JP2001288538A - Steel for high-strength bolts having excellent delayed fracture resistance, bolts, and method of manufacturing the bolts - Google Patents
Steel for high-strength bolts having excellent delayed fracture resistance, bolts, and method of manufacturing the boltsInfo
- Publication number
- JP2001288538A JP2001288538A JP2000102382A JP2000102382A JP2001288538A JP 2001288538 A JP2001288538 A JP 2001288538A JP 2000102382 A JP2000102382 A JP 2000102382A JP 2000102382 A JP2000102382 A JP 2000102382A JP 2001288538 A JP2001288538 A JP 2001288538A
- Authority
- JP
- Japan
- Prior art keywords
- delayed fracture
- bolts
- strength
- bolt
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は1300MPa 以上の引張
強度を有する耐遅れ破壊特性の優れた高強度ボルト用
鋼、ボルトおよびボルトの製造方法に関するものであ
る。The present invention relates to a high-strength steel for bolts having a tensile strength of 1300 MPa or more and excellent in delayed fracture resistance, a bolt and a method for producing the bolt.
【0002】[0002]
【従来の技術】機械、自動車、橋、建物に数多く使用さ
れている高強度ボルトは、例えばJISG 4104、JIS G 410
5に規定されているSCr・SCM等の、C量が0.20〜
0.35%の中炭素鋼を用いて焼入れ・焼戻し処理をするこ
とによって製造されている。しかし、どの品種について
も引張強度が1300MPa を超えると遅れ破壊の危険性が高
まることがよく知られており、例えば現在使用されてい
る建築用ボルトの強度は1150MPa 級が上限となっている
のが現状である。2. Description of the Related Art High-strength bolts widely used in machines, automobiles, bridges, and buildings include, for example, JISG 4104 and JIS G410.
C content of 0.20-SCr, SCM, etc. specified in 5
It is manufactured by quenching and tempering using 0.35% medium carbon steel. However, it is well known that the risk of delayed fracture increases when the tensile strength of all types exceeds 1300 MPa.For example, the strength of currently used building bolts is limited to 1150 MPa class. It is the current situation.
【0003】高強度ボルトの遅れ破壊特性を向上させる
従来の知見として、例えば、特公平3-243744号公報で
は、旧オーステナイト粒を微細化させること、組織をベ
イナイト化させることが有効であると提案している。確
かに、ベイナイト組織は遅れ破壊に対して有効である
が、ベイナイト化処理は製造コストが高くなる。旧オー
ステナイト粒の微細化に関しては、特公昭64-4566 号公
報や特公平3-243745号公報でも提案されている。また、
特公昭61-64815号公報は、Caを添加することを提案し
ている。しかしながら、いずれの提案も本発明者らの試
験では、大幅な耐遅れ破壊特性の改善には至っていな
い。[0003] As a conventional finding to improve the delayed fracture characteristics of high strength bolts, for example, Japanese Patent Publication No. 3-243744 proposes that it is effective to make old austenite grains finer and to make the structure bainite. are doing. Certainly, the bainite structure is effective against delayed fracture, but the bainite treatment increases the manufacturing cost. The miniaturization of old austenite grains has also been proposed in Japanese Patent Publication No. 64-4566 and Japanese Patent Publication No. 3-243745. Also,
JP-B-61-64815 proposes to add Ca. However, none of the proposals has significantly improved the delayed fracture resistance in the tests of the present inventors.
【0004】以上のように、従来の技術では、耐遅れ破
壊特性を抜本的に向上させた高強度ボルトを製造するこ
とには限界があった。As described above, in the prior art, there is a limit in manufacturing a high-strength bolt with drastically improved delayed fracture resistance.
【0005】[0005]
【発明が解決しようとする課題】本発明は上記の如き実
状に鑑みなされたものであって、耐遅れ破壊特性の良好
で且つ引張強度が1300MPa 以上の高強度ボルト用鋼およ
び高強度ボルトを実現すると共にそのボルトの製造方法
を提供することを目的とするものである。DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has realized a high-strength bolt steel and a high-strength bolt having good delayed fracture resistance and a tensile strength of 1300 MPa or more. And a method of manufacturing the bolt.
【0006】[0006]
【課題を解決するための手段】本発明者らは、まず焼入
れ・焼戻し処理によって製造した種々の強度レベルのボ
ルト用鋼を用いて、遅れ破壊挙動を詳細に解析した。遅
れ破壊は鋼材中の水素に起因して発生していることは既
に明らかである。そこで、遅れ破壊特性について、遅れ
破壊が発生しない「限界拡散性水素量」を求めることに
より評価した。この方法は、電解水素チャージにより種
々のレベルの拡散性水素量を含有させた後、遅れ破壊試
験中に試料から大気中に水素が抜けることを防止するた
めにCdめっきを施し、その後、大気中で所定の荷重を
負荷し、遅れ破壊が発生しなくなる拡散性水素量を評価
するものである。図1に拡散性水素量と遅れ破壊に至る
までの破断時間の関係について解析した一例を示す。試
料中に含まれる拡散性水素量が少なくなるほど遅れ破壊
に至るまでの時間が長くなり、拡散性水素量がある値以
下では遅れ破壊が発生しなくなる。この水素量を「限界
拡散性水素量」と定義する。この限界拡散性水素量が高
いほど鋼材の耐遅れ破壊特性は良好であり、鋼材の成
分、熱処理等の製造条件によって決まる鋼材固有の値で
ある。なお、試料中の拡散性水素量はガスクロマトグラ
フで容易に測定することができる。Means for Solving the Problems The present inventors first analyzed in detail the delayed fracture behavior using bolt steels of various strength levels manufactured by quenching and tempering. It is already clear that delayed fracture has occurred due to hydrogen in steel. Therefore, the delayed fracture characteristics were evaluated by obtaining the “critical diffusible hydrogen amount” at which delayed fracture did not occur. In this method, various levels of diffusible hydrogen are contained by electrolytic hydrogen charging, and then Cd plating is performed to prevent hydrogen from leaking from the sample to the atmosphere during the delayed fracture test, and then the air is charged in the atmosphere. A predetermined load is applied to evaluate the diffusible hydrogen amount at which delayed fracture does not occur. FIG. 1 shows an example in which the relationship between the amount of diffusible hydrogen and the rupture time until delayed fracture is analyzed. As the amount of diffusible hydrogen contained in the sample decreases, the time until delayed fracture increases, and when the amount of diffusible hydrogen is less than a certain value, delayed fracture does not occur. This amount of hydrogen is defined as “critical diffusible hydrogen amount”. The higher the critical diffusible hydrogen content is, the better the delayed fracture resistance of the steel material is, which is a value inherent to the steel material determined by the composition of the steel material and the manufacturing conditions such as heat treatment. The amount of diffusible hydrogen in a sample can be easily measured by gas chromatography.
【0007】そこで、高強度ボルトの限界拡散性水素量
を増加させる手段、即ち耐遅れ破壊特性を上げるべく、
オーステナイト結晶粒度、焼き入れ焼き戻し条件の影響
等について検討を重ねた。この結果、遅れ破壊が旧オー
ステナイト粒界に沿った粒界割れであることから、耐遅
れ破壊特性の大幅な向上を達成するためには、粒界割れ
の発生を防止することが重要であるとの結論に達した。In order to increase the critical diffusible hydrogen content of high-strength bolts, that is, to improve delayed fracture resistance,
The austenitic grain size, the effects of quenching and tempering conditions, and the like were repeated. As a result, since delayed fracture is grain boundary cracking along the former austenite grain boundary, it is important to prevent the occurrence of grain boundary cracking in order to achieve a significant improvement in delayed fracture resistance. Reached the conclusion.
【0008】そこで更に、オーステナイト粒界割れを防
止する手段について、種々検討を重ねた結果、面積率最
大の相がマルテンサイトである組織を有するボルトに55
0 ℃以上、望ましくは580 ℃以上の温度で焼戻しを施す
ことによって、1300MPa を超えるような高強度域でもオ
ーステナイト粒界割れを防止できること、即ち破壊形態
が粒内割れになるため、限界拡散性水素量が大幅に増加
し、耐遅れ破壊特性が格段に向上するという知見を見出
したのである。[0008] Therefore, as a result of various studies on means for preventing austenite grain boundary cracking, a bolt having a structure in which the phase having the largest area ratio is martensite is obtained.
By performing tempering at a temperature of 0 ° C or higher, preferably 580 ° C or higher, it is possible to prevent austenite grain boundary cracking even in a high-strength region exceeding 1300MPa. It was found that the amount was greatly increased and the delayed fracture resistance was significantly improved.
【0009】以上の検討結果に基づき、鋼材組成、組織
形態、熱処理条件を最適に選択すれば、耐遅れ破壊特性
に優れた高強度ボルトを実現できるという結論に達し、
本発明をなしたものである。本発明は以上の知見に基づ
いてなされたものであって、その要旨とするところは、
下記の通りである。 (1)質量%で、C:0.50〜1.00%、Si:0.05〜2.0
%、Mn:0.2 〜2.0 %、Al:0.005 〜0.1 %を含有
し、残部がFe及び不可避的不純物よりなることを特徴
とする引張強度が1300MPa 以上である耐遅れ破壊特性の
優れた高強度ボルト用鋼。 (2)質量%で、C:0.50〜1.00%、Si:0.05〜2.0
%、Mn:0.2 〜2.0 %、Al:0.005 〜0.1 %を含有
し、さらに、Ti:0.005 〜0.20%、B:0.0003〜0.00
50%、Cr:0.05〜2.0 %、Mo:0.05〜1.0 %、N
i:0.05〜5.0 %、Cu:0.05〜1.0 %、V:0.05〜2.
0 %、Nb:0.005 〜0.2 %、Ta:0.005〜0.5 %ま
たはW:0.05〜0.5 %の1種または2種以上を含有する
ことを特徴とする引張強度が1300MPa 以上である遅れ破
壊特性の優れた高強度ボルト用鋼 (3)前記(1)又は(2)記載の成分からなるボルト
で、面積率最大の相が焼戻しマルテンサイト組織であ
り、旧オーステナイト粒界の球状炭化物の平均サイズが
0.05μm以上であり、且つ引張強度が130kgf/mm 2以上
であることを特徴とする耐遅れ破壊特性に優れた高強度
ボルト。 (4)前記(1)又は(2)記載の成分からなり、面積
率最大の相がマルテンサイトである組織を有する鋼を55
0 ℃以上650 ℃以下で焼戻すことを特徴とする、引張強
度が1300MPa 以上である耐遅れ破壊特性の優れた高強度
ボルトの製造方法。Based on the above examination results, it was concluded that a high-strength bolt excellent in delayed fracture resistance can be realized by optimally selecting the steel material composition, microstructure, and heat treatment conditions.
The present invention has been made. The present invention has been made based on the above findings, and the gist thereof is as follows.
It is as follows. (1) In mass%, C: 0.50 to 1.00%, Si: 0.05 to 2.0
%, Mn: 0.2 to 2.0%, Al: 0.005 to 0.1%, the balance being Fe and unavoidable impurities, characterized by having a tensile strength of not less than 1300 MPa and excellent delayed fracture resistance. For steel. (2) In mass%, C: 0.50 to 1.00%, Si: 0.05 to 2.0
%, Mn: 0.2 to 2.0%, Al: 0.005 to 0.1%, Ti: 0.005 to 0.20%, B: 0.0003 to 0.00
50%, Cr: 0.05-2.0%, Mo: 0.05-1.0%, N
i: 0.05-5.0%, Cu: 0.05-1.0%, V: 0.05-2.
0%, Nb: 0.005 to 0.2%, Ta: 0.005 to 0.5% or W: 0.05 to 0.5%, characterized in that it has one or more of the following: excellent in delayed fracture characteristics with a tensile strength of 1300 MPa or more. (3) A bolt comprising the component described in (1) or (2) above, wherein the phase having the largest area ratio is a tempered martensite structure, and the average size of the spherical carbides at the prior austenite grain boundary is
A high-strength bolt excellent in delayed fracture resistance, having a thickness of 0.05 μm or more and a tensile strength of 130 kgf / mm 2 or more. (4) A steel having a structure composed of the component described in the above (1) or (2) and having a phase having a maximum area ratio of martensite is used.
A method for producing a high-strength bolt excellent in delayed fracture resistance having a tensile strength of 1300 MPa or more, characterized by tempering at 0 ° C or more and 650 ° C or less.
【0010】[0010]
【発明の実施の形態】次に、本発明の実施の形態につい
て説明する。 鋼材成分:本発明の対象とする鋼の成分の限定理由につ
いて述べる。 C:Cはボルトの強度を確保する上で必須の元素である
が、0.50%未満では所定の焼戻し温度範囲では所要の強
度が得られず、一方1.00%を越えると靭性を劣化させる
ために、0.50〜1.00%、望ましくは0.70〜1.00%の範囲
に制限した。Next, an embodiment of the present invention will be described. Steel composition: The reasons for limiting the composition of the steel targeted by the present invention will be described. C: C is an essential element for securing the strength of the bolt, but if it is less than 0.50%, the required strength cannot be obtained in a predetermined tempering temperature range, and if it exceeds 1.00%, the toughness is deteriorated. It was limited to the range of 0.50 to 1.00%, preferably 0.70 to 1.00%.
【0011】Si:Siは固溶体硬化作用によって強度
を高める作用がある。0.05%未満では前記作用が発揮で
きず、一方、2.0 %を超えると添加量に見合う効果が期
待できないために、0.05〜2.0 %の範囲に制限した。 Mn:Mnは脱酸、脱硫のために必要であるばかりでな
く、マルテンサイト組織を得るための焼入性を高めるた
めに有効な元素であるが、0.2 %未満では上記の効果が
得られず、一方2.0 %を越えるとオーステナイト域加熱
時に粒界に偏析し粒界を脆化させるとともに耐遅れ破壊
特性を劣化させるために0.2 〜2.0 %の範囲に制限し
た。Si: Si has an effect of increasing strength by a solid solution hardening effect. If the content is less than 0.05%, the above effect cannot be exerted. On the other hand, if it exceeds 2.0%, an effect commensurate with the added amount cannot be expected, so the content is limited to the range of 0.05 to 2.0%. Mn: Mn is an element not only necessary for deoxidation and desulfurization but also effective for enhancing hardenability for obtaining a martensitic structure, but if less than 0.2%, the above effects cannot be obtained. On the other hand, if it exceeds 2.0%, it is segregated at the grain boundaries during heating in the austenite region, embrittles the grain boundaries and deteriorates the delayed fracture resistance, so that it is limited to the range of 0.2 to 2.0%.
【0012】Al:Alは脱酸および熱処理時において
AlNを形成することによりオーステナイト粒の粗大化
を防止する効果とともにNを固定する効果も有している
が、0.005 %未満ではこれらの効果が発揮されず、0.1
%を越えても効果が飽和するため0.005 〜0.1 %の範囲
に限定した。 以上が本発明の対象とする鋼の基本成分であるが、本発
明においては、さらにこの鋼に、Ti:0.005 〜0.20
%、B:0.0003〜0.0050%、Cr:0.05〜2.0 %、M
o:0.05〜1.0 %、Ni:0.05〜5.0 %、Cu:0.05〜
1.0 %、V:0.05〜2.0 %、Nb:0.005 〜0.2 %、T
a:0.005 〜0.5 %またはW:0.05〜0.5 %の1種また
は2種以上を含有せしめることができる。Al: Al has the effect of preventing austenite grains from being coarsened by forming AlN during deoxidation and heat treatment, and also has the effect of fixing N. However, if it is less than 0.005%, these effects are exhibited. Not 0.1
%, The effect is saturated, so that the range is limited to the range of 0.005 to 0.1%. The above are the basic components of the steel targeted by the present invention. In the present invention, the steel further contains Ti: 0.005 to 0.20.
%, B: 0.0003 to 0.0050%, Cr: 0.05 to 2.0%, M
o: 0.05-1.0%, Ni: 0.05-5.0%, Cu: 0.05-
1.0%, V: 0.05 to 2.0%, Nb: 0.005 to 0.2%, T
One or more of a: 0.005 to 0.5% or W: 0.05 to 0.5% can be contained.
【0013】Ti:TiはAlと同様に脱酸および熱処
理時においてTiNを形成することによりオーステナイ
ト粒の粗大化を防止する効果とともにNを固定する効果
も有しているが、0.005 %未満ではこれらの効果が発揮
されず、0.20%を越えても効果が飽和するため0.005 〜
0.20%の範囲に限定した。 B:Bは粒界破壊を抑制し遅れ破壊特性を向上させる効
果がある。更に、Bはオーステナイト粒界に偏析するこ
とにより焼入性を著しく高めるが、0.0003%未満では前
記の効果が発揮されず、0.0050%を超えても効果が飽和
するため0.0003〜0.0050%に制限した。Ti: Like Al, Ti has the effect of forming TiN during deoxidation and heat treatment and has the effect of preventing the austenite grains from becoming coarser, and also has the effect of fixing N. Effect is not exhibited, and even if it exceeds 0.20%, the effect saturates.
Limited to the range of 0.20%. B: B has the effect of suppressing grain boundary fracture and improving delayed fracture characteristics. Further, B segregates at austenite grain boundaries to significantly enhance hardenability. However, if the content is less than 0.0003%, the above effect is not exerted. .
【0014】Cr:Crは焼入性の向上および焼戻し処
理時の軟化抵抗を増加させるために有効な元素である
が、0.05%未満ではその効果が十分に発揮できず、一方
2.0 %を超えると靭性の劣化、冷間加工性の劣化を招く
ために0.05〜2.0 %に限定した。 Mo:MoはCrと同様に強い焼戻し軟化抵抗を有し熱
処理後の引張強さを高めるために有効な元素であるが、
0.05%未満ではその効果が少なく、一方1.0 %を越える
とその効果は飽和しコストの上昇を招くために0.05〜1.
0 %に制限した。Cr: Cr is an element effective for improving hardenability and increasing softening resistance during tempering, but if it is less than 0.05%, its effect cannot be sufficiently exhibited.
If it exceeds 2.0%, the toughness and the cold workability deteriorate, so the content is limited to 0.05 to 2.0%. Mo: Mo is an element that has a strong tempering softening resistance like Cr and is effective for increasing the tensile strength after heat treatment.
If it is less than 0.05%, the effect is small.On the other hand, if it exceeds 1.0%, the effect is saturated and the cost is increased.
Limited to 0%.
【0015】Ni:Niは高強度化に伴って劣化する延
性を向上させるとともに熱処理時の焼入性を向上させて
引張強さを増加させるために添加されるが、0.05%未満
ではその効果が少なく、一方5.0 %を越えても添加量に
みあう効果が発揮できないため、0.05〜5.0 %の範囲に
制限した。 Cu:Cuは焼戻し軟化抵抗を高めるために有効な元素
であるが、0.05%未満では効果が発揮できず、1.0 %を
超えると熱間加工性が劣化するため、0.05〜1.0 %に制
限した。Ni: Ni is added in order to improve the ductility, which deteriorates with the increase in strength, and also to improve the hardenability at the time of heat treatment and to increase the tensile strength. On the other hand, if the content exceeds 5.0%, the effect corresponding to the added amount cannot be exhibited, so the content is limited to the range of 0.05 to 5.0%. Cu: Cu is an effective element for increasing the tempering softening resistance. However, if it is less than 0.05%, the effect cannot be exhibited, and if it exceeds 1.0%, the hot workability deteriorates, so Cu is limited to 0.05 to 1.0%.
【0016】V:Vは焼入れ処理時において炭窒化物を
生成することによりオーステナイト粒を微細化させる効
果があるが、0.05%未満では前記作用の効果が得られ
ず、一方2.0 %を越えても効果が飽和するため0.05〜2.
0 %に限定した。 Nb:NbもVと同様に炭窒化物を生成することにより
オーステナイト粒を微細化させるために有効な元素であ
るが、0.005 %未満では上記効果が不十分であり、一方
0.2 %を越えるとこの効果が飽和するため0.005 〜0.2
%に制限した。V: V has the effect of reducing the size of austenite grains by forming carbonitride during quenching, but if it is less than 0.05%, the above effect cannot be obtained. Because the effect is saturated, 0.05-2.
Limited to 0%. Nb: Like Nb, Nb is also an effective element for refining austenite grains by forming carbonitrides. However, if it is less than 0.005%, the above effect is insufficient.
If it exceeds 0.2%, this effect is saturated, so 0.005 to 0.2
%.
【0017】Ta:TaもNbと同様にオーステナイト
粒の微細化効果を有しているが、0.005 %未満では前記
の効果が発揮されず、0.5 %を越えて添加しても効果が
飽和するため、0.005 〜0.5 %に限定した。 W:Wは高強度ボルトの遅れ破壊特性を向上させるため
に有効な元素であるが、0.05%未満では前記の効果が発
揮されず、一方、0.5 %を越えて添加しても効果が飽和
するため、0.05〜0.5 %の範囲に限定した。Ta: Ta also has an effect of refining austenite grains like Nb. However, if it is less than 0.005%, the above effect is not exhibited, and even if it exceeds 0.5%, the effect is saturated. , 0.005 to 0.5%. W: W is an element effective for improving the delayed fracture characteristics of high-strength bolts. However, if it is less than 0.05%, the above-mentioned effect is not exerted. On the other hand, if it exceeds 0.5%, the effect is saturated. Therefore, it was limited to the range of 0.05 to 0.5%.
【0018】不純物元素であるP、Sについては特に制
限しないものの、遅れ破壊特性を向上させる観点から、
それぞれ0.015 %以下が好ましい範囲である。Nについ
ては、Al、V、Nb、Tiの窒化物を形成することに
よって旧オーステナイト粒の微細化、降伏強度の増加の
効果があるため、0.002 〜0.1 %が望ましい範囲であ
る。Although P and S, which are impurity elements, are not particularly limited, from the viewpoint of improving delayed fracture characteristics,
Each is preferably 0.015% or less. As for N, 0.002 to 0.1% is a desirable range because the formation of nitrides of Al, V, Nb, and Ti has the effect of refining old austenite grains and increasing the yield strength.
【0019】製造条件:本発明の高強度ボルトの製造方
法は、上記成分の鋼をAC3点以上温度範囲に加熱した
後に焼入れて面積率最大の相をマルテンサイトとした後
に、550 ℃以上650 ℃以下、望ましくは580 ℃以上650
℃以下の温度範囲で焼き戻すものである。加熱温度は、
高すぎると旧オーステナイト粒の粗大化を促進するた
め、950 ℃以下が望ましい。Manufacturing conditions: The method of manufacturing a high-strength bolt according to the present invention is as follows. The steel having the above-mentioned components is heated to a temperature range of 3 or more AC and then quenched to convert the phase having the largest area ratio to martensite. Or less, preferably 580 ° C or more and 650
Tempering in a temperature range of not more than ℃. The heating temperature is
If it is too high, it promotes the coarsening of the prior austenite grains.
【0020】本発明は鋼材を550 ℃以上の高温で焼戻す
ことによって、粒界炭化物を0.05μm以上に粗大化かつ
球状化させることによって、粒界における微小亀裂先端
の応力集中を低減し、粒界割れを抑制するものである。
焼戻し温度が550 ℃未満では上記の形態の炭化物を有す
る組織を得られないため、焼戻し温度域を550 ℃以上65
0 ℃以下とした。より望ましい条件は、580 ℃以上650
℃以下の範囲である。The present invention reduces the stress concentration at the tip of a microcrack at a grain boundary by tempering a steel material at a high temperature of 550 ° C. or more, thereby coarsening and spheroidizing the grain boundary carbide to 0.05 μm or more. It suppresses the boundary cracking.
If the tempering temperature is lower than 550 ° C, a structure having the above-mentioned form of carbide cannot be obtained.
0 ° C. or less. More desirable conditions are 580 ° C or more and 650
It is the range below ° C.
【0021】上記球状化炭化物の平均短軸長の上限は特
に定めることなく本発明の効果が得られるが、あまりに
粗大な炭化物は亀裂発生の起点となるため、1 μm以下
が望ましい。本発明において、マルテンサイト又は焼戻
しマルテンサイトの面積率は鋼棒のC断面t/ 4部又は
ボルトのC断面t/ 4を光学顕微鏡で200 〜1000倍で10
視野観察した場合の平均値である。その他の組織とし
て、残留オーステナイト、ベイナイト、フェライト、パ
ーライトを含有することができる。The effect of the present invention can be obtained without any particular upper limit of the average short axis length of the above-mentioned spheroidized carbide. However, since excessively coarse carbide becomes a starting point of crack generation, it is preferably 1 μm or less. In the present invention, the area ratio of martensite or tempered martensite is determined by using a C-section t / 4 part of a steel rod or a C-section t / 4 of a bolt at a magnification of 200 to 1000 times with an optical microscope.
This is the average value when performing visual field observation. Other structures can include retained austenite, bainite, ferrite, and pearlite.
【0022】また、旧オーステナイト粒界の球状炭化物
の平均短軸長は、上記試料において、スピードエッチの
後にSEMで5000〜50000 倍で、測定下限を0.005 μm
以上として観察した場合の、旧オーステナイト粒界に存
在する最短長さを短軸長とし、10視野観察した場合の平
均値と定義する。なお、本発明鋼のボルト用鋼およびボ
ルトの引張強度の上限は特に定めることなく本発明の効
果を得られるが、靭性を劣化させないためには、1700MP
a 以下が望ましい。The average short axis length of the spherical carbides at the prior austenite grain boundaries was 5000 to 50000 times by SEM after speed etching in the above sample, and the lower limit of measurement was 0.005 μm.
The shortest length existing in the prior austenite grain boundary when observed as above is defined as the short axis length, and is defined as the average value when observed in 10 visual fields. The effect of the present invention can be obtained without particularly setting the upper limit of the tensile strength of the steel for bolts and the bolt of the steel of the present invention.However, in order not to deteriorate the toughness, 1700 MPa
a The following is desirable.
【0023】[0023]
【実施例】以下、実施例により本発明の効果をさらに具
体的に説明する。表1に示す化学組成を有するボルト用
鋼をボルトに加工後、880 ℃〜950 ℃に加熱した後に焼
入れし、表2に示す種々の条件で熱処理して焼き戻しマ
ルテンサイトの組織に調整した。EXAMPLES Hereinafter, the effects of the present invention will be described more specifically with reference to examples. Bolt steel having the chemical composition shown in Table 1 was worked into a bolt, heated to 880 ° C. to 950 ° C., then quenched, and heat-treated under various conditions shown in Table 2 to obtain a tempered martensite structure.
【0024】上記の試料を用いて、機械的性質、組織形
態、遅れ破壊特性について評価した結果を表2に示す。
遅れ破壊特性は、前に述べた限界拡散性水素量で評価を
行い、負荷応力は引張強さの90%の条件で実施した。表
1の試験No. 1〜13が本発明例で、その他は比較例
である。表2に見られるように本発明例はいずれも焼戻
し温度が550 ℃以上で、ボルトの引張強さが1300MPa 以
上である。これらは遅れ破壊形が粒内割れとなってお
り、限界拡散性水素量が従来のボルトに比べ高く、遅れ
破壊特性の優れたボルトが実現されている。Table 2 shows the results of evaluation of the mechanical properties, microstructure, and delayed fracture characteristics using the above samples.
The delayed fracture characteristics were evaluated based on the critical diffusible hydrogen content described above, and the load stress was evaluated under the condition of 90% of the tensile strength. Test Nos. 1 to 13 in Table 1 are examples of the present invention, and others are comparative examples. As can be seen from Table 2, the examples of the present invention all have a tempering temperature of 550 ° C. or higher and a bolt tensile strength of 1300 MPa or higher. In these, the delayed fracture type is intragranular cracking, the critical diffusible hydrogen content is higher than that of the conventional bolt, and a bolt excellent in the delayed fracture characteristic is realized.
【0025】これに対して比較例であるNo. 14から2
0は、C量が低いため、1300MPa 以上の強度を得るため
の焼戻し温度が500 ℃以下と低いため、遅れ破壊形態が
粒界割れであり、限界拡散性水素量が低く、遅れ破壊特
性が悪い例である。比較例であるNo. 21はC含有量が
高すぎるために、No. 22はMn含有量が高すぎるため
に、いずれも遅れ破壊特性が悪かった例である。On the other hand, Nos. 14 to 2 which are comparative examples
In the case of 0, since the C content is low, the tempering temperature for obtaining a strength of 1300 MPa or more is as low as 500 ° C. or less, so the delayed fracture mode is grain boundary cracking, the critical diffusible hydrogen content is low, and the delayed fracture characteristics are poor. It is an example. No. 21 which is a comparative example is an example in which the C content was too high, and No. 22 was an example in which the Mn content was too high, so that the delayed fracture characteristics were all poor.
【0026】図2は、焼戻し温度と、限界拡散性水素量
の関係を示した図である。焼戻し温度が550 ℃〜650 ℃
の間で、限界拡散性水素量が高く、耐遅れ破壊特性が改
善されている。図3は、粒界の球状化炭化物の平均短軸
長と、限界拡散性水素量の関係を示している。平均短軸
長が0.05μm以上で、限界拡散性水素量が高く、耐遅れ
破壊特性が改善されている。FIG. 2 is a diagram showing the relationship between the tempering temperature and the critical diffusible hydrogen amount. Tempering temperature is 550 ℃ ~ 650 ℃
Among them, the critical diffusible hydrogen amount is high, and the delayed fracture resistance is improved. FIG. 3 shows the relationship between the average short axis length of the spheroidized carbide at the grain boundary and the critical diffusible hydrogen amount. When the average short axis length is 0.05 μm or more, the critical diffusible hydrogen amount is high, and the delayed fracture resistance is improved.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【表2】 [Table 2]
【0029】[0029]
【発明の効果】以上の実施例からも明らかなごとく、本
発明は粒界炭化物を粗大な球状に成長させることによっ
てボルトの遅れ破壊形態を粒界割れから粒内割れにさせ
て、引張強度が1300MPa 以上の高強度ボルトの遅れ破壊
特性を大幅に向上させることを可能にするとともに、鋼
の化学成分、熱処理条件およびを最適に選択することに
よって、ボルト用鋼、ボルト及びそのボルトの製造方法
を確立したものである。As is clear from the above examples, the present invention makes the delayed fracture mode of the bolt from the intergranular crack to the intragranular crack by growing the grain boundary carbide into a coarse sphere, thereby increasing the tensile strength. It is possible to significantly improve the delayed fracture characteristics of high-strength bolts of 1300MPa or more, and to optimally select the chemical composition of steel, heat treatment conditions, and the like, to improve the steel for bolts, the bolt and the method of manufacturing the bolt. It is established.
【図1】拡散性水素量と遅れ破壊時間の関係の一例を示
す図である。FIG. 1 is a diagram showing an example of the relationship between the amount of diffusible hydrogen and delayed fracture time.
【図2】焼戻し温度と、限界拡散性水素量の関係を示す
図である。FIG. 2 is a graph showing a relationship between a tempering temperature and a critical diffusible hydrogen amount.
【図3】粒界球状炭化物の平均短軸長と限界拡散性水素
量の関係を示す図である。FIG. 3 is a graph showing the relationship between the average short axis length of grain boundary spherical carbides and the amount of critical diffusible hydrogen.
Claims (4)
05〜2.0 %、Mn:0.2 〜2.0 %、Al:0.005 〜0.1
%を含有し、残部がFe及び不可避的不純物よりなるこ
とを特徴とする引張強度:1300MPa 以上を有する耐遅れ
破壊特性の優れた高強度ボルト用鋼。(1) In terms of mass%, C: 0.50 to 1.00%, Si: 0.
05-2.0%, Mn: 0.2-2.0%, Al: 0.005-0.1
%, With the balance being Fe and unavoidable impurities, characterized by having a tensile strength of 1300 MPa or more and having excellent delayed fracture resistance.
05〜2.0 %、Mn:0.2 〜2.0 %、Al:0.005 〜0.1
%を含有し、さらに、Ti:0.005 〜0.20%、B:0.00
03〜0.0050%、Cr:0.05〜2.0 %、Mo:0.05〜1.0
%、Ni:0.05〜5.0 %、Cu:0.05〜1.0 %、V:0.
05〜2.0 %、Nb:0.005 〜0.2 %、Ta:0.005 〜0.
5 %、またはW:0.05〜0.5 %の1種または2種以上を
含有することを特徴とする引張強度:1300MPa 以上を有
する耐遅れ破壊特性の優れた高強度ボルト用鋼。2. In mass%, C: 0.50 to 1.00%, Si: 0.
05-2.0%, Mn: 0.2-2.0%, Al: 0.005-0.1
%, And further, Ti: 0.005 to 0.20%, and B: 0.00
03-0.0050%, Cr: 0.05-2.0%, Mo: 0.05-1.0
%, Ni: 0.05-5.0%, Cu: 0.05-1.0%, V: 0.
05-2.0%, Nb: 0.005-0.2%, Ta: 0.005--0.
High-strength bolt steel with excellent delayed fracture resistance having a tensile strength of 1300 MPa or more, characterized by containing one or more of 5% or W: 0.05 to 0.5%.
ルトで、面積率最大の相が焼戻しマルテンサイトであ
り、旧オーステナイト粒界の球状炭化物の平均短軸長が
0.05μm以上であり、且つ引張強度が1300MPa 以上を有
することを特徴とする耐遅れ破壊特性の優れた高強度ボ
ルト。3. A bolt comprising the component according to claim 1 or 2, wherein the phase having the largest area ratio is tempered martensite, and the average short axis length of the spherical carbide at the prior austenite grain boundary is
A high-strength bolt excellent in delayed fracture resistance, characterized by having a tensile strength of not less than 0.05 μm and a tensile strength of not less than 1300 MPa.
積率最大の相がマルテンサイトである鋼を550 ℃以上65
0 ℃以下で焼戻すことを特徴とする引張強度:1300MPa
以上を有する耐遅れ破壊特性の優れた高強度ボルトの製
造方法。4. A steel comprising a component according to claim 1 or 2, wherein the phase having the largest area ratio is martensite, at a temperature of 550.degree.
Tensile strength characterized by tempering below 0 ° C: 1300MPa
A method of manufacturing a high-strength bolt excellent in delayed fracture resistance having the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000102382A JP3793391B2 (en) | 2000-04-04 | 2000-04-04 | High strength bolt excellent in delayed fracture resistance with a tensile strength of 1300 MPa or more and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000102382A JP3793391B2 (en) | 2000-04-04 | 2000-04-04 | High strength bolt excellent in delayed fracture resistance with a tensile strength of 1300 MPa or more and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001288538A true JP2001288538A (en) | 2001-10-19 |
JP3793391B2 JP3793391B2 (en) | 2006-07-05 |
Family
ID=18616277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000102382A Expired - Fee Related JP3793391B2 (en) | 2000-04-04 | 2000-04-04 | High strength bolt excellent in delayed fracture resistance with a tensile strength of 1300 MPa or more and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3793391B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7070664B2 (en) * | 2001-03-22 | 2006-07-04 | Nippon Steel Corporation | High strength bolt superior in delayed fracture resistant property and steel material for the same |
JP2006249458A (en) * | 2005-03-08 | 2006-09-21 | Jfe Bars & Shapes Corp | High strength steel with excellent delayed fracture resistance and method for producing the same |
JP2007270293A (en) * | 2006-03-31 | 2007-10-18 | Nippon Steel Corp | High strength bearing joint parts excellent in delayed fracture resistance, manufacturing method thereof, and steel for high strength bearing joint parts |
JP2009299181A (en) * | 2008-05-13 | 2009-12-24 | Nippon Steel Corp | High strength steel having excellent delayed fracture resistance, high strength bolt, and method for producing the same |
JP2013117464A (en) * | 2011-12-05 | 2013-06-13 | Nippon Steel & Sumitomo Metal | Method for evaluating delayed fracture characteristic of high-strength steel plate |
JP2014043612A (en) * | 2012-08-27 | 2014-03-13 | Nippon Steel & Sumitomo Metal | High strength steel excellent in delayed fracture resistance |
CN104911501A (en) * | 2015-05-25 | 2015-09-16 | 西安交通大学 | Super-strength high-carbon potential dislocation martensitic steel, and preparation method thereof |
KR20190075378A (en) * | 2017-12-21 | 2019-07-01 | 주식회사 포스코 | High-strength wire rod and steel with excellent hydrogen retardation resistance and manufacturing the same |
JP2019123921A (en) * | 2018-01-18 | 2019-07-25 | 大同特殊鋼株式会社 | High strength bolt and manufacturing method therefor |
EP4060072A4 (en) * | 2019-12-18 | 2024-06-12 | Posco | Wire rod and component, for cold forging, each having excellent delayed fracture resistance characteristics, and manufacturing methods therefor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5760972B2 (en) * | 2011-11-10 | 2015-08-12 | 新日鐵住金株式会社 | High strength bolt steel and high strength bolt with excellent delayed fracture resistance |
KR101505244B1 (en) | 2012-07-30 | 2015-03-23 | 현대제철 주식회사 | Method of heat treating steel component and methof of manufacturing track link using the same |
KR102031456B1 (en) * | 2017-12-26 | 2019-10-11 | 주식회사 포스코 | High phosphorus wire rod and formed material having excelent impact property and corrosion resistance, and method for manufacturing the same |
-
2000
- 2000-04-04 JP JP2000102382A patent/JP3793391B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7070664B2 (en) * | 2001-03-22 | 2006-07-04 | Nippon Steel Corporation | High strength bolt superior in delayed fracture resistant property and steel material for the same |
JP2006249458A (en) * | 2005-03-08 | 2006-09-21 | Jfe Bars & Shapes Corp | High strength steel with excellent delayed fracture resistance and method for producing the same |
JP2007270293A (en) * | 2006-03-31 | 2007-10-18 | Nippon Steel Corp | High strength bearing joint parts excellent in delayed fracture resistance, manufacturing method thereof, and steel for high strength bearing joint parts |
JP2009299181A (en) * | 2008-05-13 | 2009-12-24 | Nippon Steel Corp | High strength steel having excellent delayed fracture resistance, high strength bolt, and method for producing the same |
JP2013117464A (en) * | 2011-12-05 | 2013-06-13 | Nippon Steel & Sumitomo Metal | Method for evaluating delayed fracture characteristic of high-strength steel plate |
JP2014043612A (en) * | 2012-08-27 | 2014-03-13 | Nippon Steel & Sumitomo Metal | High strength steel excellent in delayed fracture resistance |
CN104911501A (en) * | 2015-05-25 | 2015-09-16 | 西安交通大学 | Super-strength high-carbon potential dislocation martensitic steel, and preparation method thereof |
KR20190075378A (en) * | 2017-12-21 | 2019-07-01 | 주식회사 포스코 | High-strength wire rod and steel with excellent hydrogen retardation resistance and manufacturing the same |
KR102042061B1 (en) | 2017-12-21 | 2019-11-08 | 주식회사 포스코 | High-strength wire rod and steel with excellent hydrogen retardation resistance and manufacturing the same |
JP2019123921A (en) * | 2018-01-18 | 2019-07-25 | 大同特殊鋼株式会社 | High strength bolt and manufacturing method therefor |
JP6992535B2 (en) | 2018-01-18 | 2022-02-04 | 大同特殊鋼株式会社 | High-strength bolts and their manufacturing methods |
EP4060072A4 (en) * | 2019-12-18 | 2024-06-12 | Posco | Wire rod and component, for cold forging, each having excellent delayed fracture resistance characteristics, and manufacturing methods therefor |
Also Published As
Publication number | Publication date |
---|---|
JP3793391B2 (en) | 2006-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102269845B1 (en) | Hot-rolled steel sheet and its manufacturing method | |
US7510614B2 (en) | High strength bolt excellent in delayed fracture resistance and method of production of same | |
JP4267376B2 (en) | High strength PC steel wire with excellent delayed fracture characteristics and method for producing the same | |
KR20080017365A (en) | High strength steel and metal bolts with excellent delayed fracture resistance | |
JP2003105485A (en) | High-strength spring steel excellent in hydrogen fatigue fracture resistance and method for producing the same | |
JP4116762B2 (en) | High strength spring steel excellent in hydrogen fatigue resistance and method for producing the same | |
JP2001288539A (en) | Spring steel excellent in hydrogen fatigue resistance and method for producing the same | |
JP3494799B2 (en) | High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same | |
JP2001288538A (en) | Steel for high-strength bolts having excellent delayed fracture resistance, bolts, and method of manufacturing the bolts | |
JP3494798B2 (en) | High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same | |
KR101776490B1 (en) | High strength spring steel having excellent corrosion resistance | |
CN112585290B (en) | High-strength steel sheet and method for producing same | |
JP7200627B2 (en) | High-strength bolt steel and its manufacturing method | |
JP4485424B2 (en) | Manufacturing method of high-strength bolts with excellent delayed fracture resistance | |
JP4657128B2 (en) | High strength structural steel with excellent hydrogen embrittlement resistance and toughness and its manufacturing method | |
JP3648192B2 (en) | High strength PC steel bar with excellent delayed fracture resistance and manufacturing method | |
JP3548519B2 (en) | High strength steel with excellent hydrogen embrittlement resistance | |
JP4146271B2 (en) | High strength PC steel wire with excellent delayed fracture resistance and method for producing the same | |
JP4411253B2 (en) | Hot forged parts with excellent delayed fracture resistance and method for producing the same | |
JP4054179B2 (en) | High-strength pearlite steel with excellent delayed fracture resistance | |
JP2019123921A (en) | High strength bolt and manufacturing method therefor | |
JPH11270531A (en) | High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same | |
JPH0978194A (en) | High-strength PC steel rod with excellent delayed fracture properties and method for producing the same | |
JP4081234B2 (en) | High strength steel with excellent hydrogen embrittlement resistance | |
KR101776491B1 (en) | High strength spring steel having excellent corrosion resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051011 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060407 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3793391 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090414 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140414 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |