[go: up one dir, main page]

JP4146271B2 - High strength PC steel wire with excellent delayed fracture resistance and method for producing the same - Google Patents

High strength PC steel wire with excellent delayed fracture resistance and method for producing the same Download PDF

Info

Publication number
JP4146271B2
JP4146271B2 JP2003116008A JP2003116008A JP4146271B2 JP 4146271 B2 JP4146271 B2 JP 4146271B2 JP 2003116008 A JP2003116008 A JP 2003116008A JP 2003116008 A JP2003116008 A JP 2003116008A JP 4146271 B2 JP4146271 B2 JP 4146271B2
Authority
JP
Japan
Prior art keywords
delayed fracture
steel wire
less
strength
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003116008A
Other languages
Japanese (ja)
Other versions
JP2004323870A (en
Inventor
真吾 山崎
世紀 西田
大輔 平上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003116008A priority Critical patent/JP4146271B2/en
Publication of JP2004323870A publication Critical patent/JP2004323870A/en
Application granted granted Critical
Publication of JP4146271B2 publication Critical patent/JP4146271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポール、パイルおよび建築、橋梁等のプレストレストコンクリート構造物の補強材として広く使われているPC鋼線に関わるものであり、特に強度が1650MPa以上である遅れ破壊特性の優れた高強度PC鋼線およびその製造方法に関するものである。
【0002】
【従来の技術】
ポール、パイルおよび建築、橋梁等のプレストレストコンクリート構造物の補強材として広く使われているPC鋼材は、通常、JIS G 3536に規定されているPC鋼線及びPC鋼より線、JISG 3109に規定されているPC鋼棒が使われている。PC鋼線に用いられる材料はJIS G 3502に適合したピアノ線材であり、パテンティング処理をした後、伸線加工することにより製造される。
【0003】
一方、PC鋼棒は、例えば特許文献1に記載されているように、C量が0.25〜0.35%の中炭素鋼を用いて焼入れ・焼戻し処理をすることによって製造されている。PC鋼棒の特徴として非特許文献1に記載されているように、強度が1275MPa(130kgf/mm2)を超えるような高強度PC鋼棒は、PC鋼線に比べて遅れ破壊特性が劣っている。そのためPC鋼棒の遅れ破壊特性を向上させるために従来多くの提案がある。例えば、特許文献2では、P、S含有量を低減することが有効であると提案している。また、特許文献1では、Si、Mn含有量を規制するとともに焼入れ処理後、焼戻し工程中で曲げ加工または引き抜き加工を施すことを提案している。これに対し、PC鋼線に関しては、もともとPC鋼棒と比較して耐遅れ破壊特性が優れていたことから、耐遅れ破壊特性向上という観点での発明は殆どなされていないのが現状である。しかしながら、近年PC鋼線にも高強度化、あるいは外ケーブル化が要求され現状では1650MPa級の高強度のものが要求されている。よく知られているように(例えば松山晋作著「遅れ破壊」/日刊工業新聞社)鋼材は高強度化するに従い、あるいは使用環境が過酷になるに従い、耐水素脆化感受性が増大するため、耐遅れ破壊特性を高めた高強度PC鋼線が求められている。例えば特許文献3では伸線加工後に所定の温度、所定の時間保持することによって、遅れ破壊特性を向上させることを提案している。しかしこれは鋼材組織、機械的性質を変えることなく、単に加熱により鋼材中の水素を除去することを目的としており、使用中に侵入してきた水素による破壊を抑制することはできず、耐遅れ破壊特性を向上させる根本的な対策とはいえない。特許文献4、特許文献5も同様である。
【0004】
【特許文献1】
特公平5−41684号公報
【特許文献2】
特公平5−59967号公報
【特許文献3】
特開平10−259425号公報
【特許文献4】
特開平8−337844号公報
【特許文献5】
特開平8−337845号公報
【非特許文献1】
「プレストレスコンクリート設計施工規準・同解説」(日本建築学会編集、丸善43〜45頁)
【0005】
【発明が解決しようとする課題】
本発明は上記の如き実状に鑑みなされたものであって、遅れ破壊特性の良好な強度が1650MPa以上の高強度のPC鋼線を実現するとともにその製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは、まずパテンティング・伸線・ブルーイングによって製造した種々の強度レベルのPC鋼線を用いて、遅れ破壊挙動を詳細に解析した。PC鋼線の遅れ破壊特性は、広く用いられているFIP試験によって評価した。これは、20質量%のチオシアン酸アンモニウム水溶液を50℃に加熱した溶液中で、PC鋼線にその大気中における破断荷重の70%の荷重を付与して破断時間を測定する方法である。この際、PC鋼線の試験溶液に接する表面積1cm2当たりの試験溶液量(以下比液量とする)は55cc/cm2とした。また、FIP試験におけるPC鋼線の水素吸蔵挙動を、昇温ガスクロマトグラフで測定した。
【0007】
以上の試験を行うことによって、高強度PC鋼線のFIP破断時間を増加させる、即ち遅れ破壊特性を上げるべく、鋼材成分、オーステナイト加熱温度、伸線条件、ブルーイング熱処理条件の影響等について検討を重ねた。この結果、ブルーイング時間(t)を300≧t≧1(s)の範囲で、700−100×log(t)≧T≧450℃の高温でブルーイングを施し、パーライト中のラメラ状セメンタイトの長さと幅の比であるアスペクト比の平均が30以下である組織を形成させれば、1650MPa以上の高強度域でもFIP試験の破断時間のf50値(累積破断率が50%の破断時間)が30時間以上であることを見出した。なお、以下比液量が55cc/cm2において、破断時間が30時間以上であれば、実使用で遅れ破壊の可能性が非常に小さい。なお、500℃以上のブルーイング温度で1650MPa以上を達成するには、鋼材成分、伸線減面率を適度に選択する必要がある。
【0008】
以上の検討結果に基づき、鋼材成分、伸線条件、ブルーイング条件を最適に選択すれば、遅れ破壊特性に優れた高強度PC鋼棒を実現できるという結論に達し、本発明をなしたものである。
【0009】
本発明は以上の知見に基づいてなされたものであって、その要旨とするところは、次の通りである。
(1)質量%で、C:0.6〜1.1%、Si:0.12〜2.0%、Mn:0.3〜1.0%、P:0.025%以下、S:0.025%以下を含み、残部Feおよび不可避的不純物からなり、且つ、(フェライトとセメンタイトの層状組織である)パーライト組織を主体とし、かつパーライト中の板状セメンタイトの平均アスペクト比が30以下で、引張強さが1650MPa以上を有することを特徴とする耐遅れ破壊特性に優れた高強度PC鋼線。
(2)さらに、質量%で、Al:0.005〜0.1%、Cr:0.05〜2.0%、Mo:0.05〜1.0%、Ni:0.05〜3.0%、Cu:0.05〜1.0%、V:0.05〜0.3%、Nb:0.005〜0.1%、W:0.05〜0.5%、Ti:0.005〜0.05%、B:0.0003〜0.005%の1種または2種以上を含むことを特徴とする上記(1)記載の耐遅れ破壊特性に優れた高強度PC鋼線。
(3)質量%で、C:0.6〜1.1%、Si:0.12〜2.0%、Mn:0.3〜1.0%、P:0.025%以下、S:0.025%以下を含み、残部Feおよび不可避的不純物からなり、(フェライトとセメンタイトの層状組織である)パーライト組織を主体とし、かつ50℃、20重量%のチオシアン酸アンモニウム溶液中に10時間以上浸漬し、100℃/hの速度で昇温した際、250℃以上の500℃以下の温度域での水素放出量の総和が0.2質量ppm以下で、引張強さが1650MPa以上を有することを特徴とする耐遅れ破壊特性に優れた高強度PC鋼線。
(4)さらに、質量%で、Al:0.005〜0.1%、Cr:0.05〜2.0%、Mo:0.05〜1.0%、Ni:0.05〜3.0%、Cu:0.05〜1.0%、V:0.05〜0.3%、Nb:0.005〜0.1%、W:0.05〜0.5%、Ti:0.005〜0.05%、B:0.0003〜0.005%の1種または2種以上を含むことを特徴とする上記(3)記載の耐遅れ破壊特性に優れた高強度PC鋼線。
(5)質量%で、C:0.6〜1.1%、Si:0.12〜2.0%、Mn:0.3〜1.0%、P:0.025%以下、S:0.025%以下を含み、残部Feおよび不可避的不純物からなる鋼にパテンティングを行った後、冷間伸線加工し、フェライトとセメンタイトの層状組織とした組織を得た後、最終工程において、時間を300≧t≧20(s)の範囲で、700−100×log(t)≧T≧450℃の高温にてブルーイングを行うことにより引張強さが1650MPa以上とすることを特徴とする耐遅れ破壊特性に優れた高強度PC鋼線の製造方法。
(6)さらに、質量%で、Al:0.005〜0.1%、Cr:0.05〜2.0%、Mo:0.05〜1.0%、Ni:0.05〜3.0%、Cu:0.05〜1.0%、V:0.05〜0.3%、Nb:0.005〜0.1%、W:0.05〜0.5%、Ti:0.005〜0.05%、B:0.0003〜0.005%の1種または2種以上を含むことを特徴とする上記(5)記載の耐遅れ破壊特性に優れた高強度PC鋼線の製造方法。
【0010】
【発明の実施の形態】
まず、本発明の対象とする鋼の成分の限定理由について述べる。以下、単位は質量%とする。
【0011】
C:CはPCの鋼線の強度を確保する上で必須の元素であるが、0.6%未満ではパテンティング時に初析フェライト量が増大するため所要の強度が得られず、一方1.1%を超えると初析セメンタイト量が増加し伸線特性が著しく劣化するため、0.6〜1.1%の範囲に制限した。
【0012】
Si:Siはリラクゼーション特性を向上させるとともに固溶体硬化作用によって強度を高める作用がある。0.12%未満では前記作用が発揮できず、一方、2%を超えるとその効果が飽和するため、0.12〜2.0%の範囲に制限した。
【0013】
Mn:Mnは脱酸、脱硫のために必要であるばかりでなく、パテンティング材の強度を高める作用があるが、0.3%未満では上記の効果が得られず、1%を超えると鋳造時の偏析が顕著になり、パテンティング時に伸線特性を劣化させるミクロマルテンサイトが生成するため、0.3〜1.0%の範囲に制限した。
【0014】
P:PはMnとともに共偏析し、著しく焼き入れ性を高めるため、パテンティング時のミクロマルテンサイトの生成を助長するため、0.025%以下とした。
【0015】
S:SはMnSとして析出し、伸線特性を劣化させるため、0.025%以下とした。
【0016】
以上が本発明の対象とする鋼の基本成分であるが、本発明においては、さらにこの鋼に重量%で、Al:0.005〜0.1%、Cr:0.05〜2.0%、Mo:0.05〜1.0%、Ni:0.05〜3.0%、Cu:0.05〜1.0%、V:0.05〜0.3%、Nb:0.005〜0.1%、W:0.05〜0.5%、Ti:0.005〜0.05%、B:0.0003〜0.0050%の1種または2種以上を含有せしめることができる。
【0017】
Al:Alは脱酸および熱処理時においてAlNを形成することによりオーステナイト粒の粗大化を防止し靭性劣化を抑制する効果とともにNを固定し遅れ破壊特性の向上に有効な固溶Bを確保する効果も有しているが、0.005%未満ではこれらの効果が発揮されず、0.1%を超えても効果が飽和するため0.005〜0.1%の範囲に限定した。
【0018】
Cr:Crはパーライトラメラ間隔を微細化し、パテンティング材を高強度化させるために有効な元素であるが、0.05%未満ではその効果が十分に発揮できず、一方2.0%を超えると効果が飽和するために0.05〜2.0%に限定した。
【0019】
Mo:MoはCrと同様にパーライトラメラ間隔を微細化するためパテンティング材を高強度化させるために有効な元素であるが、0.05%未満ではその効果が十分に発揮できず、一方1.0%を超えるとパーライト変態の進行を遅らせるため、0.05〜1.0%に制限した。
【0020】
Ni:Niは水素の侵入を抑制する効果があるが、0.05%未満では効果が発揮できず、一方3.0%を超えても添加量にみあう効果が発揮できないため、0.05〜3.0%の範囲に制限した。
【0021】
Cu:Cuも水素の侵入を抑制する効果があるが、0.05%未満では効果が発揮できず、1.0%を超えると熱間加工性が劣化するため、0.05〜1.0%に制限した。
【0022】
V:Vは炭窒化物を生成することによりオーステナイト粒を微細化させるために有効な元素である。また、パテンティング時にも炭化物として析出し、水素のトラップサイトとして機能するため耐遅れ破壊特性を向上させる効果があるが、0.05%未満では前記作用の効果が得られず、一方1.0%を超えても効果が飽和するため0.05〜1.0%に限定した。
【0023】
Nb:NbもVと同様に炭窒化物を生成することによりオーステナイト粒を微細化させ、延性および靭性を改善するために有効な元素である。0.005%未満では上記効果が不十分であり、一方0.1%を超えるとこの効果が飽和するため0.005〜0.1%に制限した。
【0024】
W:WはVと同様、高強度のPC鋼線の遅れ破壊特性を向上させるために有効な元素であるが、0.05%未満では前記の効果が発揮されず、一方、0.5%を超えて添加しても効果が飽和するため、0.05〜0.5%の範囲に限定した。
【0025】
Ti:Tiは脱酸およびTiNを形成することによりオーステナイト粒の粗大化を防止する効果とともにNを固定し遅れ破壊特性の向上に有効な固溶Bを確保する効果を有しているが、0.005%未満ではこれらの効果が発揮されず、0.05%を超えても効果が飽和するため0.005〜0.05%の範囲に限定した。
【0026】
B:Bは遅れ破壊特性を向上させる効果があるが、Bが0.0003%未満では前記の効果が発揮されず、0.0050%を超えても効果が飽和するため0.0003〜0.0050%に制限した。
【0027】
N:NはAl、V、Nb、Tiの窒化物を生成することによりオーステナイト粒の細粒化効果があり、延性および靭性の向上に寄与できるため、0.003〜0.015%が好ましい範囲である。
【0028】
次に本発明で目的とする高強度PC鋼線の遅れ破壊特性の向上に対して最も重要な点であるPC鋼線の組織形態およびブルーイング温度の限定理由について述べる。
【0029】
図1にブルーイング温度がFIP試験による平均破断時間に及ぼす影響について解析した一例を示す。FIP試験は比液量55cc/cm2、負荷荷重は1200MPaで、各鋼種について12本ずつ実施した結果である。同図から明らかなように、ブルーイング温度が高くなるに伴いFIP試験におけるf50破断時間は長くなり、耐遅れ破壊特性が改善されたことを示す。好ましいブルーイング温度は500℃以上である。ブルーイング温度とブルーイング時間の関係について、図2に示す。図中、●はFIP試験f50破断時間が30h以上のもの、×は、30h未満のもの、または1650MPa未満のものを示す。効果が認められるのは、ブルーイング時間が300≧t≧1(s)の範囲で、且つ、ブルーイング温度が700−100×log(t)≧T≧450℃の範囲である。
【0030】
伸線されたパーライト組織において、板状に伸延されたセメンタイトは、図3に示すように、高温でブルーイングすることによって溶解し分断される。図4はブルーイング温度が板状セメンタイトの長さと厚みの比(アスペクト比)に及ぼす影響を解析した結果を示す。測定は、試験片を飽和ピクラール溶液でエッチングした後に走査型電子顕微鏡(SEM)でセメンタイトが直線的であるような任意の3箇所を5000倍で撮影し、その視野を画像解析によって平均アスペクト比を求めた。同図より、ブルーイング温度が高くなるに伴ってセメンタイトは分断され、球状化されることを示す。
【0031】
図5は、セメンタイトのアスペクト比がFIP破断時間に及ぼす影響を示す。セメンタイトのアスペクト比が小さくなるに伴ってFIP破断時間は長くなる。顕著な効果が認められるのは、アスペクト比が30以下の場合であり、より好ましくは20以下である。これは、セメンタイトのアスペクト比が小さいと、亀裂先端の応力緩和が容易になるためFIP破断時間が長くなるものと考えられる。
【0032】
なお、このような組織状態であることを確認する簡便な手法として、水素昇温分析によって250℃〜500℃の温度域で放出される水素量を測定することによって特定する方法を考案した。図6に、図3で示すパーライト組織を有するPC鋼線を、10時間FIP試験を実施した後に取り出し、100℃/hの昇温速度で水素分析を実施した際の水素放出曲線を示す。350℃ブルーイング材は、100℃と350℃近傍に水素放出のピークを有する。100℃のピークは拡散性水素量、350℃のピークはセメンタイトとフェライト界面近傍にパイルアップした加工転位にトラップされる水素と考えられている。高温ブルーイングすることによってセメンタイトは球状化し、界面転位は減少するため、トラップ水素量も減少する。そのため、図6において、500℃ブルーイング材は350℃のピークが検出されない。図7に、ブルーイング温度と350℃ピークの水素量(250℃から500℃の放出水素量)の関係を示す。図のように、ブルーイング温度と350℃ピークの水素は密接な関係があり、450℃以上のブルーイング温度であれば、250℃から500℃の放出水素量は0.2質量ppm以下である。
【0033】
【実施例】
表1に示す化学組成を有する供試材を通常の熱間圧延条件で圧延した後、種々の温度範囲でパテンティング、伸線し、温度を変えてブルーイングを実施し、PC鋼線を製造した。ブルーイング時間は30sとした。上記のPC鋼線を用いて、機械的性質、組織形態、遅れ破壊特性について評価した結果を表2に示す。遅れ破壊特性は、FIP試験にて、1200MPaの負荷応力で実施した。評価は、FIP試験における12本の破断時間のf50をとることによって実施した。
【0034】
表1、2のA〜Tが本発明例で、その他は比較例である。同表に見られるように本発明例はいずれもブルーイング温度が450℃以上で、引張強さ1650MPa以上を達成している。FIP試験におけるf50破断時間は30時間以上である。
【0035】
比較例であるUは、鋼材成分および伸線減面率が適当でなかったために、450℃以上のブルーイングで1650MPaを達成できなかった例である。
【0036】
比較例であるV〜Zはいずれも従来の製造方法で製造したものである。即ち、400℃以下のブルーイングを実施しており、1650MPa以上を達成しているものの、セメンタイトのアスペクト比が30より大きく、FIP試験の破断時間は30時間以下であり、遅れ破壊特性が悪い例である。
【0037】
【表1】

Figure 0004146271
【0038】
【表2】
Figure 0004146271
【0039】
【発明の効果】
本発明は伸線パーライト鋼よりなるPC鋼線において、板状セメンタイトのアスペクト比を制御することによって、引張強さが1650MPa以上の高強度PC鋼線の遅れ破壊特性を大幅に向上させることを可能にするとともに、鋼の化学成分、伸線減面率、ブルーイング条件を最適に選択することによって、その製造方法を確立したものであり、産業上の効果は極めて顕著なものがある。
【図面の簡単な説明】
【図1】ブルーイング温度がFIP試験破断時間に及ぼす影響を示す図である。
【図2】ブルーイング温度・時間がFIP結果に及ぼす影響を示す図である。
【図3】(a)は350℃ブルーイング材、(b)は500℃ブルーイング材のセメンタイト形状を示す図である。
【図4】セメンタイトのアスペクト比がFIP破断時間に及ぼす影響を示す図である。
【図5】ブルーイング温度がセメンタイトのアスペクト比に及ぼす影響を示す図である。
【図6】ブルーイング温度が昇温水素分析における水素放出曲線に及ぼす影響を示す図。
【図7】ブルーイング温度が昇温分析の250〜500℃の温度で放出される水素量に及ぼす影響を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a PC steel wire widely used as a reinforcing material for prestressed concrete structures such as poles, piles, buildings, bridges, and the like. The present invention relates to a PC steel wire and a manufacturing method thereof.
[0002]
[Prior art]
PC steel materials widely used as reinforcing materials for prestressed concrete structures such as poles, piles, buildings, bridges, etc. PC steel bars are used. The material used for the PC steel wire is a piano wire material conforming to JIS G 3502, and is manufactured by performing a drawing process after a patenting treatment.
[0003]
On the other hand, PC steel bars are manufactured by quenching and tempering using medium carbon steel having a C content of 0.25 to 0.35%, as described in Patent Document 1, for example. As described in Non-Patent Document 1 as a characteristic of PC steel rods, high strength PC steel rods with strength exceeding 1275 MPa (130 kgf / mm 2 ) have inferior fracture fracture characteristics compared to PC steel wires. Yes. Therefore, many proposals have been made in the past to improve the delayed fracture characteristics of PC steel bars. For example, Patent Document 2 proposes that reducing the P and S contents is effective. Patent Document 1 proposes that the Si and Mn contents are regulated and that bending or drawing is performed in the tempering process after quenching. On the other hand, regarding the PC steel wire, since the delayed fracture resistance was originally superior to that of the PC steel rod, there has been almost no invention in terms of improving the delayed fracture resistance. However, in recent years, PC steel wires are also required to have high strength or external cables, and at the present time, those having high strength of 1650 MPa class are required. As is well known (for example, “Delayed Fracture” by Keisaku Matsuyama / Nikkan Kogyo Shimbun) Steel materials become more resistant to hydrogen embrittlement as the strength increases or the usage environment becomes severe. There is a need for high strength PC steel wires with improved delayed fracture properties. For example, Patent Document 3 proposes to improve delayed fracture characteristics by maintaining a predetermined temperature and a predetermined time after wire drawing. However, this is intended to remove hydrogen in the steel simply by heating without changing the steel structure and mechanical properties, and it cannot suppress the destruction caused by hydrogen that has entered during use. This is not a fundamental measure to improve the characteristics. The same applies to Patent Document 4 and Patent Document 5.
[0004]
[Patent Document 1]
Japanese Patent Publication No. 5-41684 [Patent Document 2]
Japanese Patent Publication No. 5-59967 [Patent Document 3]
Japanese Patent Laid-Open No. 10-259425 [Patent Document 4]
JP-A-8-337844 [Patent Document 5]
JP-A-8-337845 [Non-Patent Document 1]
“Prestressed concrete design and construction standards / comments” (edited by Architectural Institute of Japan, pages 43-45 of Maruzen)
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to realize a high strength PC steel wire having a good strength of delayed fracture characteristics of 1650 MPa or more and to provide a manufacturing method thereof. is there.
[0006]
[Means for Solving the Problems]
The present inventors first analyzed delayed fracture behavior in detail using PC steel wires of various strength levels manufactured by patenting, wire drawing, and brewing. The delayed fracture characteristics of PC steel wires were evaluated by a widely used FIP test. This is a method of measuring the breaking time by applying a load of 70% of the breaking load in the atmosphere to a PC steel wire in a solution obtained by heating a 20 mass% ammonium thiocyanate aqueous solution to 50 ° C. At this time, the amount of the test solution per 1 cm 2 of the surface area in contact with the test solution of the PC steel wire (hereinafter referred to as the specific liquid amount) was 55 cc / cm 2 . Moreover, the hydrogen storage behavior of the PC steel wire in the FIP test was measured with a temperature rising gas chromatograph.
[0007]
By conducting the above tests, in order to increase the FIP fracture time of high-strength PC steel wires, that is, to increase delayed fracture characteristics, the effects of steel materials, austenite heating temperature, wire drawing conditions, bluing heat treatment conditions, etc. are examined. Piled up. As a result, blueing was performed at a high temperature of 700-100 × log (t) ≧ T ≧ 450 ° C. in the range of 300 ≧ t ≧ 1 (s), and the lamellar cementite in pearlite was If a structure having an average aspect ratio of 30 or less, which is the ratio of length to width, is formed, the f 50 value of the FIP test break time (break time when the cumulative breakage rate is 50%) even in a high strength region of 1650 MPa or more. Was found to be over 30 hours. In the following the specific liquid volume is 55 cc / cm 2, if the rupture time over 30 hours, is very small possibility of delayed fracture in actual use. In order to achieve 1650 MPa or higher at a bluing temperature of 500 ° C. or higher, it is necessary to appropriately select the steel material component and the wire drawing area reduction rate.
[0008]
Based on the above examination results, it was concluded that the steel material component, the wire drawing condition, and the bluing condition were optimally selected to achieve a high-strength PC steel bar with excellent delayed fracture characteristics. is there.
[0009]
The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
(1) By mass%, C: 0.6-1.1%, Si: 0.12-2.0%, Mn: 0.3-1.0%, P: 0.025% or less, S: 0.025% or less, consisting of the remainder Fe and inevitable impurities, mainly composed of pearlite structure (which is a layered structure of ferrite and cementite), and the average aspect ratio of plate-like cementite in pearlite is 30 or less A high-strength PC steel wire excellent in delayed fracture resistance, characterized by having a tensile strength of 1650 MPa or more.
(2) Furthermore, by mass%, Al: 0.005-0.1%, Cr: 0.05-2.0%, Mo: 0.05-1.0%, Ni: 0.05-3. 0%, Cu: 0.05 to 1.0%, V: 0.05 to 0.3%, Nb: 0.005 to 0.1%, W: 0.05 to 0.5%, Ti: 0 .High strength PC steel wire with excellent delayed fracture resistance as described in (1) above, comprising 0.005% to 0.05% and B: 0.0003% to 0.005% .
(3) By mass%, C: 0.6-1.1%, Si: 0.12-2.0%, Mn: 0.3-1.0%, P: 0.025% or less, S: 10% or more in an ammonium thiocyanate solution at 50 ° C. and 20% by weight, containing 0.025% or less, consisting of the remainder Fe and inevitable impurities, mainly composed of a pearlite structure (which is a layered structure of ferrite and cementite) When immersed and heated at a rate of 100 ° C./h, the total amount of hydrogen released in the temperature range of 250 ° C. to 500 ° C. is 0.2 mass ppm or less and the tensile strength is 1650 MPa or more. High strength PC steel wire with excellent delayed fracture resistance.
(4) Furthermore, in mass%, Al: 0.005-0.1%, Cr: 0.05-2.0%, Mo: 0.05-1.0%, Ni: 0.05-3. 0%, Cu: 0.05 to 1.0%, V: 0.05 to 0.3%, Nb: 0.005 to 0.1%, W: 0.05 to 0.5%, Ti: 0 A high strength PC steel wire having excellent delayed fracture resistance according to the above (3), characterized in that it contains one or more of 0.005 to 0.05% and B: 0.0003 to 0.005% .
(5) By mass%, C: 0.6-1.1%, Si: 0.12-2.0%, Mn: 0.3-1.0%, P: 0.025% or less, S: After performing patenting on steel composed of the balance Fe and unavoidable impurities, including 0.025% or less, after cold drawing, to obtain a layered structure of ferrite and cementite, in the final step, The tensile strength is set to 1650 MPa or more by performing blueing at a high temperature of 700-100 × log (t) ≧ T ≧ 450 ° C. in a time range of 300 ≧ t ≧ 20 (s). A method for manufacturing high-strength PC steel wires with excellent delayed fracture resistance.
(6) Furthermore, by mass%, Al: 0.005-0.1%, Cr: 0.05-2.0%, Mo: 0.05-1.0%, Ni: 0.05-3. 0%, Cu: 0.05 to 1.0%, V: 0.05 to 0.3%, Nb: 0.005 to 0.1%, W: 0.05 to 0.5%, Ti: 0 .High strength PC steel wire having excellent delayed fracture resistance according to (5) above, characterized in that it contains one or more of 0.005 to 0.05% and B: 0.0003 to 0.005% Manufacturing method.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
First, the reasons for limiting the components of steel to be the subject of the present invention will be described. Hereinafter, the unit is mass%.
[0011]
C: C is an essential element for securing the strength of the PC steel wire. However, if it is less than 0.6%, the amount of pro-eutectoid ferrite increases during patenting, and the required strength cannot be obtained. If it exceeds 1%, the amount of pro-eutectoid cementite increases and the wire drawing characteristics are remarkably deteriorated. Therefore, the content is limited to the range of 0.6 to 1.1%.
[0012]
Si: Si has the effect of improving relaxation properties and increasing strength by solid solution hardening. If the content is less than 0.12%, the above-mentioned action cannot be exhibited. On the other hand, if the content exceeds 2%, the effect is saturated, so the content is limited to the range of 0.12 to 2.0%.
[0013]
Mn: Mn is not only necessary for deoxidation and desulfurization, but also has the effect of increasing the strength of the patenting material. However, if the content is less than 0.3%, the above effect cannot be obtained. Segregation at the time became prominent, and micromartensite that deteriorates the wire drawing characteristics at the time of patenting was generated, so the content was limited to a range of 0.3 to 1.0%.
[0014]
P: P co-segregates with Mn, and remarkably enhances the hardenability. Therefore, in order to promote the formation of micromartensite at the time of patenting, the content was made 0.025% or less.
[0015]
S: S is precipitated as MnS and deteriorates the wire drawing characteristics, so the content was made 0.025% or less.
[0016]
The above are the basic components of the steel that is the subject of the present invention. In the present invention, the steel further has a weight percentage of Al: 0.005-0.1%, Cr: 0.05-2.0%. , Mo: 0.05-1.0%, Ni: 0.05-3.0%, Cu: 0.05-1.0%, V: 0.05-0.3%, Nb: 0.005 ~ 0.1%, W: 0.05-0.5%, Ti: 0.005-0.05%, B: 0.0003-0.0050% may be included alone or in combination it can.
[0017]
Al: Al has the effect of preventing the coarsening of austenite grains and suppressing the deterioration of toughness by forming AlN during deoxidation and heat treatment, and securing solid solution B effective for fixing delayed N and improving delayed fracture characteristics However, if less than 0.005%, these effects are not exhibited, and even if it exceeds 0.1%, the effect is saturated, so the content is limited to a range of 0.005 to 0.1%.
[0018]
Cr: Cr is an effective element for reducing the spacing of the pearlite lamella and increasing the strength of the patenting material. However, if it is less than 0.05%, the effect cannot be fully exerted, whereas it exceeds 2.0%. In order to saturate the effect, it was limited to 0.05 to 2.0%.
[0019]
Mo: Mo is an effective element for increasing the strength of the patenting material in order to make the pearlite lamella spacing as fine as Cr. However, if it is less than 0.05%, the effect cannot be fully exerted. If it exceeds 0.0%, the progress of pearlite transformation is delayed, so the content was limited to 0.05 to 1.0%.
[0020]
Ni: Ni has an effect of suppressing the intrusion of hydrogen. However, if it is less than 0.05%, the effect cannot be exhibited. On the other hand, if it exceeds 3.0%, the effect corresponding to the added amount cannot be exhibited. Limited to -3.0% range.
[0021]
Cu: Cu also has an effect of suppressing the penetration of hydrogen, but if it is less than 0.05%, the effect cannot be exhibited, and if it exceeds 1.0%, the hot workability deteriorates, so 0.05 to 1.0 %.
[0022]
V: V is an effective element for refining austenite grains by producing carbonitride. Further, it precipitates as carbides during patenting and functions as a hydrogen trap site, so that it has an effect of improving delayed fracture resistance. However, if it is less than 0.05%, the above effect cannot be obtained. Even if it exceeds%, the effect is saturated, so it was limited to 0.05 to 1.0%.
[0023]
Nb: Nb is also an element effective for reducing the austenite grains and improving ductility and toughness by producing carbonitrides in the same manner as V. If it is less than 0.005%, the above effect is insufficient. On the other hand, if it exceeds 0.1%, this effect is saturated, so the content is limited to 0.005 to 0.1%.
[0024]
W: W, like V, is an element effective for improving the delayed fracture characteristics of a high-strength PC steel wire. However, if it is less than 0.05%, the above effect cannot be exhibited, while 0.5% Even if it is added over the range, the effect is saturated, so the content is limited to 0.05 to 0.5%.
[0025]
Ti: Ti has the effect of preventing the coarsening of austenite grains by forming deoxidation and TiN, and has the effect of fixing N and ensuring effective solute B for improving delayed fracture characteristics. If it is less than 0.005%, these effects are not exhibited, and even if it exceeds 0.05%, the effect is saturated, so the content is limited to a range of 0.005 to 0.05%.
[0026]
B: B has an effect of improving delayed fracture characteristics. However, if B is less than 0.0003%, the above effect is not exhibited, and even if it exceeds 0.0050%, the effect is saturated. Limited to 0050%.
[0027]
N: N has an effect of refining austenite grains by forming nitrides of Al, V, Nb, and Ti, and can contribute to improvement of ductility and toughness, so 0.003 to 0.015% is preferable range It is.
[0028]
Next, the reasons for limiting the microstructure of the PC steel wire and the bluing temperature, which are the most important points for improving the delayed fracture characteristics of the high strength PC steel wire intended in the present invention, will be described.
[0029]
FIG. 1 shows an example in which the influence of the bluing temperature on the average rupture time by the FIP test is analyzed. The FIP test is a result of a specific liquid amount of 55 cc / cm 2 , a load load of 1200 MPa, and 12 steels for each steel type. As is apparent from the figure, the f 50 fracture time in the FIP test is increased as the brewing temperature is increased, indicating that the delayed fracture resistance is improved. A preferable bluing temperature is 500 ° C. or higher. The relationship between bluing temperature and bluing time is shown in FIG. In the figure, ● indicates that the FIP test f 50 rupture time is 30 h or more, and x indicates that the time is less than 30 h, or less than 1650 MPa. The effect is recognized when the bluing time is in the range of 300 ≧ t ≧ 1 (s) and the bluing temperature is in the range of 700-100 × log (t) ≧ T ≧ 450 ° C.
[0030]
In the drawn pearlite structure, the cementite elongated in a plate shape is dissolved and divided by bluing at a high temperature as shown in FIG. FIG. 4 shows the result of analyzing the influence of the bluing temperature on the ratio of the length and thickness (aspect ratio) of plate-like cementite. Measurements were taken with a scanning electron microscope (SEM) after etching the specimen with a saturated picral solution, and three arbitrary locations where the cementite was linear were photographed at a magnification of 5000 times, and the visual field was measured to determine the average aspect ratio by image analysis. Asked. From the figure, it is shown that the cementite is divided and spheroidized as the bluing temperature increases.
[0031]
FIG. 5 shows the effect of cementite aspect ratio on FIP rupture time. As the aspect ratio of cementite decreases, the FIP fracture time increases. A remarkable effect is recognized when the aspect ratio is 30 or less, and more preferably 20 or less. This is presumably because when the aspect ratio of cementite is small, stress relaxation at the crack tip becomes easy, and the FIP fracture time becomes long.
[0032]
In addition, as a simple method for confirming such a tissue state, a method of specifying by measuring the amount of hydrogen released in a temperature range of 250 ° C. to 500 ° C. by hydrogen temperature rising analysis was devised. FIG. 6 shows a hydrogen release curve when the PC steel wire having the pearlite structure shown in FIG. 3 is taken out after carrying out the FIP test for 10 hours and subjected to hydrogen analysis at a heating rate of 100 ° C./h. The 350 ° C. blueing material has hydrogen release peaks at 100 ° C. and around 350 ° C. It is considered that the peak at 100 ° C. is the amount of diffusible hydrogen, and the peak at 350 ° C. is hydrogen trapped by the working dislocation piled up in the vicinity of the cementite / ferrite interface. Cementite is spheroidized by high temperature bluing, and interfacial dislocation is reduced, so that the amount of trapped hydrogen is also reduced. Therefore, in FIG. 6, the peak at 350 ° C. is not detected for the 500 ° C. bluing material. FIG. 7 shows the relationship between the bluing temperature and the amount of hydrogen at the 350 ° C. peak (the amount of released hydrogen from 250 ° C. to 500 ° C.). As shown in the figure, there is a close relationship between the blueing temperature and the 350 ° C peak hydrogen. If the blueing temperature is 450 ° C or higher, the amount of hydrogen released from 250 ° C to 500 ° C is 0.2 ppm by mass or lower. .
[0033]
【Example】
After rolling the test material having the chemical composition shown in Table 1 under normal hot rolling conditions, patenting and drawing are performed in various temperature ranges, and brewing is performed at different temperatures to produce PC steel wire did. The brewing time was 30 s. Table 2 shows the results of evaluating the mechanical properties, structure morphology, and delayed fracture characteristics using the above PC steel wires. Delayed fracture characteristics were carried out at a load stress of 1200 MPa in the FIP test. Evaluation was performed by taking the f 50 of rupture time of 12 in FIP test.
[0034]
In Tables 1 and 2, A to T are examples of the present invention, and the others are comparative examples. As can be seen from the table, all of the examples of the present invention have a blueing temperature of 450 ° C. or higher and a tensile strength of 1650 MPa or higher. F 50 rupture time in FIP test is 30 hours or more.
[0035]
U, which is a comparative example, is an example in which 1650 MPa could not be achieved by bluing at 450 ° C. or higher because the steel material component and the wire drawing area reduction ratio were not appropriate.
[0036]
V to Z which are comparative examples are all manufactured by a conventional manufacturing method. That is, an example in which blueing is performed at 400 ° C. or less and 1650 MPa or more is achieved, but the cementite aspect ratio is greater than 30, the FIP test has a fracture time of 30 hours or less, and delayed fracture characteristics are poor It is.
[0037]
[Table 1]
Figure 0004146271
[0038]
[Table 2]
Figure 0004146271
[0039]
【The invention's effect】
By controlling the aspect ratio of plate-like cementite in PC steel wire made of drawn pearlitic steel, the present invention can greatly improve delayed fracture characteristics of high-strength PC steel wire with a tensile strength of 1650 MPa or more. In addition, the manufacturing method has been established by optimally selecting the chemical composition, the drawing area reduction ratio, and the bluing condition of the steel, and the industrial effects are extremely remarkable.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of bluing temperature on FIP test break time.
FIG. 2 is a diagram showing the influence of bluing temperature and time on FIP results.
3A is a view showing a cementite shape of a 350 ° C. bluing material, and FIG. 3B is a view showing a cementite shape of a 500 ° C. bluing material.
FIG. 4 is a diagram showing the influence of the aspect ratio of cementite on FIP fracture time.
FIG. 5 is a diagram showing the influence of bluing temperature on the aspect ratio of cementite.
FIG. 6 is a graph showing the influence of bluing temperature on a hydrogen release curve in a temperature rising hydrogen analysis.
FIG. 7 is a diagram showing the influence of bluing temperature on the amount of hydrogen released at a temperature of 250 to 500 ° C. in temperature rising analysis.

Claims (6)

質量%で、C:0.6〜1.1%、Si:0.12〜2.0%、Mn:0.3〜1.0%、P:0.025%以下、S:0.025%以下を含み、残部Feおよび不可避的不純物からなり、且つ、(フェライトとセメンタイトの層状組織である)パーライト組織を主体とし、かつパーライト中の板状セメンタイトの平均アスペクト比が30以下で、引張強さが1650MPa以上を有することを特徴とする耐遅れ破壊特性に優れた高強度PC鋼線。  In mass%, C: 0.6-1.1%, Si: 0.12-2.0%, Mn: 0.3-1.0%, P: 0.025% or less, S: 0.025 %, And the balance is composed of Fe and inevitable impurities, is mainly composed of a pearlite structure (which is a layered structure of ferrite and cementite), and the average aspect ratio of the plate-like cementite in the pearlite is 30 or less. A high-strength PC steel wire excellent in delayed fracture resistance, characterized by having a thickness of 1650 MPa or more. さらに、質量%で、Al:0.005〜0.1%、Cr:0.05〜2.0%、Mo:0.05〜1.0%、Ni:0.05〜3.0%、Cu:0.05〜1.0%、V:0.05〜0.3%、Nb:0.005〜0.1%、W:0.05〜0.5%、Ti:0.005〜0.05%、B:0.0003〜0.005%の1種または2種以上を含むことを特徴とする請求項1記載の耐遅れ破壊特性に優れた高強度PC鋼線。  Furthermore, in mass%, Al: 0.005-0.1%, Cr: 0.05-2.0%, Mo: 0.05-1.0%, Ni: 0.05-3.0%, Cu: 0.05-1.0%, V: 0.05-0.3%, Nb: 0.005-0.1%, W: 0.05-0.5%, Ti: 0.005- The high strength PC steel wire excellent in delayed fracture resistance according to claim 1, comprising 0.05%, B: 0.0003 to 0.005%, or one or more. 質量%で、C:0.6〜1.1%、Si:0.12〜2.0%、Mn:0.3〜1.0%、P:0.025%以下、S:0.025%以下を含み、残部Feおよび不可避的不純物からなり、(フェライトとセメンタイトの層状組織である)パーライト組織を主体とし、かつ50℃、20重量%のチオシアン酸アンモニウム溶液中に10時間以上浸漬し、100℃/hの速度で昇温した際、250℃以上の500℃以下の温度域での水素放出量の総和が0.2質量ppm以下で、引張強さが1650MPa以上を有することを特徴とする耐遅れ破壊特性に優れた高強度PC鋼線。  In mass%, C: 0.6-1.1%, Si: 0.12-2.0%, Mn: 0.3-1.0%, P: 0.025% or less, S: 0.025 %, And the balance is composed of Fe and inevitable impurities, mainly composed of a pearlite structure (which is a layered structure of ferrite and cementite), and immersed in a 20 wt% ammonium thiocyanate solution for 10 hours or more, When the temperature is raised at a rate of 100 ° C./h, the total amount of hydrogen released in a temperature range of 250 ° C. or more and 500 ° C. or less is 0.2 mass ppm or less, and the tensile strength is 1650 MPa or more. High strength PC steel wire with excellent delayed fracture resistance. さらに、質量%で、Al:0.005〜0.1%、Cr:0.05〜2.0%、Mo:0.05〜1.0%、Ni:0.05〜3.0%、Cu:0.05〜1.0%、V:0.05〜0.3%、Nb:0.005〜0.1%、W:0.05〜0.5%、Ti:0.005〜0.05%、B:0.0003〜0.005%の1種または2種以上を含むことを特徴とする請求項3記載の耐遅れ破壊特性に優れた高強度PC鋼線。  Furthermore, in mass%, Al: 0.005-0.1%, Cr: 0.05-2.0%, Mo: 0.05-1.0%, Ni: 0.05-3.0%, Cu: 0.05-1.0%, V: 0.05-0.3%, Nb: 0.005-0.1%, W: 0.05-0.5%, Ti: 0.005- The high-strength PC steel wire having excellent delayed fracture resistance according to claim 3, characterized by containing one or more of 0.05% and B: 0.0003 to 0.005%. 質量%で、C:0.6〜1.1%、Si:0.12〜2.0%、Mn:0.3〜1.0%、P:0.025%以下、S:0.025%以下を含み、残部Feおよび不可避的不純物からなる鋼にパテンティングを行った後、冷間伸線加工し、フェライトとセメンタイトの層状組織とした組織を得た後、最終工程において、時間を300≧t≧20(s)の範囲で、700−100×log(t)≧T≧450℃の高温にてブルーイングを行うことにより引張強さが1650MPa以上とすることを特徴とする耐遅れ破壊特性に優れた高強度PC鋼線の製造方法。  In mass%, C: 0.6-1.1%, Si: 0.12-2.0%, Mn: 0.3-1.0%, P: 0.025% or less, S: 0.025 %, And the steel composed of the remaining Fe and inevitable impurities is subjected to patenting, followed by cold drawing to obtain a layered structure of ferrite and cementite. Delayed fracture resistance characterized by a tensile strength of 1650 MPa or more by performing bluing at a high temperature of 700-100 × log (t) ≧ T ≧ 450 ° C. within a range of ≧ t ≧ 20 (s) Manufacturing method of high strength PC steel wire with excellent properties. さらに質量%で、Al:0.005〜0.1%、Cr:0.05〜2.0%、Mo:0.05〜1.0%、Ni:0.05〜3.0%、Cu:0.05〜1.0%、V:0.05〜0.3%、Nb:0.005〜0.1%、W:0.05〜0.5%、Ti:0.005〜0.05%、B:0.0003〜0.005%の1種または2種以上を含むことを特徴とする請求項5記載の耐遅れ破壊特性に優れた高強度PC鋼線の製造方法。  Further, by mass%, Al: 0.005-0.1%, Cr: 0.05-2.0%, Mo: 0.05-1.0%, Ni: 0.05-3.0%, Cu : 0.05-1.0%, V: 0.05-0.3%, Nb: 0.005-0.1%, W: 0.05-0.5%, Ti: 0.005-0 The method for producing a high-strength PC steel wire having excellent delayed fracture resistance according to claim 5, comprising 0.05%, B: 0.0003 to 0.005%.
JP2003116008A 2003-04-21 2003-04-21 High strength PC steel wire with excellent delayed fracture resistance and method for producing the same Expired - Fee Related JP4146271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116008A JP4146271B2 (en) 2003-04-21 2003-04-21 High strength PC steel wire with excellent delayed fracture resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116008A JP4146271B2 (en) 2003-04-21 2003-04-21 High strength PC steel wire with excellent delayed fracture resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004323870A JP2004323870A (en) 2004-11-18
JP4146271B2 true JP4146271B2 (en) 2008-09-10

Family

ID=33496393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116008A Expired - Fee Related JP4146271B2 (en) 2003-04-21 2003-04-21 High strength PC steel wire with excellent delayed fracture resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4146271B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928786B1 (en) * 2007-12-27 2009-11-25 주식회사 포스코 High strength bridge galvanized steel wire and manufacturing method
KR101304744B1 (en) * 2009-08-06 2013-09-05 주식회사 포스코 High strength wire rod for prestressed concrete stranded wire and prestressed concrete stranded wire and manufacturing method thereof
CN103882339A (en) * 2014-02-21 2014-06-25 芜湖市鸿坤汽车零部件有限公司 High-carbon steel material and preparation method thereof
JP6182489B2 (en) * 2014-03-27 2017-08-16 株式会社神戸製鋼所 Case-hardened steel that has excellent cold forgeability and can suppress abnormal grain generation during carburizing.
JP2016014169A (en) * 2014-07-01 2016-01-28 株式会社神戸製鋼所 Wire rod for steel wire and steel wire
KR101597756B1 (en) * 2014-10-07 2016-02-25 고려제강 주식회사 Prestressing Strand having high stress corrosion feature
JP2018162524A (en) * 2018-06-22 2018-10-18 株式会社神戸製鋼所 Wire material for steel wire, and steel wire

Also Published As

Publication number Publication date
JP2004323870A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4267376B2 (en) High strength PC steel wire with excellent delayed fracture characteristics and method for producing the same
JP5177323B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
JP5135557B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
KR101768785B1 (en) High-strength spring steel wire with excellent hydrogen embrittlement resistance, manufacturing process therefor, and high-strength spring
JP4464524B2 (en) Spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP5251632B2 (en) High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
JP4116762B2 (en) High strength spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP5251633B2 (en) High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
JP3494799B2 (en) High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same
JP3793391B2 (en) High strength bolt excellent in delayed fracture resistance with a tensile strength of 1300 MPa or more and method for producing the same
JP4146271B2 (en) High strength PC steel wire with excellent delayed fracture resistance and method for producing the same
JP4267126B2 (en) Steel material excellent in delayed fracture resistance and method for producing the same
JP3648192B2 (en) High strength PC steel bar with excellent delayed fracture resistance and manufacturing method
JP3348188B2 (en) High-strength PC steel rod and method of manufacturing the same
JP3548519B2 (en) High strength steel with excellent hydrogen embrittlement resistance
JP4054179B2 (en) High-strength pearlite steel with excellent delayed fracture resistance
JP4464735B2 (en) High strength PC steel bar with excellent hydrogen embrittlement resistance and method for producing the same
JP4081234B2 (en) High strength steel with excellent hydrogen embrittlement resistance
JPH0978191A (en) High-strength PC steel rod with excellent delayed fracture properties and method for producing the same
JP6135553B2 (en) Reinforcing bar and method for manufacturing the same
JP4332446B2 (en) High strength steel with excellent cold workability and delayed fracture resistance, and high strength steel parts with excellent delayed fracture resistance
JP3468828B2 (en) Manufacturing method of high strength PC steel rod
JPH06185513A (en) High strength bolt excellent in delay destruction resistance characteristic and manufacture thereof
JPH11270531A (en) High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same
JP2006104550A (en) High strength PC steel bar with excellent delayed fracture resistance and method for improving delayed fracture resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R151 Written notification of patent or utility model registration

Ref document number: 4146271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees