JP2001280864A - Heat exchanger and method of manufacturing the same - Google Patents
Heat exchanger and method of manufacturing the sameInfo
- Publication number
- JP2001280864A JP2001280864A JP2000097822A JP2000097822A JP2001280864A JP 2001280864 A JP2001280864 A JP 2001280864A JP 2000097822 A JP2000097822 A JP 2000097822A JP 2000097822 A JP2000097822 A JP 2000097822A JP 2001280864 A JP2001280864 A JP 2001280864A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- heat transfer
- transfer tube
- heat
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000012546 transfer Methods 0.000 claims abstract description 68
- 239000012530 fluid Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims description 24
- 238000012545 processing Methods 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims 3
- 239000011261 inert gas Substances 0.000 abstract description 11
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 239000003949 liquefied natural gas Substances 0.000 description 24
- 239000007789 gas Substances 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 229910001873 dinitrogen Inorganic materials 0.000 description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 239000003345 natural gas Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000005304 joining Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000002574 poison Substances 0.000 description 4
- 231100000614 poison Toxicity 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 238000005219 brazing Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/0066—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/0066—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
- F28D7/0083—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
- F28D7/106—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、可燃性物質や毒物
等、流路から漏洩することが望ましくない流体を安全に
熱交換させるのに好適な熱交換器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger suitable for safely exchanging heat for a fluid such as a flammable substance or a poison that is not desired to leak from a flow path.
【0002】[0002]
【従来の技術】従来技術としては、可燃性の液化天然ガ
ス(以下、LNGと称する)と圧縮空気とを熱交換する
熱交換器に関しては、特開平10−47080 号公報に記載の
ものがある。この従来技術には、漏洩による不測の事象
を回避するため、不燃性の中間冷媒を介在させて熱交換
させることが提案されている。また、特開平9−279132
号公報では、LNGと熱交換をさせるための不燃性の冷
媒についての検討がなされている。2. Description of the Related Art As a prior art, a heat exchanger for exchanging heat between flammable liquefied natural gas (hereinafter referred to as LNG) and compressed air is disclosed in Japanese Patent Application Laid-Open No. Hei 10-47080. . In this prior art, in order to avoid an unexpected event due to leakage, it is proposed that heat is exchanged through a nonflammable intermediate refrigerant. Also, JP-A-9-279132
In Japanese Patent Application Laid-Open Publication No. H11-115, studies are made on nonflammable refrigerants for exchanging heat with LNG.
【0003】[0003]
【発明が解決しようとする課題】前述の2つの従来技術
では、可燃性のLNGと熱交換させるために不燃性の中
間冷媒を想定しているが、熱交換媒体としてLNGとい
った可燃性物質や毒物等を使用する熱交換器にあって
は、媒体の漏洩、あるいは加熱側流体と被加熱側流体と
の混合によって燃焼や爆発,汚染といった事象に発展し
てしまう虞があるため、安全性についても考慮されるこ
とが望まれていた。In the above two prior arts, a nonflammable intermediate refrigerant is assumed for heat exchange with flammable LNG. However, a flammable substance such as LNG or a toxic substance is used as a heat exchange medium. For heat exchangers that use such heat exchangers, there is a risk that the leakage of the medium or the mixing of the fluid on the heated side and the fluid on the heated side may lead to events such as combustion, explosion, and contamination. It was desired to be considered.
【0004】本発明は上記した点に鑑みなされたもので
あって、その目的とするところは、熱交換媒体の混合を
抑制する熱交換器を提供することにある。[0004] The present invention has been made in view of the above points, and an object of the present invention is to provide a heat exchanger that suppresses mixing of a heat exchange medium.
【0005】[0005]
【課題を解決するための手段】上記目的を達成する為
に、本発明の熱交換器は、複数の伝熱管によって構成さ
れる伝熱管群と、該伝熱管群を収納する胴体と、前記伝
熱管群の両端部側に夫々設置され、該伝熱管群の端部を
夫々保持する管板と、前記胴体内部空間に流路を形成す
るように設置されるバッフル板とを備えた熱交換器にお
いて、前記伝熱管は、内管と外管とにより構成されたも
のであって、該内管の外表面の一部と前記外管の外表面
の一部が、直接或いは熱伝導性の部材を介して互いに接
触するように形成されていることを特徴とする。In order to achieve the above object, a heat exchanger according to the present invention comprises a heat transfer tube group including a plurality of heat transfer tubes, a body accommodating the heat transfer tube group, and a heat transfer tube. A heat exchanger comprising: a tube plate provided at each end of the heat tube group to hold the ends of the heat transfer tube group; and a baffle plate provided to form a flow path in the body internal space. In the above, the heat transfer tube is constituted by an inner tube and an outer tube, and a part of an outer surface of the inner tube and a part of an outer surface of the outer tube are directly or thermally conductive members. Are formed so as to be in contact with each other via
【0006】[0006]
【発明の実施の形態】図4に、本発明による熱交換器を
備えた、LNG冷熱利用型ガスタービン発電システムの
一実施例を示す。本実施例の主要な構成要素としては、
空気を高圧に圧縮する圧縮機51,圧縮された空気とL
NG等の燃料を燃焼させる燃焼器5,高温高圧の燃焼ガ
スの膨張により駆動されるガスタービン7,ガスタービ
ン7と同一軸上に配置される発電機8,ガスタービン7
の排気ガスの熱を回収する再生熱交換器9である。さら
に、本実施例ではLNG貯蔵タンク43から配管40を
経由して供給されるLNGと圧縮機51の吸気とを熱交
換させる熱交換器70を備えている。FIG. 4 shows an embodiment of a gas turbine power generation system utilizing the LNG cold energy, provided with a heat exchanger according to the present invention. The main components of this embodiment include:
A compressor 51 for compressing air to a high pressure;
A combustor 5 for burning fuel such as NG; a gas turbine 7 driven by expansion of a high-temperature, high-pressure combustion gas; a generator 8 arranged on the same axis as the gas turbine 7;
The regenerative heat exchanger 9 recovers the heat of the exhaust gas. Further, in the present embodiment, a heat exchanger 70 for exchanging heat between the LNG supplied from the LNG storage tank 43 via the pipe 40 and the intake air of the compressor 51 is provided.
【0007】図1は、本発明の一実施例である熱交換器
の縦断面図であり、図4に示す熱交換器70の詳細構造
を示す図、図2は伝熱管の横断面図を示したものであ
る。本実施例では、図1と図2に示すように、内管23
と外管24からなる二重管33が、管軸とは垂直な向き
に面をもつアルミニウム合金製の板状フィン22によっ
て互いに連結されている。これら二重管のうちの内管2
3の管内流路はヘッダ26に連通しており、ノズル12
に接続されている。外管24と内管23の間の間隙に形
成される流路は、管板27により仕切られた空間を経由
して、ノズル13に連通している。外管24の表面に
は、板状フィン22の中に混じって、鋼製のバッフル板
31が配置されており、該バッフル板には、ノズル11
を経由して胴30内を流動する空気の流れが板状フィン
の表面に沿って、胴30内部を蛇行して流動する流路を
形成するような開口部を有している。FIG. 1 is a longitudinal sectional view of a heat exchanger according to an embodiment of the present invention. FIG. 1 is a view showing a detailed structure of a heat exchanger 70 shown in FIG. 4, and FIG. It is shown. In this embodiment, as shown in FIG. 1 and FIG.
And the outer tube 24 are connected to each other by plate-like fins 22 made of an aluminum alloy having a surface perpendicular to the tube axis. Inner tube 2 of these double tubes
3 communicates with the header 26, and the nozzle 12
It is connected to the. The flow path formed in the gap between the outer tube 24 and the inner tube 23 communicates with the nozzle 13 via a space partitioned by the tube sheet 27. A steel baffle plate 31 is arranged on the surface of the outer tube 24 and mixed with the plate-like fins 22. The baffle plate has a nozzle 11
Has an opening to form a flow path in which the flow of air flowing in the body 30 via the plate-like fins flows along the surface of the plate-shaped fin in a meandering manner inside the body 30.
【0008】なお、図1に示す本実施例では、圧縮機の
吸気として熱交換器70に導かれた空気は、ノズル11
aから二重管33が設置された胴30内部を蛇行する過
程で、二重管33の内管23内を流通するLNGの冷熱
と熱交換した後、ノズル11bより圧縮機に供給される。
また、ノズル12aからヘッダ26aに導かれたLNG
は、内管23を流通して空気との熱交換で加熱された
後、ヘッダ26b及びノズル12bを経由して外部に供
給される。また、ノズル13aから導かれる不活性ガス
は、内管23と外管24との間に形成された間隙流路を
通過した後、ノズル13bから外部に導かれる構造とな
っている。In this embodiment shown in FIG. 1, the air introduced to the heat exchanger 70 as the intake air of the compressor is
In the process of meandering the inside of the body 30 in which the double pipe 33 is installed from a, the heat exchanges with the cold heat of the LNG flowing through the inner pipe 23 of the double pipe 33, and is then supplied to the compressor from the nozzle 11b.
In addition, LNG guided from the nozzle 12a to the header 26a
Is heated by heat exchange with air through the inner tube 23 and then supplied to the outside via the header 26b and the nozzle 12b. Further, the inert gas guided from the nozzle 13a passes through a gap flow path formed between the inner pipe 23 and the outer pipe 24, and is then guided to the outside from the nozzle 13b.
【0009】この熱交換器の安全システムの構成を図5
に示す。熱交換器70に不活性ガスとして窒素ガスを供
給する窒素ガス供給装置76は、ガス圧力制御弁75を
介して、熱交換器70のノズル13aに接続されてい
る。ノズル13bには、圧力計81およびガス検知器8
2が設置してあり、万が一天然ガス(以下、NGと称す
る)の流路に故障が発生して、NGが不活性ガスの流
路、つまり内管と外管との間隙流路に漏洩した場合に
は、制御回路83の指令により遮断弁85a〜85dが
自動閉鎖する設計となっている。また、この不活性ガス
の流路には、圧力がある限度より上昇すると自動的に開
口するラプチャーディスク86が設置されており、ラプ
チャーディスク86の他端は配管87によりフレアスタ
ック88に接続されている。FIG. 5 shows the configuration of the safety system of this heat exchanger.
Shown in A nitrogen gas supply device 76 that supplies nitrogen gas as an inert gas to the heat exchanger 70 is connected to a nozzle 13a of the heat exchanger 70 via a gas pressure control valve 75. The nozzle 13 b has a pressure gauge 81 and a gas detector 8.
2 is installed, and in the unlikely event that a failure occurs in the flow path of natural gas (hereinafter referred to as NG), NG leaks into the flow path of the inert gas, that is, the gap flow path between the inner pipe and the outer pipe. In this case, the shut-off valves 85a to 85d are designed to be automatically closed by a command from the control circuit 83. In addition, a rupture disk 86 that opens automatically when the pressure rises above a certain limit is installed in the flow path of the inert gas, and the other end of the rupture disk 86 is connected to a flare stack 88 by a pipe 87. I have.
【0010】この熱交換器の製造方法は、まず、図3
(A)に示すように、内面に溝加工が施してある銅製の
外管24の内部に、その外径が外管24の最小内径より
も小さい内管23を挿入する。内管の材質は、ヘッダへ
の溶接性を考慮して、ステンレス鋼とした。次に、外管
24の外表面から、圧延機などにより内向きの機械力を
作用させ、外管24の外径を縮径する。これにより、内
管23の外面と外管24の内面の凸部は、機械的,熱的
に接触し、内管23の管内と、外管24の管外とで、つ
まり空気とLNGとを熱交換することが可能となる。ま
た、内管23と、外管24に挟まれた領域には、間隙が
形成され、不活性ガスなどを流動させることが可能とな
る。[0010] The method of manufacturing this heat exchanger is first described in FIG.
As shown in (A), an inner tube 23 whose outer diameter is smaller than the minimum inner diameter of the outer tube 24 is inserted into a copper outer tube 24 having a groove formed on the inner surface. The material of the inner tube was stainless steel in consideration of weldability to the header. Next, an inward mechanical force is applied from the outer surface of the outer tube 24 by a rolling mill or the like to reduce the outer diameter of the outer tube 24. As a result, the outer surface of the inner tube 23 and the protrusion on the inner surface of the outer tube 24 come into mechanical and thermal contact with each other, and the air and LNG are separated between the inside of the inner tube 23 and the outside of the outer tube 24. Heat exchange becomes possible. Further, a gap is formed in a region sandwiched between the inner tube 23 and the outer tube 24, so that an inert gas or the like can flow.
【0011】さらに、この二重管33を必要な本数配置
し、二重管の外面に、予め孔開け加工された板状フィン
22を、管端部から順次圧入する。板状フィン22の孔
形状は、圧入しやすいように、切り込みを入れるなど、
弾力性を持たせておくことが望ましい。また、必要な間
隔で、予め孔開け加工されたバッフル板31も挿入す
る。バッフル板も同様に孔加工するが、バッフル板は、
胴内の流れの向きを制限するために設置され、熱伝達作
用は必ずしも必要でないので、バッフル板の孔には、弾
力性があるゴムや、テフロンなどのパッキンを設置して
もよい。その場合は気密性を向上させることができる。Further, a required number of the double tubes 33 are arranged, and plate-like fins 22 that have been punched in advance are sequentially pressed into the outer surface of the double tube from the tube end. The hole shape of the plate-like fins 22 is cut to make it easier to press-fit.
It is desirable to have elasticity. At a necessary interval, a baffle plate 31 that has been punched in advance is also inserted. The baffle plate is drilled in the same way, but the baffle plate is
The baffle plate is provided to restrict the direction of the flow in the body and does not necessarily require a heat transfer function. Therefore, elastic holes or packing such as Teflon may be provided in the hole of the baffle plate. In that case, the airtightness can be improved.
【0012】この例では、二重管33を必要本数だけ固
定して、板状フィン22やバッフル板31を、管端部か
ら順次圧入したが、予め板状フィン22やバッフル板3
1を必要な枚数だけ整列して固定し、二重管33を順次
挿入してもよい。二重管33の本数が少ない場合は、前
者の方法が圧入に必要な力が小さく、二重管の本数が多
い場合は後者のほうが小さな力で圧入できるという利点
がある。In this example, the required number of double tubes 33 are fixed, and the plate-like fins 22 and the baffle plate 31 are sequentially press-fitted from the end of the tube.
The double tubes 33 may be inserted one after another by aligning and fixing a necessary number of the tubes 1. When the number of double tubes 33 is small, the former method has the advantage that the force required for press-fitting is small, and when the number of double tubes 33 is large, the latter method has the advantage that it can be press-fitted with smaller force.
【0013】次に、管板27を、銅製の外管24の外表
面に取り付ける。接合の方法は、ロウ接または、不活性
ガス中での溶接である。次に、ヘッダ26を、ステンレ
ス鋼製内管23の管端に溶接により取り付ける。これら
を胴30に収納し、ノズル11,12,13,ふた32
などを取り付ける。なお、図示していないが、胴30に
は、ベローズなどを取り付け、熱膨張による応力を緩和
することが望ましい。Next, the tube sheet 27 is attached to the outer surface of the outer tube 24 made of copper. The joining method is brazing or welding in an inert gas. Next, the header 26 is attached to the end of the stainless steel inner tube 23 by welding. These are housed in the body 30, and the nozzles 11, 12, 13,
Attach etc. Although not shown, it is desirable that bellows or the like be attached to the body 30 to reduce stress due to thermal expansion.
【0014】図1と図4を用いて本実施例の動作を説明
する。熱交換器70のノズル11aには、空気ブロア8
0により、加熱側流体として常温、大気圧程度の吸入空
気が供給され、ノズル12aには、被加熱側流体として
温度−150℃程度、圧力5MPa程度のLNGが供給
される。ノズル11aから流入した吸入空気は、バッフ
ル板31に仕切られた胴30内の空間を、板状フィン2
2の面と平行に、フィンと強制対流による熱伝達をしな
がら、ノズル11bの方向へ流動していく。バッフル板
31の効果により、流れは板状フィン22の部材に平行
に整流され、吸入空気が胴30内を蛇行して移動するた
め、移動距離が長くなり、熱交換の温度効率を高めるこ
とが出来る。また、流路が制限されるため、流速が増大
し、熱伝達率も増大する効果がある。さらに、板状フィ
ンの表面伝熱面積は非常に大きく、アルミニウム合金製
なのでフィン効率も大きいため、低密度な吸入空気の熱
交換には都合がよい。The operation of this embodiment will be described with reference to FIGS. An air blower 8 is provided in the nozzle 11a of the heat exchanger 70.
At 0, suction air at normal temperature and about atmospheric pressure is supplied as a heating-side fluid, and LNG at a temperature of about -150 ° C. and a pressure of about 5 MPa is supplied to the nozzle 12a as a heated-side fluid. The intake air flowing in from the nozzle 11a divides the space in the body 30 partitioned by the baffle plate 31 into the plate-like fins 2.
In parallel with the surface of No. 2, the heat flows by the forced convection with the fins and flows toward the nozzle 11b. Due to the effect of the baffle plate 31, the flow is rectified in parallel to the members of the plate-like fins 22, and the intake air moves meandering in the body 30, so that the movement distance becomes longer and the temperature efficiency of heat exchange can be increased. I can do it. Further, since the flow path is restricted, there is an effect that the flow velocity increases and the heat transfer coefficient also increases. Furthermore, since the surface heat transfer area of the plate-like fin is very large and the fin efficiency is high because it is made of an aluminum alloy, it is convenient for heat exchange of low-density intake air.
【0015】ノズル12aから供給された−150℃の
LNGは、ヘッダ26aから、二重管33の内管23の
管内へ分岐して流入していく。この流体は、密度が大き
く、熱伝導率も大きいことから、管内の熱伝達率は大き
い。全体の伝熱の経路は、空気と板状フィン22の強制
対流熱伝達,板状フィン内部の熱伝導,板状フィンと外
管24の接触熱伝達,外管の管材質中の熱伝導,外管の
内壁面の凸部と内管23の外壁面の接触熱伝達,内管の
管材質中の熱伝導,内管の管内表面とLNGの強制対流
熱伝達がある。この経路で最も熱抵抗が大きいのは、低
密度の空気と板状フィンの強制対流熱伝達であるが、本
実施例のように外管の外部に板状フィンを配置して、熱
伝達率が小さい部分の伝熱面積を大きくする手段によ
り、全体の熱貫流率を向上することが可能となる。The LNG at -150 ° C. supplied from the nozzle 12a branches from the header 26a into the inner pipe 23 of the double pipe 33 and flows therein. Since this fluid has a high density and a high thermal conductivity, the heat transfer coefficient in the tube is high. The entire heat transfer path includes forced convection heat transfer between the air and the plate-like fins 22, heat conduction inside the plate-like fins, contact heat transfer between the plate-like fins and the outer tube 24, heat conduction in the tube material of the outer tube, There are contact heat transfer between the protrusion on the inner wall surface of the outer tube and the outer wall surface of the inner tube 23, heat conduction in the tube material of the inner tube, and forced convection heat transfer between the inner surface of the inner tube and the LNG. The greatest thermal resistance in this path is forced convection heat transfer between low-density air and plate-like fins. However, as in the present embodiment, plate-like fins are arranged outside the outer tube to reduce the heat transfer coefficient. Means for increasing the heat transfer area of a portion having a small diameter can improve the overall heat transmission coefficient.
【0016】この熱交換の作用により、吸入空気がノズ
ル11bから流出するときには、−130℃程度まで冷
却され、NGがヘッダ26bを経由して、ノズル12b
から流出する時には、−10℃まで加熱されている。When the intake air flows out of the nozzle 11b by the action of the heat exchange, it is cooled to about -130 ° C., and NG is passed through the header 26b to the nozzle 12b.
As it flows out, it is heated to -10 ° C.
【0017】−130℃まで冷却された吸入空気は、圧
縮機51の作用により15気圧程度まで圧縮される。こ
の時、冷却されて密度が大きな空気を圧縮するため、常
温の空気を15気圧程度まで圧縮するのと比較して、半
分以下程度の動力で圧縮可能である。圧縮された空気
は、温度が70℃程度まで上昇するが、再生熱交換器9
によりガスタービン排ガスと熱交換され、さらに500
℃程度まで加熱され、燃焼器5でLNG等の燃料50と
共に燃焼させる。ガスタービン7では、この高温高圧の
燃焼ガスの膨張力により、発電機8が駆動され、電力を
発生する。ガスタービン7の排気ガスは、再生熱交換器
9により熱回収され、スタック55から大気に排出され
る。このシステムの特徴は、LNGが保有する冷熱を利
用することにより、通常はガスタービン出力の50〜6
0%を消費する空気圧縮機の動力を大幅に削減出来るこ
とであり、結果として発電出力が大幅に増加できる。The intake air cooled to -130 ° C. is compressed to about 15 atm by the action of the compressor 51. At this time, since the air that has been cooled and has a high density is compressed, the air can be compressed with less than half the power as compared with the case where the normal temperature air is compressed to about 15 atm. Although the temperature of the compressed air rises to about 70 ° C., the regenerated heat exchanger 9
Heat exchange with the gas turbine exhaust gas
The fuel is heated to about ° C. and burned in a combustor 5 together with a fuel 50 such as LNG. In the gas turbine 7, the generator 8 is driven by the expansion force of the high-temperature and high-pressure combustion gas to generate electric power. The exhaust gas of the gas turbine 7 is recovered by the regenerative heat exchanger 9 and discharged from the stack 55 to the atmosphere. The feature of this system is that by utilizing the cold energy possessed by LNG, usually 50 to 6
The power of the air compressor that consumes 0% can be greatly reduced, and as a result, the power generation output can be greatly increased.
【0018】次に、図1と図5を用いて、本実施例にお
いて、万が一、熱交換器70において漏えいが発生した
場合の動作を説明する。本実施例では、前記したよう
に、空気流路18には、常温,大気圧程度の空気が流動
する。天然ガス流路19(内管23の内部流路)には、
加圧したLNGが供給され、空気との熱交換により加熱
されてNGとなる。また、窒素ガス流路20(内管23
と外管24との間隙流路)には、窒素ガス供給装置76
から窒素ガスが供給されている。熱交換器70の運転に
伴い、供給された窒素ガスも冷却され、体積が収縮する
ので、ガス圧力制御弁75の自動制御により、窒素ガス
流路20内での窒素ガス圧力が大気圧程度になるように
制御する。また、運転を停止して、熱交換器70全体の
温度が上昇した場合には、窒素ガス流路20の圧力が上
昇するので、窒素ガス排出弁77を操作して、圧力を大
気圧程度に制御する。Next, with reference to FIGS. 1 and 5, an operation in the case where a leak occurs in the heat exchanger 70 in this embodiment will be described. In this embodiment, as described above, air at normal temperature and about atmospheric pressure flows through the air flow path 18. In the natural gas flow path 19 (the internal flow path of the inner pipe 23),
Pressurized LNG is supplied and heated by heat exchange with air to become NG. The nitrogen gas flow path 20 (the inner pipe 23)
The nitrogen gas supply device 76
Is supplied with nitrogen gas. With the operation of the heat exchanger 70, the supplied nitrogen gas is also cooled and the volume is reduced, so that the nitrogen gas pressure in the nitrogen gas flow path 20 is reduced to about atmospheric pressure by automatic control of the gas pressure control valve 75. Control so that When the operation is stopped and the temperature of the entire heat exchanger 70 rises, the pressure of the nitrogen gas flow path 20 rises. Therefore, the nitrogen gas discharge valve 77 is operated to reduce the pressure to about atmospheric pressure. Control.
【0019】ここで、万が一、NGが流動する天然ガス
流路19の何れかの部位が損傷した場合を想定する。図
1に示すように、天然ガス流路19とは、ノズル12a
〜ヘッダ26a〜内管23〜ヘッダ26b〜ノズル12
bという経路である。この経路の外表面は、窒素ガス流
路20すなわち、ノズル13a〜管板27bと胴30と
ふた32bで覆われた空間〜外管24〜管板27aと胴
30とふた32aで覆われた空間〜ノズル13bという
領域で、連続的に覆われている。従って、万が一、天然
ガス流路19の何れかが損傷した場合、相対的に圧力が
高いNGは、必然的に窒素ガス流路20へ流出する。加
熱側流体である空気は、空気流路18すなわち、ノズル
11a〜胴30〜ノズル11bという経路を流動するた
め、このような事象が発生した場合でも、NGが助燃性
の空気と混合することは無く、安全性が確保される。Here, it is assumed that any part of the natural gas passage 19 through which NG flows is damaged. As shown in FIG. 1, the natural gas flow path 19 is
~ Header 26a ~ inner tube 23 ~ header 26b ~ nozzle 12
This is the path b. The outer surface of this path is the nitrogen gas flow path 20, that is, the space covered by the nozzle 13a to the tube sheet 27b, the body 30, and the lid 32b to the space covered by the outer tube 24 to the tube sheet 27a, the body 30, and the lid 32a. To the nozzle 13b. Therefore, if any of the natural gas passages 19 is damaged, NG having a relatively high pressure inevitably flows out to the nitrogen gas passage 20. Since the air as the heating-side fluid flows through the air flow path 18, that is, the path from the nozzle 11a to the body 30 to the nozzle 11b, even if such an event occurs, the NG may not mix with the combustion-supporting air. No safety is ensured.
【0020】窒素ガス流路20には、図5に示すように
圧力計81およびガス検知器82が設置してあり、圧力
の変化と、ガス濃度の変化を検出することにより、制御
回路83の指令により遮断弁85a〜85dが閉鎖す
る。さらに、窒素ガス流路20の圧力が、設定した限度
より上昇すると、ラプチャーディスク86が自動的に破
裂して開口し、NGは不活性ガスである窒素と混合しな
がら配管87を経由してフレアスタック88に導かれ、
未燃ガスを燃焼しながら安全に系外に排出される。これ
らの事象は、熱交換器70の遮断弁85aおよび85b
の内側に存在するNGが全て放出され次第、速やかに終
了する。As shown in FIG. 5, a pressure gauge 81 and a gas detector 82 are installed in the nitrogen gas flow path 20. By detecting a change in pressure and a change in gas concentration, a control circuit 83 is controlled. The shutoff valves 85a to 85d are closed by the command. Further, when the pressure of the nitrogen gas flow path 20 rises above a set limit, the rupture disk 86 automatically ruptures and opens, and the NG flare through the pipe 87 while mixing with the inert gas nitrogen. Led to the stack 88,
Unburned gas is safely discharged outside the system while burning. These events correspond to the shutoff valves 85a and 85b of the heat exchanger 70.
As soon as all of the NG existing inside the is released, the process ends promptly.
【0021】本実施例では、二重管を構成する際に、内
面に溝加工あるいは突起加工がなされた外管を用い、図
3(A)のような二重管を得たが、外面に溝加工あるい
は突起加工がなされた内管を用いてもよく、その場合は
図3(B)のような二重管形状となる。内管23の材質
がステンレス鋼の場合など、加工が容易でない場合には
図3(A)の方式が有利である。管の外部には、機械加
工などで大きな凹凸を付けることが比較的容易であり、
不活性ガスの流れる環状流路面積を大きくしたい場合に
は、図3(B)の方式が有利となる。In the present embodiment, when forming the double pipe, an outer pipe whose inner surface is grooved or protruded is used to obtain a double pipe as shown in FIG. 3 (A). An inner tube having grooves or protrusions may be used, in which case it has a double tube shape as shown in FIG. If the processing is not easy, such as when the material of the inner tube 23 is stainless steel, the method of FIG. 3A is advantageous. It is relatively easy to make large irregularities on the outside of the pipe by machining, etc.
When it is desired to increase the area of the annular flow path through which the inert gas flows, the method shown in FIG. 3B is advantageous.
【0022】さらに、図3(C)に示すように、内管2
3の外面と、外管24の内面の両方に溝加工あるいは突
起加工を施してもよい。その場合の利点は、不活性ガス
の流路面積が大きく採れる事であるが、製造コストは高
価になる。Further, as shown in FIG.
3 and the inner surface of the outer tube 24 may be grooved or protruded. The advantage in that case is that a large flow area for the inert gas can be used, but the production cost is high.
【0023】また、図3(D)に示すように、溝加工あ
るいは突起加工をせずに、伝熱性のワイヤ35を内管2
3と外管24の間に挿入してから二重管を構成してもよ
い。この場合、溝加工あるいは突起加工は不要となる利
点があるが、加工時に多数のワイヤ35を適切な位置に
保持する手段が必要となる。As shown in FIG. 3D, the heat conductive wire 35 is connected to the inner tube 2 without forming grooves or protrusions.
The double pipe may be formed after being inserted between 3 and the outer pipe 24. In this case, there is an advantage that the groove processing or the projection processing is not required, but a means for holding a large number of wires 35 at appropriate positions during the processing is required.
【0024】加えて、二重管33を組み立てる方法とし
て、前記した実施例では、外管24に外部から機械力を
加えて縮径する方法を例示したが、以下に、別の組み立
て方法について説明する。In addition, as a method of assembling the double tube 33, in the above-described embodiment, a method of reducing the diameter by applying a mechanical force to the outer tube 24 from the outside has been exemplified, but another assembling method will be described below. I do.
【0025】まず、予め孔開け加工されたアルミニウム
合金製の板状フィン22を、孔の位置が揃うように、必
要な枚数整列させておく。板状フィン22の孔形状は、
孔の最小内径が外管24の外径よりも少し大きくなるよ
うに、エッジ部分を折り込み、カラー形状にしておく。
また、必要な間隔で、予め孔開け加工されたバッフル板
31も挿入する。バッフル板の孔は、同様のカラー形状
でも良いが、前記実施例と同様に、弾力性があるゴム
や、テフロンなどのパッキンを設置してもよい。その場
合は、気密性を向上させることができる。First, the necessary number of plate-like fins 22 made of aluminum alloy, which have been pre-drilled, are aligned so that the positions of the holes are aligned. The hole shape of the plate-like fin 22 is
The edge portion is folded into a collar shape so that the minimum inner diameter of the hole is slightly larger than the outer diameter of the outer tube 24.
At a necessary interval, a baffle plate 31 that has been punched in advance is also inserted. The hole of the baffle plate may have the same color shape, but similarly to the above-described embodiment, elastic rubber or packing such as Teflon may be provided. In that case, the airtightness can be improved.
【0026】これら整列されたフィンとバッフル板の孔
加工部分に対し、内面に溝加工を施した銅製の外管24
を挿入する。挿入時点では、外管24とフィンの孔と
は、僅かな隙間があるので、マンドレルなどを外管24
の管内に挿入し、管の外径を拡管する。あるいは、外管
24の端部に仮配管を接続し、水圧などの流体力を作用
させて拡管してもよい。銅製の外管24は、展延性に富
むので、比較的容易に拡管でき、板状フィン22と外管
24は、機械的,熱的に接合される。このとき、管板2
7a,27bも予め挿入しておけば、拡管により管板と
外管24を接合することが可能である。拡管による接合
では強度に問題がある場合は、管板と外管の接合は、ロ
ウ接,溶接など通常の方法で接合する。The outer tube 24 made of copper and having a groove formed on the inner surface is formed in the aligned portion of the hole of the fin and the baffle plate.
Insert At the time of insertion, there is a slight gap between the outer tube 24 and the hole of the fin.
And expand the outside diameter of the tube. Alternatively, a temporary pipe may be connected to the end of the outer pipe 24 and expanded by applying a fluid force such as water pressure. Since the copper outer tube 24 is rich in extensibility, it can be expanded relatively easily, and the plate-like fin 22 and the outer tube 24 are mechanically and thermally joined. At this time, tube sheet 2
If the tubes 7a and 27b are also inserted in advance, the tube sheet and the outer tube 24 can be joined by expanding the tube. If there is a problem with the strength in the joining by expansion, joining of the tube sheet and the outer tube is performed by a usual method such as brazing or welding.
【0027】次に、外管24のそれぞれの管内に、外径
が外管24の最小内径よりも小さい、銅製の内管23を
挿入する。さらに、同様にマンドレルまたは水圧力を作
用させて内管23を拡管し、外管24の内面の凸部と内
管23の外面を機械的,熱的に接合する。このとき、ヘ
ッダ26a,26bの中の管板部分も予め挿入しておけ
ば、拡管によりヘッダと外管24を接合することが可能
である。但し、拡管による接合では強度に問題がある場
合は、ロウ接,溶接など通常の方法で接合する。これら
を胴30に収納し、ノズル11,12,13、ふた32
などを取り付ける。なお、前記と同様に、胴30には、
ベローズなどを取り付け、熱膨張による応力を緩和する
ことが望ましい。Next, a copper inner tube 23 whose outer diameter is smaller than the minimum inner diameter of the outer tube 24 is inserted into each of the outer tubes 24. Further, the inner tube 23 is expanded by applying a mandrel or water pressure in the same manner, and the projection on the inner surface of the outer tube 24 and the outer surface of the inner tube 23 are mechanically and thermally joined. At this time, if the tube sheet portions in the headers 26a and 26b are also inserted in advance, the header and the outer tube 24 can be joined by expanding the tube. However, when there is a problem in strength in the joining by pipe expansion, joining is performed by a normal method such as brazing or welding. These are housed in the body 30 and the nozzles 11, 12, 13,
Attach etc. In addition, similarly to the above, the trunk 30 includes
It is desirable to attach bellows or the like to reduce stress due to thermal expansion.
【0028】この組み立て方法の利点は、最初に説明し
た実施例とは異なり、外管の縮径や、二重管の圧入とい
った、特殊な機械装置が不要である点である。The advantage of this assembling method is that, unlike the first embodiment, no special mechanical device such as reducing the diameter of the outer tube or press-fitting the double tube is required.
【0029】また、説明した例では、板状フィン22や
バッフル板31を、孔の位置が揃うように、必要な枚数
整列してから外管24を順次挿入したが、予め必要な本
数の外管24を固定しておき、その管端部に板状フィン
22やバッフル板31を順次挿入してもよい。前記の実
施例の場合と同様に、挿入時に発生する摩擦力の観点か
ら、有利な方法を選択することができる。In the example described above, the outer tubes 24 are sequentially inserted after the necessary number of plate-like fins 22 and baffle plates 31 are aligned so that the positions of the holes are aligned. The tube 24 may be fixed, and the plate-like fin 22 and the baffle plate 31 may be sequentially inserted into the tube end. As in the case of the previous embodiment, an advantageous method can be selected in terms of the frictional force generated during insertion.
【0030】本実施例では、二重管を構成する際に、内
面に溝加工あるいは突起加工がなされた外管を用い、図
3(A)のような二重管を得たが、前記実施例でも記載
したように、図3(B)や、図3(C),図3(D)に
示した二重管を得る場合も、同様に実現可能であり、そ
の場合の特有の性質などは、それぞれ前記実施例と同様
であることはいうまでもない。In this embodiment, when forming a double pipe, an outer pipe having an inner surface with groove processing or projection processing is used to obtain a double pipe as shown in FIG. 3 (A). As described in the example, the case where the double tube shown in FIG. 3B, FIG. 3C, or FIG. It is needless to say that each is the same as the above-mentioned embodiment.
【0031】以上、本発明の一実施例による熱交換器の
製造方法と、熱交換器を備えたLNG冷熱利用型ガスター
ビン発電システムの実施形態について例示したが、本発
明は、これらの他にも、例えば、LNG冷熱利用型液体
空気製造システム等、LNGの冷熱を利用するシステム
の全てに適用可能である。The embodiment of the method for manufacturing a heat exchanger according to one embodiment of the present invention and the gas turbine power generation system utilizing an LNG cold heat provided with a heat exchanger have been described above. The present invention is also applicable to all systems utilizing LNG cryogenic heat, such as an LNG cryogenic liquid air production system.
【0032】本実施例の熱交換器によれば、二重管構造
の伝熱管を形成し、二重管の外管と内管の間隙流路に不
活性ガスを流動させることにより、可燃性物質や毒物
等、漏えいすることが望ましくない流体を熱交換する場
合に、万が一、伝熱管に漏洩が発生した場合にも、加熱
側流体と被加熱側流体の直接的な混合を抑制することが
可能となる。According to the heat exchanger of the present embodiment, the heat transfer tube having the double tube structure is formed, and the inert gas is caused to flow through the gap flow path between the outer tube and the inner tube of the double tube, so that the flammability can be improved. In the case of heat exchange of fluids that are not desired to leak, such as substances and poisons, it is possible to suppress the direct mixing of the heating fluid and the heated fluid even if the heat transfer tube leaks. It becomes possible.
【0033】また、該二重伝熱管の該外管の外表面を他
の該外管の外表面と互いに熱伝導性の部材により結合す
ることにより、管外の伝熱面積を大きくし、流速と熱伝
達率を増大させることができ、熱交換器全体の効率を高
めることができる。Further, by connecting the outer surface of the outer tube of the double heat transfer tube to the outer surfaces of the other outer tubes by a heat conductive member, the heat transfer area outside the tube is increased, and the flow rate is increased. And the heat transfer coefficient can be increased, and the efficiency of the entire heat exchanger can be increased.
【0034】さらに、該胴の片側には、第一の管板と第
二の管板を有し、第一の管板は該二重伝熱管の該外管の
管端部に接続され、第二の管板は該二重伝熱管の該内管
の管端部に接続されているので、万が一、ヘッダ部分に
漏洩が発生した場合にも、加熱側流体と被加熱側流体の
直接的な混合を防ぐことができる。Further, on one side of the body, a first tube sheet and a second tube sheet are provided, and the first tube sheet is connected to a tube end of the outer tube of the double heat transfer tube, Since the second tube sheet is connected to the tube end of the inner tube of the double heat transfer tube, even if leakage occurs in the header portion, the direct connection between the heated fluid and the heated fluid is prevented. Mixing can be prevented.
【0035】このように、本実施例によれば、可燃性物
質や毒物等、流路から漏えいすることが望ましくない流
体を安全にかつ高効率に熱交換させることが可能とな
る。よって、本実施例の熱交換器をLNG冷熱利用シス
テムの熱交換器に適用することにより、安全で高効率な
LNG冷熱利用システムを提供することができる。As described above, according to the present embodiment, it is possible to safely and efficiently exchange heat for a fluid such as a flammable substance or a poison that is not desired to leak from the flow path. Therefore, by applying the heat exchanger of the present embodiment to the heat exchanger of the LNG cold energy utilization system, a safe and highly efficient LNG cold energy utilization system can be provided.
【0036】[0036]
【発明の効果】本発明の目的は、例えば可燃性物質や毒
物等、漏えいすることが望ましくない流体を熱交換する
熱交換器において、加熱側流体と被加熱側流体の混合を
抑制することができる熱交換器を提供することにある。An object of the present invention is to suppress the mixing of the fluid on the heated side and the fluid on the heated side in a heat exchanger for exchanging heat with a fluid that is not desired to leak, such as a flammable substance or a poison. To provide a heat exchanger that can be used.
【図1】本発明の一実施例である熱交換器の縦断面図。FIG. 1 is a longitudinal sectional view of a heat exchanger according to an embodiment of the present invention.
【図2】本発明の一実施例である熱交換器の伝熱管部分
の横断面図。FIG. 2 is a cross-sectional view of a heat transfer tube portion of the heat exchanger according to one embodiment of the present invention.
【図3】本発明の一実施例である熱交換器の二重管部分
の拡大断面図。FIG. 3 is an enlarged sectional view of a double pipe portion of the heat exchanger according to one embodiment of the present invention.
【図4】本発明の一実施例であるLNG冷熱利用型ガス
タービン発電システムの概要図。FIG. 4 is a schematic view of an LNG cold-heat utilization type gas turbine power generation system according to an embodiment of the present invention.
【図5】本発明の一実施例である安全機構の概要図。FIG. 5 is a schematic diagram of a safety mechanism according to one embodiment of the present invention.
5…燃焼器、7…ガスタービン、8…発電機、9…再生
熱交換器、11,12,13…ノズル、18…空気流
路、19…天然ガス流路、20…不活性ガス流路、22
…板状フィン、23…内管、24…外管、26…ヘッ
ダ、27…管板、30…胴、31…バッフル板、32…
ふた、33…二重管、35…ワイヤ、40,87…配
管、43…LNG貯蔵タンク、51…空気圧縮機、55
…スタック、70…熱交換器、75…ガス圧力制御弁、
76…窒素ガス供給装置、77…窒素ガス排出弁、80
…空気ブロア、81…圧力計、82…ガス検知器、83
…制御回路、85…遮断弁、86…ラプチャーディス
ク、88…フレアスタック。5: Combustor, 7: Gas turbine, 8: Generator, 9: Regeneration heat exchanger, 11, 12, 13 ... Nozzle, 18: Air flow path, 19: Natural gas flow path, 20: Inactive gas flow path , 22
... plate-like fins, 23 ... inner tube, 24 ... outer tube, 26 ... header, 27 ... tube plate, 30 ... trunk, 31 ... baffle plate, 32 ...
Lid, 33: double pipe, 35: wire, 40, 87: pipe, 43: LNG storage tank, 51: air compressor, 55
... stack, 70 ... heat exchanger, 75 ... gas pressure control valve,
76: nitrogen gas supply device, 77: nitrogen gas discharge valve, 80
... air blower, 81 ... pressure gauge, 82 ... gas detector, 83
... control circuit, 85 ... shut-off valve, 86 ... rupture disk, 88 ... flare stack.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 千野 耕一 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 Fターム(参考) 3L103 AA44 CC21 CC22 CC26 DD08 DD18 DD33 DD38 DD42 DD62 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Koichi Chino 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi, Ltd. Electric Power & Electric Development Laboratory 3L103 AA44 CC21 CC22 CC26 DD08 DD18 DD33 DD38 DD42 DD62
Claims (11)
と、該伝熱管群を収納する胴体と、前記伝熱管群の両端
部側に夫々設置され、該伝熱管群の端部を夫々保持する
管板と、前記胴体内部空間に流路を形成するように設置
されるバッフル板とを備えた熱交換器において、 前記伝熱管は、内管と外管とにより構成されたものであ
って、該内管の外表面の一部と前記外管の外表面の一部
が、直接或いは熱伝導性の部材を介して互いに接触する
ように形成されていることを特徴とする熱交換器。1. A heat transfer tube group constituted by a plurality of heat transfer tubes, a body accommodating the heat transfer tube group, and a heat transfer tube group provided at both ends of the heat transfer tube group. In a heat exchanger including a tube plate to be held and a baffle plate installed so as to form a flow path in the inner space of the body, the heat transfer tube includes an inner tube and an outer tube. A part of the outer surface of the inner tube and a part of the outer surface of the outer tube are formed so as to be in contact with each other directly or via a heat conductive member. .
と、該伝熱管群を収納する胴体と、前記伝熱管群の両端
部側に夫々設置され、該伝熱管群の端部を夫々保持する
管板と、前記胴体内部空間に流路を形成するように設置
されるバッフル板とを備えた熱交換器において、 前記伝熱管は、内管と、該内管の外周面と所定の間隙を
有するように配置される外管とにより構成されたもので
あって、該内管の外表面の一部と前記外管の内表面の一
部が、直接或いは熱伝導性の部材を介して互いに接触す
るように形成されていることを特徴とする熱交換器。2. A heat transfer tube group constituted by a plurality of heat transfer tubes, a body accommodating the heat transfer tube group, and end portions of the heat transfer tube group provided at both ends of the heat transfer tube group. In a heat exchanger comprising: a tube sheet to be held; and a baffle plate installed so as to form a flow path in the body inner space, the heat transfer tube includes an inner tube, an outer peripheral surface of the inner tube, An outer tube arranged so as to have a gap, wherein a part of the outer surface of the inner tube and a part of the inner surface of the outer tube are directly or through a heat conductive member. Characterized by being formed so as to be in contact with each other.
って構成される伝熱管群と、該伝熱管群を収納する胴体
と、前記伝熱管群の両端部側に夫々設置され、該伝熱管
群の端部を夫々保持する管板と、前記胴体内部空間であ
って前記伝熱管群の外周部に第2の流体を流通させる流
路を形成するように設置されるバッフル板とを備えた熱
交換器において、 前記伝熱管は、内管と外管とにより構成され、該内管と
外管の間には第3の流体を流通させるように、前記内管
の外周面と外管の内表面とに所定の間隙を有し、前記内
管の外表面の一部と前記外管の内表面の一部が、直接或
いは熱伝導性の部材を介して互いに接触するように形成
されていることを特徴とする熱交換器。3. A heat transfer tube group constituted by a plurality of heat transfer tubes through which a first fluid flows, a body accommodating the heat transfer tube group, and a heat transfer tube group provided at both ends of the heat transfer tube group. A tube plate that holds each end of the heat tube group; and a baffle plate that is installed so as to form a flow path that allows a second fluid to flow through the outer peripheral portion of the heat transfer tube group in the body internal space. In the heat exchanger, the heat transfer tube is constituted by an inner tube and an outer tube, and an outer peripheral surface of the inner tube and an outer tube are formed so that a third fluid flows between the inner tube and the outer tube. A predetermined gap between the inner surface of the inner tube and a portion of the outer surface of the inner tube and a portion of the inner surface of the outer tube are formed so as to be in contact with each other directly or via a heat conductive member. A heat exchanger.
熱管外管の外表面と、互いに熱伝導性の部材により結合
されていることを特徴とする請求項1から3の何れかに
記載の熱交換器。4. The heat transfer tube according to claim 1, wherein an outer surface of the outer tube is connected to an outer surface of another outer tube of the heat transfer tube by a heat conductive member. The heat exchanger according to any one of the above.
る第1の伝熱管の管内に、外径が該第1の伝熱管の最小
内径よりも小さい第2の伝熱管を挿入し、外側となる第
2の伝熱管の外表面から内向きの機械力を作用させて前
記第2の伝熱管の外径を縮径し、形成された二重管の外
面に、予め孔開け加工されたフィンを圧入することを特
徴とする熱交換器の製造方法。5. A second heat transfer tube having an outer diameter smaller than a minimum inner diameter of the first heat transfer tube is inserted into a tube of the first heat transfer tube having an inner surface subjected to groove processing or projection processing. By applying an inward mechanical force from the outer surface of the second heat transfer tube to reduce the outer diameter of the second heat transfer tube, the outer surface of the formed double tube was pre-drilled. A method for manufacturing a heat exchanger, comprising press-fitting fins.
面に溝加工あるいは突起加工が施してある第1の伝熱管
を挿入し、該第1の伝熱管内に流体圧力または機械力を
作用させて拡管し、前記板状フィンと第1の伝熱管とを
接合し、該第1の伝熱管の管内に、外径が第1の伝熱管
の最小内径よりも小さい第2の伝熱管を挿入し、該第2
の伝熱管に流体圧力または機械力を作用させて拡管し、
二重管を形成することを特徴とする熱交換器の製造方
法。6. A first heat transfer tube having a groove or a projection formed on an inner surface thereof is inserted into a plate-shaped fin which has been previously drilled, and fluid pressure or mechanical force is inserted into the first heat transfer tube. To expand the tube, join the plate-like fins and the first heat transfer tube, and provide a second heat transfer tube having an outer diameter smaller than the minimum inner diameter of the first heat transfer tube in the first heat transfer tube. Insert the heat tube and the second
Expand the pipe by applying fluid pressure or mechanical force to the heat transfer pipe of
A method for manufacturing a heat exchanger, comprising forming a double tube.
する際、内面に溝加工あるいは突起加工がなされた第1
の伝熱管を用いる代わりに、外面に溝加工あるいは突起
加工がなされた第2の伝熱管を用いることを特徴とする
請求項5または6に記載の熱交換器の製造方法。7. A method of manufacturing a heat exchanger, comprising the steps of: forming a first pipe having a groove or a projection formed on an inner surface thereof when manufacturing a double pipe;
The method for manufacturing a heat exchanger according to claim 5, wherein a second heat transfer tube whose outer surface is grooved or protruded is used instead of using the heat transfer tube.
する際、内面に溝加工あるいは突起加工がなされた第1
の伝熱管を用いるに加え、外面に溝加工あるいは突起加
工がなされた第2の伝熱管を用いることを特徴とする請
求項5または6に記載の熱交換器の製造方法。8. The method of manufacturing a heat exchanger according to claim 1, wherein when the double pipe is manufactured, the first surface having a groove or a projection formed on an inner surface thereof is formed.
The method for manufacturing a heat exchanger according to claim 5, wherein a second heat transfer tube whose outer surface is grooved or protruded is used in addition to using the heat transfer tube.
する際、内面に溝加工あるいは突起加工がなされた第1
の伝熱管を用いる代わりに、第1の伝熱管と第2の伝熱
管の間の環状領域に熱伝導性の部材を挿入することを特
徴とする請求項5または6に記載の熱交換器の製造方
法。9. The method for manufacturing a heat exchanger according to claim 1, wherein when the double pipe is manufactured, the first surface having a groove or a projection formed on an inner surface thereof is formed.
The heat exchanger according to claim 5 or 6, wherein a heat conductive member is inserted in an annular region between the first heat transfer tube and the second heat transfer tube instead of using the heat transfer tube of (1). Production method.
加工されたフィンを二重管の外面に圧入する工程におい
て、フィンに混在して、少なくとも1枚の予め孔開け加
工されたバッフル板を圧入することを特徴とする請求項
5に記載の熱交換器の製造方法。10. The method for manufacturing a heat exchanger according to claim 1, wherein in the step of press-fitting the fins pre-drilled into the outer surface of the double pipe, at least one pre-drilled baffle is mixed with the fins. The method for manufacturing a heat exchanger according to claim 5, wherein the plate is press-fitted.
加工されたフィンに伝熱管を挿入する工程において、フ
ィンの中に、少なくとも1枚の予め孔開け加工されたバ
ッフル板を混在させることを特徴とする請求項6に記載
の熱交換器の製造方法。11. The method for manufacturing a heat exchanger according to claim 1, wherein in the step of inserting the heat transfer tube into the fins that have been pre-drilled, at least one baffle plate that has been pre-drilled is mixed in the fins. The method for manufacturing a heat exchanger according to claim 6, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000097822A JP2001280864A (en) | 2000-03-30 | 2000-03-30 | Heat exchanger and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000097822A JP2001280864A (en) | 2000-03-30 | 2000-03-30 | Heat exchanger and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001280864A true JP2001280864A (en) | 2001-10-10 |
Family
ID=18612394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000097822A Pending JP2001280864A (en) | 2000-03-30 | 2000-03-30 | Heat exchanger and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001280864A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030097212A (en) * | 2002-06-20 | 2003-12-31 | 서울금속산업주식회사 | Boiler having double pipe-lined heat exchanger |
JP2006264568A (en) * | 2005-03-25 | 2006-10-05 | Nissan Diesel Motor Co Ltd | Cooling/refrigerating device and automobile equipped with it |
WO2008089777A1 (en) * | 2007-01-24 | 2008-07-31 | Bougriou Cherif | Heat exchanger with dual concentric tubes and calender |
WO2009074441A1 (en) * | 2007-12-12 | 2009-06-18 | M.T.A. S.P.A. | Heat exchanger |
JP2011515646A (en) * | 2008-03-27 | 2011-05-19 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Method for vaporizing a cryogenic liquid by heat exchange with a heat producing fluid |
JP2012002363A (en) * | 2010-06-14 | 2012-01-05 | Mitsubishi Electric Corp | Supply header, humidifying device, and air conditioner |
WO2012008348A1 (en) * | 2010-07-12 | 2012-01-19 | 株式会社Cku | Heat exchanger |
CN102410527A (en) * | 2011-11-10 | 2012-04-11 | 王海波 | Composite phase change heat exchanger for recovering waste heat of boiler flue gas |
EP2713131A1 (en) * | 2012-09-27 | 2014-04-02 | Tai-Her Yang | Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline |
JP2014118141A (en) * | 2012-12-13 | 2014-06-30 | Hyundai Motor Company Co Ltd | Cooling module for vehicle |
CN103994681A (en) * | 2014-06-11 | 2014-08-20 | 上海立殊换热技术设备有限公司 | Vertical flue composite phase change heat exchanger |
JP2014159948A (en) * | 2014-04-03 | 2014-09-04 | Mayekawa Mfg Co Ltd | Ice plant |
KR101547964B1 (en) * | 2014-06-13 | 2015-08-27 | 주식회사 티이애플리케이션 | Drying system |
CN105953212A (en) * | 2016-06-02 | 2016-09-21 | 河南益丰源科技有限公司 | Diaphragm type evaporation phase inversion hot water heater |
KR20160130285A (en) * | 2014-09-30 | 2016-11-10 | 가부시키가이샤 나노테크 | Solution conveying and cooling device |
JP2019120465A (en) * | 2018-01-10 | 2019-07-22 | 三菱日立パワーシステムズ株式会社 | Leak detection method of heat exchanger |
JP2019120468A (en) * | 2018-01-10 | 2019-07-22 | 三菱日立パワーシステムズ株式会社 | Heat exchanger and leak point segregation method of heat exchanger |
CN110038315A (en) * | 2019-04-02 | 2019-07-23 | 天津科技大学 | The tube type falling-film vaporising device of a variety of media can be handled simultaneously |
CN110118453A (en) * | 2019-06-19 | 2019-08-13 | 浙江银轮机械股份有限公司 | Integrated heat exchanger and electric car with it |
EP3680468A3 (en) * | 2018-12-19 | 2020-09-16 | Honeywell International Inc. | Three-way heat exchanger system for auxiliary power unit |
JPWO2020144764A1 (en) * | 2019-01-09 | 2021-09-30 | 三菱電機株式会社 | Refrigeration cycle equipment |
CN114543186A (en) * | 2022-02-28 | 2022-05-27 | 平顶山天安煤业股份有限公司 | Heat exchanger and air conditioner with same |
CN115127369A (en) * | 2022-06-30 | 2022-09-30 | 江苏省特种设备安全监督检验研究院 | a heat exchange device |
-
2000
- 2000-03-30 JP JP2000097822A patent/JP2001280864A/en active Pending
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030097212A (en) * | 2002-06-20 | 2003-12-31 | 서울금속산업주식회사 | Boiler having double pipe-lined heat exchanger |
JP2006264568A (en) * | 2005-03-25 | 2006-10-05 | Nissan Diesel Motor Co Ltd | Cooling/refrigerating device and automobile equipped with it |
WO2008089777A1 (en) * | 2007-01-24 | 2008-07-31 | Bougriou Cherif | Heat exchanger with dual concentric tubes and calender |
WO2009074441A1 (en) * | 2007-12-12 | 2009-06-18 | M.T.A. S.P.A. | Heat exchanger |
JP2011515646A (en) * | 2008-03-27 | 2011-05-19 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Method for vaporizing a cryogenic liquid by heat exchange with a heat producing fluid |
JP2012002363A (en) * | 2010-06-14 | 2012-01-05 | Mitsubishi Electric Corp | Supply header, humidifying device, and air conditioner |
WO2012008348A1 (en) * | 2010-07-12 | 2012-01-19 | 株式会社Cku | Heat exchanger |
JP2012021668A (en) * | 2010-07-12 | 2012-02-02 | Cku:Kk | Heat exchanger |
CN103097847A (en) * | 2010-07-12 | 2013-05-08 | 株式会社Cku | Heat exchanger |
CN102410527A (en) * | 2011-11-10 | 2012-04-11 | 王海波 | Composite phase change heat exchanger for recovering waste heat of boiler flue gas |
EP2713131A1 (en) * | 2012-09-27 | 2014-04-02 | Tai-Her Yang | Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline |
JP2014074581A (en) * | 2012-09-27 | 2014-04-24 | Yang Tai He | Heat exchanger |
AU2013234402B2 (en) * | 2012-09-27 | 2017-09-21 | Tai-Her Yang | Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline |
JP2014118141A (en) * | 2012-12-13 | 2014-06-30 | Hyundai Motor Company Co Ltd | Cooling module for vehicle |
JP2014159948A (en) * | 2014-04-03 | 2014-09-04 | Mayekawa Mfg Co Ltd | Ice plant |
CN103994681B (en) * | 2014-06-11 | 2016-01-13 | 上海立殊换热技术设备有限公司 | Vertical flue complex phase-change heat exchanger |
CN103994681A (en) * | 2014-06-11 | 2014-08-20 | 上海立殊换热技术设备有限公司 | Vertical flue composite phase change heat exchanger |
KR101547964B1 (en) * | 2014-06-13 | 2015-08-27 | 주식회사 티이애플리케이션 | Drying system |
KR20160130285A (en) * | 2014-09-30 | 2016-11-10 | 가부시키가이샤 나노테크 | Solution conveying and cooling device |
KR101851486B1 (en) * | 2014-09-30 | 2018-06-07 | 가부시키가이샤 나노테크 | Solution conveying and cooling device |
CN105953212A (en) * | 2016-06-02 | 2016-09-21 | 河南益丰源科技有限公司 | Diaphragm type evaporation phase inversion hot water heater |
JP7051448B2 (en) | 2018-01-10 | 2022-04-11 | 三菱重工業株式会社 | Heat exchanger and heat exchanger leak location isolation method |
JP2019120468A (en) * | 2018-01-10 | 2019-07-22 | 三菱日立パワーシステムズ株式会社 | Heat exchanger and leak point segregation method of heat exchanger |
JP7000166B2 (en) | 2018-01-10 | 2022-01-19 | 三菱パワー株式会社 | Heat exchanger leak detection method |
JP2019120465A (en) * | 2018-01-10 | 2019-07-22 | 三菱日立パワーシステムズ株式会社 | Leak detection method of heat exchanger |
EP3680468A3 (en) * | 2018-12-19 | 2020-09-16 | Honeywell International Inc. | Three-way heat exchanger system for auxiliary power unit |
US11454450B2 (en) | 2018-12-19 | 2022-09-27 | Honeywell International Inc. | Three-way heat exchanger system for auxiliary power unit |
JPWO2020144764A1 (en) * | 2019-01-09 | 2021-09-30 | 三菱電機株式会社 | Refrigeration cycle equipment |
JP7460550B2 (en) | 2019-01-09 | 2024-04-02 | 三菱電機株式会社 | Refrigeration cycle equipment |
CN110038315A (en) * | 2019-04-02 | 2019-07-23 | 天津科技大学 | The tube type falling-film vaporising device of a variety of media can be handled simultaneously |
CN110118453A (en) * | 2019-06-19 | 2019-08-13 | 浙江银轮机械股份有限公司 | Integrated heat exchanger and electric car with it |
CN114543186A (en) * | 2022-02-28 | 2022-05-27 | 平顶山天安煤业股份有限公司 | Heat exchanger and air conditioner with same |
CN115127369A (en) * | 2022-06-30 | 2022-09-30 | 江苏省特种设备安全监督检验研究院 | a heat exchange device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001280864A (en) | Heat exchanger and method of manufacturing the same | |
US6115919A (en) | Heat exchanger | |
US6837419B2 (en) | Recuperator for use with turbine/turbo-alternator | |
US8826663B2 (en) | Heat exchanger | |
US20160153317A1 (en) | System for using the waste heat of an internal combustion engine | |
US20060144585A1 (en) | Exhaust gas heat exchanger for cogeneration system | |
US11879691B2 (en) | Counter-flow heat exchanger | |
JP2007515613A (en) | Composite fluid heat exchanger and manufacturing method thereof | |
US11906249B2 (en) | Tube bank heat exchanger | |
US7938171B2 (en) | Vapor cooled heat exchanger | |
JP4787715B2 (en) | Gas turbine equipment | |
JP4546100B2 (en) | Method and apparatus for heat exchange | |
US7854395B1 (en) | Rocket combustion chamber with jacket | |
US20080053646A1 (en) | Thermal expansion feature for an exhaust gas cooler | |
JP2006002622A (en) | Gas turbine regenerator | |
JP2006003071A (en) | Heat exchanger | |
JP2000180092A (en) | Heat exchanger | |
US20140216687A1 (en) | Corrugated Tube Regenerator for an Expansion Engine | |
WO2023181763A1 (en) | Heat exchanger, and indoor unit for air conditioner | |
WO1991002146A1 (en) | Circumferential heat exchanger | |
JP2971685B2 (en) | Heat exchanger and method of manufacturing the same | |
JP2001153573A (en) | Heat exchanger and method of manufacturing the same | |
Brooks et al. | Mesoscale combustor/evaporator development | |
JP2013160234A (en) | Turbine shell having plate frame heat exchanger | |
CN216049307U (en) | Explosion-proof hairpin type heat exchanger |