御回路用半導体チップ(図示省略)以外に、抵抗、コン
デンサやコイル等の各種電子部品等、更には電源等の回
路を搭載しても良い。或いは、パワー半導体チップのみ
を搭載して、単なるモジュールの構成でも良い。Here, as the power semiconductor chips 31, 32, IGBT, power MOSFET, power BJ
T, power SIT, thyristor, GTO thyristor, S
Various power devices such as I-thyristors can be used. The control circuit includes an nMOS control circuit, a pMOS control circuit, a CMOS control circuit, a bipolar control circuit, a BiCM
An OS control circuit, a SIT control circuit, or the like can be used. Also,
These control circuits may include an overvoltage protection circuit, an overcurrent protection circuit, and an overheat protection circuit. Further, in the package of the power semiconductor device according to the first embodiment of the present invention, in addition to the power semiconductor chips 31 and 32 and the control circuit semiconductor chip (not shown), various electronic devices such as a resistor, a capacitor and a coil are provided. A component or the like, or a circuit such as a power supply may be mounted. Alternatively, only a power semiconductor chip may be mounted and a simple module configuration may be adopted.
【0036】図1に示すように、本発明の第1の実施の
形態に係る電力用半導体装置のパッケージにおいては、
絶縁基板1の周囲部上とこの周囲部に面した表側導電体
板21,22,23の端部(外周端部)とを固体絶縁物
11で固めている。固体絶縁物11としては、シリコー
ンゲル9よりも高い絶縁破壊電圧を有し、且つ絶縁基板
1との良好な接着性を持つ樹脂が好ましい。例えば、こ
こではエポキシ樹脂が使用されている。他にはポリエス
テル樹脂が使用可能である。図1に示す本発明の第1の
実施の形態に係る電力用半導体装置のパッケージにおい
ては、固体絶縁物11は、表側導電体板21,22,2
3の熱膨張率と絶縁基板の熱膨張率との中間の値の熱膨
張率を有する材料を、少なくとも一部に含むように構成
されている。As shown in FIG. 1, in the package of the power semiconductor device according to the first embodiment of the present invention,
A solid insulator 11 is used to solidify the periphery of the insulating substrate 1 and the ends (outer peripheral ends) of the front-side conductor plates 21, 22, 23 facing the periphery. As the solid insulator 11, a resin having a higher dielectric breakdown voltage than the silicone gel 9 and having good adhesion to the insulating substrate 1 is preferable. For example, an epoxy resin is used here. Alternatively, a polyester resin can be used. In the package of the power semiconductor device according to the first embodiment of the present invention shown in FIG. 1, the solid insulator 11 is made up of the front-side conductor plates 21, 22, 2
A material having a coefficient of thermal expansion intermediate between the coefficient of thermal expansion of No. 3 and the coefficient of thermal expansion of the insulating substrate is included at least in part.
【0037】本発明の第1の実施の形態に係る電力用半
導体装置のパッケージにおいては、表側導電体板21,
22,23の周囲の端部(外周端部)のみを固体絶縁物
11で被覆している。一方、ボンディングワイヤ41,
42,43等、熱サイクルに弱い部分の周囲は、柔軟な
シリコーンゲル等の柔軟絶縁物9を充填している。この
ように、固体絶縁物11と柔軟絶縁物9とを組み合わせ
ることにより、優れた絶縁耐圧特性と耐熱サイクル性を
具備するパッケージ構造を提供することが出来る。In the package of the power semiconductor device according to the first embodiment of the present invention, the front-side conductor plate 21,
Only the peripheral ends (outer peripheral ends) of 22 and 23 are covered with the solid insulator 11. On the other hand, bonding wires 41,
Around the portions that are vulnerable to heat cycles, such as 42 and 43, are filled with a flexible insulator 9 such as a flexible silicone gel. Thus, by combining the solid insulator 11 and the flexible insulator 9, a package structure having excellent withstand voltage characteristics and heat cycle resistance can be provided.
【0038】本発明の第1の実施の形態に係る電力用半
導体装置のパッケージにおいては、固体絶縁物11の熱
膨張率αi(x)を選定することにより、それぞれの界
面における熱膨張・収縮の差を最小限に抑えることが出
来るので、熱サイクル時に固体絶縁物/絶縁基板、或い
は、固体絶縁物/表側導電体板が全く同じように体積変
化することになり、結果として機械的な応力Sの発生は
非常に小さくなる。その結果、固体絶縁物11の剥離、
クラック発生は抑制され、温度変化に強い信頼性に富む
半導体装置を提供することが出来る。特に、固体絶縁物
11の熱膨張率αi(x)を、空間座標xの関数とし、
表側導電体板21,22,23の外周端部近傍では表側
導電体板21,22,23の熱膨張率αcに近い値であ
り、絶縁基板1近傍では絶縁基板1の熱膨張率αsに近
い値とすることが好ましい。固体絶縁物11の熱膨張率
αi(x)は、無機質の粉末を多量に充填することで、
その熱膨張率αi(x)を低減することが出来る。In the package of the power semiconductor device according to the first embodiment of the present invention, by selecting the thermal expansion coefficient α i (x) of the solid insulator 11, the thermal expansion and contraction at the respective interfaces are made. Can be minimized, so that the solid insulator / insulating substrate or solid insulator / front-side conductor plate undergoes exactly the same volume change during thermal cycling, resulting in mechanical stress. The occurrence of S becomes very small. As a result, the solid insulator 11 peels off,
Crack generation is suppressed, and a highly reliable semiconductor device resistant to temperature changes can be provided. In particular, the coefficient of thermal expansion α i (x) of the solid insulator 11 is defined as a function of the spatial coordinate x,
In the vicinity of the outer peripheral ends of the front-side conductor plates 21, 22, 23, the coefficient of thermal expansion is close to the thermal expansion coefficient α c of the front-side conductor plates 21, 22, 23, and near the insulating substrate 1, the coefficient of thermal expansion α s of the insulating substrate 1 is large. It is preferable to set the value close to The coefficient of thermal expansion α i (x) of the solid insulator 11 is determined by filling a large amount of inorganic powder.
The coefficient of thermal expansion α i (x) can be reduced.
【0039】本発明の第1の実施の形態に係る電力用半
導体装置のパッケージにおいては、固体絶縁物11とし
て、シリカ、アルミナ等無機質粉末を多量に充填し、熱
膨張率αi(x)を変化させた以下の3種類のエポキシ
樹脂を用意した: エポキシ樹脂A:熱膨張率αiA(x)=10×10
−6/℃; エポキシ樹脂B:熱膨張率αiB(x)=15×10
−6/℃; エポキシ樹脂C:熱膨張率αiC(x)=30×10
−6/℃。In the package of the power semiconductor device according to the first embodiment of the present invention, a large amount of an inorganic powder such as silica or alumina is filled as the solid insulator 11, and the thermal expansion coefficient α i (x) is determined. The following three types of modified epoxy resins were prepared: epoxy resin A: coefficient of thermal expansion α iA (x) = 10 × 10
−6 / ° C .; epoxy resin B: coefficient of thermal expansion α iB (x) = 15 × 10
-6 / ° C.; Epoxy resin C: coefficient of thermal expansion α iC (x) = 30 × 10
-6 / C.
【0040】エポキシ樹脂Aは、絶縁基板1(窒化アル
ミニウム:αs=6×10−6/℃)に近い熱膨張率を
有する低α樹脂である。エポキシ樹脂Bは、表側導電体
板21,22,23(銅:αc=17×10−6/℃)
に近い熱膨張率を有する標準樹脂である。エポキシ樹脂
Cは、熱膨張率αi(x)=30×10−6/℃の参照
用材料である。The epoxy resin A is a low α resin having a thermal expansion coefficient close to that of the insulating substrate 1 (aluminum nitride: α s = 6 × 10 −6 / ° C.). The epoxy resin B is made of a front-side conductor plate 21, 22, 23 (copper: α c = 17 × 10 −6 / ° C.)
It is a standard resin having a coefficient of thermal expansion close to The epoxy resin C is a reference material having a coefficient of thermal expansion α i (x) = 30 × 10 −6 / ° C.
【0041】特に、本発明の第1の実施の形態に係る電
力用半導体装置のパッケージにおいては、図2のように
絶縁基板1近傍に、第2樹脂11bとして、低熱膨張率
のエポキシ樹脂Aを用い、更に、表側導電体板23側に
第1樹脂11aとして、銅に近い熱膨張率を有するエポ
キシ樹脂Bを用いた2回塗布タイプの傾斜膨張率型固体
絶縁層を配置するのが好ましい。固体絶縁物11の熱膨
張率αi(x)の空間座標xによる変化は、図2に示す
ような、ディスクリート的変化、即ち、階段状(ステッ
プ状)の変化に限られるものではなく、線型(1次関
数)若しくは2次以上の高次の関数として、滑らかに変
化するように設定しても構わない。In particular, in the package of the power semiconductor device according to the first embodiment of the present invention, as shown in FIG. 2, an epoxy resin A having a low coefficient of thermal expansion is used as the second resin 11b near the insulating substrate 1. Further, it is preferable to dispose a double-expansion type gradient expansion type solid insulating layer using an epoxy resin B having a thermal expansion coefficient close to that of copper as the first resin 11a on the front-side conductor plate 23 side. The change in the thermal expansion coefficient α i (x) of the solid insulator 11 according to the spatial coordinates x is not limited to a discrete change as shown in FIG. 2, that is, a step-like (step-like) change, but a linear change. It may be set as a (primary function) or a higher-order function of second or higher order so as to change smoothly.
【0042】固体絶縁物11の厚さは、パワー半導体チ
ップ31,32から絶縁基板1の端部までの沿面距離に
関係があり、沿面距離が長ければ薄くても絶縁破壊の防
止効果がある。図1及び図2においては、表側導電体板
21,22,23の端部(外周端部)の肩部を完全に覆
うようにとを固体絶縁物11で固めているが、表側導電
体板21,22,23の端部との絶縁基板1とのなすコ
ーナ部の一部に固体絶縁物11を埋め込んだ場合でも、
ある程度の沿面放電の防止効果を達成できる。表側導電
体板21,22,23の端部の肩部が露出するようにす
れば、樹脂の量が少なく出来るので、安価にパッケージ
を製造できる。なお、沿面距離が絶縁基板1の厚さと同
程度の場合、固体絶縁物11を盛上げた構造により、更
に、沿面放電の防止効果を向上可能である。The thickness of the solid insulator 11 is related to the creepage distance from the power semiconductor chips 31 and 32 to the end of the insulating substrate 1. Even if the creepage distance is long, the effect of preventing dielectric breakdown can be obtained even if the creepage distance is small. In FIGS. 1 and 2, the solid insulator 11 is used to completely cover the shoulders at the ends (outer peripheral ends) of the front conductor plates 21, 22, 23. Even when the solid insulator 11 is embedded in a part of a corner formed between the insulating substrate 1 and the ends of 21, 22, and 23,
A certain degree of creeping discharge prevention effect can be achieved. If the shoulders at the ends of the front-side conductor plates 21, 22, 23 are exposed, the amount of resin can be reduced, so that the package can be manufactured at low cost. When the creepage distance is substantially equal to the thickness of the insulating substrate 1, the effect of preventing the creepage discharge can be further improved by the structure in which the solid insulator 11 is raised.
【0043】本発明の第1の実施の形態においては、図
1及び図2に示すように、固体絶縁物11は、放熱板5
には塗らないことが重要である。理由は、固体絶縁物1
1を放熱板5に塗り固めた場合、絶縁基板1と放熱板5
の熱膨張率の違いにより、ヒートサイクルで固体絶縁物
11が剥離し、沿面破壊を生じ易くするという逆効果を
もたらすからである。In the first embodiment of the present invention, as shown in FIG. 1 and FIG.
It is important not to paint. The reason is solid insulator 1
1 is applied to the heat sink 5, the insulating substrate 1 and the heat sink 5
This is because, due to the difference in the coefficient of thermal expansion, the solid insulator 11 is peeled off in the heat cycle, which has an adverse effect of making it easy to cause creeping breakdown.
【0044】以上のように、本発明の第1の実施の形態
に係る電力用半導体装置のパッケージにおいては、表側
導電体板21,22,23の外周端部上並びに絶縁基板
1の周囲部上に、熱膨張率αi(x)を最適化した固体
絶縁物11を備えているので、表側導電体板21,2
2,23の外周端部と絶縁基板1の外周端部とが密着
し、且つ、機械的な応力Sの発生は非常に小さくなる。
その結果、固体絶縁物11の剥離、クラック発生は抑制
され、温度変化に強い信頼性に富む半導体装置を提供す
ることが出来る。また表側導電体板21,22,23の
外周端部と絶縁基板1の外周端部との界面に固体絶縁物
11が存在することから、両者の界面での電界が緩和さ
れて沿面放電が生じ難くなる。従って絶縁破壊が防止さ
れ、高耐圧化を実現できる。As described above, in the package of the power semiconductor device according to the first embodiment of the present invention, on the outer peripheral edge of the front-side conductor plates 21, 22, 23 and on the peripheral portion of the insulating substrate 1. Is provided with the solid insulator 11 having the optimized thermal expansion coefficient α i (x), so that the front-side conductive plates 21 and
The outer peripheral ends of the substrates 2 and 23 and the outer peripheral end of the insulating substrate 1 are in close contact with each other, and the occurrence of mechanical stress S is very small.
As a result, peeling and cracking of the solid insulator 11 are suppressed, and a highly reliable semiconductor device that is resistant to temperature changes can be provided. In addition, since the solid insulator 11 exists at the interface between the outer peripheral edge of the front-side conductor plates 21, 22, and 23 and the outer peripheral edge of the insulating substrate 1, the electric field at the interface between them is alleviated and creeping discharge occurs. It becomes difficult. Therefore, dielectric breakdown is prevented, and a high breakdown voltage can be realized.
【0045】また、表側導電体板21,22,23の外
周端部上並びに絶縁基板1の周囲部上に、固化した樹脂
からなる固体絶縁物11を備えたことにより、この固体
絶縁物11が補強材として作用する。従って、表側導電
体板21,22,23と絶縁基板1の接合の信頼性を向
上でき、また、絶縁基板1の機械的強度を向上できるの
で、DBC基板の小形化をも図ることが出来る。The solid insulator 11 made of a solidified resin is provided on the outer peripheral edge of the front-side conductor plates 21, 22, and 23 and on the peripheral portion of the insulating substrate 1, so that the solid insulator 11 is formed. Acts as a reinforcement. Therefore, the reliability of bonding between the front-side conductor plates 21, 22, 23 and the insulating substrate 1 can be improved, and the mechanical strength of the insulating substrate 1 can be improved, so that the DBC substrate can be downsized.
【0046】(第2の実施の形態)図4は本発明の第2
の実施の形態に係る電力用半導体装置(パッケージ)を
構成している基板の一部を示す断面図である。本発明の
第2の実施の形態に係る電力用半導体装置は、図1の本
発明の第1の実施の形態に係る電力用半導体装置(パッ
ケージ)と同様な基本構造を有している。即ち、図1と
同様に、放熱板5と、放熱板5上に取付けられた絶縁基
板1と、絶縁基板1の周囲部を露出させるように絶縁基
板1上に選択的に配置された表側導電体板21r,22
r,23rと、表側導電体板21r,22r,23r上
に配置された半導体チップ31,32と、表側導電体板
21r,22r,23rの外周端部に接して、絶縁基板
1の上面に配置された固体絶縁物11と、絶縁基板1を
囲うように放熱板5上に設けられた容器本体(ケース)
6と、この容器本体(ケース)6の上部に配置された上
蓋部(ターミナルホルダ)8と、この上蓋部(ターミナ
ルホルダ)8を貫通して保持され、半導体チップ31,
32に電気的に接続されるべく配置された外部端子用リ
ード71,72と、容器本体(ケース)6内に充填され
る柔軟絶縁物9とからなる半導体装置である点では、本
発明の第1の実施の形態に係る電力用半導体装置と共通
する。しかし、本発明の第2の実施の形態に係る電力用
半導体装置においては、図4に示すように、絶縁基板1
の主表面に垂直方向の断面において、表側導電体板21
r,22r,23rの外周端部の形状が、円弧状である
(図4においては、表側導電体板21r,22rを示し
ていないが、表側導電体板21r,22rの外周端部
は、表側導電体板23rの外周端部と同様であることは
勿論である)。(Second Embodiment) FIG. 4 shows a second embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a part of a substrate constituting a power semiconductor device (package) according to the embodiment. The power semiconductor device according to the second embodiment of the present invention has the same basic structure as the power semiconductor device (package) according to the first embodiment of the present invention in FIG. That is, similarly to FIG. 1, the heat sink 5, the insulating substrate 1 mounted on the heat sink 5, and the front-side conductive member selectively disposed on the insulating substrate 1 so as to expose the peripheral portion of the insulating substrate 1. Body plates 21r, 22
r, 23r, the semiconductor chips 31, 32 disposed on the front-side conductor plates 21r, 22r, 23r, and the outer peripheral edges of the front-side conductor plates 21r, 22r, 23r, and disposed on the upper surface of the insulating substrate 1. Container body (case) provided on the heat sink 5 so as to surround the solid insulator 11 and the insulating substrate 1
6, an upper lid (terminal holder) 8 disposed on the upper part of the container body (case) 6, and a semiconductor chip 31,
The semiconductor device according to the present invention is different from the semiconductor device according to the present invention in that the semiconductor device is composed of external terminal leads 71 and 72 arranged to be electrically connected to the semiconductor device 32 and a flexible insulator 9 filled in the container body (case) 6. It is common to the power semiconductor device according to the first embodiment. However, in the power semiconductor device according to the second embodiment of the present invention, as shown in FIG.
In a cross section perpendicular to the main surface of the front side conductor plate 21
r, 22r, and 23r are arc-shaped (in FIG. 4, the front-side conductor plates 21r and 22r are not shown, but the outer-peripheral ends of the front-side conductor plates 21r and 22r are on the front side). Of course, it is the same as the outer peripheral end of the conductor plate 23r).
【0047】図3は、比較のために、絶縁基板1と表側
導電体板23のなす角度θ=90°とした表側導電体板
23の外周端部が角状である「標準電極」を示す。本発
明の第2の実施の形態に係る電力用半導体装置用基板で
は、図4に示すように、表側導電体板23rの角部に厚
さ分のr=0.2mmで丸みを機械加工、若しくは化学
的処理により形成している。以下において、図4に示す
ような絶縁基板1の主表面に垂直方向の断面において、
外周端部が円弧状の表側導電体板を、「R電極」と呼
ぶ。FIG. 3 shows, for comparison, a “standard electrode” in which the outer peripheral edge of the front-side conductor plate 23 is angled at an angle θ = 90 ° between the insulating substrate 1 and the front-side conductor plate 23. . In the substrate for a power semiconductor device according to the second embodiment of the present invention, as shown in FIG. Alternatively, it is formed by a chemical treatment. In the following, in a cross section perpendicular to the main surface of the insulating substrate 1 as shown in FIG.
The front-side conductor plate having an arcuate outer peripheral end is referred to as an “R electrode”.
【0048】通常、従来の半導体装置用基板では、表側
導電体板23の端部は、図3に示すような90°のエッ
ジ(角部)14になっている。90°の角部14を有す
る「標準電極」においては、機械的応力Sは、角部14
におけるの応力集中で増加する。図4のように、この部
分に丸みを持たせることにより応力集中を緩和し、固体
絶縁物11の剥離、クラック発生を抑制することが出来
る。Normally, in the conventional semiconductor device substrate, the end of the front-side conductor plate 23 has a 90 ° edge (corner) 14 as shown in FIG. In a "standard electrode" having a 90 ° corner 14, the mechanical stress S is
At the stress concentration of As shown in FIG. 4, by making this portion round, stress concentration can be reduced, and peeling of the solid insulator 11 and generation of cracks can be suppressed.
【0049】(第3の実施の形態)図5は本発明の第3
の実施の形態に係る電力用半導体装置(パッケージ)を
構成している基板の一部を示す断面図である。本発明の
第3の実施の形態に係る電力用半導体装置は、図1の本
発明の第1の実施の形態に係る電力用半導体装置(パッ
ケージ)と同様な基本構造を有している。即ち、図1と
同様に、放熱板5と、放熱板5上に取付けられた絶縁基
板1と、絶縁基板1の周囲部を露出させるように絶縁基
板1上に選択的に配置された表側導電体板21t,22
t,23tと、表側導電体板21t,22t,23t上
に配置された半導体チップ31,32と、表側導電体板
21t,22t,23tの外周端部に接して、絶縁基板
1の上面に配置された固体絶縁物11と、絶縁基板1を
囲うように放熱板5上に設けられた容器本体(ケース)
6と、この容器本体(ケース)6の上部に配置された上
蓋部(ターミナルホルダ)8と、この上蓋部(ターミナ
ルホルダ)8を貫通して保持され、半導体チップ31,
32に電気的に接続されるべく配置された外部端子用リ
ード71,72と、容器本体(ケース)6内に充填され
る柔軟絶縁物9とからなる半導体装置である点では、本
発明の第1及び第2の実施の形態に係る電力用半導体装
置と共通する。(Third Embodiment) FIG. 5 shows a third embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a part of a substrate constituting a power semiconductor device (package) according to the embodiment. The power semiconductor device according to the third embodiment of the present invention has the same basic structure as the power semiconductor device (package) according to the first embodiment of the present invention in FIG. That is, similarly to FIG. 1, the heat sink 5, the insulating substrate 1 mounted on the heat sink 5, and the front-side conductive member selectively disposed on the insulating substrate 1 so as to expose the peripheral portion of the insulating substrate 1. Body plates 21t, 22
t, 23t, the semiconductor chips 31, 32 disposed on the front-side conductor plates 21t, 22t, 23t, and the outer peripheral edges of the front-side conductor plates 21t, 22t, 23t, and disposed on the upper surface of the insulating substrate 1. Container body (case) provided on the heat sink 5 so as to surround the solid insulator 11 and the insulating substrate 1
6, an upper lid (terminal holder) 8 disposed on the upper part of the container body (case) 6, and a semiconductor chip 31,
The semiconductor device according to the present invention is different from the semiconductor device according to the present invention in that the semiconductor device is composed of external terminal leads 71 and 72 arranged to be electrically connected to the semiconductor device 32 and a flexible insulator 9 filled in the container body (case) 6. It is common to the power semiconductor devices according to the first and second embodiments.
【0050】しかし、図5に示すように、本発明の第3
の実施の形態に係る電力用半導体装置においては、絶縁
基板1の主表面に垂直方向の断面において、表側導電体
板23tの外周端部がメサ型の傾斜端面を有する。(図
5においては、表側導電体板21t,22tを示してい
ないが、表側導電体板21t,22tの外周端部は、表
側導電体板23tの外周端部と同様であることは勿論で
ある)。However, as shown in FIG.
In the power semiconductor device according to the embodiment, in a cross section perpendicular to the main surface of insulating substrate 1, the outer peripheral end of front-side conductive plate 23t has a mesa-shaped inclined end surface. (In FIG. 5, the front-side conductor plates 21t and 22t are not shown, but the outer periphery of the front-side conductor plates 21t and 22t is, of course, the same as the outer periphery of the front-side conductor plate 23t. ).
【0051】また、急激な角度変化も機械的損傷を助長
する。例えば、図3のように絶縁基板1に対し、表側導
電体板の外周端部(端面)が90°の角度を有するのが
通常の構造(「標準電極」構造)であるが、この場合
は、熱サイクルにより、表側導電体板/樹脂界面が剥離
する方向に応力Sが発生する。熱サイクルを重ねること
により、界面が剥離し、絶縁特性が著しく低下する。9
0°の角部14を有する「標準電極」においては、機械
的応力Sは、角部14における応力集中で増加する。Also, a sudden change in angle promotes mechanical damage. For example, as shown in FIG. 3, the normal structure (“standard electrode” structure) is such that the outer peripheral end (end face) of the front-side conductor plate has an angle of 90 ° with respect to the insulating substrate 1. Due to the heat cycle, stress S is generated in a direction in which the front-side conductor plate / resin interface is separated. By repeating the thermal cycle, the interface is peeled off, and the insulating properties are significantly reduced. 9
In a “standard electrode” having a 0 ° corner 14, the mechanical stress S increases due to the stress concentration at the corner 14.
【0052】図6は、絶縁基板1に対する表側導電体板
23tの外周端部(端面)の角度θを変化させた場合の
応力Sの変化を示す。応力Sは、角度θ=30°近傍で
最低値をとり、剥離しにくくなる。表側導電体板23t
の角度θを低くすると表側導電体板23tの端部の長さ
が増え、大きな絶縁基板構成となるので、実用上は、表
側導電体板23tの角度θは15〜60°の範囲に設定
することが効果的である。以下において、図5に示すよ
うな絶縁基板1の主表面に垂直方向の断面において、外
周端部が絶縁基板1に対し、90°以下の角度を有する
表側導電体板を、「テーパ電極」と呼ぶ。FIG. 6 shows a change in stress S when the angle θ of the outer peripheral end (end face) of the front-side conductor plate 23t with respect to the insulating substrate 1 is changed. The stress S takes a minimum value in the vicinity of the angle θ = 30 °, making it difficult to peel. Front conductor plate 23t
Is decreased, the length of the end portion of the front-side conductor plate 23t increases, resulting in a large insulating substrate configuration. Therefore, in practice, the angle θ of the front-side conductor plate 23t is set in the range of 15 to 60 °. It is effective. In the following, in a cross section perpendicular to the main surface of the insulating substrate 1 as shown in FIG. 5, a front-side conductor plate whose outer peripheral end has an angle of 90 ° or less with respect to the insulating substrate 1 is referred to as a “taper electrode”. Call.
【0053】(各実施の形態の比較)ここで、本発明の
第1乃至第3の実施の形態に係る半導体装置用基板、及
びこの半導体装置用基板を用いた半導体装置の特性を比
較する。この比較においては、表側導電体板を模擬した
電極板を用意した。そして、電極板の外周端部から絶縁
基板1の端部までの距離を、全周1.5mm一定とし
て、電極板を絶縁基板1に接合した。絶縁基板1の反対
側には、裏側導電体を介して、銅板をはんだで接合し、
放熱板5を模擬した。そして、電極板端部の周囲の固体
絶縁層11の周囲には、真空脱泡したシリコーンゲル9
で封止した。模擬放熱板5を接地し、電極板側に高電圧
を印加し、放電電荷量10pCとした場合の部分放電開
始を求めた。また、その後、更に、電極板に印加する電
圧を昇圧し、絶縁破壊電圧を求めた。また、劣化試験と
して、比較用試料(評価モデル)に対して恒温槽中で熱
サイクルを加え、試験後の部分放電開始電圧、絶縁破壊
電圧を同様に求めた。熱サイクルの条件は、125℃に
1時間保持した後、直ちに−40℃に冷却して1時間保
持するサイクルを1サイクルとして、300サイクル連
続して加えるものとした。(Comparison of Embodiments) Here, the characteristics of the semiconductor device substrate according to the first to third embodiments of the present invention and the characteristics of the semiconductor device using this semiconductor device substrate will be compared. In this comparison, an electrode plate simulating the front-side conductor plate was prepared. The electrode plate was joined to the insulating substrate 1 with the distance from the outer peripheral end of the electrode plate to the end of the insulating substrate 1 kept constant at the entire circumference of 1.5 mm. On the opposite side of the insulating substrate 1, a copper plate is joined by solder via a backside conductor,
The heat sink 5 was simulated. Then, around the solid insulating layer 11 around the edge of the electrode plate, there is a silicone gel 9 which has been degassed under vacuum.
And sealed. The simulated radiator plate 5 was grounded, a high voltage was applied to the electrode plate side, and the start of partial discharge when the discharge charge amount was 10 pC was determined. Thereafter, the voltage applied to the electrode plate was further increased, and the dielectric breakdown voltage was obtained. Further, as a deterioration test, a heat cycle was applied to a comparative sample (evaluation model) in a thermostat, and a partial discharge starting voltage and a dielectric breakdown voltage after the test were similarly obtained. The conditions of the heat cycle were such that a cycle of holding at 125 ° C. for 1 hour, immediately cooling to −40 ° C., and holding for 1 hour was one cycle, and 300 cycles were continuously added.
【0054】電極形状をパラメータとして、上述の比較
用試料(評価モデル)の部分放電開始電圧CSV、絶縁
破壊電圧BDVを求めた結果を表1に示す。Table 1 shows the results of obtaining the partial discharge starting voltage CSV and the dielectric breakdown voltage BDV of the comparative sample (evaluation model) using the electrode shape as a parameter.
【0055】[0055]
【表1】 表側導電体板に対応する電極板の周囲をエポキシ樹脂で
モールドすることにより絶縁耐圧特性が著しく向上した
が、熱サイクルにより、モールド層に剥離、クラックが
発生し、部分放電開始電圧CSV、BDVが低下した。
一方、本発明の第2の実施の形態に対応した「R電
極」、本発明の第3の実施の形態に対応した「テーパ電
極」は、熱サイクル時の応力Sを緩和し、モールド層の
剥離、クラック発生を抑えるので、絶縁耐圧特性の低下
は認められなかった。[Table 1] By molding the periphery of the electrode plate corresponding to the front-side conductor plate with epoxy resin, the withstand voltage characteristics were remarkably improved. However, due to thermal cycling, the mold layer was peeled and cracked, and the partial discharge starting voltages CSV and BDV were reduced. Dropped.
On the other hand, the “R electrode” corresponding to the second embodiment of the present invention and the “taper electrode” corresponding to the third embodiment of the present invention relax the stress S during the thermal cycle, and Since the occurrence of peeling and cracking was suppressed, no decrease in the withstand voltage characteristics was observed.
【0056】次に、本発明の第1の実施の形態に対応し
て、「モールド樹脂」の材質・構成を変えて、同様に部
分放電開始電圧CSV、絶縁破壊電圧BDVを求めた。
その結果を表2に示す。Next, in accordance with the first embodiment of the present invention, the partial discharge starting voltage CSV and the dielectric breakdown voltage BDV were similarly obtained by changing the material and composition of the "mold resin".
Table 2 shows the results.
【0057】[0057]
【表2】 熱膨張率が大きいエポキシ樹脂Cに比較して、絶縁基板
(セラミックス)と表側導電体板(金属)の中間の熱膨
張率を持つエポキシ樹脂A,Bでモールドすることによ
り絶縁耐圧特性を向上することが出来る。更に両者を組
み合わせた、傾斜膨張率型(A/B傾斜型)モールド
が、熱サイクルに対しても最も効果を発揮したことが分
かる。これは、絶縁基板に近い側は絶縁基板に近い熱膨
張率を有するエポキシ樹脂Aを用い、電極に近い側は電
極に近い熱膨張率を有するエポキシ樹脂Bをそれぞれ用
いたため、それぞれの界面で発生する熱応力を最小限に
抑えた結果である。[Table 2] Compared with the epoxy resin C having a large thermal expansion coefficient, the insulation withstand voltage characteristics are improved by molding with epoxy resins A and B having a thermal expansion coefficient intermediate between the insulating substrate (ceramics) and the front-side conductor plate (metal). I can do it. Further, it can be seen that the inclined expansion coefficient type (A / B inclined type) mold, which combines the two, exhibited the most effect on the thermal cycle. This occurs at the respective interfaces because the epoxy resin A having a thermal expansion coefficient close to the insulating substrate is used on the side near the insulating substrate, and the epoxy resin B having the thermal expansion coefficient near the electrode is used on the side near the electrodes. This is the result of minimizing the thermal stress that occurs.
【0058】(その他の実施の形態)上記のように、本
発明は第1乃至第3の実施の形態によって記載したが、
この開示の一部をなす論述及び図面はこの発明を限定す
るものであると理解すべきではない。この開示から当業
者には様々な代替実施の形態、実施例及び運用技術が明
らかとなろう。(Other Embodiments) As described above, the present invention has been described with reference to the first to third embodiments.
The discussion and drawings that form part of this disclosure should not be understood as limiting the invention. From this disclosure, various alternative embodiments, examples, and operation techniques will be apparent to those skilled in the art.
【0059】既に述べた第1乃至第3の実施の形態の説
明においては、AlN基板上に表側導電体板21,2
2,23となる銅箔を付けたDBC基板を用いた場合に
ついて説明したが、銅箔に代えて、アルミ箔を付けたA
lN基板を用いた構成としても良い。更には、絶縁基板
が全面に露出した基板や、DBC基板以外の厚膜技術や
薄膜技術で、絶縁基板上に所要の金属パターンを構成し
た基板等が採用できる。In the description of the first to third embodiments, the front-side conductor plates 21 and 21 are formed on the AlN substrate.
The case where a DBC substrate with copper foils of 2, 23 is used has been described.
A configuration using an 1N substrate may be used. Furthermore, a substrate having an insulating substrate exposed on the entire surface, a substrate having a required metal pattern formed on an insulating substrate by a thick film technology or a thin film technology other than the DBC substrate, or the like can be adopted.
【0060】また、上記第1乃至第3の実施の形態で
は、パワー半導体チップ31,32とこのパワー半導体
チップ31,32を制御するための制御回路用チップ
(図示省略)が搭載されたインテリジェント・パワー・
モジュール(IPM)について説明したが、パワー半導
体チップは3つ以上でも良く、1つでもかまわない。ま
た、制御回路用チップが無いようなパッケージにも本発
明は採用できる。更に、制御回路用チップは、中央部に
配置しても良く、これらはパッケージの設計によって任
意の位置に変更可能である。In the first to third embodiments, the intelligent semiconductor device having the power semiconductor chips 31, 32 and a control circuit chip (not shown) for controlling the power semiconductor chips 31, 32 is mounted. power·
Although the module (IPM) has been described, three or more power semiconductor chips may be used, or one power semiconductor chip may be used. Further, the present invention can be applied to a package having no control circuit chip. Further, the control circuit chips may be arranged at the center, and these can be changed to any positions by designing the package.
【0061】更に、パワー半導体チップは、制御回路を
パワー半導体素子と同一基板上に集積化したスマート・
パワーIC等のパワーICでもかまわない。更に、上記
第1の実施の形態と、第2の実施の形態の組み合わせて
も良く、第1の実施の形態と、第3の実施の形態の組み
合わせても良い。Further, the power semiconductor chip has a smart circuit in which the control circuit is integrated on the same substrate as the power semiconductor element.
A power IC such as a power IC may be used. Further, the first embodiment and the second embodiment may be combined, or the first embodiment and the third embodiment may be combined.
【0062】更に、上記第1乃至第3の実施の形態で
は、固体絶縁物11としてエポキシ樹脂を用いた場合を
説明したが、これに限らず、エポキシ樹脂に代えて、パ
ワー半導体チップ31,32及び制御回路用チップの温
度上昇に耐える耐熱性を持つ樹脂(例えば、ポリエステ
ル樹脂)を用いた構成としても、本発明を同様に実施し
て同様の効果を得ることが出来る。Further, in the first to third embodiments, the case where the epoxy resin is used as the solid insulator 11 has been described. However, the present invention is not limited to this, and the power semiconductor chips 31 and 32 are used instead of the epoxy resin. The present invention can be implemented in the same manner and the same effect can be obtained by using a resin (for example, polyester resin) having heat resistance to withstand the temperature rise of the control circuit chip.
【0063】その他、本発明はその要旨を逸脱しない範
囲で種々変形して実施できる。In addition, the present invention can be variously modified and implemented without departing from the gist thereof.
【0064】このように、本発明はここでは記載してい
ない様々な実施の形態等を含むことは勿論である。従っ
て、本発明の技術的範囲は上記の説明から妥当な特許請
求の範囲に係る発明特定事項によってのみ定められるも
のである。As described above, the present invention naturally includes various embodiments and the like not described herein. Therefore, the technical scope of the present invention is determined only by the invention specifying matters according to the claims that are appropriate from the above description.
【0065】[0065]
【発明の効果】本発明によれば、絶縁基板の沿面の破壊
電圧が高く、耐熱サイクル性に優れた半導体装置用基
板、及びこの半導体装置用基板を用いたパッケージ(半
導体装置)を提供することが出来る。According to the present invention, it is possible to provide a substrate for a semiconductor device which has a high breakdown voltage on the surface of an insulating substrate and has excellent heat cycle resistance, and a package (semiconductor device) using the substrate for a semiconductor device. Can be done.
【0066】また、本発明によれば、信頼性の高い半導
体装置用基板、及びこの半導体装置用基板を用いた半導
体装置を提供することが出来る。Further, according to the present invention, a highly reliable semiconductor device substrate and a semiconductor device using this semiconductor device substrate can be provided.
【0067】更に、本発明によれば、充填剤の熱膨張や
熱収縮により、半導体チップや収納ケース(容器本体)
に熱応力が加わり、モジュールの破損や半導体チップの
動作不良が発生することのない半導体装置用基板、及び
この半導体装置用基板を用いた半導体装置を提供するこ
とが出来る。Further, according to the present invention, the semiconductor chip or the storage case (container main body) is caused by thermal expansion or thermal contraction of the filler.
And a semiconductor device using the semiconductor device substrate, in which thermal stress is not applied to the semiconductor device and module breakage or semiconductor chip operation failure does not occur.
【0068】更に、本発明によれば、半導体モジュール
内への水分の浸透に対する防湿効果をより十分なものと
した半導体装置を提供することが出来る。Further, according to the present invention, it is possible to provide a semiconductor device having a sufficient moisture-proof effect against penetration of moisture into a semiconductor module.
【図1】本発明の第1の実施の形態に係る電力用半導体
装置の構造を示す断面図である。FIG. 1 is a sectional view showing a structure of a power semiconductor device according to a first embodiment of the present invention.
【図2】本発明の第1の実施の形態に係る電力用半導体
装置用基板の外周端部近傍の詳細な構造を示す断面図で
ある。FIG. 2 is a cross-sectional view showing a detailed structure near the outer peripheral end of the power semiconductor device substrate according to the first embodiment of the present invention.
【図3】本発明の第2の実施の形態において、比較のた
めに、絶縁基板1と表側導電体板23のなす角度θ=9
0°の「標準電極」の構造を示す断面図である。FIG. 3 shows an angle θ = 9 between the insulating substrate 1 and the front-side conductor plate 23 for comparison in the second embodiment of the present invention.
It is sectional drawing which shows the structure of a "standard electrode" of 0 degree.
【図4】本発明の第2の実施の形態に係る電力用半導体
装置用基板の外周端部近傍の詳細な構造を示す断面図で
ある。FIG. 4 is a sectional view showing a detailed structure near an outer peripheral end of a power semiconductor device substrate according to a second embodiment of the present invention.
【図5】本発明の第3の実施の形態に係る電力用半導体
装置用基板の外周端部近傍の詳細な構造を示す断面図で
ある。FIG. 5 is a sectional view showing a detailed structure near an outer peripheral end of a power semiconductor device substrate according to a third embodiment of the present invention.
【図6】本発明の第3の実施の形態に係る電力用半導体
装置用基板において、絶縁基板に対する電極の角度θと
発生応力との関係を示す図である。FIG. 6 is a diagram showing a relationship between an angle θ of an electrode with respect to an insulating substrate and a generated stress in a power semiconductor device substrate according to a third embodiment of the present invention.
【図7】従来の電力用半導体装置の構造を示す断面図で
ある。FIG. 7 is a sectional view showing the structure of a conventional power semiconductor device.
1 絶縁基板 21,22,23,23r,23t 表側導電体板 24 裏側導電体板 31,32 半導体チップ 41,42,43 ボンディングワイヤ 5 放熱板 6 ケース 71,72 外部接続用リード 8 ターミナルホルダ 9 柔軟絶縁物(シリコーンゲル) 10a,10b 封止部材 11 固体絶縁物 11a 第1樹脂 11b 第2樹脂 14 角部 REFERENCE SIGNS LIST 1 Insulating substrate 21, 22, 23, 23 r, 23 t Front conductive plate 24 Back conductive plate 31, 32 Semiconductor chip 41, 42, 43 Bonding wire 5 Heat sink 6 Case 71, 72 External connection lead 8 Terminal holder 9 Flexible Insulator (silicone gel) 10a, 10b Sealing member 11 Solid insulator 11a First resin 11b Second resin 14 Corner
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 25/18 // H01L 23/13 (72)発明者 関谷 洋紀 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 松本 寿彰 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 Fターム(参考) 4M109 AA01 BA03 CA10 DA02 DB02 DB10 EA10 ED01 ED02 ED07 ED10 EE06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 25/18 // H01L 23/13 (72) Inventor Yuki Sekiya 1st Toshiba-cho, Fuchu-shi, Tokyo Stock (72) Inventor Toshiaki Matsumoto 1 Toshiba-cho, Fuchu-shi, Tokyo F-term (reference) 4M109 AA01 BA03 CA10 DA02 DB02 DB10 EA10 ED01 ED02 ED06
Claims (19)
上に選択的に配置された導電体板と、 前記導電体板の外周端部に接して、前記絶縁基板の上面
に配置された固体絶縁物とからなり、 前記固体絶縁物は、前記導電体板の熱膨張率と前記絶縁
基板の熱膨張率との中間の値の熱膨張率を有する材料
を、少なくとも一部に含むことを特徴とする半導体装置
用基板。An insulating substrate; a conductive plate selectively disposed on the insulating substrate so as to expose a peripheral portion of the insulating substrate; A solid insulator disposed on the upper surface of the substrate, wherein the solid insulator is a material having a coefficient of thermal expansion intermediate between the coefficient of thermal expansion of the conductor plate and the coefficient of thermal expansion of the insulating substrate, A substrate for a semiconductor device, which is included at least in part.
体板の外周端部近傍では前記導電体板の熱膨張率に近い
値であり、前記絶縁基板近傍では前記絶縁基板の熱膨張
率に近い値であることを特徴とする請求項1記載の半導
体装置用基板。2. The thermal expansion coefficient of the solid insulator is close to the thermal expansion coefficient of the conductor plate near the outer peripheral end of the conductor plate, and the thermal expansion coefficient of the insulating substrate near the insulation substrate. 2. The substrate for a semiconductor device according to claim 1, wherein the value is close to the ratio.
において、前記導電体板の外周端部が円弧形状をなすこ
とを特徴とする請求項1又は2記載の半導体装置用基
板。3. The semiconductor device substrate according to claim 1, wherein an outer peripheral end of the conductor plate has an arc shape in a cross section perpendicular to a main surface of the insulating substrate.
上に選択的に配置された導電体板と、 前記導電体板の外周端部に接して、前記絶縁基板の上面
に配置された固体絶縁物とからなり、 前記絶縁基板の主表面に垂直方向の断面において、前記
導電体板の外周端部が円弧形状をなすことを特徴とする
半導体装置用基板。4. An insulating substrate; a conductive plate selectively disposed on the insulating substrate so as to expose a peripheral portion of the insulating substrate; A semiconductor device substrate comprising a solid insulator disposed on an upper surface of a substrate, wherein an outer peripheral end of the conductor plate has an arc shape in a cross section perpendicular to a main surface of the insulating substrate.
2mm以上、20mm以下であることを特徴とする請求
項3又は4記載の半導体装置用基板。5. A curvature radius of the arc-shaped outer peripheral end portion is equal to 0.
The substrate for a semiconductor device according to claim 3, wherein the substrate is not less than 2 mm and not more than 20 mm.
端面を有することを特徴とする請求項1又は2記載の半
導体装置用基板。6. The semiconductor device substrate according to claim 1, wherein an outer peripheral end of the conductor plate has a mesa-shaped inclined end surface.
上に選択的に配置された導電体板と、 前記導電体板の外周端部に接して、前記絶縁基板の上面
に配置された固体絶縁物とからなり、 前記導電体板の外周端部がメサ型の傾斜端面を有するこ
とを特徴とする半導体装置用基板。7. An insulating substrate; a conductor plate selectively disposed on the insulating substrate so as to expose a peripheral portion of the insulating substrate; A semiconductor device substrate comprising a solid insulator disposed on an upper surface of a substrate, wherein an outer peripheral end of the conductor plate has a mesa-shaped inclined end surface.
に対して15〜60°の角度をなすことを特徴とする請
求項6又は7記載の半導体装置用基板。8. The semiconductor device substrate according to claim 6, wherein the inclined end surface forms an angle of 15 ° to 60 ° with respect to a main surface of the insulating substrate.
した絶縁物であることを特徴とする請求項1乃至8のい
ずれか1項記載の半導体装置用基板。9. The semiconductor device substrate according to claim 1, wherein the solid insulator is an insulator obtained by solidifying a thermosetting resin.
上に選択的に配置された導電体板と、 前記導電体板上に配置された半導体チップと、 前記導電体板の外周端部に接して、前記絶縁基板の上面
に配置された固体絶縁物と、 前記絶縁基板を囲うように前記放熱板上に設けられたケ
ースと、 該ケースの上部に配置されたターミナルホルダと、 該ターミナルホルダを貫通して保持され、前記半導体チ
ップに電気的に接続されるべく配置された外部端子用リ
ードと、 前記ケース内に充填される柔軟絶縁物とからなり、 前記固体絶縁物は、前記導電体板の熱膨張率と前記絶縁
基板の熱膨張率との中間の値の熱膨張率を有する材料
を、少なくとも一部に含むことを特徴とする半導体装
置。10. A heat sink, an insulating substrate mounted on the heat sink, a conductor plate selectively disposed on the insulating substrate so as to expose a peripheral portion of the insulating substrate, and A semiconductor chip disposed on a body plate; a solid insulator disposed on an upper surface of the insulating substrate in contact with an outer peripheral end of the conductor plate; and a solid insulator provided on the heat sink so as to surround the insulating substrate. A case, a terminal holder disposed on the upper part of the case, an external terminal lead held through the terminal holder and arranged to be electrically connected to the semiconductor chip; The solid insulator is a material having a coefficient of thermal expansion intermediate between the coefficient of thermal expansion of the conductor plate and the coefficient of thermal expansion of the insulating substrate, at least in part. Is characterized by including Semiconductor device.
電体板の外周端部近傍では前記導電体板の熱膨張率に近
い値であり、前記絶縁基板近傍では前記絶縁基板の熱膨
張率に近い値であることを特徴とする請求項10記載の
半導体装置。11. The coefficient of thermal expansion of the solid insulator is close to the coefficient of thermal expansion of the conductor plate near the outer peripheral edge of the conductor plate, and the coefficient of thermal expansion of the insulating substrate near the insulation substrate. The semiconductor device according to claim 10, wherein the value is close to the rate.
面において、前記導電体板の外周端部が円弧形状をなす
ことを特徴とする請求項10又は11記載の半導体装
置。12. The semiconductor device according to claim 10, wherein an outer peripheral end of the conductor plate has an arc shape in a cross section perpendicular to a main surface of the insulating substrate.
上に選択的に配置された導電体板と、 前記導電体板上に配置された半導体チップと、 前記導電体板の外周端部に接して、前記絶縁基板の上面
に配置された固体絶縁物と、 前記絶縁基板を囲うように前記放熱板上に設けられたケ
ースと、 該ケースの上部に配置されたターミナルホルダと、 該ターミナルホルダを貫通して保持され、前記半導体チ
ップに電気的に接続されるべく配置された外部端子用リ
ードと、 前記ケース内に充填される柔軟絶縁物とからなり、 前記絶縁基板の主表面に垂直方向の断面において、前記
導電体板の外周端部が円弧形状をなすことを特徴とする
半導体装置。13. A heat sink, an insulating substrate mounted on the heat sink, a conductor plate selectively disposed on the insulating substrate so as to expose a peripheral portion of the insulating substrate, and A semiconductor chip disposed on a body plate; a solid insulator disposed on an upper surface of the insulating substrate in contact with an outer peripheral end of the conductor plate; and a solid insulator provided on the heat sink so as to surround the insulating substrate. A case, a terminal holder disposed on the upper part of the case, an external terminal lead held through the terminal holder and arranged to be electrically connected to the semiconductor chip; A semiconductor device comprising: a flexible insulator that is filled into a semiconductor substrate; and a cross section perpendicular to a main surface of the insulating substrate, wherein an outer peripheral end of the conductor plate has an arc shape.
0.2mm以上、20mm以下であることを特徴とする
請求項12又は13記載の半導体装置。14. The semiconductor device according to claim 12, wherein a radius of curvature of said arc-shaped outer peripheral end is 0.2 mm or more and 20 mm or less.
斜端面を有することを特徴とする請求項10又は11記
載の半導体装置。15. The semiconductor device according to claim 10, wherein an outer peripheral end of the conductor plate has a mesa-shaped inclined end surface.
上に選択的に配置された導電体板と、 前記導電体板上に配置された半導体チップと、 前記導電体板の外周端部に接して、前記絶縁基板の上面
に配置された固体絶縁物と、 前記絶縁基板を囲うように前記放熱板上に設けられたケ
ースと、 該ケースの上部に配置されたターミナルホルダと、 該ターミナルホルダを貫通して保持され、前記半導体チ
ップに電気的に接続されるべく配置された外部端子用リ
ードと、 前記ケース内に充填される柔軟絶縁物とからなり、 前記導電体板の外周端部がメサ型の傾斜端面を有するこ
とを特徴とする半導体装置。16. A radiator plate, an insulating substrate mounted on the radiator plate, a conductor plate selectively disposed on the insulating substrate so as to expose a peripheral portion of the insulating substrate, and A semiconductor chip disposed on a body plate; a solid insulator disposed on an upper surface of the insulating substrate in contact with an outer peripheral end of the conductor plate; and a solid insulator provided on the heat sink so as to surround the insulating substrate. A case, a terminal holder disposed on the upper part of the case, an external terminal lead held through the terminal holder and arranged to be electrically connected to the semiconductor chip; A semiconductor device, comprising: a flexible insulator filled in a semiconductor substrate, wherein an outer peripheral end of the conductor plate has a mesa-shaped inclined end surface.
面に対して15〜60°の角度をなすことを特徴とする
請求項15又は16記載の半導体装置。17. The semiconductor device according to claim 15, wherein said inclined end surface forms an angle of 15 ° to 60 ° with respect to a main surface of said insulating substrate.
化した絶縁物であることを特徴とする請求項10至17
のいずれか1項記載の半導体装置。18. The solid insulating material according to claim 10, wherein the solid insulating material is an insulating material obtained by solidifying a thermosetting resin.
The semiconductor device according to claim 1.
ン、ポリウレタンを用いたことを特徴とする請求項10
至18のいずれか1項記載の半導体装置。19. The apparatus according to claim 10, wherein said flexible insulator is made of silicone or polyurethane.
19. The semiconductor device according to any one of to 18.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000254226A JP2002076197A (en) | 2000-08-24 | 2000-08-24 | Board for semiconductor device and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000254226A JP2002076197A (en) | 2000-08-24 | 2000-08-24 | Board for semiconductor device and semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002076197A true JP2002076197A (en) | 2002-03-15 |
Family
ID=18743210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000254226A Pending JP2002076197A (en) | 2000-08-24 | 2000-08-24 | Board for semiconductor device and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002076197A (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1465250A1 (en) * | 2003-04-02 | 2004-10-06 | Abb Research Ltd. | Insulated power semiconductor module with reduced partial discharge and manufacturing method |
WO2007026499A1 (en) * | 2005-08-30 | 2007-03-08 | Matsushita Electric Industrial Co., Ltd. | Board structure and electronic device |
JP2007294621A (en) * | 2006-04-24 | 2007-11-08 | Sharp Corp | Led lighting system |
JP2007311441A (en) * | 2006-05-17 | 2007-11-29 | Hitachi Ltd | Power semiconductor module |
US7514777B2 (en) | 2006-09-28 | 2009-04-07 | Mitsubishi Electric Corporation | Power semiconductor module |
JP2009272413A (en) * | 2008-05-06 | 2009-11-19 | Anden | Semiconductor device for load driving |
JP2010199516A (en) * | 2009-02-27 | 2010-09-09 | Denso Corp | Electronic device |
EP2302676A1 (en) * | 2009-09-29 | 2011-03-30 | ABB Technology AG | High power semiconductor device |
JP2011142366A (en) * | 2008-10-20 | 2011-07-21 | Denso Corp | Electronic control device |
WO2012035680A1 (en) * | 2010-09-14 | 2012-03-22 | 株式会社日立製作所 | Power module and manufacturing method for same |
KR101255334B1 (en) | 2006-05-08 | 2013-04-16 | 페어차일드코리아반도체 주식회사 | Power module for low thermal resistance and method of fabricating of the same power module |
KR101303550B1 (en) * | 2012-02-20 | 2013-09-03 | 뉴모텍(주) | Hall Sensor Cover with Moisture-proof and Stator Assembly Using the Same |
JP2013222886A (en) * | 2012-04-18 | 2013-10-28 | Toshiba Corp | Semiconductor module |
KR101391926B1 (en) * | 2007-08-28 | 2014-05-28 | 페어차일드코리아반도체 주식회사 | Power module package |
DE102013226544A1 (en) | 2013-02-13 | 2014-08-14 | Mitsubishi Electric Corporation | Semiconductor device |
JP2015015434A (en) * | 2013-07-08 | 2015-01-22 | 三菱電機株式会社 | Module structure |
JP2015115382A (en) * | 2013-12-10 | 2015-06-22 | 三菱電機株式会社 | Semiconductor device |
CN104798194A (en) * | 2013-01-11 | 2015-07-22 | 三菱电机株式会社 | Semiconductor device |
WO2018159152A1 (en) * | 2017-03-03 | 2018-09-07 | 三菱電機株式会社 | Semiconductor device |
DE102018104532A1 (en) * | 2018-02-28 | 2019-08-29 | Rogers Germany Gmbh | Metal-ceramic substrate and method for producing a metal-ceramic substrate |
CN112272866A (en) * | 2018-06-21 | 2021-01-26 | 三菱电机株式会社 | Power module device |
JP2021052151A (en) * | 2019-09-26 | 2021-04-01 | 三菱電機株式会社 | Semiconductor device |
US11004807B2 (en) | 2018-08-03 | 2021-05-11 | Fuji Electric Co., Ltd. | Method of producing laminated substrate, method of producing semiconductor module, laminated substrate, and semiconductor module |
WO2021100126A1 (en) * | 2019-11-19 | 2021-05-27 | トヨタ自動車株式会社 | Semiconductor device |
WO2021235002A1 (en) * | 2020-05-18 | 2021-11-25 | 日立Astemo株式会社 | Power module |
CN115004365A (en) * | 2019-12-16 | 2022-09-02 | 阿莫善斯有限公司 | Semiconductor package and method of manufacturing the same |
DE102013104739B4 (en) | 2013-03-14 | 2022-10-27 | Rogers Germany Gmbh | Metal-ceramic substrates and method for producing a metal-ceramic substrate |
JP2022191673A (en) * | 2021-06-16 | 2022-12-28 | 富士電機株式会社 | semiconductor module |
US11587861B2 (en) | 2020-03-30 | 2023-02-21 | Fuji Electric Co., Ltd. | Semiconductor device and manufacturing method thereof |
US20230361691A1 (en) * | 2020-09-29 | 2023-11-09 | Hitachi, Ltd. | Power Conversion Unit, Power Conversion Device, and Method for Inspecting Power Conversion Unit |
-
2000
- 2000-08-24 JP JP2000254226A patent/JP2002076197A/en active Pending
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004088748A1 (en) * | 2003-04-02 | 2004-10-14 | Abb Research Ltd | Insulated power semiconductor module with reduced partial discharge and manufacturing method |
JP2006522468A (en) * | 2003-04-02 | 2006-09-28 | アーベーベー・リサーチ・リミテッド | Insulated power semiconductor module in which partial discharge behavior is suppressed to a low level and manufacturing method thereof |
CN100444358C (en) * | 2003-04-02 | 2008-12-17 | Abb研究有限公司 | Insulated power semiconductor module with reduced partial discharge and manufacturing method |
EP1465250A1 (en) * | 2003-04-02 | 2004-10-06 | Abb Research Ltd. | Insulated power semiconductor module with reduced partial discharge and manufacturing method |
WO2007026499A1 (en) * | 2005-08-30 | 2007-03-08 | Matsushita Electric Industrial Co., Ltd. | Board structure and electronic device |
JP2007294621A (en) * | 2006-04-24 | 2007-11-08 | Sharp Corp | Led lighting system |
KR101255334B1 (en) | 2006-05-08 | 2013-04-16 | 페어차일드코리아반도체 주식회사 | Power module for low thermal resistance and method of fabricating of the same power module |
JP2007311441A (en) * | 2006-05-17 | 2007-11-29 | Hitachi Ltd | Power semiconductor module |
US7514777B2 (en) | 2006-09-28 | 2009-04-07 | Mitsubishi Electric Corporation | Power semiconductor module |
KR101391926B1 (en) * | 2007-08-28 | 2014-05-28 | 페어차일드코리아반도체 주식회사 | Power module package |
JP2009272413A (en) * | 2008-05-06 | 2009-11-19 | Anden | Semiconductor device for load driving |
JP2011142366A (en) * | 2008-10-20 | 2011-07-21 | Denso Corp | Electronic control device |
JP2010199516A (en) * | 2009-02-27 | 2010-09-09 | Denso Corp | Electronic device |
EP2302676A1 (en) * | 2009-09-29 | 2011-03-30 | ABB Technology AG | High power semiconductor device |
JP2012084835A (en) * | 2010-09-14 | 2012-04-26 | Hitachi Ltd | Power module and manufacturing method of the same |
WO2012035680A1 (en) * | 2010-09-14 | 2012-03-22 | 株式会社日立製作所 | Power module and manufacturing method for same |
KR101303550B1 (en) * | 2012-02-20 | 2013-09-03 | 뉴모텍(주) | Hall Sensor Cover with Moisture-proof and Stator Assembly Using the Same |
JP2013222886A (en) * | 2012-04-18 | 2013-10-28 | Toshiba Corp | Semiconductor module |
CN104798194A (en) * | 2013-01-11 | 2015-07-22 | 三菱电机株式会社 | Semiconductor device |
US9293390B2 (en) | 2013-01-11 | 2016-03-22 | Mitsubishi Electric Corporation | Heat radiation structure for semiconductor device |
DE102013226544B4 (en) * | 2013-02-13 | 2021-02-18 | Arigna Technology Ltd. | Semiconductor device |
DE102013226544A1 (en) | 2013-02-13 | 2014-08-14 | Mitsubishi Electric Corporation | Semiconductor device |
US9048227B2 (en) | 2013-02-13 | 2015-06-02 | Mitsubishi Electric Corporation | Semiconductor device |
DE102013104739B4 (en) | 2013-03-14 | 2022-10-27 | Rogers Germany Gmbh | Metal-ceramic substrates and method for producing a metal-ceramic substrate |
JP2015015434A (en) * | 2013-07-08 | 2015-01-22 | 三菱電機株式会社 | Module structure |
JP2015115382A (en) * | 2013-12-10 | 2015-06-22 | 三菱電機株式会社 | Semiconductor device |
JPWO2018159152A1 (en) * | 2017-03-03 | 2019-06-27 | 三菱電機株式会社 | Semiconductor device |
WO2018159152A1 (en) * | 2017-03-03 | 2018-09-07 | 三菱電機株式会社 | Semiconductor device |
DE102018104532A1 (en) * | 2018-02-28 | 2019-08-29 | Rogers Germany Gmbh | Metal-ceramic substrate and method for producing a metal-ceramic substrate |
DE102018104532B4 (en) | 2018-02-28 | 2023-06-29 | Rogers Germany Gmbh | Metal-ceramic substrate and method of manufacturing a metal-ceramic substrate |
CN111788677A (en) * | 2018-02-28 | 2020-10-16 | 罗杰斯德国有限公司 | Cermet substrate and method for manufacturing cermet substrate |
CN111788677B (en) * | 2018-02-28 | 2024-10-18 | 罗杰斯德国有限公司 | Cermet substrate and method for manufacturing cermet substrate |
KR20200110371A (en) * | 2018-02-28 | 2020-09-23 | 로저스 저매니 게엠베하 | Metal ceramic substrate and method of manufacturing metal ceramic substrate |
JP7143426B2 (en) | 2018-02-28 | 2022-09-28 | ロジャーズ ジャーマニー ゲーエムベーハー | METAL-CERAMIC SUBSTRATE AND METHOD FOR MANUFACTURING METAL-CERAMIC SUBSTRATE |
KR102396987B1 (en) | 2018-02-28 | 2022-05-12 | 로저스 저매니 게엠베하 | Metal-ceramic substrate and manufacturing method of metal-ceramic substrate |
JP2021513744A (en) * | 2018-02-28 | 2021-05-27 | ロジャーズ ジャーマニー ゲーエムベーハーRogers Germany GmbH | Metal-ceramic substrate and method for manufacturing metal-ceramic substrate |
US11129273B2 (en) | 2018-02-28 | 2021-09-21 | Rogers Germany Gmbh | Metal-ceramic substrate and method for producing a metal-ceramic substrate |
CN112272866B (en) * | 2018-06-21 | 2024-02-09 | 三菱电机株式会社 | Power module device |
CN112272866A (en) * | 2018-06-21 | 2021-01-26 | 三菱电机株式会社 | Power module device |
US11004807B2 (en) | 2018-08-03 | 2021-05-11 | Fuji Electric Co., Ltd. | Method of producing laminated substrate, method of producing semiconductor module, laminated substrate, and semiconductor module |
JP7262356B2 (en) | 2019-09-26 | 2023-04-21 | 三菱電機株式会社 | semiconductor equipment |
JP2021052151A (en) * | 2019-09-26 | 2021-04-01 | 三菱電機株式会社 | Semiconductor device |
JPWO2021100126A1 (en) * | 2019-11-19 | 2021-05-27 | ||
JP7103533B2 (en) | 2019-11-19 | 2022-07-20 | 株式会社デンソー | Semiconductor equipment |
WO2021100126A1 (en) * | 2019-11-19 | 2021-05-27 | トヨタ自動車株式会社 | Semiconductor device |
CN115004365A (en) * | 2019-12-16 | 2022-09-02 | 阿莫善斯有限公司 | Semiconductor package and method of manufacturing the same |
US11587861B2 (en) | 2020-03-30 | 2023-02-21 | Fuji Electric Co., Ltd. | Semiconductor device and manufacturing method thereof |
WO2021235002A1 (en) * | 2020-05-18 | 2021-11-25 | 日立Astemo株式会社 | Power module |
JP7356402B2 (en) | 2020-05-18 | 2023-10-04 | 日立Astemo株式会社 | power module |
JP2021182568A (en) * | 2020-05-18 | 2021-11-25 | 日立Astemo株式会社 | Power module |
US20230361691A1 (en) * | 2020-09-29 | 2023-11-09 | Hitachi, Ltd. | Power Conversion Unit, Power Conversion Device, and Method for Inspecting Power Conversion Unit |
JP2022191673A (en) * | 2021-06-16 | 2022-12-28 | 富士電機株式会社 | semiconductor module |
US12301127B2 (en) | 2021-06-16 | 2025-05-13 | Fuji Electric Co., Ltd. | Semiconductor module |
JP7707676B2 (en) | 2021-06-16 | 2025-07-15 | 富士電機株式会社 | Semiconductor Module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002076197A (en) | Board for semiconductor device and semiconductor device | |
US7449774B1 (en) | Semiconductor power module having an electrically insulating heat sink and method of manufacturing the same | |
US7868436B2 (en) | Semiconductor device | |
US10959333B2 (en) | Semiconductor device | |
US20080105896A1 (en) | Power semiconductor module | |
JP6041795B2 (en) | Semiconductor device | |
JP2003124400A (en) | Semiconductor power module and method of manufacturing the same | |
CN110268519A (en) | Power Semiconductor Modules | |
JP3632960B2 (en) | Semiconductor device | |
US20220051960A1 (en) | Power Semiconductor Module Arrangement and Method for Producing the Same | |
US11942449B2 (en) | Semiconductor arrangement and method for producing the same | |
CN110914975B (en) | Power semiconductor module | |
JP3440824B2 (en) | Semiconductor device | |
JP3703978B2 (en) | Semiconductor device | |
JP4098414B2 (en) | Semiconductor device | |
CN113363231A (en) | Semiconductor device with a plurality of semiconductor chips | |
JPH08125071A (en) | Semiconductor device | |
CN111033723B (en) | power semiconductor module | |
JP2904154B2 (en) | Electronic circuit device including semiconductor element | |
EP4084062A1 (en) | Power semiconductor module arrangement | |
JP7672574B2 (en) | Semiconductor Device | |
JP7157783B2 (en) | Semiconductor module manufacturing method and semiconductor module | |
US20240355693A1 (en) | Semiconductor device, semiconductor module, and method for manufacturing semiconductor module | |
JP2001057409A (en) | Semiconductor device | |
KR102228938B1 (en) | Coupled semiconductor package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040416 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050405 |