JP2001524669A - Inspection method for machined products - Google Patents
Inspection method for machined productsInfo
- Publication number
- JP2001524669A JP2001524669A JP2000522446A JP2000522446A JP2001524669A JP 2001524669 A JP2001524669 A JP 2001524669A JP 2000522446 A JP2000522446 A JP 2000522446A JP 2000522446 A JP2000522446 A JP 2000522446A JP 2001524669 A JP2001524669 A JP 2001524669A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- present
- inspection
- inspection method
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
(57)【要約】 本発明は、機械加工品に、硬度の増大あるいは残留応力のような有害な表面変化があった場合、この表面変化の存在を判定する方法に関するものである。極めて信頼できる検査結果を達成するために、本発明では、この判定を絶対型の渦電流プローブを用いて行なうことを提案する。 (57) [Summary] The present invention relates to a method for determining the presence of a harmful surface change such as an increase in hardness or residual stress in a machined product. In order to achieve a very reliable test result, the present invention proposes to make this determination using an absolute eddy current probe.
Description
【0001】 本発明は、チタン又はその合金より成る機械加工品に、硬度の増大あるいは残
留応力のような有害な表面変化があった場合、この表面変化の存在を判定する方
法に関するものである。The present invention relates to a method for determining the presence of a harmful surface change such as an increase in hardness or residual stress in a machined product made of titanium or an alloy thereof.
【0002】 航空エンジンの回転部品に機械加工の損傷があった場合、この損傷の存在を検
査するために、様々な方法及び機器が以前から用いられている。チタンより成る
部品に関しては、機械加工面の検査のために、チタン材料の表面にいわゆるブル
ーエッチングが行なわれている。しかし、検査に際し、この方法には2つの問題
がある。すなわち、この方法は、人が表面を充分に(好ましくは真上から)見え
ることを必要とする、視覚に基づくものであるということが第1の問題である。
この場合、孔のエッジに極めて隣接している孔の壁部を含む孔のエッジを検査す
るのに障害はないが、深い孔は検査しにくい。第2の問題は、異物が表面に存在
するおそれがある場合、この方法が完全には信頼できないということである。こ
の場合は、例えばツールが破損し、Si、Cr、Ni、Feのようなツールからの物質が
母材内に拡散するか或いは周囲からの物質(酸素等)が母材内に拡散するおそれ
がある場合である。[0002] If there is a machining damage to a rotating part of an aero engine, various methods and equipment have long been used to check for the presence of this damage. With respect to parts made of titanium, so-called blue etching is performed on the surface of the titanium material for inspection of the machined surface. However, this method has two problems in inspection. That is, the first problem is that the method is vision-based, requiring the person to see the surface sufficiently (preferably from directly above).
In this case, there is no obstacle to inspecting the edge of the hole, including the wall of the hole that is very close to the edge of the hole, but it is difficult to inspect deep holes. The second problem is that this method is not completely reliable if foreign matter can be present on the surface. In this case, for example, the tool may be damaged, and substances from the tool, such as Si, Cr, Ni, and Fe, may diffuse into the base material, or substances (eg, oxygen) from the surroundings may diffuse into the base material. There are cases.
【0003】 他の可能な方法は、材料内に亀裂がある場合にこれら亀裂を蛍光性浸透液によ
って発見しようとすることである。しかし、存在するおそれのある機械加工の損
傷は必ずしも、損傷部品が装着されるまで亀裂を生じさせるわけではなく、通常
、この亀裂は製造中には生じず、その後の使用の際にのみ生じる。[0003] Another possible method is to try to find these cracks in the material by means of a fluorescent penetrant, if these are present. However, any machining damage that may be present does not necessarily result in cracking until the damaged part is installed, and usually this crack does not occur during manufacturing, but only during subsequent use.
【0004】 しばしば用いられる更に他の検査方法は、差動プローブを用いた渦電流検査で
ある。この検査を実行する場合、2つのコイルを用いてこれらコイル間の信号差
を観測する。この検査方法も又、亀裂の位置を特定するのに極めて適しているが
、本発明での検査目的とされる機械加工の損傷のような材料内の長期的な変化が
検査できなくなるおそれがある。[0004] Yet another inspection method that is often used is eddy current inspection using a differential probe. When performing this test, two coils are used to observe the signal difference between these coils. This inspection method is also very suitable for locating cracks, but may not be able to detect long-term changes in the material, such as machining damage, which is the purpose of the present invention. .
【0005】 ツールの摩耗による局部的な過熱や、ツール破損等に起因する機械加工の損傷
が存在するかどうかを確実に決定するために、ブルーエッチング法、差動プロー
ブ法及び浸透液法を越える追加の検査方法が極めて望まれている。[0005] To reliably determine whether there is local overheating due to tool wear or machining damage due to tool breakage, etc., go beyond the blue etching, differential probe and permeate methods. Additional inspection methods are highly desirable.
【0006】 本発明によれば、本用途に最適化された絶対プローブの使用は、航空エンジン
の回転部品に適用するためのチタンや、チタン合金や、超合金や、鋼より成って
いる加工品に形成されている孔を検査するのに極めて有効な方法であるというこ
とを確かめた。機械加工中に例えば、ツールによる摩耗あるいはツールの損傷の
結果として材料に有害な過熱の作用が生じる場合には、このようなプローブを用
いれば、残留応力や、拡散不純物や、組成の変化、つまり表面微細構造の大きな
変形を発見するのが容易である。 本発明を、以下で添付図面を参照して更に説明する。[0006] According to the present invention, the use of an absolute probe optimized for this application is intended for use in rotating parts of aircraft engines, titanium, titanium alloys, superalloys, and workpieces made of steel. It has been confirmed that this is a very effective method for inspecting the holes formed in the holes. With such probes, residual stresses, diffused impurities, and changes in composition, i.e., changes in composition, i.e., during machining, for example, when harmful overheating of the material occurs as a result of tool wear or tool damage. It is easy to find large deformations of the surface microstructure. The invention is further described below with reference to the accompanying drawings.
【0007】 図1から明らかなように、本発明に関連して用いられる絶対プローブは、でき
るだけ簡単な設計となっている。より厳密には、このプローブの本体の形状は、
断面で、検査面の幾何学的形状に適合しており、この本体の周りにコイルが巻か
れている。この設計によって、プローブは、検査される材料の導電率あるいは透
磁率に影響を及ぼすすべてのものを感知する。プローブは、材料面とこのプロー
ブとの間の関係を変化させるすべてのものをも感知する。この結果として、残留
応力の変化、わずかな割合で溶解された異質の原子及び組成の変化等のような微
小な材料変化も測定できる。As is evident from FIG. 1, the absolute probe used in connection with the present invention has the simplest design possible. More precisely, the shape of the body of this probe is
In cross-section, it conforms to the geometry of the inspection surface, and a coil is wound around this body. With this design, the probe senses anything that affects the conductivity or permeability of the material being tested. The probe also senses anything that changes the relationship between the surface of the material and the probe. As a result, minute material changes such as changes in residual stress, changes in the composition of foreign atoms dissolved in a small percentage, and the like can be measured.
【0008】 本発明によるプローブを、渦電流機器に連結し、検査すべき加工品内の孔に一
様な速度で差込む。渦電流機器からの信号をディジタル化して例えばPC内に記
憶させる。次に、評価を容易にするために測定データーを処理する。A probe according to the invention is connected to an eddy current device and is inserted at a uniform speed into a hole in the workpiece to be inspected. The signal from the eddy current device is digitized and stored in, for example, a PC. Next, the measurement data is processed to facilitate evaluation.
【0009】 円筒形プローブの本体は好ましくは、プラスチックをもって構成し、自動測定
のための簡単な取付けを可能にするのに充分な長さにすることもできる。プロー
ブの直径は、プローブが加工品の孔を通るようになっている。[0009] The body of the cylindrical probe is preferably constructed of plastic and can be long enough to allow easy mounting for automatic measurements. The diameter of the probe is such that the probe passes through a hole in the workpiece.
【0010】 本発明のプローブを用いた実験では、著しく変形した区域と、特に鉄及び酸素
の割合が増大した層との双方を示している損傷を見つけた。この領域内では硬度
が増大して、使用に供される部分に亀裂が生じた。これらの亀裂が定期保守の際
に発見されないと、これらの亀裂が大きく広がって破損を生じるおそれがある。
本発明の絶対プローブは、製造中に損傷するもその影響が極めて少ない加工品の
表面を認識することも可能になる。[0010] Experiments with the probe of the present invention have found damage showing both significantly deformed areas and especially layers with increased proportions of iron and oxygen. In this region, the hardness increased, and cracks occurred in the portion to be used. If these cracks are not found during regular maintenance, these cracks can spread out and cause damage.
The absolute probe of the present invention also makes it possible to recognize the surface of a workpiece that has been damaged during manufacture but has very little effect.
【0011】 更に、検査を自動化することもでき、検査時間が他の検査技術に比べて短かく
なる。評価を自動化することができ、測定したデーターを、後で取り出して評価
するために記憶させることができる。Furthermore, the inspection can be automated, and the inspection time is shorter than other inspection techniques. The evaluation can be automated, and the measured data can be stored for later retrieval and evaluation.
【図1】 本発明によって用いられ、孔に差込まれている絶対プローブを部分的 に断面で表わした線図的側面図である。FIG. 1 is a diagrammatic side view, partially in section, of an absolute probe used in accordance with the present invention and inserted into a hole.
【図2】 チタン材料の幾つかの微細構造のうちの2つの例である。FIG. 2 is an example of two of several microstructures of a titanium material.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 アンデルス フランソン スウェーデン国 73233 アルボガ グス タフスバーグスヴェイゲン 27 Fターム(参考) 2G053 AA11 AA17 AA19 AB21 BA02 DA01 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Anders Franson Sweden 73233 Arboga Gus Tafsbergswegen 27 F-term (reference) 2G053 AA11 AA17 AA19 AB21 BA02 DA01
Claims (1)
残留応力のような有害な表面変化があった場合、この表面変化の存在を判定する
方法において、この判定を絶対型の渦電流プローブを用いて行なうことを特徴と
する方法。When a machined product made of titanium or its alloy has a harmful surface change such as an increase in hardness or residual stress, a method of determining the presence of this surface change uses an absolute type change. Using the eddy current probe of the above.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/SE1997/001967 WO1999027358A1 (en) | 1997-11-21 | 1997-11-21 | A testing method for machined workpieces |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001524669A true JP2001524669A (en) | 2001-12-04 |
Family
ID=20407090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000522446A Pending JP2001524669A (en) | 1997-11-21 | 1997-11-21 | Inspection method for machined products |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1032829A1 (en) |
JP (1) | JP2001524669A (en) |
CA (1) | CA2310467A1 (en) |
WO (1) | WO1999027358A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008052983A1 (en) | 2008-10-23 | 2010-04-29 | Mtu Aero Engines Gmbh | Eddy current sensor and method for determining due to thermal influences modified material properties in a component to be examined by means of the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4303885A (en) * | 1979-06-18 | 1981-12-01 | Electric Power Research Institute, Inc. | Digitally controlled multifrequency eddy current test apparatus and method |
EP0033802B1 (en) * | 1979-12-07 | 1984-08-08 | Thorburn Technics (International) Limited | Eddy current inspection apparatus and probe |
CA1158314A (en) * | 1980-08-18 | 1983-12-06 | Majesty (Her) In Right Of Canada As Represented By Atomic Energy Of Cana Da Limited | Eddy current surface probe |
JPS6166958A (en) * | 1984-09-10 | 1986-04-05 | Sumitomo Light Metal Ind Ltd | Absolute value type eddy current flaw detecting device |
GB2233763B (en) * | 1989-07-07 | 1994-06-15 | Univ Essex | Non-destructive testing of metals |
US5068608A (en) * | 1989-10-30 | 1991-11-26 | Westinghouse Electric Corp. | Multiple coil eddy current probe system and method for determining the length of a discontinuity |
US5698977A (en) * | 1993-10-12 | 1997-12-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Eddy current method for fatigue testing |
DE4412042C2 (en) * | 1994-04-08 | 2001-02-22 | Juergen Rohmann | Method and device for eddy current testing of bolt holes in multilayer metallic structures |
-
1997
- 1997-11-21 WO PCT/SE1997/001967 patent/WO1999027358A1/en not_active Application Discontinuation
- 1997-11-21 JP JP2000522446A patent/JP2001524669A/en active Pending
- 1997-11-21 EP EP97952139A patent/EP1032829A1/en not_active Withdrawn
- 1997-11-21 CA CA002310467A patent/CA2310467A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO1999027358A1 (en) | 1999-06-03 |
CA2310467A1 (en) | 1999-06-03 |
EP1032829A1 (en) | 2000-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110702783A (en) | Array eddy current method for detecting thermal fatigue cracks of water-cooled wall tube | |
CA2072029A1 (en) | Turbine blade assessment system | |
Sharatchandra Singh et al. | GMR-based magnetic flux leakage technique for condition monitoring of steel track rope | |
JP7125266B2 (en) | Plant inspection method | |
JP2001524669A (en) | Inspection method for machined products | |
Franceschini et al. | An assessment of cleanliness techniques for low alloyed steel grades | |
US11125723B2 (en) | Eddy current testing for measuring residual stress around cold-worked holes | |
JP6601599B1 (en) | Rolling part inspection method and rolling part inspection apparatus | |
Kemerling et al. | Development of production eddy current inspection process for additively manufactured industrial gas turbine engine components | |
Oswald-Tranta | Automated surface crack detection with inductive thermography | |
Feist et al. | Non-destructive evaluation of manufacturing anomalies in aero-engine rotor disks | |
Efimov et al. | Eddy Current Nondestructive Testing of Large Diameter Pipes through Thick Protective Coatings | |
JP4843163B2 (en) | Non-destructive inspection method for deterioration due to structural change of coating of structure and non-destructive inspection method for damage to substrate | |
Seemuang et al. | Crack initiation detection in JAC780Y during tensile loading by using direct current potential drop and acoustic emission techniques | |
Im et al. | Experimental approach and simulation-based design of eddy current sensors for inspection of vehicular bolts | |
Ko et al. | Automated Eddy Current Detection of Flaws in Shot-Peened Titanium Materials | |
Zhang et al. | Incipient Cracks Characterization Based on Jensen-Shannon Divergence and Wasserstein Distance | |
Shleenkov et al. | Estimating the possibility of the magnetic detection of microflaws in weld seams of longitudinal electric-welded pipes manufactured by butt high-frequency welding | |
Goldfine et al. | The use of fatigue monitoring MWM-arrays in production of NDI standards with real fatigue cracks for reliability studies | |
Uchanin | Detecting and estimating local corrosion damages in long-service aircraft structures by the eddy current method with double-differential probes | |
Pfirrmann et al. | Detecting material defects during turning of DA718 components | |
Thiery et al. | Higher Macro-Cleanliness of Bearing Steels Needs More Accurate Measuring-Methods³ | |
Sato et al. | High sensitivity inspection of defects in welds by remotely induced current potential drop technique | |
Gerhard | NDI for Manufacturing Anomalies in Aero-Engine Rotor Disks | |
CN112748188A (en) | Test method for detecting fatigue crack detection capability of axle of high-speed train by ultrasonic flaw detection |