[go: up one dir, main page]

JP2002005831A - Absorptiometric analyzer - Google Patents

Absorptiometric analyzer

Info

Publication number
JP2002005831A
JP2002005831A JP2000185703A JP2000185703A JP2002005831A JP 2002005831 A JP2002005831 A JP 2002005831A JP 2000185703 A JP2000185703 A JP 2000185703A JP 2000185703 A JP2000185703 A JP 2000185703A JP 2002005831 A JP2002005831 A JP 2002005831A
Authority
JP
Japan
Prior art keywords
measurement
infrared
component
concentration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000185703A
Other languages
Japanese (ja)
Inventor
Tsukasa Satake
司 佐竹
Aritoshi Yoneda
有利 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2000185703A priority Critical patent/JP2002005831A/en
Publication of JP2002005831A publication Critical patent/JP2002005831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nondispersive absorptiometeric analyzer, whose constitution is simple and with which a high accuracy computed result is obtained, with respect to a desired gas component from among a plurality of gas components to be measured. SOLUTION: Infrared detectors 4, 5 whose number corresponds to the plurality of gas components to be measured are installed. An infrared detector 6, which receives infrared rays in a wavelength region over all of respective extinction wavelength regions of the gas components, in which the extinction wavelength regions are overlapped partly with each other, is installed. The concentration of the respective gas components is calculated. Thereby, a measured result, in which a background signal and a mutual interference degree are corrected can be obtained, using a simple constitution. When the gas components whose change range of a concentration differs largely are measured, the calculated value of the interference degree between the respective gas components is corrected, according to a weighting factor which is set so as to correspond to the respective gas components. Thereby, even with respect to a gas kind whose concentration is small, the high accuracy computed result can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は吸光分析装置に関
し、さらに詳しくは、複数の測定ガス成分の濃度を測定
し得るように構成される非分散型赤外線吸光分析装置
(NDIR:Non Dispersive Infrared Analyzer)に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption spectrometer, and more particularly, to a non-dispersive infrared absorption spectrometer (NDIR) configured to measure the concentrations of a plurality of measurement gas components. It is about.

【0002】[0002]

【従来の技術】NDIRは、試料ガス中に含まれる測定ガス
成分の濃度を、実時間で連続的に測定する場合等に多用
されている。例えば特開平10−185816号公報に、このよ
うなNDIRの構成例が記載され、同公報には、例えば2種
類のガス成分の濃度測定用として、図4に示すような装
置が示されている。同図において、31は試料ガスが供
給される測定セルであって、この測定セル31の入射側
(図において左側)に赤外線光源32が配置される一
方、測定セル31の出射側に、測定セル31を透過した
赤外線を断続させる回転式チョッパ33と、後述するよ
うに、バンドパスフィルタと赤外線センサとを対にして
それぞれ構成された4個の赤外線検出器34〜37とが
設けられている。
2. Description of the Related Art NDIR is frequently used when the concentration of a measurement gas component contained in a sample gas is continuously measured in real time. For example, Japanese Patent Application Laid-Open No. 10-185816 discloses an example of such a configuration of NDIR, and the publication discloses an apparatus as shown in FIG. 4 for measuring the concentration of two types of gas components, for example. . In the figure, reference numeral 31 denotes a measuring cell to which a sample gas is supplied, and an infrared light source 32 is arranged on the incident side (left side in the figure) of the measuring cell 31, while a measuring cell is There are provided a rotary chopper 33 for intermittently transmitting infrared light transmitted through 31, and, as described later, four infrared detectors 34 to 37 each configured by a pair of a band-pass filter and an infrared sensor.

【0003】第1赤外線検出器34は試料ガス中のCO
濃度を測定するためのもので、これは、COの吸収波長
帯域の赤外線を選択的に透過させるバンドパスフィルタ
34aと、このフィルタ34aを透過した赤外線を受光
する第1測定成分用赤外線センサ34bとを設けて構成
されている。第2赤外線検出器35は、第1赤外線検出
器34からの出力信号を補償するために設けられている
ものであって、COの吸収波長帯域以外の特定波長帯域
の赤外線を透過させるバンドパスフィルタ35aと、こ
のフィルタ35aを透過した赤外線を受光する赤外線セ
ンサ35bとによって構成されている。
[0003] The first infrared detector 34 detects the CO in the sample gas.
This is for measuring the concentration, which comprises a band-pass filter 34a for selectively transmitting infrared rays in the CO absorption wavelength band, a first measurement component infrared sensor 34b for receiving infrared rays transmitted through the filter 34a, and Is provided. The second infrared detector 35 is provided for compensating an output signal from the first infrared detector 34, and is a band-pass filter that transmits infrared light in a specific wavelength band other than the CO absorption wavelength band. 35a, and an infrared sensor 35b that receives infrared light transmitted through the filter 35a.

【0004】一方、第3赤外線検出器36は、試料ガス
中のCO濃度を測定するためのもので、これは、NOの
吸収波長帯域に対して上記同様に設定されたパンドパス
フィルタ36aと、赤外線センサ36bとによって構成
され、そして、この赤外線センサ36bからの出力信号
を補償するために、NOの吸収波長帯域以外の特定波長
帯域の赤外線を透過させるバンドパスフィルタ37a
と、赤外線センサ37bとから成る第4赤外線検出器3
7が設けられている。
[0004] On the other hand, the third infrared detector 36 is for measuring the CO concentration in the sample gas, and includes a band-pass filter 36a set in the same manner as described above for the NO absorption wavelength band, A band-pass filter 37a for transmitting infrared light in a specific wavelength band other than the NO absorption wavelength band in order to compensate for an output signal from the infrared sensor 36b.
And the fourth infrared detector 3 comprising an infrared sensor 37b
7 are provided.

【0005】このような構成において、まず、第1・第
2赤外線検出器34・35の赤外線センサ34b・35
bからの各出力信号の差が求められ、同時に、第3・第
4赤外線検出器36・37の各赤外線センサ36b・3
7bからの各出力信号の差が求められる。これによっ
て、例えば測定セル31やセル窓31aの汚れ、また、
赤外線光源32の光量の変動等による影響(以下、バッ
クグランド信号量という)が除去される。その後、予め
求められている基準値、すなわち、COやNOを単独で
それぞれ単位濃度流したときの基準値とそれぞれ比較
し、ランバートベールの法則に従い、比例計算によって
COやNOの濃度が算出される。
In such a configuration, first, the infrared sensors 34b and 35 of the first and second infrared detectors 34 and 35 are used.
b, the difference between the respective output signals from the third and fourth infrared detectors 36 and 37 is determined at the same time.
The difference between each output signal from 7b is determined. Thereby, for example, contamination of the measurement cell 31 and the cell window 31a,
The influence (hereinafter, referred to as the background signal amount) due to the fluctuation of the light amount of the infrared light source 32 is removed. Thereafter, the reference values determined in advance, that is, the reference values when CO and NO are individually flown at the unit concentration, are respectively compared, and the concentrations of CO and NO are calculated by proportional calculation according to Lambert-Beer's law. .

【0006】[0006]

【発明が解決しようとする課題】ところで、上記公報記
載の装置では、測定ガス成分として、各吸収波長帯域に
重なりの無いものが選択された場合が前提で、各吸収波
長帯域の一部が重なって相互に干渉し合うようなガス成
分の測定については格別考慮されていない。すなわち、
このようなガス成分の濃度測定を行う場合には、相互に
干渉する度合いをさらに求めて各ガス成分の濃度を算出
する必要となる。
In the apparatus described in the above publication, it is premised that a measurement gas component which does not overlap each absorption wavelength band is selected, and a part of each absorption wavelength band overlaps. No particular consideration is given to the measurement of gas components that interfere with each other. That is,
When measuring the concentration of such gas components, it is necessary to calculate the concentration of each gas component by further obtaining the degree of mutual interference.

【0007】このために、例えば上記装置におけるバッ
クグランド信号量を求めるための各補償用の検出器35
・37とは別に、さらに上記のような相互干渉の度合い
を求めるための検出器を付設するのでは、全体的な構成
部品点数が多くなって構成が複雑になる。
For this purpose, for example, each compensation detector 35 for obtaining the amount of background signal in the above-described device.
If a detector for determining the degree of mutual interference as described above is additionally provided separately from 37, the overall number of components increases and the configuration becomes complicated.

【0008】一方、複数のガス成分濃度を測定し得るよ
うに構成したNDIRを、例えば半導体製造工程におけるプ
ラズマCVD装置やプラズマエッチング装置等のプラズ
マ処理装置に設け、このような処理装置からの排気ガス
中の特定成分の濃度を測定しようとする場合に、所望の
ガス成分の濃度を精度良く測定できないという問題も生
じている。
On the other hand, an NDIR configured to measure a plurality of gas component concentrations is provided in a plasma processing apparatus such as a plasma CVD apparatus or a plasma etching apparatus in a semiconductor manufacturing process, and an exhaust gas from such a processing apparatus is provided. When trying to measure the concentration of a specific component therein, there is also a problem that the concentration of a desired gas component cannot be measured with high accuracy.

【0009】例えば、C26やO2を反応室に供給して
行うプラズマCVD装置からの排ガス中には、CF4
26、COF2、また、COやCO2など、赤外線の各
吸収波長帯域に重なり合いが生じる多くのガス種が混在
している。そして、これらのガス種間には、例えばAガ
ス成分は排気ガス中に数千ppmのオーダーで含まれる一
方、Bガス成分の濃度は数十ppmのオーダのように、濃
度の変化範囲が大きく相違したものとなっている。
For example, in the exhaust gas from a plasma CVD apparatus in which C 2 F 6 or O 2 is supplied to a reaction chamber, CF 4 , C 2 F 6 , COF 2 , and infrared rays such as CO and CO 2 are contained. Many gas types that overlap each other are mixed. Among these gas species, for example, the A gas component is contained in the exhaust gas in the order of several thousand ppm, while the concentration of the B gas component has a large variation range of concentration such as on the order of tens of ppm. It is different.

【0010】このような場合に、相互干渉の度合いにつ
いて、例えば前記同様に基準値との比例計算を前提とし
た演算では、濃度の大きなガス種に基づく干渉度合いが
計算上で過大になり易く、このために濃度の小さなガス
種に対して精度の良好な演算結果を得難いというような
問題を生じているのである。
In such a case, for the degree of mutual interference, for example, in the calculation based on the proportional calculation with the reference value as described above, the degree of interference based on the gas type having a large concentration is likely to be excessive in the calculation. For this reason, there arises a problem that it is difficult to obtain an accurate calculation result for a gas type having a small concentration.

【0011】本発明は、上記した問題点に鑑みなされた
もので、その目的は、全体的な構成を簡素なものにし得
ると共に、さらに、複数の測定ガス成分のうちの少なく
とも所望のガス成分に対し、精度の良好な演算結果を得
ることが可能な吸光分析装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has as its object to simplify the overall configuration and to provide at least a desired gas component among a plurality of measurement gas components. On the other hand, it is an object of the present invention to provide an absorption spectrometer capable of obtaining an accurate calculation result.

【0012】[0012]

【課題を解決するための手段】そこで本発明の請求項1
の吸光分析装置は、試料ガスが供給される測定セルを挟
んで入射側に赤外線光源を配置する一方、出射側に、試
料ガス中の複数の測定ガス成分に応じた数の赤外線検出
器を設け、各赤外線検出器を、対応する測定ガス成分の
吸収波長帯域に応じた波長域の赤外線を選択的に透過さ
せるバンドパスフィルタを備えた個別成分測定用赤外線
センサをそれぞれ設けて形成した吸光分析装置であっ
て、赤外線の吸収波長帯域の一部が相互に重なる測定ガ
ス成分に対し、これら測定ガス成分の各吸収波長帯域の
全体にわたる波長域の赤外線を透過させる補償用バンド
パスフィルタを備えた補償用赤外線センサをさらに設置
すると共に、この補償用赤外線センサと上記各個別成分
測定用赤外線センサとの各出力から、予め記憶されてい
る濃度算出式に従って各測定ガス成分の濃度を算出する
演算手段を設けていることを特徴としている。
SUMMARY OF THE INVENTION Therefore, claim 1 of the present invention is provided.
In an absorption spectrometer, an infrared light source is arranged on an incident side with a measurement cell to which a sample gas is supplied interposed therebetween, and on the emission side, a number of infrared detectors corresponding to a plurality of measurement gas components in the sample gas are provided. An absorption spectrometer in which each infrared detector is provided with an infrared sensor for individual component measurement provided with a band-pass filter for selectively transmitting infrared light in a wavelength range corresponding to the absorption wavelength band of the corresponding measurement gas component. For a measurement gas component in which a part of an infrared absorption wavelength band overlaps with each other, a compensation including a compensation bandpass filter that transmits infrared light in a wavelength range over the entire absorption wavelength band of the measurement gas component. In addition to the above, an infrared sensor is further provided, and from each output of the infrared sensor for compensation and the infrared sensor for measuring each individual component, a concentration calculation formula stored in advance is used. It is characterized in that there is provided a calculating means for calculating the concentration of each measured gas component.

【0013】この構成における作用について、例えば2
種のガス成分(Xガス成分とYガス成分)の濃度を測定
する場合を例に挙げて説明すると、各ガス成分に対応し
て設けられている2個の個別成分測定用赤外線センサ
と、補償用赤外線センサとの計3個の赤外線センサから
の出力信号から得られる吸光度信号SX・SY・ST
に、それぞれ、Xガス成分の濃度、Yガス成分の濃度、
およびバックグランド信号の3個を未知数とした関係式
(方程式)が成立する。したがって、この連立方程式を
解くような濃度算出式に従う演算を行うことで、各ガス
成分X・Yの濃度が求められる。一方、3種以上のガス
成分が混在する場合でも、上記同様に各ガス成分の濃度
を求めることができる。
Regarding the operation in this configuration, for example,
The case where the concentrations of various gas components (X gas component and Y gas component) are measured will be described as an example. Two individual component measuring infrared sensors provided corresponding to each gas component are provided. For each of the absorbance signals S X , S Y, and S T obtained from output signals from a total of three infrared sensors with the infrared sensor for use, the concentration of the X gas component, the concentration of the Y gas component,
And a relational expression (equation) in which three of the background signals are unknown. Therefore, the concentration of each of the gas components X and Y can be obtained by performing an operation according to a concentration calculation equation that solves this simultaneous equation. On the other hand, even when three or more gas components are mixed, the concentration of each gas component can be obtained in the same manner as described above.

【0014】したがって、この場合には、各測定ガス成
分に応じた数の赤外線検出器の他には、それぞれ1個ず
つの補償用バンドパスフィルタと赤外線センサとの対を
付設するだけで、バックグラウンド信号と相互干渉度合
いとが併せて補正された測定結果を得ることができるの
で、全体の構成が簡単になる。
Therefore, in this case, in addition to the number of infrared detectors corresponding to each measurement gas component, only one pair of a compensating bandpass filter and a pair of infrared sensors is provided. Since a measurement result in which the ground signal and the degree of mutual interference are corrected together can be obtained, the overall configuration is simplified.

【0015】請求項2の吸光分析装置は、請求項1の装
置において、各測定ガス成分に対応させて重み係数を設
定するための重み係数設定手段を設け、上記演算手段
が、上記濃度算出式中の各測定ガス成分間での干渉度合
いの計算式に上記重み係数の大小に基づく補正を行っ
て、各測定ガス成分の濃度を算出することを特徴として
いる。
According to a second aspect of the present invention, there is provided an absorption spectrometer according to the first aspect, further comprising weight coefficient setting means for setting a weight coefficient corresponding to each of the measured gas components, wherein the arithmetic means comprises the concentration calculation formula. It is characterized in that the concentration of each measurement gas component is calculated by performing a correction based on the magnitude of the weighting coefficient in the calculation formula of the degree of interference between the measurement gas components therein.

【0016】この構成によれば、例えば前記のように濃
度の変化範囲が大きく相違した測定ガス成分の測定を行
う場合に、濃度の大きなガス種に基づく干渉度合いが上
記重み係数に応じて抑えられるようにすることができ
る。したがって、上記のような重み係数の設定により、
濃度の小さなガス種に対しても精度の良好な演算結果を
得ることができる。
According to this configuration, for example, when measuring the measurement gas components whose concentration change ranges are largely different as described above, the degree of interference based on the gas type having the large concentration is suppressed in accordance with the weight coefficient. You can do so. Therefore, by setting the weight coefficient as described above,
A highly accurate calculation result can be obtained even for a gas type having a small concentration.

【0017】[0017]

【発明の実施の形態】次に、本発明の一実施形態につい
て、図面を参照しつつ詳細に説明する。初めに、赤外線
の吸収波長帯域の一部が相互に重なるXガス成分とYガ
ス成分との2種類のガス成分の濃度を測定する場合を例
に挙げて、その装置構成について説明する。
Next, an embodiment of the present invention will be described in detail with reference to the drawings. First, the configuration of the apparatus will be described using an example in which the concentrations of two types of gas components, an X gas component and a Y gas component, in which a part of the infrared absorption wavelength band overlaps each other, are measured.

【0018】図1に示すように、この場合の吸光分析装
置は、試料ガスが供給されて流通する測定セル1の入射
側に、白色赤外線光源2と、この光源2から出射した光
を断続させる回転式チョッパ3とを備え、また、測定セ
ル1の出射側に、3個の赤外線検出器4・5・6が配置
されて構成されている。各検出器4・5・6は、それぞ
れ、赤外線の入射面側に、後述するバンドパスフィルタ
4a・5a・6aを備えた赤外線センサ4b・5b・6
bを設けて構成されている。これら赤外線センサ4b・
5b・6bには、例えば焦電型センサ、半導体センサな
どの固体センサが用いられている。
As shown in FIG. 1, in the absorption spectrometer in this case, the white infrared light source 2 and the light emitted from the light source 2 are intermittently arranged on the incident side of the measurement cell 1 through which the sample gas is supplied and circulated. A rotary chopper 3 is provided, and three infrared detectors 4, 5, and 6 are arranged on the emission side of the measurement cell 1. Each of the detectors 4, 5, 6 is provided with an infrared sensor 4b, 5b, 6 provided with a band-pass filter 4a, 5a, 6a, which will be described later, on the infrared incident surface side.
b. These infrared sensors 4b
Solid-state sensors such as a pyroelectric sensor and a semiconductor sensor are used for 5b and 6b.

【0019】このような構成で、光源2から出射した赤
外線は、チョッパ3により一定周期で断続した光束とな
って測定セル1に入射し、この測定セル1内を透過する
過程で、試料ガス中に含まれている測定ガスにより固有
の波長域の赤外線が成分濃度に応じて吸収される。そし
て、測定セル1を透過した光束が、各バンドパスフィル
タ4a・5a・6aを透過して各々の赤外線センサ4b
・5b・6bで受光され、これら赤外線センサ4b・5
b・6bでの入射光量に応じた電気信号が、後述する演
算器(演算手段)7に入力される。この演算器7で、上
記電気信号が吸光度信号に変換されて、各測定ガス成分
の濃度の演算が行われ、得られた濃度信号CX・CYが外
部に出力される。
With such a configuration, the infrared light emitted from the light source 2 is incident on the measuring cell 1 as a light beam intermittently transmitted by the chopper 3 at a constant period, and is transmitted through the measuring cell 1 so that the infrared rays are emitted from the sample gas. The infrared rays in a specific wavelength range are absorbed by the measurement gas contained in the sample according to the component concentration. Then, the luminous flux transmitted through the measuring cell 1 is transmitted through the band-pass filters 4a, 5a, and 6a, and the respective infrared sensors 4b
5b and 6b, and these infrared sensors 4b and 5
An electric signal corresponding to the amount of incident light at b · 6b is input to a computing unit (computing means) 7 described later. The calculator 7 converts the electric signal into an absorbance signal, calculates the concentration of each measurement gas component, and outputs the obtained concentration signals C X and C Y to the outside.

【0020】図2(a)に、上記装置が測定対象とする
2種の測定ガス成分X・Yの吸光スペクトルの模式図を
示している。図のように、各測定成分X・Yにおける赤
外線の各吸収波長帯域の一部が重なる場合に、前記した
3個の検出器4〜6のうち、第1の検出器4におけるバ
ンドパスフィルタ4aは、その透過波長帯域が、同図
(b)中に実線FAで示すように、測定成分Xにおける
吸収波長帯域のピーク領域よりもやや低波長領域(λ1
〜λ2:以下、A領域という)の赤外線を透過するように
設定されている。
FIG. 2A is a schematic diagram of the absorption spectrum of two types of measurement gas components X and Y to be measured by the above-mentioned apparatus. As shown in the figure, when a part of each absorption wavelength band of infrared rays in each measurement component X and Y overlaps, the band-pass filter 4a in the first detector 4 among the three detectors 4 to 6 described above. Indicates that the transmission wavelength band has a wavelength region (λ 1) slightly lower than the peak region of the absorption wavelength band in the measurement component X, as shown by the solid line F A in FIG.
To [lambda] 2: hereinafter, it is configured to transmit infrared A that region).

【0021】これにより、この第1検出器4における赤
外線センサ4bの出力からは、同図(c)で破線を施し
た部分の面積、すなわち、A領域(λ1〜λ2)での測定
成分Xの吸光スペクトルの積分値SA(X)を主とし、これ
に、測定成分Yの吸光スペクトルの積分値SA(Y)を加え
た値に対応する吸光度信号(以下、A領域吸光度信号S
Aという)が得られる。
Thus, from the output of the infrared sensor 4b of the first detector 4, the area of the portion indicated by the broken line in FIG. 3C, that is, the measurement component in the A region (λ 1 to λ 2 ) An absorbance signal corresponding to a value obtained by adding the integral S A (X) of the absorption spectrum of X to the integration value S A (Y) of the absorption spectrum of the measurement component Y (hereinafter, the A region absorbance signal S
A ) is obtained.

【0022】一方、第2検出器5におけるバンドパスフ
ィルタ5aは、その透過波長帯域が、同図(b)中に破
線FBで示すように、測定成分Yの吸収波長帯域におけ
るピーク領域を含むような波長領域(λ3〜λ4:以下、
B領域という)の赤外線を透過するように設定されてい
る。これによって、この第2検出器5における赤外線セ
ンサ5bの出力から、同図(d)に示すように、B領域
での測定成分Yの吸光スペクトルの積分値SB(Y)を主と
し、これに、測定成分Xの吸光スペクトルの積分値S
B(X)を加えた値に対応する吸光度信号(以下、B領域吸
光度信号SBという)が得られる。
On the other hand, the band-pass filter 5a in the second detector 5, the transmission wavelength band, as indicated by the broken line F B in FIG. (B), including the peak area in the absorption wavelength band of the measurement component Y Wavelength region (λ 3 to λ 4 : below,
It is set so as to transmit infrared rays (referred to as area B). As a result, the output of the infrared sensor 5b of the second detector 5 is mainly used as an integral value SB (Y) of the absorption spectrum of the measurement component Y in the B region as shown in FIG. And the integral S of the absorption spectrum of the measurement component X
Absorbance signals corresponding to a value obtained by adding B to (X) (hereinafter referred to as B region absorbance signal S B) is obtained.

【0023】そして、第3検出器6におけるバンドパス
フィルタ6aは、その透過波長帯域が、同図(b)中に
一点鎖線FTで示すように、各測定成分X・Yの吸収波
長帯域の全体にわたる波長領域(λ1〜λ5:以下、T領
域という)の赤外線を透過するように設定されている。
したがって、この第3検出器6における赤外線センサ6
bの出力から、同図(a)に示している測定成分X・Y
の各吸光スペクトルの積分値を相互に加えた値に対応す
る吸光度信号(以下、T領域吸光度信号STという)が
得られる。
[0023] Then, a band-pass filter 6a in the third detector 6, the transmission wavelength band, in FIG. (B) as indicated by a chain line F T, the absorption wavelength band of the measurement component X · Y It is set so as to transmit infrared rays in the entire wavelength region (λ 1 to λ 5 : hereinafter, referred to as T region).
Therefore, the infrared sensor 6 in the third detector 6
From the output of b, the measurement components X and Y shown in FIG.
Corresponding absorbance signal to a value that the integration value is added to each other in each absorption spectrum (hereinafter, referred to as T region absorbance signal S T) is obtained.

【0024】なお上記では、第1・第2検出器4・5の
各赤外線センサ4b・5bが個別成分測定用赤外線セン
サとして設けられ、第3検出器6のバンドパスフィルタ
6aと赤外線センサ6bとが、それぞれ補償用バンドパ
スフィルタ・補償用赤外線センサとして設けられてい
る。
In the above description, the infrared sensors 4b and 5b of the first and second detectors 4 and 5 are provided as infrared sensors for measuring individual components, and the band-pass filter 6a and the infrared sensor 6b of the third detector 6 Are provided as a compensation bandpass filter and a compensation infrared sensor, respectively.

【0025】前記した演算器7では、まず、各赤外線セ
ンサ4b・5b・6bの出力を、上記した各A領域・B
領域・T領域毎の3つの吸光度信号SA,SB,STに変換
する処理が行われる。
In the arithmetic unit 7, first, the output of each of the infrared sensors 4b, 5b, and 6b is converted into each of the A region and B
Three absorbance signal S A for each area · T region, S B, the process of converting the S T is performed.

【0026】一方、この演算器7には、前記した測定セ
ル1に、測定成分Xを単独で単位濃度流したときのA・
B・Tの各領域毎の基準吸光度αA(X)・αB(X)・αT(X)
が予め求めて記憶されている。また、測定成分Yについ
ても、これを測定セル1に単独で単位濃度流したときの
各領域毎の基準吸光度αA(Y)・αB(Y)・αT(Y)も記憶さ
れている。したがって、測定時における各測定成分X・
Yの濃度をCX・CYとすると、これらと、上記した各吸
光度信号SA,SB,STとの間に、次のような関係式が成
り立つ。
On the other hand, when the measurement component X alone flows into the measurement cell 1 in a unit concentration, the A ·
Reference absorbance α A (X)・ α B (X)・ α T (X) for each area of BT
Is obtained and stored in advance. In addition, as for the measurement component Y, the reference absorbance α A (Y) · α B (Y) · α T (Y) for each region when the measurement component Y alone flows in the unit concentration is stored. . Therefore, each measurement component X ·
If the concentration of Y and C X · C Y, and these, the absorbance signals described above S A, S B, between S T, equation as follows holds.

【0027】ここで、上記各式の右辺第3項はノイズ成
分(前記したバックグラウンド信号)で、このノイズ成
分の強度を全波長領域でほぼ一定とし、εを単位波長幅
に相当するノイズ成分の強度、ΔλA,ΔλB,ΔλTをA
領域・B領域・T領域の各波長幅としている。
Here, the third term on the right side of each of the above equations is a noise component (the above-described background signal). The intensity of this noise component is substantially constant in the entire wavelength region, and ε is a noise component corresponding to a unit wavelength width. A , Δλ A , Δλ B , Δλ T
The respective wavelength widths of the region, the B region, and the T region are set.

【0028】上記の3つの関係式(1)(2)(3)は、C
XとCYおよびεを未知数とする連立方程式であり、これ
を解くことで、測定成分Xの濃度CX、測定成分Yの濃
度CYが求められる。すなわち、行列を用いて上記関係
式を書き換えると、
The above three relational expressions (1), (2) and (3) are
This is a simultaneous equation in which X , C Y, and ε are unknown. By solving these equations, the concentration C X of the measurement component X and the concentration C Y of the measurement component Y can be obtained. That is, when the above relational expression is rewritten using a matrix,

【数1】 となり、これから、CX,CY,εについては、(Equation 1) From now on, for C X , C Y , and ε,

【数2】 となる。このような濃度算出式が前記演算器7に予め記
憶され、この算出式に従う演算が行われて、算出された
濃度CX・CYが外部に出力される。
(Equation 2) Becomes Such a density calculation formula is stored in the computing unit 7 in advance, and a calculation according to the calculation formula is performed, and the calculated density C X · C Y is output to the outside.

【0029】このように、上記装置においては、赤外線
の吸収波長帯域の一部が相互に重なる測定成分Xと測定
成分Yとの2種類のガス成分の濃度を測定する場合で
も、各測定成分X・Yに各々対応する2個の検出器4・
5に、両測定成分X・Yの全体の吸光度を検出するため
の検出器6を1個追設するだけで、バックグラウンド信
号と相互干渉度合いとが併せて補正された測定結果を得
ることができるようになっており、したがって、全体の
構成が簡素なものとなっている。
As described above, in the above-described apparatus, even when the concentrations of two types of gas components, the measurement component X and the measurement component Y, in which a part of the infrared absorption wavelength band overlaps each other, each measurement component X is measured. Two detectors 4 each corresponding to Y
5, it is possible to obtain a measurement result in which the background signal and the degree of mutual interference are corrected together by adding only one detector 6 for detecting the total absorbance of both measurement components X and Y. Therefore, the overall configuration is simple.

【0030】なお、上記では2成分を測定対象とする装
置構成を例に挙げたが、3成分以上のさらに多くのガス
成分を測定する装置においても、各ガス成分に対応する
検出器に、全体にわたる吸光度を検出するための検出器
を追設するだけで、上記同様に各ガス成分の濃度を算出
することができる。
In the above description, an example of an apparatus configuration in which two components are to be measured has been taken as an example. However, in an apparatus for measuring more gas components of three or more components, the detector corresponding to each gas component is also provided with a whole. The concentration of each gas component can be calculated in the same manner as described above simply by additionally providing a detector for detecting the absorbance over the range.

【0031】ところで、例えば上記同様に2種類のガス
成分を測定対象とする場合に、一方の測定成分Xの濃度
は数千ppmのオーダー、他方の測定成分Yの濃度は数十p
pmのオーダーのように、両測定成分X・Yの濃度の変化
範囲が大きく相違した状態での同時測定が前提となる場
合がある。
By the way, for example, when two types of gas components are to be measured as described above, the concentration of one measurement component X is on the order of several thousand ppm, and the concentration of the other measurement component Y is several tens of ppm.
As in the case of pm, simultaneous measurement in a state where the change ranges of the concentrations of both measurement components X and Y are greatly different may be premised.

【0032】このときの各測定成分X・Yの吸光スペク
トルを図3に模式的に示している。この場合には、測定
成分Yに対応する前記第2検出器5から得られるB領域
吸光度信号SBをそのまま用いて前記の演算を行って
も、測定成分Yの濃度CYについて精度の良い結果を得
難いものとなる。つまり、上記SBについての前記関係
式(2)での右辺第1項CX・αB(X)と第2項CY・α
B(Y)とは、αB(X)とαB(Y)とに比較的大きな差があると
しても、CXとCYとの間にそれ以上の差(CX≫CY)が
あれば、 となってしまう。したがって、測定成分Yの濃度変化は
殆ど反映されず、SBの変化も測定成分Xにおける濃度
Xの変化で生じたものとみなすような計算しか行われ
ない。
FIG. 3 schematically shows the absorption spectrum of each measurement component XY at this time. In this case, even if it is an operation of the using the second derived from the detector 5 B regions absorbance signal S B corresponding to the measured component Y, accurate results for the concentration C Y measurement component Y Is difficult to obtain. That is, the relationship between the first term in (2) C X · α B (X) The second term of the S B C Y · α
B (Y) means that even if there is a relatively large difference between α B (X) and α B (Y) , a further difference (C X ≫C Y ) between C X and C Y if there is, Will be. Therefore, the measured concentration change of component Y is hardly reflected, only performed calculation as deemed to have occurred by the change in concentration C X change in S B also in the measurement component X.

【0033】しかしながら、B領域における測定成分X
の吸光スペクトル、すなわち、その赤外線吸収帯域のピ
ーク領域から離れた裾野部分でのスペクトルの強度変化
は、この測定成分Xの濃度が大きくなってくると、濃度
変化に対する直線性が充分には維持されず、実際にはむ
しろほぼ一定に保持されるものともなる。したがって、
B領域への測定成分Xの干渉度合いを、上記のCX・α
B(X)でそのまま求めたのでは、これに大きな誤差成分が
混入してくる。したがって、前述した濃度算出式にその
まま従うような計算によっては、測定成分Yの濃度CY
は精度良く算出されず、かえって精度の低下したものと
なってしまう。
However, the measurement component X in the B region
The change in the intensity of the absorption spectrum, that is, the spectrum intensity at the foot portion away from the peak region of the infrared absorption band, sufficiently maintains the linearity with respect to the change in concentration as the concentration of the measurement component X increases. Instead, it is actually kept rather constant. Therefore,
The degree of interference of the measurement component X with the B region is calculated by the above C X · α
If B (X) is used as it is, a large error component will be mixed into it. Accordingly, the density C Y of the measurement component Y may be calculated by a calculation that directly follows the density calculation formula described above.
Is not calculated with high accuracy, and the accuracy is rather deteriorated.

【0034】そこで、このように濃度が大きく相違する
2種のガス成分の測定を前提とする場合には、前記図1
に示すように、演算器7に接続された係数入力装置(重
み係数設定手段)10を介して、各測定ガス成分毎に重
み係数を設定し、演算器7に記憶させるようになってい
る。重み係数は例えば毒性の強さを基に設定する場合や
地球温暖化係数を基に設定する場合又は装置の稼動上重
視すべき順位等を基に設定する場合等がある。
Therefore, when it is assumed that two types of gas components having significantly different concentrations are to be measured as described above, FIG.
As shown in (1), a weight coefficient is set for each measurement gas component via a coefficient input device (weight coefficient setting means) 10 connected to the arithmetic unit 7, and stored in the arithmetic unit 7. The weighting factor may be set based on, for example, the degree of toxicity, based on the global warming potential, or based on the priority of operation of the apparatus.

【0035】例えば上記の場合、測定成分Xよりも微量
濃度範囲で変化する測定成分Yの方が注目度が高く、し
たがってこの測定成分Yに対し、より精度の良好な測定
結果が望まれるときには、測定成分Xの重み係数を1と
し、測定成分Yに対してはこれよりも大きな値、例えば
100を設定する。
For example, in the above case, when the measurement component Y that changes in a trace concentration range is more noticeable than the measurement component X, and therefore, when a more accurate measurement result is desired for the measurement component Y, The weighting coefficient of the measurement component X is set to 1, and a larger value, for example, 100 is set for the measurement component Y.

【0036】このような重み係数の設定が行われると、
演算器7では、例えば、測定成分Yに対応するB領域で
の吸光度信号SBに関する前記関係式(2)を、 のように変更し、この(2')式と前記(1)(3)式とか
ら、前記同様に測定成分X・Yの濃度を算出する。
When such a weight coefficient is set,
The arithmetic unit 7, for example, the relationship for the absorbance signal S B in the B region corresponding to the measurement component Y (2), And the concentrations of the measurement components X and Y are calculated in the same manner as described above from the equation (2 ′) and the equations (1) and (3).

【0037】上記(2')式は、実際の検出値SBに対
し、仮にこれの100倍の検出値が得られる状態を想定
したときに、この変化は、B領域への測定成分Xの干渉
度合い(CX・αB(X))は殆ど変化せずに、主に測定成
分Yの変化(100CY・αB(Y))に起因して生じたと
みなす関係式、すなわち測定成分Xの干渉度合いを、実
際に即して小さくなるように補正したものとなってい
る。また、上記(2')式の右辺第2項の計算値も、第1
項の計算値にほぼ匹敵するオーダーとなって、測定成分
Yの濃度変化が充分に反映された演算が行われることに
なる。
The above equation (2 ') shows that, assuming that a detection value 100 times larger than the actual detection value S B is obtained, this change is caused by the change of the measurement component X to the B region. A relational expression that the degree of interference (C X · α B (X) ) hardly changes and is considered to be mainly caused by the change (100C Y · α B (Y) ) of the measurement component Y, ie, the measurement component X Is corrected so that the degree of interference becomes smaller in accordance with the actual situation. Also, the calculated value of the second term on the right side of the above equation (2 ′) is
The order is almost equivalent to the calculated value of the term, and the calculation in which the density change of the measurement component Y is sufficiently reflected is performed.

【0038】この場合、重み係数が小さく設定された測
定成分Xについての濃度算出結果の精度は逆に損なわれ
ることにもなるが、少なくとも注目度の高い測定成分Y
については、精度の高い算出結果を得ることができる。
In this case, the accuracy of the density calculation result for the measurement component X for which the weighting coefficient is set to a small value may be impaired, but at least the measurement component Y having a high degree of attention is attained.
For, a highly accurate calculation result can be obtained.

【0039】なお、測定成分が例えば3種類の場合、す
なわち、上記測定成分X・Yに加え、成分Zの測定も行
うような装置構成において、例えば測定成分Xに対する
重み係数が1、測定成分Yに対する重み係数が100、
測定成分Zに対する重み係数が30に設定された場合に
は、測定成分Yに対応する吸光度信号SB、また、測定
成分Zに対応して波長領域Cでの赤外線を受光するよう
に設けられた検出器から得られる吸光度信号SCについ
ての関係式を、 に変更して、各成分X・Y・Zの各濃度CX・CY・CZ
が算出される。これにより、少なくとも重み係数の大き
な成分ほど、より精度の良好な算出結果が得られる。さ
らに測定成分が4種類以上になった場合でも、上記のよ
うな重み係数の設定を行うことで、少なくとも重み係数
が大きな値で設定された特定の成分については、精度の
良好な算出結果が得られる。
When there are three types of measurement components, for example, in an apparatus configuration for measuring the component Z in addition to the measurement components X and Y, for example, the weight coefficient for the measurement component X is 1, and the measurement component Y Is 100,
When the weighting coefficient for the measurement component Z is set to 30, an absorbance signal S B corresponding to the measurement component Y and an infrared ray in the wavelength region C corresponding to the measurement component Z are provided. The relational expression for the absorbance signal S C obtained from the detector is To the respective concentrations C X , C Y, and C Z of the respective components X, Y, and Z.
Is calculated. As a result, a more accurate calculation result is obtained for at least a component having a larger weighting coefficient. Furthermore, even when the number of measurement components becomes four or more, by setting the weighting factors as described above, it is possible to obtain a highly accurate calculation result at least for specific components whose weighting factors are set to large values. Can be

【0040】このように、赤外線の吸収波長帯域の一部
が相互に重なる多成分の測定を前提とし、また、各測定
成分の濃度変化範囲に大きな差がある場合でも、重み係
数の設定によって特定成分の濃度を精度良く求め得る分
析装置は、例えば、半導製造工程におけるプラズマ処理
装置からの排ガスの分析に好適に用いることができる。
半導製造工程では、処理ガスをプラズマ化してシリコン
等の半導体基板上に膜付けを行うプラズマCVD装置
や、ドライエッチングを行うプラズマエッチング装置が
多用されており、このようなプラズマ処理装置からは、
組成が類似し、したがって赤外線の吸収波長帯域の重な
り合いの多い多数のガス種が混在して排出される。その
排出ガス種の組合せ例を、表1・表2に各ガス種毎の濃
度範囲のオーダーを付記して示している。
As described above, it is assumed that multi-component measurement in which a part of the infrared absorption wavelength band overlaps each other, and even if there is a large difference in the concentration change range of each measurement component, it is specified by setting the weighting coefficient. An analyzer that can accurately determine the concentration of a component can be suitably used, for example, for analyzing exhaust gas from a plasma processing apparatus in a semiconductor manufacturing process.
In the semiconductor manufacturing process, a plasma CVD apparatus for forming a film on a semiconductor substrate such as silicon by converting a processing gas into plasma and a plasma etching apparatus for performing dry etching are frequently used, and from such a plasma processing apparatus,
A large number of gas species having similar compositions and thus having a large overlap of infrared absorption wavelength bands are exhausted in a mixed manner. Examples of combinations of the exhaust gas types are shown in Tables 1 and 2 by adding the order of the concentration range for each gas type.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】これらガス種の中には、毒性を有する物質
や、地球温暖化などの地球環境に影響を及ぼす物質が混
在している。したがって、例えばプラズマ処理装置の後
段に設けられる除害装置(排ガス処理装置)について、
上記のような特殊物質に着目してその濃度範囲を正確に
測定し、これらを完全に除けるように設計することが必
要である。
Among these gas species, there are toxic substances and substances that affect the global environment such as global warming. Therefore, for example, regarding the abatement device (exhaust gas treatment device) provided at the subsequent stage of the plasma treatment device,
It is necessary to accurately measure the concentration range by paying attention to the special substances as described above, and to design them so that they can be completely eliminated.

【0044】しかしながら従来は、上記のように多くの
ガス種が混在して相互に干渉し合う状態での分析では、
例えば濃度が小さなガス種についてはこれを精度良く測
定することができず、したがって、上記した除外装置も
過剰な性能スペックで設計せざるを得ないものとなって
いる。
However, conventionally, in an analysis in a state where many types of gases are mixed and interfere with each other as described above,
For example, a gas type having a low concentration cannot be accurately measured, and therefore, the above-described exclusion device has to be designed with an excessive performance specification.

【0045】そこで、このような排ガス処理の分析に、
前記した吸光分析装置を用い、各ガス種に対する重み係
数を注目度に応じて設定することで、所望のガス種を精
度良く定量分析することが可能となる。例えば毒性から
みるとCO2やCF4等のウエイトは低くCOやHF等の
ウエイトは高く前者については重み係数を小さく後者に
ついては大きく設定する。これにより、除外装置で所定
のガス種の処理をより完全に行わせることができ、しか
も、必要最小限の性能スペックで除外装置を設計製作す
ることができるので、全体的なコストダウンを図ること
が可能となる。
Therefore, in the analysis of such an exhaust gas treatment,
By using the above-mentioned absorption spectrometer and setting the weight coefficient for each gas type in accordance with the degree of attention, it is possible to perform a quantitative analysis of a desired gas type with high accuracy. For example, from the viewpoint of toxicity, weights such as CO 2 and CF 4 are low, weights such as CO and HF are high, and the weight coefficient is set small for the former and large for the latter. As a result, it is possible to more completely perform the processing of the predetermined gas type with the exclusion device, and furthermore, it is possible to design and manufacture the exclusion device with the minimum required performance specifications, thereby reducing the overall cost. Becomes possible.

【0046】以上に本発明の具体的な実施形態について
説明したが、本発明は上記形態に限定されるものではな
く、本発明の範囲内で種々変更することが可能である。
例えば上記では、重み係数を各測定成分毎に対応させて
設定する例を挙げたが、相互に干渉する成分の組み合わ
せに対応させて重み係数を設定する構成、例えばA成分
とB成分との組合わせ、A成分とC成分との組合せ等に
対応させて重み係数を設定する構成としても良い。さら
に、A成分に対するB成分の干渉度合いと、B成分に対
するA成分の干渉度合いとに各々対応するような重み係
数の設定が行えるように構成することも可能である。
Although the specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various changes can be made within the scope of the present invention.
For example, in the above description, an example has been given in which the weighting factor is set corresponding to each measurement component. However, a configuration in which the weighting factor is set corresponding to a combination of components that interfere with each other, for example, a combination of the A component and the B component In addition, a configuration may be adopted in which the weighting factor is set in accordance with the combination of the A component and the C component. Furthermore, it is also possible to configure so that the weighting factor can be set so as to correspond to the degree of interference of the B component with the A component and the degree of interference of the A component with the B component.

【0047】[0047]

【発明の効果】以上のように、本発明の請求項1の吸光
分析装置においては、各測定ガス成分に応じた数の赤外
線検出器の他には、それぞれ1個ずつの補償用バンドパ
スフィルタと赤外線センサとの対を付設するだけで、バ
ックグラウンド信号と相互干渉度合いとが併せて補正さ
れた測定結果を得ることができるので、全体の構成が簡
単になる。
As described above, in the absorption spectrometer according to the first aspect of the present invention, in addition to the number of infrared detectors corresponding to each measurement gas component, one bandpass filter for compensation is provided. By simply providing a pair of a sensor and an infrared sensor, a measurement result in which the background signal and the degree of mutual interference are corrected together can be obtained, so that the entire configuration is simplified.

【0048】請求項2の吸光分析装置においては、例え
ば濃度の変化範囲が大きく相違した測定ガス成分の測定
を行う場合でも、濃度の大きなガス種に基づく干渉度合
いを重み係数に応じて抑えた演算が行われるので、濃度
の小さなガス種に対しても精度の良好な演算結果を得る
ことができる。
In the absorption spectrometer according to the second aspect, even when, for example, measurement of a measurement gas component having a greatly different range of change in concentration is performed, the degree of interference based on the type of gas having high concentration is suppressed in accordance with the weighting coefficient. Is performed, a highly accurate calculation result can be obtained even for a gas type having a small concentration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における吸光分析装置の構
成模式図である。
FIG. 1 is a schematic configuration diagram of an absorption spectrometer according to an embodiment of the present invention.

【図2】上記吸光分析装置における複数の赤外線検出器
からの出力によって得られる吸光度信号を説明するもの
で、同図(a)は2種の測定ガス成分の吸光スペクトル
を示すグラフ、同図(b)は上記赤外線検出器に設けら
れている各バンドパスフィルタの透過特性を示すグラ
フ、同図(c)は第1赤外線検出器からの出力によって
得られる吸光度信号の説明図、同図(d)は第2赤外線
検出器からの出力によって得られる吸光度信号の説明図
である。
FIG. 2 is a diagram for explaining absorbance signals obtained by outputs from a plurality of infrared detectors in the above-mentioned absorption spectrometer. FIG. 2 (a) is a graph showing absorption spectra of two kinds of measurement gas components, and FIG. b) is a graph showing the transmission characteristics of each band-pass filter provided in the infrared detector, and (c) is an explanatory diagram of the absorbance signal obtained by the output from the first infrared detector, and (d) () Is an explanatory diagram of an absorbance signal obtained by an output from the second infrared detector.

【図3】濃度の変化範囲が大きく相違する2種の測定ガ
ス成分の吸光スペクトルを示すグラフである。
FIG. 3 is a graph showing the absorption spectra of two types of measurement gas components whose concentration change ranges are largely different.

【図4】従来の吸光分析装置の構成模式図である。FIG. 4 is a schematic diagram of a configuration of a conventional absorption spectrometer.

【符号の説明】[Explanation of symbols]

1 測定セル 2 赤外線光源 3 回転式チョッパ 4・5・6 赤外線検出器 4a・5a バンドパスフィルタ 4b・5b 赤外線センサ(個別成分測定用赤外線セン
サ) 6a バンドパスフィルタ(補償用バンドパスフィル
タ) 6b 赤外線センサ(補償用赤外線センサ) 7 演算器(演算手段) 10 係数入力装置(重み係数設定手段)
DESCRIPTION OF SYMBOLS 1 Measurement cell 2 Infrared light source 3 Rotary chopper 4.5.6 Infrared detector 4a / 5a Bandpass filter 4b / 5b Infrared sensor (infrared sensor for individual component measurement) 6a Bandpass filter (bandpass filter for compensation) 6b Infrared Sensor (compensation infrared sensor) 7 Computing unit (computing means) 10 Coefficient input device (weight coefficient setting means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料ガスが供給される測定セルを挟んで
入射側に赤外線光源を配置する一方、出射側に、試料ガ
ス中の複数の測定ガス成分に応じた数の赤外線検出器を
設け、各赤外線検出器を、対応する測定ガス成分の吸収
波長帯域に応じた波長域の赤外線を選択的に透過させる
バンドパスフィルタを備えた個別成分測定用赤外線セン
サをそれぞれ設けて形成した吸光分析装置であって、 赤外線の吸収波長帯域の一部が相互に重なる測定ガス成
分に対し、これら測定ガス成分の各吸収波長帯域の全体
にわたる波長域の赤外線を透過させる補償用バンドパス
フィルタを備えた補償用赤外線センサをさらに設置する
と共に、 この補償用赤外線センサと上記各個別成分測定用赤外線
センサとの各出力から、予め記憶されている濃度算出式
に従って各測定ガス成分の濃度を算出する演算手段を設
けていることを特徴とする吸光分析装置。
1. An infrared light source is arranged on an incident side with a measurement cell to which a sample gas is supplied interposed therebetween, and on the emission side, a number of infrared detectors corresponding to a plurality of measurement gas components in the sample gas are provided. Each infrared detector is an absorption spectrometer that is formed by providing an infrared sensor for individual component measurement provided with a bandpass filter that selectively transmits infrared in a wavelength range corresponding to the absorption wavelength band of the corresponding measurement gas component. For a measurement gas component in which a part of the infrared absorption wavelength band overlaps with each other, a compensation band pass filter for transmitting infrared light in a wavelength range over the entire absorption wavelength band of the measurement gas component is provided. In addition to installing an infrared sensor, each output from the infrared sensor for compensation and the infrared sensor for individual component measurement is calculated according to a concentration calculation formula stored in advance. Absorption spectrometer, characterized in that there is provided a calculating means for calculating the concentration of the constant gas component.
【請求項2】 各測定ガス成分に対応させて重み係数を
設定するための重み係数設定手段を設け、上記演算手段
が、上記濃度算出式中の各測定ガス成分間での干渉度合
いの計算式に上記重み係数の大小に基づく補正を行っ
て、各測定ガス成分の濃度を算出することを特徴とする
請求項1の吸光分析装置。
2. A weighting factor setting means for setting a weighting factor corresponding to each measurement gas component, wherein said calculating means calculates a degree of interference between each measurement gas component in said concentration calculation expression. 2. The absorption spectrometer according to claim 1, wherein a correction based on the magnitude of the weight coefficient is performed to calculate the concentration of each measurement gas component.
JP2000185703A 2000-06-21 2000-06-21 Absorptiometric analyzer Pending JP2002005831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000185703A JP2002005831A (en) 2000-06-21 2000-06-21 Absorptiometric analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000185703A JP2002005831A (en) 2000-06-21 2000-06-21 Absorptiometric analyzer

Publications (1)

Publication Number Publication Date
JP2002005831A true JP2002005831A (en) 2002-01-09

Family

ID=18685982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000185703A Pending JP2002005831A (en) 2000-06-21 2000-06-21 Absorptiometric analyzer

Country Status (1)

Country Link
JP (1) JP2002005831A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071470B2 (en) 2002-09-11 2006-07-04 Horiba, Ltd. Multi-component analyzing apparatus
JP2008502883A (en) * 2004-06-14 2008-01-31 ダンフォス アクチーセルスカブ IR sensor, especially CO2 sensor
JP2016111068A (en) * 2014-12-02 2016-06-20 株式会社堀場エステック Decomposition detector, concentration measurement device, and concentration controller
CN117191928A (en) * 2023-08-08 2023-12-08 广州科易光电技术有限公司 Gas leakage detection method, device, electronic equipment and storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071470B2 (en) 2002-09-11 2006-07-04 Horiba, Ltd. Multi-component analyzing apparatus
JP2008502883A (en) * 2004-06-14 2008-01-31 ダンフォス アクチーセルスカブ IR sensor, especially CO2 sensor
AU2005252746B2 (en) * 2004-06-14 2010-08-05 Danfoss Ixa A/S IR-sensor, particularly a CO2 sensor
JP2016111068A (en) * 2014-12-02 2016-06-20 株式会社堀場エステック Decomposition detector, concentration measurement device, and concentration controller
CN117191928A (en) * 2023-08-08 2023-12-08 广州科易光电技术有限公司 Gas leakage detection method, device, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
US6844554B2 (en) Method and arrangement for determining the concentration of a gas component in a gas mixture
US9194797B2 (en) Method and system for detecting moisture in a process gas involving cross interference
US8026499B2 (en) Method of calibrating a wavelength-modulation spectroscopy apparatus using a first, second and third gas to determine temperature and pressure values to calculate concentrations of analytes in a gas
EP0400342B1 (en) Method of infra red analysis
CN102713566A (en) NDIR dual trace gas analyzer and method for determining the concentration of a measurement gas component in a gas mixture by means of such a gas analyzer
US9347823B2 (en) Absolute measurement method and apparatus thereof for non-linear error
JP2000346801A (en) Multi-component gas analysis with ftir method
FI954632A7 (en) Correction for vibration broadening in non-dispersive absorption measurements of gases
JP2003050203A (en) Gas analyzing device of non-dispersive infrared absorption type, and its analyzing method
JP2002005831A (en) Absorptiometric analyzer
US7751051B2 (en) Method for cross interference correction for correlation spectroscopy
US6218666B1 (en) Method of determining the concentration of a gas in a gas mixture and analyzer for implementing such a method
JP3261842B2 (en) Non-dispersive infrared gas analyzer
JP2004309296A (en) Light absorption type analyzer
JPH09178655A (en) Infrared gas analyzer
JP2004279339A (en) Concentration measuring device
JPH09203706A (en) Concentration analysis method for plurality of components contained in solution
JP6530669B2 (en) Gas concentration measuring device
JP3249253B2 (en) Quantitative calculation method using spectrum and apparatus therefor
JP4685915B2 (en) NDIR photometer for measuring multiple components
JPH08122246A (en) Spectroscopic analyzer
US20250052614A1 (en) Reference material for and method of calibrating raman spectrometers
RU51742U1 (en) GAS ANALYZER
JPH0829346A (en) Gas analyser
US11965823B2 (en) Method of correcting for an amplitude change in a spectrometer

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040413