JPH0829346A - Gas analyser - Google Patents
Gas analyserInfo
- Publication number
- JPH0829346A JPH0829346A JP7059395A JP7059395A JPH0829346A JP H0829346 A JPH0829346 A JP H0829346A JP 7059395 A JP7059395 A JP 7059395A JP 7059395 A JP7059395 A JP 7059395A JP H0829346 A JPH0829346 A JP H0829346A
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- cell
- reflection
- reflecting means
- transmitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 79
- 238000004891 communication Methods 0.000 claims abstract description 33
- 230000003287 optical effect Effects 0.000 claims abstract description 24
- 238000005259 measurement Methods 0.000 claims description 93
- 239000007789 gas Substances 0.000 description 55
- 238000010521 absorption reaction Methods 0.000 description 8
- 238000001745 non-dispersive infrared spectroscopy Methods 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 6
- 229910004261 CaF 2 Inorganic materials 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
Landscapes
- Optical Measuring Cells (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明はガス分析計に関し、特
に、セル長が互いに異なる場合を含む複数のセルを連通
部を介して順次連通して単一のガス経路を構成し、2以
上の測定成分を同時に高い精度で検出できる新規な非分
散形赤外線ガス分析計(Non Dispersive Infrared Anal
yzer:以下、NDIRという)に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas analyzer, and in particular, a plurality of cells including those having different cell lengths are sequentially connected via a communication portion to form a single gas path, and two or more cells are formed. A new non-dispersive infrared gas analyzer (Non Dispersive Infrared Analyzer) that can detect measured components simultaneously with high accuracy.
yzer: hereinafter referred to as NDIR).
【0002】[0002]
【従来の技術】NDIRの測定にはランベルト・ベール
の法則が適用される。下記(1)式に示される同法則に
よれば、セル長が一定であるとすれば、吸収係数が大き
い成分になればなるほど、あるいは、測定成分の濃度が
高くなるほど、検量線に曲がりが生じる。また、測定成
分の濃度が一定であれば、セル長が長くなるほど、検量
線の曲がりが大きくなる。 I=I0 ・exp(−μ・c・L) (1) I0 :入射光強度 c:測定成分の濃度(セル中で吸
収された赤外線の量) μ:測定成分固有の吸収係数 I:透過光強度
L:セル長2. Description of the Related Art The Lambert-Beer law is applied to the measurement of NDIR. According to the law shown in the following formula (1), if the cell length is constant, the larger the absorption coefficient of the component is, or the higher the concentration of the measured component is, the more the calibration curve is bent. . Further, if the concentration of the measurement component is constant, the longer the cell length, the larger the bending of the calibration curve. I = I 0 · exp (−μ · c · L) (1) I 0 : Incident light intensity c: Concentration of measurement component (amount of infrared rays absorbed in the cell) μ: Absorption coefficient peculiar to measurement component I: Transmitted light intensity
L: cell length
【0003】そこで、NDIR分析計では、このような
曲がりを近似式にてリニアライズしているのであるが、
演算の精度等により限界がある。一方、セル長Lを長く
すればするほど感度が高くなることから、感度と曲がり
を考慮してセル長Lが決定される。しかるに、測定成分
とその濃度によって適合するセル長Lが異なるという厄
介な問題がある。この問題は、上述したリニアライズで
対応しているのであるが、補正しきれない場合には、セ
ル長Lを変化させなければならない。Therefore, in the NDIR analyzer, such a bend is linearized by an approximate expression.
There is a limit due to the accuracy of calculations. On the other hand, the longer the cell length L, the higher the sensitivity. Therefore, the cell length L is determined in consideration of the sensitivity and the bending. However, there is a troublesome problem that the compatible cell length L differs depending on the measurement component and its concentration. This problem is dealt with by the above-mentioned linearization, but if the correction cannot be completed, the cell length L must be changed.
【0004】例えば、電力会社等で使用される重油ボイ
ラーでは、測定成分の1つであるNOX 規制等により、
NOX 成分をある一定濃度以下に抑えるように脱硝措置
が採られているが、例えばNOX 排出濃度を約20〜3
0ppm に抑える場合には、0〜50ppm のNOX 測定範
囲が必要とされる。また、CO2 の濃度は燃焼状態によ
り変動するが、ボイラー稼動時は14%程度であり、通
常、0〜20%のCO2 測定範囲が必要とされる。For example, in a heavy oil boiler used in an electric power company, etc., due to NO X regulation, which is one of the measurement components,
Although denitration measures to suppress a certain concentration or less in the NO X components are taken, for example, the NO X emission concentration of about 20-3
When suppressing the 0 ppm, it is required NO X measuring range of 0 to 50 ppm. Although the CO 2 concentration varies depending on the combustion state, it is about 14% when the boiler is operating, and normally a CO 2 measurement range of 0 to 20% is required.
【0005】従って、排出濃度が約20〜30ppm に抑
えられたNOX を測定するためのNOX 計と、約14%
の濃度のCO2 を測定するためのCO2 計とでは、セル
長が大きく異なる。例えば、煙道分析計では、NOX 測
定のためにセル長を60mmに設定して排出濃度約20
〜30ppm のNOX を測定しており、また、CO2 測定
のためにセル長を1mmに設定して約14%の濃度のC
O2 を測定している。Therefore, a NO X meter for measuring NO X whose emission concentration is suppressed to about 20 to 30 ppm, and about 14%
The cell length is greatly different from that of a CO 2 meter for measuring CO 2 having a concentration of. For example, in a flue gas analyzer, the cell length is set to 60 mm for measuring NO x and the emission concentration is about 20.
-30 ppm NO x is measured, and the cell length is set to 1 mm for CO 2 measurement, and the concentration of C is about 14%.
O 2 is being measured.
【0006】[0006]
【発明が解決しようとする課題】このように、2成分の
濃度が異なる場合、適合するセル長が異なることから、
各々の測定成分において、吸収強度、検出方式、測定濃
度が大きく異なる場合には、単一セルでは対応できなか
った。これを回避するために、従来では、2成分をそれ
ぞれ2つのベンチにて測定しており、そのために、各ベ
ンチごとに測定成分に対応するセル長Lを有する単一セ
ルを必要とすることから、複数の測定セルが必要とさ
れ、ガス導入路(ガス経路)も複数路必要となり、構成
が複雑になるという問題があった。As described above, when the concentrations of the two components are different, the compatible cell lengths are different.
When the absorption intensity, the detection method, and the measured concentration of each measurement component differed greatly, a single cell could not handle it. In order to avoid this, conventionally, two components are measured on two benches, respectively. Therefore, each bench requires a single cell having a cell length L corresponding to the measured component. However, a plurality of measuring cells are required, and a plurality of gas introducing passages (gas passages) are also required, resulting in a complicated structure.
【0007】本発明は、このような実情に鑑みてなされ
たもので、高精度に多成分測定を行うことができる構成
簡易なガス分析計を提供することを目的としている。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas analyzer having a simple structure and capable of performing multi-component measurement with high accuracy.
【0008】[0008]
【課題を解決するための手段】本発明は上述の課題を解
決するための手段を以下のように構成している。すなわ
ち、請求項1に記載の発明では、例えば図1(または図
2)に示すように、セル長が互いに異なる場合を含む複
数の測定セルを連通部を介して順次連通させて単一のガ
ス経路を構成してあるガス分析計にあって、光源1に隣
接させて赤外透過・反射手段100を設け、その赤外透
過・反射手段100の赤外透過側と赤外反射側にそれぞ
れ前記連通部21で連通されている少なくとも一組の測
定セル3,7とその測定セルにそれぞれ対応する赤外線
検出器5,9を設けたことを特徴としている。The present invention comprises means for solving the above-mentioned problems as follows. That is, in the invention described in claim 1, for example, as shown in FIG. 1 (or FIG. 2), a plurality of measurement cells including cases where the cell lengths are different from each other are sequentially communicated through the communication section to form a single gas. In a gas analyzer having a path, an infrared transmitting / reflecting means 100 is provided adjacent to the light source 1, and the infrared transmitting / reflecting means 100 has the infrared transmitting side and the infrared reflecting side, respectively. It is characterized in that at least one set of measurement cells 3 and 7 communicated by the communication section 21 and infrared detectors 5 and 9 respectively corresponding to the measurement cells are provided.
【0009】請求項2に記載の発明では、例えば図3に
示すように、セル長が互いに異なる場合を含む複数の測
定セルを連通部を介して順次連通させて単一のガス経路
を構成してあるガス分析計にあって、光源1に隣接させ
て第1の赤外透過・反射手段100を設け、その第1の
赤外透過・反射手段100の赤外透過側と赤外反射側に
それぞれ前記連通部21で連通されている第1の測定セ
ル3および第2の測定セル7を設け、前記第1の測定セ
ル3と、その第1の測定セル3と対応する第1の赤外線
検出器5との間に第2の赤外透過・反射手段300を設
けるとともに、その第2の赤外透過・反射手段300の
赤外反射側に第3の赤外線検出器12を設ける一方、前
記第2の測定セル7に対応する第2の赤外線検出器9を
設けてなることを特徴としている。According to the second aspect of the invention, for example, as shown in FIG. 3, a plurality of measurement cells, including the case where the cell lengths are different from each other, are sequentially connected through the communication section to form a single gas path. In the gas analyzer, the first infrared transmission / reflection means 100 is provided adjacent to the light source 1, and the infrared transmission side and the infrared reflection side of the first infrared transmission / reflection means 100 are provided. A first measurement cell 3 and a second measurement cell 7 which are respectively connected by the communication section 21 are provided, and the first measurement cell 3 and the first infrared detection corresponding to the first measurement cell 3 are provided. The second infrared transmitting / reflecting means 300 is provided between the second infrared transmitting / reflecting means 300 and the second infrared transmitting / reflecting means 300, and the third infrared detector 12 is provided on the infrared reflecting side of the second infrared transmitting / reflecting means 300. The second infrared detector 9 corresponding to the second measuring cell 7 is provided. It is a symptom.
【0010】請求項3に記載の発明では、例えば図4に
示すように、請求項2に記載の発明における第1の赤外
透過・反射手段300の赤外反射側と第3の赤外線検出
器12との間に第3の測定セル23を介在させてなるこ
とを特徴としている。In the invention described in claim 3, for example, as shown in FIG. 4, the infrared reflection side of the first infrared transmission / reflection means 300 in the invention described in claim 2 and the third infrared detector. The third measuring cell 23 is interposed between the first measuring cell 12 and the second measuring cell 12.
【0011】請求項4に記載の発明では、例えば図5に
示すように、セル長が互いに異なる場合を含む複数の測
定セルを連通部を介して順次連通して単一のガス経路を
構成してあるガス分析計にあって、光源1に隣接させて
第1の赤外透過・反射手段100と、その第1の赤外透
過・反射手段100の赤外透過側に第2の赤外透過・反
射手段300を連設するとともに、その第2の赤外透過
・反射手段300の赤外透過側に第1の測定セル3とそ
の第1の測定セル3に対応する第1の赤外線検出器5を
設けるとともに、前記第1の赤外透過・反射手段100
の赤外反射側に第2の測定セル7とその第2の測定セル
7と対応する第2の赤外線検出器9を設け、かつ前記第
2の赤外透過・反射手段300の赤外反射側に第3の測
定セル47とその第3の測定セル47と対応する第3の
赤外線検出器12を設けてなることを特徴としている。According to the fourth aspect of the present invention, for example, as shown in FIG. 5, a plurality of measuring cells including those having different cell lengths are sequentially connected through the connecting portion to form a single gas path. In the gas analyzer, the first infrared transmission / reflection means 100 is provided adjacent to the light source 1, and the second infrared transmission is provided on the infrared transmission side of the first infrared transmission / reflection means 100. A first measuring cell 3 and a first infrared detector corresponding to the first measuring cell 3 on the infrared transmitting side of the second infrared transmitting / reflecting means 300 while the reflecting means 300 is provided in series. 5, the first infrared transmitting / reflecting means 100 is provided.
The second measurement cell 7 and the second infrared detector 9 corresponding to the second measurement cell 7 are provided on the infrared reflection side of the infrared reflection side of the second infrared transmission / reflection means 300. Is provided with a third measuring cell 47 and a third infrared detector 12 corresponding to the third measuring cell 47.
【0012】請求項5に記載の発明では、例えば図6に
示すように、セル長が互いに異なる場合を含む複数の測
定セルを連通部を介して順次連通させて単一のガス経路
を構成してあるガス分析計にあって、光源1と第1の赤
外透過・反射手段100との間に第1の測定セル3を設
け、その第1の赤外透過・反射手段100の赤外透過側
に第2の赤外透過・反射手段300を設けるとともに、
その第2の赤外透過・反射手段300の赤外透過側に第
1の赤外線検出器5を設ける一方、前記第1の赤外透過
・反射手段100の赤外反射側に、第2の測定セル7と
その第2の測定セル7と対応する第2の赤外線検出器9
を設け、かつ前記第2の赤外透過・反射手段300の赤
外反射側に、第3の測定セル47とその第3の測定セル
47に対応する第3の赤外線検出器12を設けてなるこ
とを特徴としている。In a fifth aspect of the present invention, for example, as shown in FIG. 6, a plurality of measurement cells including cases where the cell lengths are different from each other are sequentially connected through a communication section to form a single gas path. In the gas analyzer, the first measuring cell 3 is provided between the light source 1 and the first infrared transmitting / reflecting means 100, and the infrared transmitting of the first infrared transmitting / reflecting means 100 is performed. The second infrared transmitting / reflecting means 300 is provided on the side,
While the first infrared detector 5 is provided on the infrared transmission side of the second infrared transmission / reflection means 300, the second measurement is performed on the infrared reflection side of the first infrared transmission / reflection means 100. Cell 7 and its second measuring cell 7 and corresponding second infrared detector 9
And a third measurement cell 47 and a third infrared detector 12 corresponding to the third measurement cell 47 on the infrared reflection side of the second infrared transmission / reflection means 300. It is characterized by that.
【0013】請求項6に記載の発明では、例えば図7に
示すように、セル長が互いに異なる場合を含む複数の測
定セルを連通部を介して順次連通させて単一のガス経路
を構成してあるガス分析計にあって、光源1に隣接させ
て第1の赤外透過・反射手段100を設け、その第1の
赤外透過・反射手段100の赤外透過側に、第1の測定
セル3を介して第2の赤外透過・反射手段300を設
け、その第2の赤外透過・反射手段300の赤外透過側
と赤外反射側とにそれぞれ第1の赤外線検出器5と第3
の赤外線検出器12とを設ける一方、前記第1の赤外透
過・反射手段100の赤外反射側に、第2の測定セル7
7を介して第3の赤外透過・反射手段を設け、その第3
の赤外透過・反射手段300の赤外透過側と赤外反射側
とに、それぞれ第2の赤外線検出器9と、第4の赤外線
検出器41とを設けてなることを特徴としている。According to the sixth aspect of the present invention, for example, as shown in FIG. 7, a plurality of measurement cells including the case where the cell lengths are different from each other are sequentially communicated with each other through the communication section to form a single gas path. In the gas analyzer described above, a first infrared transmitting / reflecting means 100 is provided adjacent to the light source 1, and a first measurement is performed on the infrared transmitting side of the first infrared transmitting / reflecting means 100. The second infrared transmitting / reflecting means 300 is provided via the cell 3, and the second infrared transmitting / reflecting means 300 is provided with a first infrared detector 5 on the infrared transmitting side and the infrared reflecting side, respectively. Third
While the infrared detector 12 is provided, the second measurement cell 7 is provided on the infrared reflection side of the first infrared transmission / reflection means 100.
A third infrared transmitting / reflecting means is provided through
The second infrared detector 9 and the fourth infrared detector 41 are provided on the infrared transmission side and the infrared reflection side of the infrared transmission / reflection means 300, respectively.
【0014】請求項7に記載の発明では、例えば図11
に示すように、セル長が互いに異なる場合を含む複数の
測定セルを連通部を介して順次連通させて単一のガス経
路を構成してあり、かつ比較セルを有する光断続式のガ
ス分析計にあって、光源1に隣接させた光断続器Cと、
二室受光式の赤外線検出器Mとの間に、比較セルRと第
1の赤外透過・反射手段B1 および第1の測定セル3と
第2の赤外透過・反射手段B2 が並列に設けられ、前記
第2の赤外透過・反射手段B2 の赤外反射側に第1の赤
外線検出器5を設ける一方、前記第1の赤外透過・反射
手段B1 の赤外反射側に前記第1の測定セル3と連通さ
れた第2の測定セル7を介して第2の赤外線検出器9を
設けてなることを特徴としている。In the invention described in claim 7, for example, FIG.
As shown in Fig. 2, a plurality of measurement cells including cases where the cell lengths are different from each other are sequentially communicated via a communication section to form a single gas path, and an optical intermittent gas analyzer having a comparison cell is provided. And an optical interrupter C adjacent to the light source 1,
A comparison cell R and a first infrared transmitting / reflecting means B 1 and a first measuring cell 3 and a second infrared transmitting / reflecting means B 2 are arranged in parallel between the two-chamber light receiving type infrared detector M. The first infrared detector 5 is provided on the infrared reflection side of the second infrared transmission / reflection means B 2 while the first infrared detector 5 is provided on the infrared reflection side of the first infrared transmission / reflection means B 1. In addition, a second infrared detector 9 is provided via a second measuring cell 7 communicating with the first measuring cell 3.
【0015】請求項8に記載の発明では、図12に示す
ように、請求項7に記載の発明における第2の赤外透過
・反射手段B2 と第1の測定セル3との間に第3の赤外
透過・反射手段B3 を配置し、かつ、その第3の赤外透
過・反射手段B3 の赤外反射側に前記第1の測定セル3
と連通する第3の測定セル23をそれぞれ配置するとと
もに、その第3の測定セル23と対応する第3の赤外線
検出手段12を設けてなることを特徴としている。According to the eighth aspect of the invention, as shown in FIG. 12, between the second infrared transmitting / reflecting means B 2 and the first measuring cell 3 in the seventh aspect of the invention. 3 of an infrared transmission and reflection means B 3 arranged, and the third infrared transmission and reflection means infrared reflection the on side first B 3 of the measurement cell 3
The third measuring cell 23 communicating with the third measuring cell 23 is arranged, and the third infrared detecting means 12 corresponding to the third measuring cell 23 is provided.
【0016】請求項9に記載の発明では、例えば図13
に示すように、請求項7または請求項8に記載の発明に
おける光断続器Cと比較セルRとの間に、少なくとも一
対の赤外透過・反射手段B4 ,B5 を設け、その一方の
赤外透過・反射手段B4 の赤外反射側に第2の比較セル
R1 を設けるとともに、他方の赤外透過・反射手段B5
の赤外反射側に前記第1の測定セル3および第2の測定
セル7と連通する第3の測定セル23を設け、かつその
第2の比較セルR1 と第3の測定セル23とに対応する
二室受光式の別の赤外線検出器M1 を設けてなることを
特徴としている。In the invention described in claim 9, for example, FIG.
As shown in FIG. 7, at least a pair of infrared transmitting / reflecting means B 4 and B 5 are provided between the optical interrupter C and the comparison cell R in the invention according to claim 7 or 8, and one of them is provided. A second comparison cell R 1 is provided on the infrared reflecting side of the infrared transmitting / reflecting means B 4 , and the other infrared transmitting / reflecting means B 5 is provided.
A third measuring cell 23 communicating with the first measuring cell 3 and the second measuring cell 7 on the infrared reflection side of the second measuring cell 23 and the second measuring cell R 1 and the third measuring cell 23. It is characterized in that another corresponding two-chamber light receiving infrared detector M 1 is provided.
【0017】請求項10に記載の発明では、例えば図1
4に示すように、セル長が互いに異なる場合を含む複数
の測定セルを連通部を介して順次連通させて単一のガス
経路を構成してあり、かつ比較セルを有する光断続式の
ガス分析計にあって、光源1に隣接させた光断続器C
と、二室受光式の赤外線検出器Mとの間に、互いに直列
に隣接配置した第1の赤外透過・反射手段B1 、比較セ
ルRおよび第2の赤外透過・反射手段B2 と、互いに直
列に隣接配置した第3の赤外透過・反射手段B3、第1
の測定セル3および第4の赤外透過・反射手段B4 とを
並列に設け、前記第1の赤外透過・反射手段B1 、第2
の赤外透過・反射手段B2 および第3の赤外透過・反射
手段B3 の各赤外反射側に、前記第1の測定セル3とそ
れぞれ連通する第2の測定セル7、第3の測定セル23
および第4の測定セル37と、各測定セルに対応する第
2の赤外線検出器9、第3の赤外線検出器12および第
4の赤外線検出器32を設けてなることを特徴としてい
る。In the invention described in claim 10, for example, FIG.
As shown in FIG. 4, a plurality of measurement cells including cases where the cell lengths are different from each other are sequentially connected via a communication part to form a single gas path, and an intermittent optical gas analysis having a comparison cell is provided. An optical interrupter C adjacent to the light source 1 in the meter
And a two-chamber light receiving type infrared detector M, a first infrared transmitting / reflecting means B 1 , a comparison cell R and a second infrared transmitting / reflecting means B 2 which are arranged adjacent to each other in series. , Third infrared transmitting / reflecting means B 3 arranged adjacent to each other in series, first
The measuring cell 3 and the fourth infrared transmitting / reflecting means B 4 are provided in parallel, and the first infrared transmitting / reflecting means B 1 ,
The infrared transmission and reflection means B 2 and the third on the infrared reflection side of the infrared transmission and reflection means B 3, the second measuring cell 7 respectively communicating with the first measuring cell 3, the third Measuring cell 23
And a fourth measuring cell 37, and a second infrared detector 9, a third infrared detector 12, and a fourth infrared detector 32 corresponding to the respective measuring cells.
【0018】請求項11に記載の発明では、例えば図1
5に示すように、請求項10に記載の発明における第1
の測定セル3に隣接配置された第4の赤外透過・反射手
段B4 の赤外反射側に前記第1の測定セル3に連通する
第5の測定セル47と、その第5の測定セル47と対応
する第5の赤外線検出器34とを設けたことを特徴とし
ている。In the invention described in claim 11, for example, FIG.
As shown in claim 5, the first aspect of the invention of claim 10
Fifth measuring cell 47 communicating with the first measuring cell 3 on the infrared reflecting side of the fourth infrared transmitting / reflecting means B 4 arranged adjacent to the measuring cell 3 of FIG. 47 and a corresponding fifth infrared detector 34 are provided.
【0019】請求項12に記載の発明では、例えば図1
5に示すように、請求項10または請求項11に記載の
発明における第4の赤外透過・反射手段B4 と第1の測
定セル3との間に1つもしくは複数の赤外透過・反射手
段B5 を隣接させて配置し、かつその赤外透過・反射手
段B5 の赤外反射側に、前記第1の測定セル3と連通す
る測定セル57を配置するとともに、その測定セル57
と対応する赤外線検出手段44を設けてなることを特徴
としている。According to the twelfth aspect of the invention, for example, FIG.
As shown in FIG. 5, one or a plurality of infrared transmitting / reflecting elements are provided between the fourth infrared transmitting / reflecting means B 4 and the first measuring cell 3 in the invention according to claim 10 or 11. The means B 5 is arranged adjacently, and the measuring cell 57 communicating with the first measuring cell 3 is arranged on the infrared reflecting side of the infrared transmitting / reflecting means B 5 , and the measuring cell 57 is arranged.
It is characterized in that an infrared detecting means 44 corresponding to is provided.
【0020】なお、上述の各請求項に記載の「測定セ
ル」、「赤外透過・反射手段」および「赤外線検出器」
の名称と符号は、構成内容を統一ないしは特定するもの
ではなく、同一名称・同一符号間で構成内容が異なる場
合も含まれるものとする。The "measuring cell", "infrared transmitting / reflecting means" and "infrared detector" described in each of the above claims.
The name and the code do not unify or specify the configuration content, but include the case where the configuration content differs between the same name and the same code.
【0021】請求項13に記載の発明では、請求項1な
いし請求項12のいずれかに記載の発明における赤外透
過・反射手段が、赤外の波長を分光する光学フィルタで
あることを特徴としている。The invention according to claim 13 is characterized in that the infrared transmitting / reflecting means in the invention according to any one of claims 1 to 12 is an optical filter for separating infrared wavelengths. There is.
【0022】請求項14に記載の発明では、請求項1な
いし請求項12のいずれかに記載の発明における赤外透
過・反射手段が、赤外の光量を分割するハーフミラーま
たはビームスプリッターであることを特徴としている。According to a fourteenth aspect of the invention, the infrared transmitting / reflecting means in the invention according to any one of the first to twelfth aspects is a half mirror or a beam splitter for dividing the amount of infrared light. Is characterized by.
【0023】[0023]
【作用】セル長が互いに異なる場合を含む複数のセルを
連通部を介して順次連通させて単一のガス経路を構成し
てあるガス分析計にあって、それら各セルと赤外透過・
反射手段および赤外線検出器とを組み合わせることによ
り、流体変調(ガス変調)方式または光断続方式のいず
れをも単一のガス経路で構成簡易に形成することがで
き、高精度に多成分測定をおこなうことができる。[Function] In a gas analyzer in which a plurality of cells including cells having different cell lengths are sequentially communicated through a communication section to form a single gas path,
By combining the reflection means and the infrared detector, both the fluid modulation (gas modulation) method and the light interrupting method can be easily configured with a single gas path, and multi-component measurement can be performed with high accuracy. be able to.
【0024】[0024]
【実施例】以下、この発明の実施例を、図面を参照しな
がら説明する。図1は、セル長(L2 )が60mmのN
OX 測定セルおよびセル長(L1 )が1mmのCO2 測
定セルを単一のガス経路で連通させた2成分測定用のガ
ス分析計(NDIR)20を示す。同図にて、セル長L
1 ,L2 が互いに異なる複数の測定セル7(第2の測定
セル),3(第1の測定セル)を連通部21を介して連
通して単一のガス経路を構成してあり、光源1に、赤外
の波長を分光する赤外透過・反射手段としてのカットオ
ンフィルタ(光学フィルタ)100を隣接し、光学フィ
ルタ100の赤外透過側と赤外反射側にそれぞれ連通部
21で連通されているセル長L2 のNOX 測定セル3お
よびセル長L1 のCO2 測定セル7とコンデンサマイク
ロホン(NOX 用赤外線検出器)5および焦電形検出器
(CO2 用赤外線検出器)9を設けてある。なお、本実
施例では、測定セル3,7に対して、サンプルガス30
と図示しないリファレンスガスとが交互に供給される流
体変調(ガス変調)方式を採用している。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows N with a cell length (L 2 ) of 60 mm.
1 shows a gas analyzer (NDIR) 20 for two-component measurement in which an O X measuring cell and a CO 2 measuring cell having a cell length (L 1 ) of 1 mm are connected in a single gas path. In the figure, cell length L
A plurality of measuring cells 7 (second measuring cell) and 3 (first measuring cell) having different L 1 and L 2 are connected to each other through a communication portion 21 to form a single gas path. 1 is adjacent to a cut-on filter (optical filter) 100 as an infrared transmitting / reflecting unit that separates infrared wavelengths, and communicates with the infrared transmitting side and the infrared reflecting side of the optical filter 100 by communicating portions 21 respectively. has been cell length L 2 of the NO X measuring cell 3 and cell length L 1 of the CO 2 measuring cell 7 and the capacitor microphone has (NO X for infrared detectors) 5 and pyroelectric detectors (CO 2 for infrared detectors) 9 is provided. In this example, the sample gas 30 was used for the measurement cells 3 and 7.
And a reference gas (not shown) are alternately supplied.
【0025】ちなみに、本実施例ではカットオンフィル
タ100は、干渉成分ガスを封入してなるガスフィルタ
セル22に内蔵されているが、必ずしも干渉成分ガスを
封入する必要はなく、適宜設定し得る。Incidentally, although the cut-on filter 100 is built in the gas filter cell 22 in which the interference component gas is sealed in this embodiment, it is not always necessary to seal the interference component gas, and it can be set appropriately.
【0026】以下、測定動作について説明する。サンプ
ルガス30(またはリファレンスガス)は、測定セル7
から連通部21を通り測定セル3に流れる。なお、サン
プルガス30の流れる方向は逆であってもよい。一方、
光源1から出射した赤外光Aは、図8に曲線Pで示す吸
光度特性を有するカットオンフィルタ100により、反
射光A1 (λ1 )と透過光A2 (λ2 )に分けられる。
すなわち、反射光A1(λ1 )はCO2 の吸収波長a
(≒4.3μm)以下の短い波長λ1 (≦a)を有し、
カットオンフィルタ100を透過した透過光A
2 (λ2 )は、それ以外の波長λ2 (>a)を有する。The measurement operation will be described below. The sample gas 30 (or reference gas) is the measurement cell 7
Through the communication part 21 to the measuring cell 3. The sample gas 30 may flow in the opposite direction. on the other hand,
The infrared light A emitted from the light source 1 is divided into reflected light A 1 (λ 1 ) and transmitted light A 2 (λ 2 ) by the cut-on filter 100 having the absorbance characteristic shown by the curve P in FIG.
That is, the reflected light A 1 (λ 1 ) is the absorption wavelength a of CO 2.
Has a short wavelength λ 1 (≦ a) of (≈4.3 μm) or less,
Transmitted light A transmitted through the cut-on filter 100
2 (λ 2 ) has the other wavelength λ 2 (> a).
【0027】この透過光A2 においては、一端側に設け
られたCaF2 窓2を介してセル長L2 が60mmのN
OX 測定セル3を通過する間にその測定セル3内の測定
成分ガスが赤外線を吸収し、他端側に設けられたCaF
2 窓4を介して、図8に曲線Qで示す吸光度特性を有す
るNOバンドパスフィルタ400により、NOX ガス中
の吸収波長b(≒5.3μm)のみが透過してNOX 検
出器5に至る。一方、反射光A1 は、CaF2 窓6を介
してCO2 測定セル7を通過し、測定成分ガスによる吸
収が行われた後、CaF2 窓8を介して、図9に曲線R
で示す吸光度特性を有するCO2 バンドパスフィルタ2
00により、CO2 ガスの吸収波長a(≒4.3μm)
のみが透過してCO2 検出器9に至る。In this transmitted light A 2 , the cell length L 2 is N of 60 mm through the CaF 2 window 2 provided at one end side.
CaF that O X measuring gas components of the measurement cell 3 while the measuring cell 3 through absorbs infrared, provided on the other side
By the NO band pass filter 400 having the absorbance characteristic shown by the curve Q in FIG. 8 through the two windows 4, only the absorption wavelength b (≈5.3 μm) in the NO X gas is transmitted to the NO X detector 5. Reach On the other hand, the reflected light A 1 passes through the CO 2 measuring cell 7 through the CaF 2 window 6 and is absorbed by the measurement component gas, and then passes through the CaF 2 window 8 and the curve R in FIG.
CO 2 bandpass filter 2 having the absorbance characteristic shown in
00, absorption wavelength a of CO 2 gas (≈4.3 μm)
Only the light passes through and reaches the CO 2 detector 9.
【0028】このように本実施例では、測定成分(NO
とCO2 )毎にそれぞれ適合するセル長L2 ,L1 を有
する2つの測定セル3,7を設け、かつ、これら各測定
セル3,7を連通させて単一のガス経路を構成する一
方、光源1側にカットオンフィルタ100を設け、該カ
ットオンフィルタ100の赤外透過側と赤外反射側にそ
れぞれ連通部21で連通されている上記各測定セル3,
7を配置し、その各測定セル3,7毎に検出器5,9を
設けたので、適合するセル長L2 ,L1 の異なる2測定
成分(NOX とCO2 )を単経路のみで高精度に測定で
きる。As described above, in this embodiment, the measurement component (NO
And CO 2 ) are provided with two measuring cells 3 and 7 having cell lengths L 2 and L 1 respectively adapted to each other, and these measuring cells 3 and 7 are connected to each other to form a single gas path. The cut-on filter 100 is provided on the light source 1 side, and the measurement cells 3, which are connected to the infrared transmission side and the infrared reflection side of the cut-on filter 100 by the communication portions 21, respectively.
7 are arranged, and the detectors 5 and 9 are provided for each of the measuring cells 3 and 7, so that two measuring components (NO x and CO 2 ) having different cell lengths L 2 and L 1 that are compatible with each other can be formed by a single path. Can measure with high accuracy.
【0029】図2は、光源1とガスフィルタセル22間
に光源1からの赤外光を断続させる回転チョッパ(光断
続器)Cを設けた光断続(光変調)方式のNDIR20
で、上記第1実施例と同様の2成分測定を行うようにし
たもので、この発明の第2実施例を示す。なお、符号3
3はN2 などの不活性ガスが封入されている比較セルで
あって、この比較セル33内では光源1からの赤外光は
吸収されずに常に一定光量が二室受光式の赤外線検出器
5に到達する。したがって、測定セル3と比較セル33
の入射赤外線量に差が生じ、しかもこの両赤外線は回転
チョッパ32で断続されているので、赤外線検出器5内
のコンデンサマイクロホンが振動する。この振動による
静電容量の変化を取り出せば、それをNOX ガス濃度の
信号として処理できる。FIG. 2 shows an NDIR 20 of a light-intermitting (light-modulating) system in which a rotating chopper (optical interrupter) C for interrupting infrared light from the light source 1 is provided between the light source 1 and the gas filter cell 22.
Then, the same two-component measurement as in the first embodiment is performed, and the second embodiment of the present invention is shown. Note that reference numeral 3
Reference numeral 3 is a comparison cell in which an inert gas such as N 2 is sealed. In the comparison cell 33, infrared light from the light source 1 is not absorbed and a constant light quantity is always a two-chamber infrared detector. Reach 5. Therefore, the measurement cell 3 and the comparison cell 33
There is a difference in the amount of incident infrared rays, and since both infrared rays are interrupted by the rotary chopper 32, the condenser microphone in the infrared detector 5 vibrates. Be taken out the change in electrostatic capacitance caused by the vibration can handle it as a signal of the NO X gas concentration.
【0030】図3は第3の実施例を示し、光源1側に第
1の赤外透過・反射手段としての赤外の波長を分光する
カットオンフィルタ100を設け、該第1光学フィルタ
100の赤外透過側と赤外反射側にそれぞれ連通部21
で連通されているセル長L2が60mmのNOX 測定セ
ル3およびセル長L1 が1mmのCO2 測定セル7とN
OX 用赤外線検出器5およびCO2 用赤外線検出器9を
設け、更に、NOX 測定セル3とNOX 用赤外線検出器
5間に第2の赤外透過・反射手段としてのNOX バンド
パスフィルタ300を設け、かつ、NOX 用赤外線検出
器5をNOX バンドパスフィルタ300の赤外透過側に
設ける一方、NOX バンドパスフィルタ300の赤外反
射側にSO2 用赤外線検出器12を設けて3成分(N
O,CO2およびSO2 )測定を行うようにしたもので
ある。なお、本実施例ではNOX バンドパスフィルタ3
00は、干渉成分ガスを封入してなるガスフィルタセル
24に内蔵されているが、必ずしも干渉成分ガスを封入
する必要はなく、適宜設定し得る。なお、本実施例から
第7の実施例までは、上記第1実施例の場合と同様に流
体変調方式のNDIR20を使用している。FIG. 3 shows a third embodiment, in which a cut-on filter 100 for separating infrared wavelengths as a first infrared transmitting / reflecting means is provided on the light source 1 side, and the first optical filter 100 A communication part 21 is provided on each of the infrared transmission side and the infrared reflection side.
In communicated with the cell length L 2 and the NO X measuring cell 3 and cell length L 1 of 60mm is 1mm of CO 2 measuring cell 7 and N
An infrared detector 5 for O X and an infrared detector 9 for CO 2 are provided, and a NO X bandpass as a second infrared transmitting / reflecting means is further provided between the NO X measuring cell 3 and the NO X infrared detector 5. the filter 300 is provided, and, while providing the infrared detector 5 for NO X to the infrared transmission side of the NO X band-pass filter 300, the NO X bandpass infrared reflection side infrared detector 12 for SO 2 in the filter 300 Provide 3 components (N
O, CO 2 and SO 2 ) are measured. In this embodiment, the NO X bandpass filter 3 is used.
00 is contained in the gas filter cell 24 in which the interference component gas is sealed, but it is not always necessary to seal the interference component gas and can be set appropriately. In this embodiment to the seventh embodiment, the fluid modulation type NDIR 20 is used as in the case of the first embodiment.
【0031】以下、測定動作について説明する。図3に
て、3成分(NO,CO2 およびSO2 )測定について
説明する。本実施例の特徴は、図1、図2で示した第
1,2実施例における透過光A2 (λ2 )を反射光A3
(λ3 )と透過光A4 (λ4 )に分け、反射光A3 (λ
3 )および透過光A4 をそれぞれSO2 用赤外線検出器
12およびNOX 用赤外線検出器5に入射させるため
に、図10に曲線Tで示す吸光度特性を有するNOX バ
ンドパスフィルタ(反射スペクトル)300を用いた点
にある。すなわち、サンプルガス30(またはリファレ
ンスガス)は、測定セル7から連通部21を通り測定セ
ル3に流れる。なお、サンプルガス30の流れる方向は
逆であってもよい。The measurement operation will be described below. Measurement of three components (NO, CO 2 and SO 2 ) will be described with reference to FIG. This embodiment is characterized in FIG. 1, the transmitted light A 2 in the first and second embodiments shown in FIG. 2 (lambda 2) the reflected light A 3
(Λ 3 ) and transmitted light A 4 (λ 4 ) and reflected light A 3 (λ
3 ) and the transmitted light A 4 are incident on the infrared detector 12 for SO 2 and the infrared detector 5 for NO x , respectively, so that the NO x band pass filter (reflection spectrum) having the absorbance characteristic shown by the curve T in FIG. The point is that 300 is used. That is, the sample gas 30 (or reference gas) flows from the measurement cell 7 to the measurement cell 3 through the communication part 21. The sample gas 30 may flow in the opposite direction.
【0032】上述の透過光A2 (λ2 )がNOバンドパ
スフィルタ(反射スペクトル)300により、反射光A
3 (λ3 )と透過光A4 (λ4 )に分けられる。すなわ
ち、透過光A4 (λ4 )は、図10における領域Fで示
す範囲の波長λ4 (b−Δb≦λ4 ≦b+Δb)を有
し、NOバンドパスフィルタ(反射スペクトル)300
を反射した反射光A3 (λ3 )は、それ以外の波長λ3
(a<λ3 <b−Δb,b+Δb<λ3 )を有する。そ
して、この透過光A4 においては、NOバンドパスフィ
ルタ(反射スペクトル)300の一端側に設けられたC
aF2 窓10を介して、図8に曲線Qで示す特性を有す
るNOバンドパスフィルタ400により、NOガスの吸
収波長b(=5.3μm)のみが透過してNO検出器5
に至る。一方、反射光A3 は、CaF2 窓11を介し
て、図10に曲線Vで示す特性を有するSO2 バンドパ
スフィルタ500により、SO2 ガスの吸収波長c(=
7.3μm)のみが透過してSO2 検出器12に至る。The transmitted light A 2 (λ 2 ) is reflected by the NO band-pass filter (reflection spectrum) 300 and reflected by the reflected light A 2.
It is divided into 3 (λ 3 ) and transmitted light A 4 (λ 4 ). That is, the transmitted light A 4 (λ 4 ) has a wavelength λ 4 (b−Δb ≦ λ 4 ≦ b + Δb) in the range indicated by the region F in FIG. 10, and the NO band pass filter (reflection spectrum) 300
Reflected light A 3 reflected the (lambda 3) is the other wavelengths lambda 3
(A <λ 3 <b−Δb, b + Δb <λ 3 ). Then, in this transmitted light A 4 , C provided on one end side of the NO band pass filter (reflection spectrum) 300
Only the absorption wavelength b (= 5.3 μm) of the NO gas is transmitted through the NO bandpass filter 400 having the characteristic shown by the curve Q in FIG. 8 through the aF 2 window 10 and the NO detector 5
Leading to. On the other hand, the reflected light A 3 via a CaF 2 window 11, the SO 2 band-pass filter 500 having characteristics indicated by curve V in FIG. 10, the absorption wavelength c of SO 2 gas (=
Only 7.3 μm) penetrates and reaches the SO 2 detector 12.
【0033】図4は第4の実施例を示し、第2光学フィ
ルタ300の赤外反射側に補助の測定セル23を設ける
ことにより、SO2 検出器12の感度を向上させるよう
にしたもので、その測定セル23を連通部25を介して
測定セル3に連通させてある。これにより、セル長を上
記第3実施例の(L2 )から(L2 +L3 )にアップで
き、セル長を長く設定できることにより、SO2 検出器
12の感度を上げることができる。FIG. 4 shows a fourth embodiment in which an auxiliary measuring cell 23 is provided on the infrared reflecting side of the second optical filter 300 to improve the sensitivity of the SO 2 detector 12. The measuring cell 23 is communicated with the measuring cell 3 via the communicating portion 25. As a result, the cell length can be increased from (L 2 ) in the third embodiment to (L 2 + L 3 ), and the cell length can be set longer, so that the sensitivity of the SO 2 detector 12 can be increased.
【0034】図5は第5の実施例を示し、光源1側に隣
接させた第1の赤外透過・反射手段100の一方(赤外
透過)側にNOX バンドパスフィルタ(第2の赤外透過
・反射手段)300を設け、第1の赤外透過・反射手段
100の他方(赤外反射)側に測定セル7および赤外線
検出器9を設けるとともに、第2の赤外透過・反射手段
300の一方(赤外反射)側に連通部26を介して測定
セル7に連通させた別の測定セル(第3の測定セル,セ
ル長L5 )47および赤外線検出器12を設け、かつ、
第2の赤外透過・反射手段300の他方(赤外透過)側
に連通部27を介して測定セル47に連通させた測定セ
ル3および赤外線検出器5を設けて3成分測定を行うよ
うにしたものである。なお、この実施例では、第1の赤
外透過・反射手段100の一方側を赤外透過側に、第2
の赤外透過・反射手段300の一方側を赤外反射側にそ
れぞれ設定したものを示したが、第1の赤外透過・反射
手段100の一方側を赤外反射側に、第2の赤外透過・
反射手段300の一方側を赤外透過側にそれぞれ設定し
たものであってもよい。FIG. 5 shows a fifth embodiment, in which one side (infrared transmission) of the first infrared transmitting / reflecting means 100 adjacent to the light source 1 side is provided with a NO X bandpass filter (second red transmission). The external transmission / reflection means) 300 is provided, the measurement cell 7 and the infrared detector 9 are provided on the other (infrared reflection) side of the first infrared transmission / reflection means 100, and the second infrared transmission / reflection means is provided. Another measurement cell (third measurement cell, cell length L 5 ) 47 and the infrared detector 12, which are in communication with the measurement cell 7 via the communication portion 26, are provided on one side (infrared reflection) 300 of 300, and
On the other (infrared transmitting) side of the second infrared transmitting / reflecting means 300, the measuring cell 3 and the infrared detector 5 which are communicated with the measuring cell 47 through the communicating portion 27 are provided to perform three-component measurement. It was done. In this embodiment, one side of the first infrared transmitting / reflecting means 100 is the infrared transmitting side and the second side is the second side.
Although one side of the infrared transmitting / reflecting means 300 is set to the infrared reflecting side respectively, one side of the first infrared transmitting / reflecting means 100 is set to the infrared reflecting side and the second red transmitting / reflecting means 300 is set to the infrared reflecting side. Outside transmission
One side of the reflection means 300 may be set to the infrared transmission side, respectively.
【0035】図6は第6の実施例を示し、光源1側に測
定セル3および赤外線検出器5を設け、両者3,5間に
カットオンフィルタ(第1の赤外透過・反射手段)10
0およびNOX バンドパスフィルタ(第2の赤外透過・
反射手段)300を介装するとともに、該第2の赤外透
過・反射手段300を第1の赤外透過・反射手段100
の一方(赤外透過)側に直列に設け、かつ、赤外線検出
器5を第2の赤外透過・反射手段300の一方(赤外透
過)側に設けるとともに、第1の赤外透過・反射手段1
00の他方(赤外反射)側に連通部28を介して測定セ
ル3に連通される測定セル7および赤外線検出器9を設
け、更に、第2の赤外透過・反射手段300の他方(赤
外反射)側に連通部29を介して測定セル7に連通され
る測定セル(セル長L5 )47および赤外線検出器12
を設けて3成分測定を行うようにしたものである。な
お、この実施例では、第1の赤外透過・反射手段100
の一方側を赤外透過側に、第2の赤外透過・反射手段3
00の一方側を赤外透過側にそれぞれ設定したものを示
したが、第1の赤外透過・反射手段100の一方側を赤
外反射側に、第2の赤外透過・反射手段300の一方側
を赤外反射側にそれぞれ設定したものであってもよい。FIG. 6 shows a sixth embodiment, in which a measuring cell 3 and an infrared detector 5 are provided on the light source 1 side, and a cut-on filter (first infrared transmitting / reflecting means) 10 is provided between them 3 and 5.
0 and NO X band-pass filter (second infrared-transmissive and
(Reflecting means) 300, and the second infrared transmitting / reflecting means 300 is connected to the first infrared transmitting / reflecting means 100.
The infrared detector 5 is provided in series on one side (infrared transmission) side, the infrared detector 5 is provided on one side (infrared transmission) side of the second infrared transmission / reflection means 300, and the first infrared transmission / reflection is performed. Means 1
00 is provided on the other side (infrared reflection) of 00 with the measurement cell 7 and the infrared detector 9 which communicate with the measurement cell 3 through the communication part 28, and the other side of the second infrared transmission / reflection means 300 (red). Measurement cell (cell length L 5 ) 47 and the infrared detector 12 which are communicated with the measurement cell 7 via the communication part 29 on the (external reflection) side.
Is provided to measure three components. In this embodiment, the first infrared transmitting / reflecting means 100
One side is the infrared transmitting side, and the second infrared transmitting / reflecting means 3
Although one side of 00 is set to the infrared transmitting side respectively, one side of the first infrared transmitting / reflecting means 100 is set to the infrared reflecting side and the second infrared transmitting / reflecting means 300 is set to the infrared transmitting side. One side may be set to the infrared reflection side, respectively.
【0036】図7は第7の実施例を示し、図3に示した
第3実施例の流体変調方式のNDIR20に、第3の赤
外透過・反射手段としてのCO2 バンドパスフィルタ2
00を付加して4成分(NO,CO2 ,SO2 およびC
O)測定を行うようにしたものである。FIG. 7 shows a seventh embodiment. The NDIR 20 of the fluid modulation system of the third embodiment shown in FIG. 3 has a CO 2 band pass filter 2 as a third infrared transmitting / reflecting means.
00 is added to add four components (NO, CO 2 , SO 2 and C
O) The measurement is performed.
【0037】この実施例においては、光源1側に赤外の
波長を分光するカットオンフィルタ(第1の赤外透過・
反射手段)100を設け、カットオンフィルタ100の
赤外透過側と赤外反射側にそれぞれ連通部21で連通さ
れているセル長L2 が60mmのNOX 測定セル3およ
びセル長L4 が1mmのCO2 測定セル77とNOX用
赤外線検出器5およびCO2 用赤外線検出器9を設け、
更に、NOX 測定セル3とNOX 用赤外線検出器5間に
NOX バンドパスフィルタ(第2の赤外透過・反射手
段)300を設け、かつ、NOX 用赤外線検出器5をN
Oバンドパスフィルタ300の赤外透過側に設ける一
方、NOX バンドパスフィルタ300の赤外反射側にS
O2 用赤外線検出器12を設け、CO2 用赤外線検出器
9とCO2 測定セル77間に、図9に曲線Rで示す特性
を有するCO2 バンドパスフィルタ200を設け、CO
2 用赤外線検出器9をCO2 バンドパスフィルタ200
の赤外透過側に設けるとともに、CO2 バンドパスフィ
ルタ200の赤外反射側にCOバンドパスフィルター6
00を介してCO用赤外線検出器41を設けてある。In this embodiment, a cut-on filter (first infrared transmission /
(Reflecting means) 100 is provided, and the NO x measuring cell 3 having a cell length L 2 of 60 mm and the cell length L 4 of 1 mm, which are connected to the infrared transmission side and the infrared reflection side of the cut-on filter 100 by the communication portion 21, respectively. CO 2 measuring cell 77, NO X infrared detector 5 and CO 2 infrared detector 9 are provided,
Further, the NO X measuring cell 3 and the NO NO for between infrared detector 5 X X bandpass filter (second infrared transmission and reflection means) 300 is provided, and, NO X infrared detector 5 N
While being provided on the infrared transmission side of the O bandpass filter 300, S is provided on the infrared reflection side of the NO X bandpass filter 300.
The O 2 for infrared detector 12 is provided, between the CO 2 infrared detector 9 and CO 2 measurement cell 77 is provided with a CO 2 band-pass filter 200 having characteristics indicated by curve R in FIG. 9, CO
The infrared detector 9 for 2 is used as a CO 2 bandpass filter 200
Of the CO bandpass filter 6 on the infrared reflection side of the CO 2 bandpass filter 200.
Infrared detector 41 for CO is provided via 00.
【0038】図11ないし図15は、光断続式のNDI
R20のその他の実施例を示す。FIGS. 11 to 15 show an intermittent optical NDI.
Another embodiment of R20 will be shown.
【0039】図11は第8の実施例を示し、光源1に隣
接させた光断続器Cと、二室受光式の赤外線検出器Mと
の間に、比較セルRと第1の赤外透過・反射手段B1 お
よび第1の測定セル3と第2の赤外透過・反射手段B2
を並列に設け、前記第2の赤外透過・反射手段B2 の赤
外反射側に第1の赤外線検出器5を設ける一方、前記第
1の赤外透過・反射手段B1 の赤外反射側に前記第1の
測定セル3と連通された第2の測定セル7を介して第2
の赤外線検出器9を設けている。FIG. 11 shows an eighth embodiment, in which a comparison cell R and a first infrared transmission are provided between an optical interrupter C adjacent to the light source 1 and a two-chamber light receiving infrared detector M. The reflecting means B 1 and the first measuring cell 3 and the second infrared transmitting / reflecting means B 2
Are provided in parallel, and the first infrared detector 5 is provided on the infrared reflection side of the second infrared transmission / reflection means B 2 while the infrared reflection of the first infrared transmission / reflection means B 1 is provided. A second measuring cell 7 communicating with the first measuring cell 3 on the side
Infrared detector 9 is provided.
【0040】図12は第9の実施例を示し、第2の赤外
透過・反射手段B2 と第1の測定セル3との間に第3の
赤外透過・反射手段B3 を配置し、かつ、その第3の赤
外透過・反射手段B3 の赤外反射側に前記第1の測定セ
ル3と連通する第3の測定セル23をそれぞれ配置する
とともに、その第3の測定セル23と対応する第3の赤
外線検出手段12を設けている。FIG. 12 shows a ninth embodiment, in which a third infrared transmitting / reflecting means B 3 is arranged between the second infrared transmitting / reflecting means B 2 and the first measuring cell 3. In addition, the third measuring cell 23 communicating with the first measuring cell 3 is arranged on the infrared reflecting side of the third infrared transmitting / reflecting means B 3 , and the third measuring cell 23 is provided. The third infrared detecting means 12 corresponding to the above is provided.
【0041】図13は第10の実施例を示し、光断続器
Cと比較セルRとの間に、一対の赤外透過・反射手段B
4 ,B5 を設け、その一方の赤外透過・反射手段B4 の
赤外反射側に第2の比較セルR1 を設けるとともに、他
方の赤外透過・反射手段B5の赤外反射側に前記第1の
測定セル3および第2の測定セル7と連通する第3の測
定セル23を設け、かつその第2の比較セルR1 と第3
の測定セル23とに対応する二室受光式の別の赤外線検
出器M1 を設けるとともに、第1の測定セル3と二室受
光式の赤外線検出器Mとの間に2つの赤外透過・反射手
段B2 ,B3 を設け、その赤外反射側に第4、第5の測
定セル37,47および赤外線検出器32,34を配置
している。なお、この場合、サンプルガスは第4の測定
セル37から第5、第1、第3、第2の測定セル7へと
流れるが、その逆方向でもよい。FIG. 13 shows a tenth embodiment, in which a pair of infrared transmitting / reflecting means B is provided between the optical interrupter C and the comparison cell R.
4 , B 5 are provided, the second comparison cell R 1 is provided on the infrared reflection side of one of the infrared transmission / reflection means B 4 , and the infrared reflection side of the other infrared transmission / reflection means B 5 is provided. Is provided with a third measuring cell 23 communicating with the first measuring cell 3 and the second measuring cell 7, and the second measuring cell R 1 and the third measuring cell 23 are provided.
A separate two-chamber light-receiving infrared detector M 1 corresponding to the measuring cell 23 of FIG. 2 is provided, and two infrared-transmissive infrared detectors M 1 are provided between the first measuring cell 3 and the two-chamber light-receiving infrared detector M. Reflecting means B 2 and B 3 are provided, and the fourth and fifth measuring cells 37 and 47 and infrared detectors 32 and 34 are arranged on the infrared reflecting side thereof. In this case, the sample gas flows from the fourth measuring cell 37 to the fifth, first, third, and second measuring cells 7, but the reverse direction may be used.
【0042】図14は第11の実施例を示し、光源1に
隣接させた光断続器Cと、二室受光式の赤外線検出器M
との間に、互いに直列に隣接配置した第1の赤外透過・
反射手段B1 、比較セルRおよび第2の赤外透過・反射
手段B2 と、互いに直列に隣接配置した第3の赤外透過
・反射手段B3 、第1の測定セル3および第4の赤外透
過・反射手段B4 とを並列に設け、前記第1の赤外透過
・反射手段B1 、第2の赤外透過・反射手段B2 および
第3の赤外透過・反射手段B3 の各赤外反射側に、それ
ぞれ前記第1の測定セル3と連通する第2の測定セル
7、第3の測定セル23および第4の測定セル37と、
各測定セルに対応する第2の赤外線検出器9、第3の赤
外線検出器12および第4の赤外線検出器32を設けて
いる。FIG. 14 shows an eleventh embodiment, which is an optical interrupter C adjacent to the light source 1 and a two-chamber light receiving infrared detector M.
Between the first infrared transmission and
The reflecting means B 1 , the comparison cell R and the second infrared transmitting / reflecting means B 2 , the third infrared transmitting / reflecting means B 3 arranged adjacent to each other in series, the first measuring cell 3 and the fourth measuring cell 3 The infrared transmitting / reflecting means B 4 is provided in parallel, and the first infrared transmitting / reflecting means B 1 , the second infrared transmitting / reflecting means B 2 and the third infrared transmitting / reflecting means B 3 are provided. A second measurement cell 7, a third measurement cell 23 and a fourth measurement cell 37, which communicate with the first measurement cell 3 on the respective infrared reflection sides of
The second infrared detector 9, the third infrared detector 12, and the fourth infrared detector 32 corresponding to each measurement cell are provided.
【0043】図15は第4の赤外透過・反射手段B4 と
第1の測定セル3との間に第5の赤外透過・反射手段B
5 を隣接させて配置し、かつその第4,第5の赤外透過
・反射手段B4 ,B5 の各赤外反射側に前記第1の測定
セル3と連通する測定セル47,57を配置するととも
に、その測定セル47,57と対応する赤外線検出手段
34,44を設けている。FIG. 15 shows a fifth infrared transmitting / reflecting means B between the fourth infrared transmitting / reflecting means B 4 and the first measuring cell 3.
5 are arranged adjacent to each other, and measuring cells 47 and 57 communicating with the first measuring cell 3 are provided on the infrared reflecting sides of the fourth and fifth infrared transmitting / reflecting means B 4 and B 5 , respectively. In addition to the arrangement, infrared measuring means 34, 44 corresponding to the measuring cells 47, 57 are provided.
【0044】上述の図11ないし図15に示す各実施例
における作用効果は、前述した図1ないし図7に示す各
実施例と基本的に同等であり、その説明は省略する。な
お、本発明は上記各実施例に限定されるものではなく、
赤外透過・反射手段、測定セルおよび赤外線検出器の組
み合わせは、上記各実施例に準じて適宜変更設定されて
よいことはいうまでもない。なお、図示のセル長L1 ,
…の各符号はその「長さ」を特定するものではなく、各
測定セル間の長さが異なる場合を示すものとする。The operation and effect of each of the embodiments shown in FIGS. 11 to 15 are basically the same as those of each of the embodiments shown in FIGS. 1 to 7, and the description thereof will be omitted. The present invention is not limited to the above embodiments,
It goes without saying that the combination of the infrared transmitting / reflecting means, the measuring cell and the infrared detector may be appropriately changed and set according to the above-mentioned respective embodiments. It should be noted that the illustrated cell length L 1 ,
Each code of ... does not specify its "length", but indicates the case where the lengths of the respective measurement cells are different.
【0045】このように、上述した各実施例において、
測定成分毎に適合するセル長を有する測定セルをそれぞ
れ設け、かつ、これら各測定セルを連通させて単一のガ
ス経路を構成する一方、光源側に1つあるいは複数の赤
外透過・反射手段を設け、該赤外透過・反射手段の赤外
透過側と赤外反射側にそれぞれ連通部で連通されている
前記各測定セルを配置し、各測定セル毎に赤外線検出器
を設けたので、異なる濃度の複数の測定成分を単一のガ
ス経路で測定できる。Thus, in each of the above-mentioned embodiments,
Each measuring component is provided with a measuring cell having a cell length suitable for each measuring component, and these measuring cells are connected to each other to form a single gas path, while one or more infrared transmitting / reflecting means are provided on the light source side. Since each of the measurement cells that are in communication with each other on the infrared transmission side and the infrared reflection side of the infrared transmission / reflection means is connected by a communication unit, and an infrared detector is provided for each measurement cell, Multiple measurement components of different concentrations can be measured with a single gas path.
【0046】なお、上記実施例においては、赤外透過・
反射手段として赤外の波長を分光する光学フィルタを用
いたものを示したが、赤外の光量を分割するハーフミラ
ーあるいはビームスプリッターを用いても良い。この場
合、その透過・反射面が各セルの光軸に対して45°の
傾斜角を有してガスフィルタセル内に設けるのが好まし
い。In the above embodiment, infrared transmission /
Although the one using the optical filter for separating the infrared wavelength is shown as the reflecting means, a half mirror or a beam splitter for dividing the infrared light amount may be used. In this case, it is preferable that the transmitting / reflecting surface be provided in the gas filter cell with an inclination angle of 45 ° with respect to the optical axis of each cell.
【0047】そして、ビームスプリッターによる各検出
器への光量の分割比は、通常1:1にて使用するが、検
出器特有の感度差がある場合には、反射率を調節したも
のを用いて1:2又はそれ以上の比率のものを用いて、
各検出器の検出感度に見合った光量を配分する。The splitting ratio of the amount of light to each detector by the beam splitter is usually 1: 1. However, if there is a sensitivity difference peculiar to the detectors, the one with adjusted reflectance is used. Using a ratio of 1: 2 or higher,
The amount of light is distributed according to the detection sensitivity of each detector.
【0048】[0048]
【発明の効果】以上説明したように、本発明によれば、
濃度や測定成分毎に適合するセル長を有する測定セルを
それぞれ設け、かつ、これら各測定セルを連通させて単
一のガス経路を構成する一方、光源側に赤外透過・反射
手段を設け、該赤外透過・反射手段の赤外透過側と赤外
反射側にそれぞれ連通部で連通されている前記各測定セ
ルを配置し、各測定セル毎に赤外線検出器を設けたの
で、適合するセル長の異なる複数の測定成分を単一のガ
ス経路の簡易な構成で、高精度に測定できる効果があ
る。As described above, according to the present invention,
A measurement cell having a cell length suitable for each concentration and each measurement component is provided, and a single gas path is formed by connecting these measurement cells to each other, and infrared transmission / reflection means is provided on the light source side. Each of the measurement cells, which are communicated with each other by a communication section, is arranged on the infrared transmission side and the infrared reflection side of the infrared transmission / reflection means, and an infrared detector is provided for each measurement cell. There is an effect that a plurality of measurement components having different lengths can be measured with high accuracy by a simple configuration of a single gas path.
【図面の簡単な説明】[Brief description of drawings]
【図1】この発明の第1実施例を示す構成説明図であ
る。FIG. 1 is a structural explanatory view showing a first embodiment of the present invention.
【図2】この発明の第2実施例を示す構成説明図であ
る。FIG. 2 is a structural explanatory view showing a second embodiment of the present invention.
【図3】この発明の第3実施例を示す構成説明図であ
る。FIG. 3 is a structural explanatory view showing a third embodiment of the present invention.
【図4】この発明の第4実施例を示す構成説明図であ
る。FIG. 4 is a structural explanatory view showing a fourth embodiment of the present invention.
【図5】この発明の第5実施例を示す構成説明図であ
る。FIG. 5 is a structural explanatory view showing a fifth embodiment of the present invention.
【図6】この発明の第6実施例を示す構成説明図であ
る。FIG. 6 is a structural explanatory view showing a sixth embodiment of the present invention.
【図7】この発明の第7実施例を示す構成説明図であ
る。FIG. 7 is a structural explanatory view showing a seventh embodiment of the present invention.
【図8】この発明で用いた赤外透過・反射手段の波長分
光特性を示す特性図である。FIG. 8 is a characteristic diagram showing wavelength spectral characteristics of infrared transmitting / reflecting means used in the present invention.
【図9】同じくこの発明で用いた赤外透過・反射手段の
波長分光特性を示す特性図である。FIG. 9 is a characteristic diagram similarly showing wavelength spectral characteristics of the infrared transmitting / reflecting means used in the present invention.
【図10】同じくこの発明で用いた赤外透過・反射手段
の波長分光特性を示す特性図である。FIG. 10 is a characteristic diagram showing wavelength spectral characteristics of the infrared transmitting / reflecting means used in the present invention.
【図11】この発明の第8実施例を示す構成説明図であ
る。FIG. 11 is a structural explanatory view showing an eighth embodiment of the present invention.
【図12】この発明の第9実施例を示す構成説明図であ
る。FIG. 12 is a structural explanatory view showing a ninth embodiment of the present invention.
【図13】この発明の第10実施例を示す構成説明図で
ある。FIG. 13 is a structural explanatory view showing a tenth embodiment of the present invention.
【図14】この発明の第11実施例を示す構成説明図で
ある。FIG. 14 is a structural explanatory view showing an eleventh embodiment of the present invention.
【図15】この発明の第12実施例を示す構成説明図で
ある。FIG. 15 is a structural explanatory view showing a twelfth embodiment of the present invention.
1…光源、3,7,23,37,47,57,67,7
7…測定セル、5,9,12,32,34,41,4
4,M,M1 …赤外線検出器、21,25,26,2
7,28,29…連通部、100,200,300,B
1 ,B2 ,B3 ,B4 ,B5 …赤外透過・反射手段、C
…光断続器、R,R1 …比較セル。1 ... Light source, 3, 7, 23, 37, 47, 57, 67, 7
7 ... Measuring cell, 5, 9, 12, 32, 34, 41, 4
4, M, M 1 ... Infrared detector 21,25,26,2
7, 28, 29 ... Communication part, 100, 200, 300, B
1 , B 2 , B 3 , B 4 , B 5 ... Infrared transmitting / reflecting means, C
… Optical interrupter, R, R 1 … Comparison cell.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 直仁 京都府京都市南区吉祥院宮の東町2番地 株式会社堀場製作所内 (72)発明者 米田 有利 京都府京都市南区吉祥院宮の東町2番地 株式会社堀場製作所内 (72)発明者 大西 敏和 京都府京都市南区吉祥院宮の東町2番地 株式会社堀場製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Naoto Shimizu Inventor, 2 Higashimachi, Kichijoin Miya, Minami-ku, Kyoto City, Kyoto Prefecture Horiba Manufacturing Co., Ltd. Inside HORIBA, Ltd. (72) Inventor Toshikazu Onishi 2 Higashimachi, Kichijoingu, Minami-ku, Kyoto-shi, Kyoto Inside HORIBA, Ltd.
Claims (14)
測定セルを連通部を介して順次連通させて単一のガス経
路を構成してあるガス分析計であって、光源に隣接させ
て赤外透過・反射手段を設け、その赤外透過・反射手段
の赤外透過側と赤外反射側にそれぞれ前記連通部で連通
されている少なくとも一組の測定セルとその測定セルに
それぞれ対応する赤外線検出器を設けたことを特徴とす
るガス分析計。1. A gas analyzer in which a plurality of measuring cells including cells having different cell lengths are sequentially communicated with each other through a communicating section to form a single gas path, and a red gas is provided adjacent to a light source. External transmission / reflection means is provided, and at least one set of measurement cells connected to the infrared transmission side and infrared reflection side of the infrared transmission / reflection means by the communication section and infrared rays corresponding to the measurement cells, respectively. A gas analyzer equipped with a detector.
測定セルを連通部を介して順次連通させて単一のガス経
路を構成してあるガス分析計であって、光源に隣接させ
て第1の赤外透過・反射手段を設け、その第1の赤外透
過・反射手段の赤外透過側と赤外反射側にそれぞれ前記
連通部で連通されている第1の測定セルおよび第2の測
定セルを設け、前記第1の測定セルと、その第1の測定
セルと対応する第1の赤外線検出器との間に第2の赤外
透過・反射手段を設けるとともに、その第2の赤外透過
・反射手段の赤外反射側に第3の赤外線検出器を設ける
一方、前記第2の測定セルに対応する第2の赤外線検出
器を設けてなることを特徴とするガス分析計。2. A gas analyzer in which a plurality of measuring cells including cases where cell lengths are different from each other are sequentially communicated through a communication section to form a single gas path, and the gas analyzer is adjacent to a light source. 1 infrared transmitting / reflecting means is provided, and the first measuring cell and the second measuring cell which are respectively connected to the infrared transmitting side and the infrared reflecting side of the first infrared transmitting / reflecting means by the communicating portion. A measuring cell is provided, and second infrared transmitting / reflecting means is provided between the first measuring cell and the first infrared detector corresponding to the first measuring cell, and the second red transmitting / reflecting means is provided. A gas analyzer characterized in that a third infrared detector is provided on the infrared reflection side of the external transmission / reflection means, while a second infrared detector corresponding to the second measurement cell is provided.
射側と第3の赤外線検出器との間に第3の測定セルを介
在させてなることを特徴とする請求項2に記載のガス分
析計。3. A third measuring cell is interposed between an infrared reflecting side of the first infrared transmitting / reflecting means and a third infrared detector. Gas analyzer described.
測定セルを連通部を介して順次連通して単一のガス経路
を構成してあるガス分析計であって、光源に隣接させて
第1の赤外透過・反射手段と、その第1の赤外透過・反
射手段の赤外透過側に第2の赤外透過・反射手段を連設
するとともに、その第2の赤外透過・反射手段の赤外透
過側に第1の測定セルとその第1の測定セルに対応する
第1の赤外線検出器を設けるとともに、前記第1の赤外
透過・反射手段の赤外反射側に第2の測定セルとその第
2の測定セルと対応する第2の赤外線検出器を設け、か
つ前記第2の赤外透過・反射手段の赤外反射側に第3の
測定セルとその第3の測定セルと対応する第3の赤外線
検出器を設けてなることを特徴とするガス分析計。4. A gas analyzer in which a plurality of measuring cells including cases where the cell lengths are different from each other are sequentially connected via a communication part to form a single gas path, and the gas analyzer is adjacent to a light source. 1 infrared transmitting / reflecting means and a second infrared transmitting / reflecting means connected in series to the infrared transmitting side of the 1st infrared transmitting / reflecting means. A first measuring cell and a first infrared detector corresponding to the first measuring cell are provided on the infrared transmitting side of the means, and a second measuring cell is provided on the infrared reflecting side of the first infrared transmitting / reflecting means. Second measuring cell and a second infrared detector corresponding to the second measuring cell are provided, and the third measuring cell and the third measuring cell are provided on the infrared reflecting side of the second infrared transmitting / reflecting means. A gas analyzer comprising a third infrared detector corresponding to the cell.
測定セルを連通部を介して順次連通させて単一のガス経
路を構成してあるガス分析計であって、光源と第1の赤
外透過・反射手段との間に第1の測定セルを設け、その
第1の赤外透過・反射手段の赤外透過側に第2の赤外透
過・反射手段を設けるとともに、その第2の赤外透過・
反射手段の赤外透過側に第1の赤外線検出器を設ける一
方、前記第1の赤外透過・反射手段の赤外反射側に、第
2の測定セルとその第2の測定セルと対応する第2の赤
外線検出器を設け、かつ前記第2の赤外透過・反射手段
の赤外反射側に、第3の測定セルとその第3の測定セル
に対応する第3の赤外線検出器を設けてなることを特徴
とするガス分析計。5. A gas analyzer in which a plurality of measuring cells including cases where the cell lengths are different from each other are sequentially connected via a communication part to form a single gas path, wherein a light source and a first red light are provided. A first measuring cell is provided between the external transmission / reflection means, a second infrared transmission / reflection means is provided on the infrared transmission side of the first infrared transmission / reflection means, and a second measurement cell is provided. Infrared transmission
A first infrared detector is provided on the infrared transmitting side of the reflecting means, while a second measuring cell and its second measuring cell are provided on the infrared reflecting side of the first infrared transmitting / reflecting means. A second infrared detector is provided, and a third measurement cell and a third infrared detector corresponding to the third measurement cell are provided on the infrared reflection side of the second infrared transmission / reflection means. A gas analyzer characterized in that
測定セルを連通部を介して順次連通させて単一のガス経
路を構成してあるガス分析計であって、光源に隣接させ
て第1の赤外透過・反射手段を設け、その第1の赤外透
過・反射手段の赤外透過側に、第1の測定セルを介して
第2の赤外透過・反射手段を設け、その第2の赤外透過
・反射手段の赤外透過側と赤外反射側とにそれぞれ第1
の赤外線検出器と第3の赤外線検出器とを設ける一方、
前記第1の赤外透過・反射手段の赤外反射側に、第2の
測定セルを介して第3の赤外透過・反射手段を設け、そ
の第3の赤外透過・反射手段の赤外透過側と赤外反射側
とに、それぞれ第2の赤外線検出器と、第4の赤外線検
出器とを設けてなることを特徴とするガス分析計。6. A gas analyzer in which a plurality of measuring cells including cases where the cell lengths are different from each other are sequentially connected via a communication part to form a single gas path, and the gas analyzer is adjacent to a light source. The first infrared transmission / reflection means is provided, and the second infrared transmission / reflection means is provided on the infrared transmission side of the first infrared transmission / reflection means via the first measurement cell. The infrared transmitting side and the infrared reflecting side of the second infrared transmitting / reflecting means are respectively provided with the first
While providing the infrared detector and the third infrared detector of
A third infrared transmitting / reflecting means is provided on the infrared reflecting side of the first infrared transmitting / reflecting means via the second measuring cell, and the infrared of the third infrared transmitting / reflecting means is provided. A gas analyzer, wherein a second infrared detector and a fourth infrared detector are provided on the transmission side and the infrared reflection side, respectively.
測定セルを連通部を介して順次連通させて単一のガス経
路を構成してあり、かつ比較セルを有する光断続式のガ
ス分析計であって、光源に隣接させた光断続器と、二室
受光式の赤外線検出器との間に、比較セルと第1の赤外
透過・反射手段および第1の測定セルと第2の赤外透過
・反射手段が並列に設けられ、前記第2の赤外透過・反
射手段の赤外反射側に第1の赤外線検出器を設ける一
方、前記第1の赤外透過・反射手段の赤外反射側に前記
第1の測定セルと連通された第2の測定セルを介して第
2の赤外線検出器を設けてなることを特徴とするガス分
析計。7. An optical interrupting gas analyzer having a comparison cell, wherein a plurality of measuring cells including cells having different cell lengths are sequentially communicated with each other through a communication section to form a single gas path and having a comparison cell. The comparison cell, the first infrared transmitting / reflecting means, the first measuring cell, and the second red are provided between the optical interrupter adjacent to the light source and the two-chamber light receiving infrared detector. External transmission / reflection means are provided in parallel, and a first infrared detector is provided on the infrared reflection side of the second infrared transmission / reflection means, while infrared rays of the first infrared transmission / reflection means are provided. A gas analyzer characterized in that a second infrared detector is provided on the reflection side via a second measurement cell communicating with the first measurement cell.
測定セルとの間に第3の赤外透過・反射手段を配置し、
かつ、その第3の赤外透過・反射手段の赤外反射側に前
記第1の測定セルと連通する第3の測定セルをそれぞれ
配置するとともに、その第3の測定セルと対応する第3
の赤外線検出手段を設けてなることを特徴とする請求項
7に記載のガス分析計。8. A third infrared transmitting / reflecting means is arranged between the second infrared transmitting / reflecting means and the first measuring cell,
In addition, a third measurement cell communicating with the first measurement cell is arranged on the infrared reflection side of the third infrared transmission / reflection means, and a third measurement cell corresponding to the third measurement cell is arranged.
8. The gas analyzer according to claim 7, wherein the infrared detecting means is provided.
くとも一対の赤外透過・反射手段を設け、その一方の赤
外透過・反射手段の赤外反射側に第2の比較セルを設け
るとともに、他方の赤外透過・反射手段の赤外反射側に
前記第1の測定セルおよび第2の測定セルと連通する第
3の測定セルを設け、かつその第2の比較セルと第3の
測定セルとに対応する二室受光式の別の赤外線検出器を
設けてなることを特徴とする請求項7または請求項8に
記載のガス分析計。9. A pair of infrared transmission / reflection means is provided between the optical interrupter and the comparison cell, and a second comparison cell is provided on the infrared reflection side of one of the infrared transmission / reflection means. A third measuring cell communicating with the first measuring cell and the second measuring cell is provided on the infrared reflecting side of the other infrared transmitting / reflecting means, and the second comparing cell and the third comparing cell are provided. 9. The gas analyzer according to claim 7 or 8, further comprising another infrared detector of a two-chamber light receiving type corresponding to the measurement cell.
の測定セルを連通部を介して順次連通させて単一のガス
経路を構成してあり、かつ比較セルを有する光断続式の
ガス分析計であって、光源に隣接させた光断続器と、二
室受光式の赤外線検出器との間に、互いに直列に隣接配
置した第1の赤外透過・反射手段、比較セルおよび第2
の赤外透過・反射手段と、互いに直列に隣接配置した第
3の赤外透過・反射手段、第1の測定セルおよび第4の
赤外透過・反射手段とを並列に設け、前記第1の赤外透
過・反射手段、第2の赤外透過・反射手段および第3の
赤外透過・反射手段の各赤外反射側に、前記第1の測定
セルとそれぞれ連通する第2の測定セル、第3の測定セ
ルおよび第4の測定セルと、各測定セルに対応する第2
の赤外線検出器、第3の赤外線検出器および第4の赤外
線検出器を設けてなることを特徴とするガス分析計。10. A photointerruption type gas analyzer having a comparison cell, wherein a plurality of measurement cells including cells having different cell lengths are sequentially communicated with each other through a communication section to form a single gas path and having a comparison cell. The first infrared transmitting / reflecting means, the comparison cell, and the second infrared transmitting / reflecting means arranged in series adjacent to each other between the optical interrupter adjacent to the light source and the two-chamber light receiving infrared detector.
The infrared transmitting / reflecting means, the third infrared transmitting / reflecting means, the first measuring cell and the fourth infrared transmitting / reflecting means, which are arranged adjacent to each other in series, are provided in parallel to each other, and A second measurement cell communicating with the first measurement cell on each of the infrared reflection sides of the infrared transmission / reflection means, the second infrared transmission / reflection means, and the third infrared transmission / reflection means, A third measuring cell and a fourth measuring cell, and a second measuring cell corresponding to each measuring cell.
The infrared analyzer, the third infrared detector, and the fourth infrared detector are provided.
第4の赤外透過・反射手段の赤外反射側に前記第1の測
定セルに連通する第5の測定セルと、その第5の測定セ
ルと対応する第5の赤外線検出器とを設けたことを特徴
とする請求項10に記載のガス分析計。11. A fifth measurement cell communicating with the first measurement cell on the infrared reflection side of a fourth infrared transmission / reflection means arranged adjacent to the first measurement cell, and a fifth measurement cell thereof. The gas analyzer according to claim 10, further comprising a fifth infrared detector corresponding to each of the measurement cells.
の測定セルとの間に1つもしくは複数の赤外透過・反射
手段を隣接させて配置し、かつその赤外透過・反射手段
の赤外反射側に、前記第1の測定セルと連通する測定セ
ルを配置するとともに、その測定セルと対応する赤外線
検出手段を設けてなることを特徴とする請求項10また
は請求項11に記載のガス分析計。12. The fourth infrared transmitting / reflecting means and the first infrared transmitting / reflecting means.
One or a plurality of infrared transmitting / reflecting means are arranged adjacent to the measuring cell and the infrared transmitting side of the infrared transmitting / reflecting means communicates with the first measuring cell. The gas analyzer according to claim 10 or 11, wherein the cell is arranged and an infrared ray detecting means corresponding to the measuring cell is provided.
光する光学フィルタである請求項1ないし12のいずれ
かに記載のガス分析計。13. The gas analyzer according to claim 1, wherein the infrared transmitting / reflecting means is an optical filter that disperses infrared wavelengths.
割するハーフミラーまたはビームスプリッターである請
求項1ないし12のいずれかに記載のガス分析計。14. The gas analyzer according to claim 1, wherein the infrared transmitting / reflecting means is a half mirror or a beam splitter that divides the amount of infrared light.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7059395A JP3174710B2 (en) | 1994-05-10 | 1995-03-04 | Gas analyzer |
DE19601873A DE19601873C2 (en) | 1995-03-04 | 1996-01-19 | Gas analyzer |
US08/606,071 US5773828A (en) | 1995-03-04 | 1996-02-23 | Gas analyzer |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12191394 | 1994-05-10 | ||
JP6-121913 | 1994-05-10 | ||
JP7059395A JP3174710B2 (en) | 1994-05-10 | 1995-03-04 | Gas analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0829346A true JPH0829346A (en) | 1996-02-02 |
JP3174710B2 JP3174710B2 (en) | 2001-06-11 |
Family
ID=26411723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7059395A Expired - Lifetime JP3174710B2 (en) | 1994-05-10 | 1995-03-04 | Gas analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3174710B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004063730A1 (en) * | 2003-01-16 | 2004-07-29 | Matsushita Electric Industrial Co., Ltd. | Fluorescence measuring equipment |
JP2009250728A (en) * | 2008-04-03 | 2009-10-29 | Panasonic Electric Works Co Ltd | Gas concentration measuring instrument |
KR20110067049A (en) * | 2008-09-30 | 2011-06-20 | 센스에어 아베 | Appropriate device for spectral analysis of high concentration gases |
JP2011174852A (en) * | 2010-02-25 | 2011-09-08 | Nippon Instrument Kk | Mercury atomic absorption spectrometer and mercury analyzing system |
-
1995
- 1995-03-04 JP JP7059395A patent/JP3174710B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004063730A1 (en) * | 2003-01-16 | 2004-07-29 | Matsushita Electric Industrial Co., Ltd. | Fluorescence measuring equipment |
CN100451623C (en) * | 2003-01-16 | 2009-01-14 | 松下电器产业株式会社 | Fluorescence measuring equipment |
JP2009250728A (en) * | 2008-04-03 | 2009-10-29 | Panasonic Electric Works Co Ltd | Gas concentration measuring instrument |
KR20110067049A (en) * | 2008-09-30 | 2011-06-20 | 센스에어 아베 | Appropriate device for spectral analysis of high concentration gases |
JP2012504248A (en) * | 2008-09-30 | 2012-02-16 | センセエアー アーベー | Arrangement adapted for spectral analysis of high-concentration gases |
US9001331B2 (en) | 2008-09-30 | 2015-04-07 | Senseair Ab | Arrangement adapted for spectral analysis of high concentrations of gas |
JP2011174852A (en) * | 2010-02-25 | 2011-09-08 | Nippon Instrument Kk | Mercury atomic absorption spectrometer and mercury analyzing system |
Also Published As
Publication number | Publication date |
---|---|
JP3174710B2 (en) | 2001-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5773828A (en) | Gas analyzer | |
JP2903457B2 (en) | Gas analyzer and gas analyzer | |
CA3025276C (en) | Measuring device and method for sensing different gases and gas concentrations | |
US4371785A (en) | Method and apparatus for detection and analysis of fluids | |
US20090257064A1 (en) | Optical Absorption Spectrometer and Method for Measuring Concentration of a Substance | |
US5693945A (en) | Gas analyzer | |
JP3336256B2 (en) | Gas spectral analysis method using laser light | |
EP2342544A2 (en) | Wavelength-modulation spectroscopy method | |
US7132658B2 (en) | Detection assembly and measuring arrangement for multigas analyzers | |
JPH07151684A (en) | Infrared ray type gas analyzer | |
JPH054629B2 (en) | ||
US5672874A (en) | Infrared oil-concentration meter | |
EP1120637A2 (en) | Method and means for calibrating a grating monochromator | |
JPH03221843A (en) | Analyzer by light | |
US5977546A (en) | Self normalizing radiant energy monitor and apparatus for gain independent material quantity measurements | |
JP3174710B2 (en) | Gas analyzer | |
JPH08247942A (en) | Infrared ray gas analyzer | |
JP3261842B2 (en) | Non-dispersive infrared gas analyzer | |
JP4218954B2 (en) | Absorption analyzer | |
JP2001516016A (en) | NDIR photometer for measuring multiple components | |
JP4685915B2 (en) | NDIR photometer for measuring multiple components | |
JPH0560687A (en) | Infrared analyzer | |
JPH0510874A (en) | Absorption gas analyzer | |
JP4140965B2 (en) | Absorption analyzer | |
JPH0827234B2 (en) | Infrared gas analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150330 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |