[go: up one dir, main page]

JP2001252525A - Reaction apparatus for discharged carbon dioxide absorbing reaction - Google Patents

Reaction apparatus for discharged carbon dioxide absorbing reaction

Info

Publication number
JP2001252525A
JP2001252525A JP2000069265A JP2000069265A JP2001252525A JP 2001252525 A JP2001252525 A JP 2001252525A JP 2000069265 A JP2000069265 A JP 2000069265A JP 2000069265 A JP2000069265 A JP 2000069265A JP 2001252525 A JP2001252525 A JP 2001252525A
Authority
JP
Japan
Prior art keywords
exhaust gas
reaction
tank
solid particles
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000069265A
Other languages
Japanese (ja)
Other versions
JP3624784B2 (en
Inventor
Yukio Ishiguchi
由起男 石口
Norio Isoo
典男 磯尾
Tatsuto Takahashi
達人 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000069265A priority Critical patent/JP3624784B2/en
Publication of JP2001252525A publication Critical patent/JP2001252525A/en
Application granted granted Critical
Publication of JP3624784B2 publication Critical patent/JP3624784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the blow-through of CO2-containing exhaust gas in a packed bed when CO2 in the CO2-containing exhaust gas is absorbed and fixed by solid particles containing non-carbonated Ca by introducing the CO2-containing exhaust gas into a reaction tank packed with an aggregate of solid particles containing non- carbonated Ca in a moisture-containing state. SOLUTION: In a reaction apparatus for discharged carbon dioxide absorbing reaction, having the reaction tank packed with the aggregate of the solid particles containing non-carbonated Ca, the reaction tank has at least one constitution selected from constitution (a) such that a vibrator is provided in the reaction tank to apply vibration to the side wall thereof, constitution (b) such that inclination reducing the horizontal cross-sectional area in the reaction tank downwardly is applied to the inner wall surface of the reaction tank, constitution (c) such that the horizontal cross section of the reaction tank is formed into a circular or oval shape or the inner corner part of the reaction tank is formed into an arcuate or oval arcuate shape and constitution (d) such that an exhaust gas introducing part is provided in the upper part of the reaction tank and an exhaust gas discharge part is provided in the bottom part thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は工業プロセスなど
で発生したCO含有排ガス中のCO濃度を低減し、
COの大気中への排出量を削減するための排出炭酸ガ
ス吸収反応用の反応装置に関するものである。
TECHNICAL FIELD The present invention reduces CO 2 concentration in CO 2 -containing exhaust gas generated in an industrial process or the like,
The present invention relates to a reaction apparatus for an exhaust carbon dioxide absorption reaction for reducing the amount of CO 2 emitted into the atmosphere.

【0002】[0002]

【従来の技術】従来、工業プロセスなどで発生した排ガ
ス中に含まれるCOをCaOやCa(OH)に吸収
固定させることにより排ガス中から除去する技術が、特
開平3−32721号公報や特開平7−88362号公
報などで提案されている。このうち特開平3−3272
1号公報には、燃焼装置の排ガス排出系の下流側にCa
OやCa(OH)などの固体塩基粉末の流動層を設け
た炭酸ガス除去装置が示され、また、特開平7−883
62号公報には石炭灰、高炉スラグからなる産業廃棄物
を主成分とし、且つカルシウム化合物の水和物を含有す
る粉粒状の炭酸ガス吸着体が示されている。
2. Description of the Related Art Conventionally, a technique of removing CO 2 contained in exhaust gas generated in an industrial process or the like from the exhaust gas by absorbing and fixing the same in CaO or Ca (OH) 2 is disclosed in Japanese Patent Application Laid-Open No. 3-32721. It is proposed in Japanese Patent Application Laid-Open No. 7-88362. Of these, Japanese Patent Laid-Open No.
No. 1 discloses that Ca is provided downstream of an exhaust gas discharge system of a combustion device.
A carbon dioxide gas removal apparatus provided with a fluidized bed of a solid base powder such as O or Ca (OH) 2 is disclosed in JP-A-7-883.
No. 62 discloses a powdery carbon dioxide adsorbent mainly composed of industrial waste consisting of coal ash and blast furnace slag and containing a hydrate of a calcium compound.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの従来
技術ではCaOやCa(OH)によるCOの固定が
十分な速度で進行せず、このため工業規模での実用化は
困難である。そこで、本発明者らは排ガス中のCO
工業規模で且つ効率的に吸収・除去できる方法を見い出
すべくCOの吸収方法について詳細な検討を行い、そ
の結果、従来技術においてCOの吸収固定が十分な速
度で進行しないのは、CaOやCa(OH)を含む固
体粒子にCO含有排ガスを直接接触させていたためで
あること、これに対してCaOやCa(OH)を含む
固体粒子に適当な水分の存在下で、より好ましくは固体
粒子の表面付着水(固体粒子表面に形成された水膜)を
介してCO含有排ガスを接触させることにより、排ガ
ス中のCOを固体粒子に効率的に吸収固定できること
を見い出した。
However, in these prior arts, the fixation of CO 2 by CaO or Ca (OH) 2 does not proceed at a sufficient speed, which makes it difficult to put it to practical use on an industrial scale. Accordingly, the present inventors have conducted a detailed study on absorption method CO 2 to find a method capable and efficient absorption and removal of CO 2 in the exhaust gas on an industrial scale, as a result, the absorption of CO 2 in the prior art the fixing may not proceed at a sufficient rate, it the solid particles comprising the CaO or Ca (OH) 2 is because it was brought into contact with CO 2 containing exhaust gas directly, including CaO and Ca (OH) 2 contrast in the presence of a suitable moisture solid particles, more preferably by contacting the CO 2 containing exhaust gas through the surface adhesion water (water film formed on the solid particle surface) of the solid particles, the CO 2 in the exhaust gas It has been found that solid particles can be efficiently absorbed and fixed.

【0004】本発明は、このような適当な水分の存在下
でCaOやCa(OH)を含む固体粒子にCO含有
排ガスを接触させることで排ガス中のCOを固体粒子
に吸収固定する方法を前提とし、この方法の実施に好適
な反応装置を提供するものである。
According to the present invention, a CO 2 -containing exhaust gas is brought into contact with solid particles containing CaO or Ca (OH) 2 in the presence of such appropriate water to absorb and fix CO 2 in the exhaust gas to the solid particles. Based on the method, a reactor suitable for carrying out the method is provided.

【0005】[0005]

【課題を解決するための手段】CaOやCa(OH)
を含む固体粒子に適当な水分の存在下で(より好ましく
は固体粒子の表面付着水を介して)排ガスを接触させる
ことにより、排ガス中のCOを固体粒子に吸収固定す
るための反応装置としては、流動層方式、ロータリーキ
ルン方式、充填層方式などが考えられるが、このなかで
充填層方式が装置としては最も簡便で実用性がある。そ
こで、本発明者らはこの充填層方式の反応装置を用いて
COを固体粒子に吸収固定するための種々の実験を行
った。この実験では、箱型の反応槽内に水分が適量添加
された固体粒子(CaOやCa(OH)を含む固体粒
子)充填し、この反応槽の底部からCO含有排ガスを
供給して行った。そして、この実験の結果以下のような
事実が判明した。
[Means for Solving the Problems] CaO or Ca (OH) 2
By contacting the exhaust gas with the solid particles containing the gas in the presence of appropriate moisture (more preferably via the water adhering to the surface of the solid particles), as a reactor for absorbing and fixing CO 2 in the exhaust gas to the solid particles The fluidized bed system, rotary kiln system, packed bed system and the like can be considered. Of these, the packed bed system is the most simple and practical as an apparatus. Thus, the present inventors conducted various experiments for absorbing and fixing CO 2 to solid particles using the packed bed type reaction apparatus. In this experiment, a box-shaped reaction vessel was filled with solid particles (solid particles containing CaO or Ca (OH) 2 ) to which an appropriate amount of water was added, and CO 2 -containing exhaust gas was supplied from the bottom of the reaction vessel. Was. As a result of this experiment, the following facts were found.

【0006】 反応槽内に充填された固体粒子に含ま
れるCaOやCa(OH)と排ガス中のCOとの反
応で発生した熱により反応槽内の水分の一部が蒸発し、
また、槽内部の充填層は固体粒子を充填し均一に均らし
ただけで加圧などによる締め固めを行っていないため、
排ガスの通気による固体粒子の振動により充填層が締ま
り、その見掛け体積が減少する。この充填層の収縮によ
り層内に長径5mm〜数cm程度の排ガスの通り道(空
隙)ができ、これが短時間のうち急速に成長して長径5
〜10cm以上となり、図4に示すようなガスの吹き抜
けが発生する。そして、このような吹き抜けが発生する
と、充填層の固体粒子の大部分は排ガスとの接触が不十
分なままとなり、COの吸収固定率が大幅に低下す
る。
[0006] The heat generated in the reaction between CaO or Ca (OH) 2 contained in the solid particles filled in the reaction tank and CO 2 in the exhaust gas partially evaporates water in the reaction tank,
In addition, the packed bed inside the tank was filled with solid particles and evenly distributed, and was not compacted by pressing, etc.,
The packed bed is tightened by the vibration of the solid particles caused by the ventilation of the exhaust gas, and the apparent volume is reduced. Due to the shrinkage of the packed bed, passages (voids) of the exhaust gas having a major axis of about 5 mm to several cm are formed in the layer, which rapidly grows in a short time to form a major axis of 5 mm.
10 cm or more, and gas blow-through as shown in FIG. 4 occurs. When such blow-through occurs, most of the solid particles in the packed bed remain in insufficient contact with the exhaust gas, and the absorption and fixation rate of CO 2 is significantly reduced.

【0007】 上記のようなガスの吹きぬけが発生す
るのは、充填層の収縮によって初期段階に排ガスの通り
道が発生すると、圧損が小さいためにその通り道に排ガ
スの流れが集中して急速に大きなガス流路となり、これ
が吹抜けとなるためである。 吹き抜けは概ね反応槽の内壁面に沿った位置や反応
槽の隅部(コーナー部)などに発生しやすい。これは、
槽内壁面には水分を含んだ固体粒子の付着物が生成しや
すいため、充填層の体積減少によって壁面(正確には壁
面付着物)に沿った位置に空隙が生じやすく、また反応
槽の隅部は単純投入による充填では充填密度が最初から
低く、ここに吹き抜けの起点である排ガスの小さな通り
道ができやすいためであると考えられる。
[0007] The above-described gas blowout occurs because, when an exhaust gas passage is generated in an initial stage due to shrinkage of the packed bed, the flow of the exhaust gas is concentrated on the passage due to a small pressure loss, so that a large gas is rapidly generated. This is because it becomes a flow path and this becomes a blow-by. Blow-through is likely to occur generally at a position along the inner wall surface of the reaction tank or at a corner (corner) of the reaction tank. this is,
Since deposits of water-containing solid particles are likely to be formed on the inner wall surface of the vessel, voids are likely to be formed along the wall surface (accurately, wall deposits) due to the decrease in the volume of the packed bed, and the corner of the reaction vessel This is considered to be due to the fact that the filling density is low from the beginning in the filling by simple charging, and a small passage for the exhaust gas, which is the starting point of the blow-through, is easily formed here.

【0008】 また、排ガスを反応槽の底部から槽内
に供給することも吹き抜けの発生原因の一つとなる。す
なわち、排ガスを反応槽の底部から槽内に供給した場
合、排ガス流による充填層の持ち上げ効果が充填層自体
の自重による締まりを阻害し、この作用によっても吹き
抜けの起点となる排ガスの通り道が生じ、これが上記
のような過程で吹き抜けの発生につながる。また、この
ような主因による吹きぬけは概ね反応槽の内壁面に沿っ
て発生しやすい。これは充填物の体積減少により内壁面
との間に隙間が生じ、上記のような初期の排ガスの通り
道が生じ易いためであると考えられる。
[0008] Furthermore, supplying exhaust gas from the bottom of the reaction tank into the tank is also one of the causes of blow-by. In other words, when the exhaust gas is supplied from the bottom of the reaction tank into the tank, the effect of lifting the packed bed by the exhaust gas flow hinders the tightness of the packed bed itself due to its own weight, and this action also creates a passage for the exhaust gas that becomes the starting point of blow-through. This leads to the occurrence of blow-by in the above process. In addition, blow-through due to such a main cause is likely to occur generally along the inner wall surface of the reaction tank. This is considered to be because a gap is generated between the inner wall surface due to the decrease in the volume of the filler and the passage of the initial exhaust gas as described above easily occurs.

【0009】そして、以上のような機構で生じる排ガス
の吹き抜けの発生防止対策について検討した結果、以下
のような各手段が有効であり、しかもこれらを適宜組み
合わせることにより吹き抜けの発生をより効果的に防止
できることが判った。 (1) 反応槽に槽側壁に振動を与えるための振動装置を付
設する。このような振動装置により反応槽の側壁に振動
を与えることにより、槽内壁面への固体粒子の付着が防
止されるとともに、充填層の自重による締りが促進さ
れ、この結果、吹き抜けの起点となる排ガスの小さな通
り道の発生を抑えることができる。
As a result of examining measures for preventing the occurrence of blow-by of exhaust gas generated by the above mechanism, the following means are effective, and by appropriately combining them, the occurrence of blow-through can be more effectively reduced. It turned out that it could be prevented. (1) A vibration device for applying vibration to the side wall of the reaction tank is provided. By vibrating the side wall of the reaction tank with such a vibration device, the solid particles are prevented from adhering to the inner wall surface of the tank, and the packed bed is promoted to be tightened by its own weight. The generation of small passages of exhaust gas can be suppressed.

【0010】(2) 反応槽の内壁面に、槽下方に向けて槽
内部の水平断面積を減ずるような傾斜を付す。このよう
な傾斜による槽内部の水平断面積の縮小により、排ガス
通気に起因した充填層の締まりよる体積減少が相殺さ
れ、その結果、吹き抜けの起点となる排ガスの小さな通
り道の発生を抑えることができる。 (3) 反応槽内部の水平断面形状を、円形状、楕円形状又
は隅部が円弧若しくは楕円弧状である形状に構成する。
上述したように反応槽への単純投入による充填では反応
槽の隅部での固体粒子の充填密度が低くなり、上記のよ
うな充填層の体積減少が生じると、この反応槽の隅部に
吹き抜けの起点となる排ガスの通り道ができやすい。こ
れに対して、反応槽の水平断面形状を円形状又は楕円形
状にして隅部をなくすか、或いは隅部の水平断面形状を
円弧若しくは楕円弧状にして充填密度が低くなるような
隅部をなくすことにより、反応槽で充填密度が低い部分
が生じることが防止され、これにより吹き抜けの起点と
なる排ガスの小さな通り道発生を抑えることができる。
(2) The inner wall surface of the reaction tank is provided with an inclination toward the bottom of the tank so as to reduce the horizontal sectional area inside the tank. Such a reduction in the horizontal cross-sectional area inside the tank due to the inclination offsets the volume reduction due to the compaction of the packed bed caused by the exhaust gas ventilation, and as a result, it is possible to suppress the generation of small exhaust gas passages that serve as starting points for blow-through. . (3) The horizontal cross-sectional shape inside the reaction tank is configured to be circular, elliptical, or a shape in which a corner is an arc or an elliptical arc.
As described above, in the filling by simple charging into the reaction tank, the packing density of the solid particles at the corner of the reaction tank is reduced, and when the volume of the packed bed is reduced as described above, the corner of the reaction tank is blown through. It is easy to create a path for the exhaust gas, which is the starting point of the exhaust gas. On the other hand, the horizontal cross-sectional shape of the reaction tank is made circular or elliptical to eliminate corners, or the horizontal cross-sectional shape of the corner is made circular or elliptical to eliminate corners where the packing density becomes low. This prevents a portion having a low filling density from being formed in the reaction tank, thereby suppressing the generation of a small passage of the exhaust gas serving as a starting point of the blow-through.

【0011】(4) 反応槽の上部に排ガス導入部を設ける
とともに、反応槽の底部に排ガス排出部を設ける。これ
により排ガス流による充填層の持ち上げ効果がなくな
り、吹き抜けの起点となる排ガスの小さな通り道の発生
を抑えることができる。 (5) 上記記(1)〜(3)の構造において、反応槽の排ガス導
入部を槽底部に設けられる多孔板とその下方に形成され
る排ガス室とにより構成し、この排ガス室に排ガス供給
管を接続した構造とすることにより、充填層全体に排ガ
スを流すことができ、COとの反応が不十分な充填層
部分が生じるのが防止される。
(4) An exhaust gas introduction section is provided at the top of the reaction tank, and an exhaust gas discharge section is provided at the bottom of the reaction tank. As a result, the effect of lifting the packed bed by the exhaust gas flow is eliminated, and the generation of a small passage for the exhaust gas, which is a starting point of the blow-through, can be suppressed. (5) In the structure of the above (1) to (3), the exhaust gas introduction part of the reaction tank is constituted by a perforated plate provided at the bottom of the tank and an exhaust gas chamber formed below the perforated plate, and exhaust gas is supplied to the exhaust gas chamber. By adopting a structure in which the pipes are connected, exhaust gas can flow through the entire packed bed, thereby preventing a packed bed portion where the reaction with CO 2 is insufficient.

【0012】(6) 上記(4)の構造において、排ガス排出
部を槽底部に設けられる多孔板とその下方に形成される
排ガス室とにより構成し、この排ガス室に排ガス排出管
を接続した構造とすることにより、充填層全体に排ガス
を流すことができ、COとの反応が不十分な充填層部
分が生じるのが防止される。また、多孔板を槽側壁に近
い外縁部を除く領域にのみガス通孔を有する構造とする
ことにより、排ガスの流れが槽底部中央側寄りに誘導さ
れる結果、特に吹き抜けが生じやすい槽内壁面の近傍で
のガス流れの形成が適度に抑制され、吹き抜けの起点と
なる排ガスの小さな通り道の発生を抑えることができ
る。 (7) 上記(1)〜(4)の構成の中から選ばれる構造を2つ以
上組み合わせることにより吹き抜けをより効果的に防止
できる。また、上記(1)〜(3)の構成を組み合わせること
により、さらに好ましくは(1)〜(4)の全部を組み合わせ
ることにより、最も効果的に吹き抜けを防止することが
できる。
(6) In the structure of the above (4), the exhaust gas discharging section is constituted by a perforated plate provided at the bottom of the tank and an exhaust gas chamber formed below the perforated plate, and an exhaust gas discharging pipe is connected to the exhaust gas chamber. By doing so, the exhaust gas can flow through the entire packed bed, and the formation of the packed bed portion where the reaction with CO 2 is insufficient is prevented. In addition, since the perforated plate has a structure having gas holes only in a region other than the outer edge near the tank side wall, the flow of exhaust gas is guided toward the center of the bottom of the tank. The formation of a gas flow in the vicinity of the airflow is appropriately suppressed, and the generation of a small passage of exhaust gas serving as a starting point of blow-through can be suppressed. (7) By combining two or more structures selected from the above (1) to (4), blow-through can be more effectively prevented. Further, by combining the above configurations (1) to (3), and more preferably combining all of (1) to (4), blow-through can be most effectively prevented.

【0013】本発明は以上のような知見に基づきなされ
たもので、その特徴は以下のとおりである。 [1] 組成としてCaOおよび/またはCa(OH)
含む固体粒子の集合体が水分を含んだ状態で充填される
反応槽を有し、該反応槽内にCO含有排ガスを導入し
て前記固体粒子にCO含有排ガス中のCOを吸収固
定させるための反応装置であって、前記反応槽に槽側壁
に振動を与えるための振動装置を付設したことを特徴と
する排出炭酸ガス吸収反応用の反応装置。
The present invention has been made based on the above findings, and the features are as follows. [1] There is a reaction tank in which an aggregate of solid particles containing CaO and / or Ca (OH) 2 as a composition is filled in a state containing water, and a CO 2 -containing exhaust gas is introduced into the reaction tank. A reactor for absorbing and fixing CO 2 in a CO 2 -containing exhaust gas to the solid particles, wherein a vibrating device for applying vibration to a side wall of the reactor is provided in the reactor. A reactor for the reaction.

【0014】[2] 組成としてCaOおよび/またはCa
(OH)を含む固体粒子の集合体が水分を含んだ状態
で充填される反応槽を有し、該反応槽内にCO含有排
ガスを導入して前記固体粒子にCO含有排ガス中のC
を吸収固定させるための反応装置であって、前記反
応槽の内壁面に、槽下方に向けて槽内部の水平断面積を
減ずるような傾斜を付したことを特徴とする排出炭酸ガ
ス吸収反応用の反応装置。
[2] CaO and / or Ca
A reaction vessel in which an aggregate of solid particles containing (OH) 2 is filled in a state containing water; a CO 2 -containing exhaust gas is introduced into the reaction vessel to allow the solid particles to contain the CO 2 -containing exhaust gas; C
A reactor for absorbing and fixing O 2 , wherein an inner wall surface of the reaction tank is inclined downward toward the tank so as to reduce the horizontal cross-sectional area inside the tank. A reactor for the reaction.

【0015】[3] 組成としてCaOおよび/またはCa
(OH)を含む固体粒子の集合体が水分を含んだ状態
で充填される反応槽を有し、該反応槽内にCO含有排
ガスを導入して前記固体粒子にCO含有排ガス中のC
を吸収固定させるための反応装置であって、前記反
応槽内部の水平断面形状を、円形状、楕円形状又は隅部
が円弧若しくは楕円弧状である形状に構成したことを特
徴とする排出炭酸ガス吸収反応用の反応装置。 [4] 上記[1]〜[3]のいずれかの反応装置において、反応
槽の排ガス導入部を、槽底部に設けられる多孔板とその
下方に形成される排ガス室とにより構成し、該排ガス室
に排ガス供給管を接続したこと特徴とする排出炭酸ガス
吸収反応用の反応装置。
[3] CaO and / or Ca
A reaction vessel in which an aggregate of solid particles containing (OH) 2 is filled in a state containing water; a CO 2 -containing exhaust gas is introduced into the reaction vessel to allow the solid particles to contain the CO 2 -containing exhaust gas; C
A reactor for absorbing and fixing O 2 , wherein the horizontal cross-sectional shape inside the reaction tank is formed in a circular shape, an elliptical shape, or a shape in which a corner is an arc or an elliptical arc. Reactor for gas absorption reaction. [4] In the reactor according to any one of the above [1] to [3], the exhaust gas introduction section of the reaction tank is constituted by a perforated plate provided at the bottom of the tank and an exhaust gas chamber formed below the perforated plate. A reaction apparatus for an exhaust carbon dioxide absorption reaction, characterized in that an exhaust gas supply pipe is connected to the chamber.

【0016】[5] 組成としてCaOおよび/またはCa
(OH)を含む固体粒子の集合体が水分を含んだ状態
で充填される反応槽を有し、該反応槽内にCO含有排
ガスを導入して前記固体粒子にCO含有排ガス中のC
を吸収固定させるための反応装置であって、前記反
応槽の上部に排ガス導入部を設けるとともに、反応槽の
底部に排ガス排出部を設けたことを特徴とする排出炭酸
ガス吸収反応用の反応装置。
[5] The composition is CaO and / or Ca
A reaction vessel in which an aggregate of solid particles containing (OH) 2 is filled in a state containing water; a CO 2 -containing exhaust gas is introduced into the reaction vessel to allow the solid particles to contain the CO 2 -containing exhaust gas; C
A reaction apparatus for absorbing and fixing O 2 , wherein an exhaust gas introduction part is provided at an upper part of the reaction tank, and an exhaust gas discharge part is provided at a bottom part of the reaction tank. Reactor.

【0017】[6] 上記[5]の反応装置において、排ガス
排出部を、槽底部に設けられる多孔板とその下方に形成
される排ガス室とにより構成し、該排ガス室に排ガス排
出管を接続したこと特徴とする排出炭酸ガス吸収反応用
の反応装置。 [7] 上記[6]の反応装置において、多孔板が、槽側壁に
近い外縁部を除く領域にのみガス通孔を有していること
特徴とする排出炭酸ガス吸収反応用の反応装置。
[6] In the reactor according to the above [5], the exhaust gas discharge section is constituted by a perforated plate provided at the bottom of the tank and an exhaust gas chamber formed below the perforated plate, and an exhaust gas discharge pipe is connected to the exhaust gas chamber. A reaction device for an exhaust carbon dioxide absorption reaction characterized by the following. [7] The reactor according to the above [6], wherein the perforated plate has a gas passage only in a region other than an outer edge portion near the side wall of the tank, the reactor for an exhaust carbon dioxide absorption reaction.

【0018】[8] 組成としてCaOおよび/またはCa
(OH)を含む固体粒子の集合体が水分を含んだ状態
で充填される反応槽を有し、該反応槽内にCO含有排
ガスを導入して前記固体粒子にCO含有排ガス中のC
を吸収固定させるための反応装置であって、前記反
応槽が下記(a)〜(d)の中から選ばれる2つ以上の構成を
備えていることを特徴とする排出炭酸ガス吸収反応用の
反応装置。 (a) 反応槽に槽側壁に振動を与えるための振動装置を付
設する。 (b) 反応槽の内壁面に、槽下方に向けて槽内部の水平断
面積を減ずるような傾斜を付す。 (c) 反応槽内部の水平断面形状を、円形状、楕円形状又
は隅部が円弧若しくは楕円弧状である形状に構成する。 (d) 反応槽の上部に排ガス導入部を設けるとともに、反
応槽の底部に排ガス排出部を設ける。
[8] The composition is CaO and / or Ca
A reaction vessel in which an aggregate of solid particles containing (OH) 2 is filled in a state containing water; a CO 2 -containing exhaust gas is introduced into the reaction vessel to allow the solid particles to contain the CO 2 -containing exhaust gas; C
A reaction device for absorbing and fixing O 2 , wherein the reaction tank has two or more components selected from the following (a) to (d): For reactors. (a) The reaction tank is provided with a vibration device for applying vibration to the side wall of the tank. (b) The inner wall surface of the reaction tank is inclined downward to reduce the horizontal cross-sectional area inside the reaction tank. (c) The horizontal cross-sectional shape inside the reaction tank is formed into a circular shape, an elliptical shape, or a shape in which a corner is a circular arc or an elliptical arc. (d) An exhaust gas introduction section is provided at the top of the reaction tank, and an exhaust gas discharge section is provided at the bottom of the reaction tank.

【0019】[9] 上記[8]の反応装置において、反応槽
が(a)〜(c)の構成を備えていることを特徴とする排出炭
酸ガス吸収反応用の反応装置。 [10] 上記[8]又は[9]の反応装置において、反応槽が(a)
〜(c)の中から選ばれる2つ以上の構成を備え、且つ反
応槽の排ガス導入部を、槽底部に設けられる多孔板とそ
の下方に形成される排ガス室とにより構成し、該排ガス
室に排ガス供給管を接続したこと特徴とする排出炭酸ガ
ス吸収反応用の反応装置。 [11] 上記[8]の反応装置において、反応槽が(a)〜(d)の
構成を備えていることを特徴とする排出炭酸ガス吸収反
応用の反応装置。
[9] The reaction apparatus according to the above [8], wherein the reaction tank has the configuration of (a) to (c). [10] In the reactor according to the above [8] or [9], the reaction vessel is (a)
To two or more selected from (c), and the exhaust gas introduction part of the reaction tank is constituted by a perforated plate provided at the bottom of the tank and an exhaust gas chamber formed below the perforated plate, A reaction device for an exhaust carbon dioxide absorption reaction, characterized in that an exhaust gas supply pipe is connected to the reactor. [11] The reactor according to the above [8], wherein the reaction vessel has the configuration of (a) to (d), wherein the reactor is used for an exhaust carbon dioxide absorption reaction.

【0020】[12] 上記[8]又は[11]の反応装置におい
て、反応槽が(d)の構成と(a)〜(c)の中から選ばれる1
つ以上の構成とを備え、且つ排ガス排出部を、槽底部に
設けられる多孔板とその下方に形成される排ガス室とに
より構成し、該排ガス室に排ガス排出管を接続したこと
特徴とする排出炭酸ガス吸収反応用の反応装置。 [13] 上記[12]の反応装置において、多孔板が、槽側壁
に近い外縁部を除く領域にのみガス通孔を有しているこ
と特徴とする排出炭酸ガス吸収反応用の反応装置。
[12] In the reactor according to the above [8] or [11], the reaction tank is selected from the configuration of (d) and one of (a) to (c).
The exhaust gas discharge section is constituted by a perforated plate provided at the bottom of the tank and an exhaust gas chamber formed thereunder, and an exhaust gas discharge pipe is connected to the exhaust gas chamber. Reactor for carbon dioxide absorption reaction. [13] The reactor for exhaust carbon dioxide absorption reaction according to the above [12], wherein the perforated plate has gas holes only in a region other than the outer edge near the tank side wall.

【0021】[0021]

【発明の実施の形態】図1及び図2は本発明の反応装置
の一実施形態を示すので、図1は装置の縦断面模式図、
図2は同じく横断面模式図である。図において、1は固
体粒子の集合体の充填層を形成するための密閉型(また
は半密閉型)の反応槽であり、この反応槽1の底部側に
は排ガス(CO含有排ガス)を供給するための排ガス
導入部2が、また、上端側には槽内に供給された排ガス
を排出するための排ガス排出部3がそれぞれ設けられ、
これら排ガス導入部2と排ガス排出部3には、それぞれ
排ガス供給管4と排ガス排出管5が接続されている。な
お、上記反応槽1は図示しない充填物出入部(又は充填
物の装入部と排出部)を有し、この充填物出入部を通じ
て反応槽1に対する固体粒子の集合体(充填物)の出し
入れを行う。
1 and 2 show an embodiment of a reaction apparatus according to the present invention. FIG. 1 is a schematic longitudinal sectional view of the apparatus.
FIG. 2 is a schematic cross-sectional view of the same. In FIG, 1 is a reactor of the closed type (or semi-closed type) for forming a packed bed of aggregate of solid particles, on the bottom side of the reaction vessel 1 supplies the exhaust gas (CO 2 containing exhaust gas) And an exhaust gas discharge unit 3 for discharging exhaust gas supplied into the tank is provided at the upper end side, respectively.
An exhaust gas supply pipe 4 and an exhaust gas discharge pipe 5 are connected to the exhaust gas introduction section 2 and the exhaust gas discharge section 3, respectively. The reaction vessel 1 has a packing inlet / outlet (or a charging / discharging section and a discharging section) (not shown), through which the aggregate of solid particles (filling) enters / reacts into / from the reaction tank 1. I do.

【0022】本実施形態では、反応槽1内部がその底部
寄りに設けられた多孔板6により仕切られ、多孔板4の
下方に風箱の機能を有する排ガス室7aが形成されると
ともに、この排ガス室7aに対して前記排ガス供給管4
が接続されている。前記多孔板6には、その全面に多数
の小径のガス通孔60が貫設されている。したがってこ
の実施形態では、前記多孔板6と排ガス室7aがガス導
入部2を構成し、多孔板6の上方の空間が固体粒子を充
填する反応室7bを構成している。なお、前記多孔板6
のガス通孔60の径は、固体粒子が落下せず且つ固体粒
子による詰まりが生じないようにするため、充填層を構
成する固体粒子の粒度などに応じて適宜選択される。
In the present embodiment, the inside of the reaction tank 1 is partitioned by a perforated plate 6 provided near the bottom thereof, and an exhaust gas chamber 7a having the function of a wind box is formed below the perforated plate 4, and this exhaust gas is formed. The exhaust gas supply pipe 4 for the chamber 7a
Is connected. The perforated plate 6 has a large number of small-diameter gas through holes 60 penetrating the entire surface thereof. Therefore, in this embodiment, the perforated plate 6 and the exhaust gas chamber 7a constitute the gas introducing section 2, and the space above the perforated plate 6 constitutes a reaction chamber 7b for filling solid particles. The perforated plate 6
The diameter of the gas through hole 60 is appropriately selected according to the particle size of the solid particles constituting the packed layer in order to prevent the solid particles from falling and clogging with the solid particles.

【0023】前記反応槽1の内部は水平断面形状が矩形
状に構成されているが、その隅部8(コーナー部)には
アールが付され、円弧状に構成されている。この隅部8
のアールの大きさは適宜選択すればよいが、アールがあ
まり小さいと隅部8での充填物(固体粒子)の充填密度
が十分に確保できず、この部分に吹き抜けの起点となる
排ガスの小さい通り道が形成されてしまう。このため隅
部8のアールは50mm以上、望ましくは100mm以
上とすることが望ましい。なお、反応槽内部の水平断面
形状は角状の隅部が存在しないような形状であればよ
く、このため本実施形態の形状以外に、隅部を楕円弧状
にしたり、或いは反応槽内部の水平断面形状を円形状若
しくは楕円形状にしてもよい。
The inside of the reaction tank 1 has a rectangular horizontal cross section, and a corner 8 (corner) is rounded to form an arc. This corner 8
The size of the radius may be appropriately selected. However, if the radius is too small, the packing density of the filler (solid particles) at the corner 8 cannot be sufficiently ensured, and the exhaust gas serving as the starting point of blow-through in this portion is small. A path is formed. Therefore, the radius of the corner 8 is preferably 50 mm or more, more preferably 100 mm or more. Note that the horizontal cross-sectional shape inside the reaction tank may be any shape that does not have angular corners. Therefore, in addition to the shape of the present embodiment, the corners may be formed into elliptical arcs or the horizontal inside the reaction tank. The cross-sectional shape may be circular or elliptical.

【0024】さらに、反応槽1の内壁面9には、槽下方
に向けて槽内部の水平断面積を減ずるような傾斜が付さ
れている。この内壁面9の傾斜度は槽内の有効容積が過
度に小さくならない限度で適宜選択すればよいが、一般
には鉛直方向に対して1/10以上の傾斜とすることが
有効である。さらに、前記反応槽1の側壁の外側には、
槽側壁に振動を与えるための振動装置10が付設されて
いる。この振動装置10としては、槽側壁に振動を与え
て充填物(固体粒子)の槽内壁面への付着を防止できる
ような方式のものであれば、その種類を問わない。例え
ば、偏芯質量型の振動装置などを用いることができる。
Further, the inner wall surface 9 of the reaction tank 1 is provided with an inclination toward the lower part of the tank so as to reduce the horizontal sectional area inside the tank. The degree of inclination of the inner wall surface 9 may be appropriately selected as long as the effective volume in the tank does not become excessively small, but it is generally effective to set the inclination to 1/10 or more with respect to the vertical direction. Further, outside the side wall of the reaction tank 1,
A vibration device 10 for applying vibration to the tank side wall is provided. The type of the vibration device 10 is not limited as long as it can vibrate the side wall of the tank to prevent the packing (solid particles) from adhering to the inner wall surface of the tank. For example, an eccentric mass type vibration device can be used.

【0025】なお、この実施形態の装置では、図1の仮
想線で示すように反応槽1を複数基設け、これら反応槽
1,1a,1b …… に対して排ガス供給管を直列に接
続した構造とすることもできる。このような装置によれ
ば、反応槽1から排出された排ガスを反応槽1aに供給
し、さらに、反応槽1aから排出された排ガスを反応槽
1bに供給するというように、複数の直列的な反応槽で
排ガスを順次処理することにより、排ガス中のCO
効果的に低減させることができる。
In the apparatus of this embodiment, a plurality of reaction tanks 1 are provided as shown by phantom lines in FIG. 1, and exhaust gas supply pipes are connected in series to these reaction tanks 1, 1a, 1b,. It can also be structured. According to such a device, a plurality of serially connected exhaust gas discharged from the reaction tank 1 is supplied to the reaction tank 1a, and the exhaust gas discharged from the reaction tank 1a is supplied to the reaction tank 1b. By sequentially treating the exhaust gas in the reaction tank, CO 2 in the exhaust gas can be effectively reduced.

【0026】図1及び図2に示す実施形態の装置では、
反応槽1の反応室7bに固体粒子の集合体が装入されて
充填層Aが形成され、この充填層Aに対してCO含有
排ガスが供給される。排ガスは排ガス供給管4から槽底
部の排ガス室7aに供給された後、多孔板6の多数のガ
ス通孔60を通じて充填層Aに供給され、この充填層A
を流れる過程で排ガス中のCOが固体粒子のCaO、
Ca(OH)と反応し、COが固体粒子にCaCO
として固定される。この反応を終えた排ガスは槽上部
の排ガス排出部3及び排ガス排出管5から槽外に排出さ
れる。そして、このような装置の稼働中に連続的に或い
は任意のタイミングで振動装置10を作動させて反応槽
1の側壁に振動を与え、これにより槽内壁面への充填物
(固体粒子)の付着を防止するとともに、充填層Aの自
重による締りを促進し、これにより吹き抜けの起点とな
る排ガスの小さな通り道の発生が抑えられる。
In the apparatus of the embodiment shown in FIGS. 1 and 2,
Collection of solid particles in a reaction chamber 7b of the reactor 1 is charged has been packed layer A is formed, CO 2 containing exhaust gas is supplied to the packed bed A. After the exhaust gas is supplied from the exhaust gas supply pipe 4 to the exhaust gas chamber 7a at the bottom of the tank, the exhaust gas is supplied to the packed bed A through a number of gas holes 60 of the perforated plate 6, and the packed bed A
CO 2 in the exhaust gas is converted into solid particles of CaO,
Reacts with Ca (OH) 2, and CO 2 becomes CaCO 2 into solid particles.
Fixed as 3 . After the reaction, the exhaust gas is discharged out of the tank from the exhaust gas discharge section 3 and the exhaust gas discharge pipe 5 in the upper part of the tank. Then, the vibrating device 10 is operated continuously or at an arbitrary timing during the operation of such a device to vibrate the side wall of the reaction tank 1, whereby the packing (solid particles) adheres to the inner wall surface of the tank. Is prevented, and tightening of the packed bed A by its own weight is promoted, thereby suppressing the generation of a small passage of exhaust gas, which is a starting point of blow-through.

【0027】また、反応槽1の内壁面9の傾斜による槽
内部断面積の縮小により排ガス通気に起因した充填層A
の締まりよる体積減少が相殺され、吹き抜けの起点とな
る排ガスの小さな通り道の発生が抑えられ、さらには、
反応槽1の隅部8が円弧状であるためこの隅部8での充
填物の充填密度が確保され、これにより隅部8での吹き
抜けの起点となる排ガスの小さな通り道の発生が抑えら
れる。また、本実施形態では、排ガス導入部2を反応槽
1の底部に設けられる多孔板6とその下方に形成される
排ガス室7aとにより構成し、この排ガス室7aに排ガ
ス供給管4を接続した構造であるため、充填層全体に排
ガスを流すことができ、COとの反応が不十分な充填
層部分が生じるのが防止される。
The packed bed A caused by exhaust gas ventilation due to the reduction of the inner cross-sectional area of the reactor due to the inclination of the inner wall surface 9 of the reactor 1
The volume reduction due to the tightness of the gas is offset, the generation of small passages of exhaust gas that will be the starting point of the blow-through is suppressed,
Since the corners 8 of the reaction tank 1 are arc-shaped, the packing density of the packing material at the corners 8 is ensured, thereby suppressing the generation of small passages of exhaust gas that serve as starting points of blow-through at the corners 8. Further, in the present embodiment, the exhaust gas introduction section 2 is constituted by a perforated plate 6 provided at the bottom of the reaction tank 1 and an exhaust gas chamber 7a formed below the porous plate 6, and the exhaust gas supply pipe 4 is connected to the exhaust gas chamber 7a. Due to the structure, the exhaust gas can flow through the entire packed bed, and the formation of the packed bed portion in which the reaction with CO 2 is insufficient is prevented.

【0028】図3は本発明の反応装置の他の実施形態を
示す縦断面模式図である。図において、11は固体粒子
の集合体の充填層を形成するための密閉型(又は半密閉
型)の反応槽であり、この反応槽11の上端側には排ガ
ス(CO含有排ガス)を供給するための排ガス導入部
12が、また、底部側には槽内に供給された排ガスを排
出するための排ガス排出部13がそれぞれ設けられ、こ
れら排ガス導入部12と排ガス排出部13には、それぞ
れ排ガス供給管14と排ガス排出管15が接続されてい
る。なお、上記反応槽11は図示しない充填物出入部
(又は充填物の装入部と排出部)を有し、この充填物出
入部を通じて反応槽11に対する固体粒子の集合体(充
填物)の出し入れを行う。
FIG. 3 is a schematic longitudinal sectional view showing another embodiment of the reactor of the present invention. In the figure, 11 is a reaction vessel of the closed type (or semi-closed type) for forming a packed bed of aggregate of solid particles, the upper end of the reactor 11 supplies the exhaust gas (CO 2 containing exhaust gas) And an exhaust gas discharge unit 13 for discharging exhaust gas supplied into the tank is provided on the bottom side, respectively. The exhaust gas introduction unit 12 and the exhaust gas discharge unit 13 have An exhaust gas supply pipe 14 and an exhaust gas discharge pipe 15 are connected. The reaction tank 11 has a filling inlet / outlet (or a charging / discharging part and a discharging part) (not shown), through which the aggregate of solid particles (filling) enters and leaves the reaction tank 11 through the filling inlet / outlet. I do.

【0029】本実施形態では、反応槽11内部がその底
部寄りに設けられた多孔板16により仕切られ、多孔板
16の下方にガス排出用の排ガス室17aが形成される
とともに、この排ガス室17aに対して前記排ガス排出
管14が接続されている。前記多孔板16には、その全
面に多数の小径のガス通孔160が貫設されている。し
たがってこの実施形態では、前記多孔板16と排ガス室
17aが排ガス排出部12を構成し、多孔板16の上方
の空間が固体粒子を充填する反応室17bを構成してい
る。
In the present embodiment, the inside of the reaction tank 11 is partitioned by a perforated plate 16 provided near the bottom thereof, and an exhaust gas chamber 17a for discharging gas is formed below the perforated plate 16; Is connected to the exhaust gas discharge pipe 14. The perforated plate 16 has a large number of small-diameter gas through holes 160 penetrating therethrough. Therefore, in this embodiment, the perforated plate 16 and the exhaust gas chamber 17a constitute the exhaust gas discharge section 12, and the space above the perforated plate 16 constitutes the reaction chamber 17b for filling solid particles.

【0030】前記多孔板16に貫設されるガス通孔16
0の孔径は、固体粒子がガス通孔160を通じて飛散せ
ず且つ固体粒子による詰まりが生じないようにするた
め、充填層を構成する固体粒子の粒度などに応じて適宜
選択される。反応槽11内の充填物(固体粒子)には水
分が添加されるため、固体粒子の大きさに対してガス通
孔160の孔径がある程度大きくても、固体粒子の飛散
性はさほど問題にはならず、実験の結果では、例えば6
mmのアンダーの固体粒子(鉄鋼スラグなど)を使用す
る場合、ガス通孔160の孔径が4mm以下であれば固
体粒子の飛散は殆ど無視できる程度であった。一方、ガ
ス通孔160の孔径の下限に関しては、例えば上記のよ
うな粒径の固体粒子を使用する場合、孔径が1mm未満
となると固体粒子による詰まりが顕著になる傾向が見ら
れた。但し、ガス通孔160を通じた固体粒子の飛散性
と固体粒子によるガス通孔160の詰まりの傾向は、使
用する固体粒子の篩下粒度だけでなく、粒度分布にも依
存しているため、これらに応じて適宜選択される。
Gas through holes 16 penetrating through the perforated plate 16
The pore size of 0 is appropriately selected according to the particle size of the solid particles constituting the packed layer in order to prevent the solid particles from scattering through the gas through holes 160 and preventing the solid particles from clogging. Since water is added to the filler (solid particles) in the reaction vessel 11, even if the gas passage hole 160 has a certain size larger than the size of the solid particles, the scattering of the solid particles is not a problem. However, in the experimental results, for example, 6
In the case of using solid particles having a diameter of under mm (such as steel slag), scattering of the solid particles was almost negligible if the diameter of the gas through hole 160 was 4 mm or less. On the other hand, regarding the lower limit of the hole diameter of the gas through hole 160, for example, when solid particles having the above-mentioned particle diameter are used, if the hole diameter is less than 1 mm, the clogging by the solid particles tends to be remarkable. However, the scattering of solid particles through the gas holes 160 and the tendency of clogging of the gas holes 160 by the solid particles depend not only on the undersize of the solid particles used but also on the particle size distribution. Is appropriately selected according to the conditions.

【0031】一般に前記反応槽11の気筒流速は、0.
15〜0.01m/sと非常に遅いため動圧に対する配
慮は必要がない。このため前記ガス導入部12は必ずし
も反応槽11の天井部に設ける必要はなく、反応槽11
の側壁上部に設けてもよい。なお、ガス導入部12及び
ガス供給管14を設置するに当たっては、ガス供給管1
4内のドレンが充填層上に流入しないように、適当なド
レン抜きを設置するなどの対策を採ることが好ましい。
In general, the flow velocity of the cylinder in the reaction tank 11 is set to 0.1.
There is no need to consider dynamic pressure because it is extremely slow, 15 to 0.01 m / s. For this reason, the gas introduction unit 12 does not necessarily need to be provided on the ceiling of the reaction tank 11,
May be provided on the upper part of the side wall. In installing the gas introduction unit 12 and the gas supply pipe 14, the gas supply pipe 1
It is preferable to take measures such as installing an appropriate drain vent so that the drain in 4 does not flow into the packed bed.

【0032】排ガスの吹き抜けは反応槽11の内側壁面
に沿って形成されやすく、これを防止するためには充填
層の上面からその底部に向かって流れる排ガス流は、反
応槽11の底部中心側に誘導されるようにすることが好
ましい。このため本実施形態では、多孔板16のガス通
孔160は槽側壁に近い外縁部には形成せず、その外縁
部を除く領域にのみ設けられている。通常、ガス通孔1
60を設けない多孔板16の外縁部の範囲(すなわち、
側壁位置から多孔板中心方向での外縁部の幅)として
は、反応槽底部の水平断面形状が矩形状などの多角形状
の場合には、その各辺の長さの10%以上、反応槽底部
の水平断面形状が円形状の場合には、該円の半径の10
%以上、反応槽底部の水平断面形状が楕円形状の場合に
は、該楕円の短径の10%以上とすることが好ましい。
一方、このガス通孔160を設けない外縁部の範囲があ
まり広いと排ガス流が反応槽11の底部中央側に集中す
る結果、槽側壁に近い充填物(特に、槽底部に近い充填
物)に対する排ガスの供給量が少なくなり、この部分の
充填物は未反応のまま残存してしまう。このため上記各
場合におけるガス通孔160を設けない外縁部の範囲
(幅)は20%以下とすることが好ましい。
The blow-through of the exhaust gas is easily formed along the inner wall surface of the reaction vessel 11. To prevent this, the exhaust gas flow flowing from the upper surface of the packed bed toward the bottom thereof is directed toward the center of the bottom of the reaction vessel 11. Preferably, it is induced. For this reason, in the present embodiment, the gas through-holes 160 of the perforated plate 16 are not formed at the outer edge near the tank side wall, but are provided only in the region excluding the outer edge. Normally, gas through hole 1
The range of the outer edge portion of the perforated plate 16 where no 60 is provided (ie,
When the horizontal cross-sectional shape of the bottom of the reactor is a polygonal shape such as a rectangular shape, the width of the outer edge in the direction from the side wall to the center of the perforated plate is 10% or more of the length of each side. If the horizontal cross-sectional shape of the circle is a circle,
% Or more, and when the horizontal cross-sectional shape of the bottom of the reaction vessel is an elliptical shape, it is preferable to be 10% or more of the minor axis of the ellipse.
On the other hand, if the range of the outer edge portion where the gas through hole 160 is not provided is too large, the exhaust gas flow is concentrated on the bottom center side of the reaction tank 11, so that the packing near the tank side wall (particularly, the packing near the tank bottom) is removed. The supply amount of the exhaust gas is reduced, and the packing in this portion remains unreacted. Therefore, in each case described above, the range (width) of the outer edge portion where the gas through hole 160 is not provided is preferably 20% or less.

【0033】また、ガス通孔160の個数については、
ガス通孔160を通じた固体粒子の飛散や固体粒子によ
るガス通孔の詰まりを防止するため、排ガス流量を全ガ
ス通孔の断面積の合計(ガス通孔の孔径が全て同じ場合
には、ガス通孔の断面積×ガス通孔個数)で除した平均
通過流速が10m/s以下、望ましくは1〜3m/s程
度になるような個数とすることが好ましい。
Regarding the number of gas through holes 160,
In order to prevent scattering of solid particles through the gas through holes 160 and clogging of the gas through holes by the solid particles, the exhaust gas flow rate is determined by summing the cross-sectional area of all the gas through holes. The number is preferably such that the average passage velocity divided by (the cross-sectional area of the through-holes × the number of gas through-holes) is 10 m / s or less, preferably about 1 to 3 m / s.

【0034】なお、本実施形態の装置では、図3の仮想
線で示すように反応槽11を複数基設け、これら反応槽
11,11a,11b …… に対して排ガス供給管を直
列に接続した構造とすることもできる。このような装置
によれば、反応槽11から排出された排ガスを反応槽1
1aに供給し、さらに、反応槽11aから排出された排
ガスを反応槽11bに供給するというように、複数の直
列的な反応槽で排ガスを順次処理することにより、排ガ
ス中のCOを効果的に低減させることができる。
In the apparatus of this embodiment, a plurality of reaction tanks 11 are provided as shown by phantom lines in FIG. 3, and exhaust gas supply pipes are connected in series to these reaction tanks 11, 11a, 11b. It can also be structured. According to such an apparatus, the exhaust gas discharged from the reaction tank 11 is
1a, the exhaust gas discharged from the reaction tank 11a is supplied to the reaction tank 11b, and the exhaust gas is sequentially processed in a plurality of serial reaction tanks, thereby effectively reducing CO 2 in the exhaust gas. Can be reduced.

【0035】図3に示す実施形態の装置では、反応槽1
1の反応室17bに固体粒子の集合体が装入されて充填
層Aが形成され、この充填層Aに対してCO含有排ガ
スが供給される。排ガスは排ガス供給管14から充填層
上方の槽内部空間に供給された後、充填層A内を上から
下に向かって流れ、この充填層Aを流れる過程で排ガス
中のCOが固体粒子のCaO、Ca(OH)と反応
し、COが固体粒子にCaCOとして固定される。
この反応を終えた排ガスは多孔板16のガス通孔160
を通って排ガス室17aに集められ、槽底部の排ガス排
出部13と排ガス排出導管15から槽外に排出される。
In the apparatus of the embodiment shown in FIG.
Collection of solid particles in the first reaction chamber 17b is charged has been packed layer A is formed, CO 2 containing exhaust gas is supplied to the packed bed A. After the exhaust gas is supplied from the exhaust gas supply pipe 14 into the tank interior space above the packed bed, the exhaust gas flows from the top to the bottom inside the packed bed A. In the course of flowing through the packed bed A, CO 2 in the exhaust gas is converted into solid particles. CaO, reacts with Ca (OH) 2, CO 2 is fixed as CaCO 3 to the solid particles.
After the reaction, the exhaust gas is supplied to the gas passage 160 of the perforated plate 16.
The exhaust gas is collected in the exhaust gas chamber 17a and discharged out of the tank from the exhaust gas discharge section 13 and the exhaust gas discharge conduit 15 at the bottom of the tank.

【0036】そして、このように排ガスが充填層A内を
上から下に向かって流れるため、排ガス流による充填層
Aの持ち上げ効果がなくなり、吹き抜けの起点となる排
ガスの小さな通り道の発生が抑えられる。さらに、本実
施形態では、排ガス排出部13を反応槽11の底部に設
けられる多孔板16とその下方に形成される排ガス室1
7aとにより構成し、この排ガス室17aに排ガス排出
管15を接続し、しかも、多孔板16が槽側壁に近い外
縁部を除く領域にのみガス通孔160を有する構造とし
たことにより、充填層全体に排ガスを流すことができ、
COとの反応が不十分な充填層部分が生じるのが防止
されるとともに、特に吹き抜けが生じやすい槽内壁面の
近傍でのガス流れの形成が適度に抑制され、吹き抜けの
起点となる排ガスの小さな通り道の発生を抑えることが
できる。
Since the exhaust gas flows from the top to the bottom in the packed bed A as described above, the effect of lifting the packed bed A by the exhaust gas flow is lost, and the generation of a small passage of the exhaust gas serving as a starting point of blow-through is suppressed. . Furthermore, in the present embodiment, the exhaust gas discharge unit 13 is provided with a perforated plate 16 provided at the bottom of the reaction tank 11 and the exhaust gas chamber 1 formed thereunder.
7a, the exhaust gas exhaust pipe 15 is connected to the exhaust gas chamber 17a, and the perforated plate 16 has a gas through hole 160 only in a region other than the outer edge portion near the tank side wall. Exhaust gas can flow through the whole,
The formation of a packed bed portion where the reaction with CO 2 is insufficient is prevented, and the formation of a gas flow in the vicinity of the inner wall surface of the tank, in which blow-through tends to occur, is appropriately suppressed, and the exhaust gas serving as the starting point of blow-through is suppressed. The occurrence of small passages can be suppressed.

【0037】上述した2つの実施形態のうち図1及び図
2に示す実施形態のものは、下記(a)〜(d)の構成のうち
の(a)〜(c)の構成を備えた構造を有し、また、図3に示
す実施形態のものは(d)の構成を備えた構造を有するも
のであるが、本発明の装置は下記(a)〜(d)のうちの少な
くとも1つの構成を備えることにより、所望の吹き抜け
防止効果が得られる。一方、下記(a)〜(d)の構成のうち
の2つ以上の構成を備えることにより、また好ましくは
図1及び図2の実施形態のように(a)〜(c)の構成を備え
ることにより、さらに好ましくは(a)〜(d)の構成の全て
を備えることにより、さらに優れた吹き抜け防止効果が
得られる。また、下記(a)〜(d)の構成のうちの2つの構
成を組み合わせる場合には、(a)−(b)の組み合わせが特
に好ましい。
Of the above two embodiments, the embodiment shown in FIGS. 1 and 2 has a structure having the following constitutions (a) to (c) of the following constitutions (a) to (d). The embodiment shown in FIG. 3 has a structure having the configuration of (d), but the device of the present invention has at least one of the following (a) to (d): By providing the configuration, a desired blow-through prevention effect can be obtained. On the other hand, by providing two or more of the following configurations (a) to (d), and preferably also including the configurations (a) to (c) as in the embodiment of FIGS. Thereby, more preferably, all of the configurations (a) to (d) are provided, whereby a more excellent blow-through prevention effect can be obtained. When two of the following configurations (a) to (d) are combined, a combination of (a)-(b) is particularly preferable.

【0038】(a) 反応槽に槽側壁に振動を与えるための
振動装置を付設する。 (b) 反応槽の内壁面に、槽下方に向けて槽内部の水平断
面積を減ずるような傾斜を付す。 (c) 反応槽内部の水平断面形状を、円形状、楕円形状又
は隅部が円弧若しくは楕円弧状である形状に構成する。 (d) 反応槽の上部に排ガス導入部を設けるとともに、反
応槽の底部に排ガス排出部を設ける。
(A) The reaction tank is provided with a vibration device for applying vibration to the side wall of the reaction tank. (b) The inner wall surface of the reaction tank is inclined downward to reduce the horizontal cross-sectional area inside the reaction tank. (c) The horizontal cross-sectional shape inside the reaction tank is formed into a circular shape, an elliptical shape, or a shape in which a corner is a circular arc or an elliptical arc. (d) An exhaust gas introduction section is provided at the top of the reaction tank, and an exhaust gas discharge section is provided at the bottom of the reaction tank.

【0039】次に、本発明の装置におけるCOの固定
化作用、使用される固体粒子及び排ガスの条件、反応槽
に対する固体粒子の装入条件などについて説明する。本
発明の装置内に形成される充填層Aは、例えば、スラグ
やコンクリートなどのようなCaOおよび/またはCa
(OH)(以下、CaOを例に説明する)を含む固体
粒子で構成され、この固体粒子の集合体に水の存在下で
CO含有排ガスを接触させ、下記の反応により排ガス
中のCOを固体粒子にCaCOとして固定し、排ガ
ス中のCOを吸収・除去する。 CaO(固体粒子)+CO(排ガス)→CaCO
(固体粒子)
Next, the immobilizing action of CO 2 in the apparatus of the present invention, the conditions of solid particles and exhaust gas to be used, the conditions for charging solid particles into the reaction tank, and the like will be described. The packed layer A formed in the apparatus of the present invention is made of, for example, CaO and / or Ca such as slag or concrete.
(OH) 2 (Hereinafter, CaO will be described as an example). The aggregate of the solid particles is brought into contact with a CO 2 -containing exhaust gas in the presence of water, and the CO in the exhaust gas is reacted by the following reaction. 2 is fixed to solid particles as CaCO 3 , and CO 2 in the exhaust gas is absorbed and removed. CaO (solid particles) + CO 2 (exhaust gas) → CaCO
3 (solid particles)

【0040】CaOを含む固体粒子の集合体を用い、こ
の固体粒子の集合体にCO含有排ガスを接触させるこ
とにより、排ガス中のCOを固体粒子にCaCO
して固定する場合、排ガスを固体粒子中に含まれる適当
な水分を介して固体粒子に接触させること、より好まし
くは固体粒子に表面付着水(固体粒子表面の水膜)を存
在させた状態で排ガスを接触させることにより、固体粒
子による排ガス中のCOの吸収率を効果的に高めるこ
とができる。したがって、充填層Aを構成する固体粒子
の集合体は水を含有していること、より望ましくは表面
付着水を有していることが好ましい。この表面付着水と
は、固体粒子とともに存在する水分のうち、粒子内部に
含有される水分以外、すなわち固体粒子外表面に存在す
る水(水膜)のことである。また、同様の観点から固体
粒子の集合体の含水率は3〜20%であることが好まし
い。したがって、このような固体粒子およびその集合体
の水分を確保するために、必要に応じて事前に固体粒子
の集合体に水分を添加することが好ましい。
When an aggregate of solid particles containing CaO is used and a CO 2 -containing exhaust gas is brought into contact with the aggregate of the solid particles to fix CO 2 in the exhaust gas to the solid particles as CaCO 3 , the exhaust gas is solidified. The solid particles are brought into contact with the solid particles through appropriate moisture contained in the particles, and more preferably by contacting the exhaust gas with water attached to the surface of the solid particles (water film on the surface of the solid particles). Can effectively increase the absorption rate of CO 2 in exhaust gas. Therefore, it is preferable that the aggregate of the solid particles constituting the filling layer A contains water, and more desirably has surface-adhered water. The water attached to the surface refers to water (water film) other than the water contained inside the particles, that is, water (water film) existing on the outer surface of the solid particles among the water present together with the solid particles. Further, from the same viewpoint, the water content of the aggregate of the solid particles is preferably 3 to 20%. Therefore, in order to ensure the water content of such solid particles and the aggregate thereof, it is preferable to add water to the aggregate of the solid particles in advance as necessary.

【0041】固体粒子が水分、特に表面付着水を有して
いる場合、排ガス中のCOと固体粒子との反応は、固
体粒子から表面付着水中に溶出(拡散)したCa成分
(Caイオン)と排ガス中から表面付着水中に溶解した
炭酸ガス成分との反応となるが、このような固体粒子の
表面付着水を介したCOとの反応が、排ガス中のCO
を効率的に吸収・固定する上で特に有効である。
When the solid particles have moisture, especially water attached to the surface
If present, CO in exhaust gas2The reaction between
Ca component eluted (diffused) from body particles into surface-attached water
(Ca ions) and dissolved in the water adhering to the surface from the exhaust gas
It reacts with carbon dioxide gas components,
CO through surface attached water2Reacts with CO in the exhaust gas.
2It is particularly effective in efficiently absorbing and fixing the.

【0042】すなわち、本発明者らによる当初の予想で
は、排ガス中のCOを固体粒子中のCaと反応させ、
CaCOとして固体粒子に固定するという方法では、
反応の進行にしたがい固体粒子表面全体にCaCO
析出し、固体粒子からのCaイオンの拡散が妨げられる
結果、工業規模で実用化できるような高いレベルのCO
吸収効率は期待できないと考えられていた。しかし、
このような予想に全く反し、固体粒子に水分、特に表面
付着水を存在させた状態でCOと反応させることによ
り、極めて高い効率でCOを吸収できることが判明し
た。
That is, according to the initial expectation of the present inventors, CO 2 in the exhaust gas is reacted with Ca in the solid particles,
In the method of fixing to solid particles as CaCO 3 ,
As the reaction proceeds, CaCO 3 precipitates on the entire surface of the solid particles, and the diffusion of Ca ions from the solid particles is prevented. As a result, a high level of CO that can be practically used on an industrial scale is obtained.
2 It was thought that absorption efficiency could not be expected. But,
Contrary to such expectation, it has been found that CO 2 can be absorbed with extremely high efficiency by reacting the solid particles with CO 2 in the presence of water, particularly water adhering to the surface.

【0043】この理由は必ずしも明らかではないが、下
記のような理由が考えられる。すなわち、CaOを含む
固体粒子の表面に表面付着水を存在させた状態では、表
面付着水中に固体粒子側からはCaイオンが、排ガス側
からはCO(炭酸イオン)がそれぞれ溶解し、これら
が表面付着水中で反応して主に固体粒子の表面にCaC
が析出するが、この析出の際にCaCOの析出核
が水中で均一に生成するのではなく、固体粒子表面で生
成しやすい不均一核生成として生成するため、CaCO
の析出およびその後の成長が固体粒子表面の特定領域
でのみ生じる。この結果、CaCOの析出、成長が生
じない固体粒子の表面領域が相当な割合で存在すること
ができ、この領域から表面付着水中へのCaイオンの供
給(溶出)を維持できるため、COを短時間で効率的
に吸収・固定することができるものと考えられる。
The reason for this is not necessarily clear, but the following may be considered. In other words, in the state where water adhered to the surface is present on the surface of the solid particles containing CaO, Ca ions are dissolved from the solid particle side and CO 2 (carbonate ion) is dissolved from the exhaust gas side in the surface adhered water. It reacts in the water attached to the surface and mainly produces CaC on the surface of the solid particles.
O 3 precipitates, but during this precipitation, CaCO 3 precipitation nuclei are not generated uniformly in water, but are generated as heterogeneous nuclei that are likely to be generated on the surface of solid particles.
The precipitation and subsequent growth of 3 occur only in certain areas of the solid particle surface. As a result, precipitation of CaCO 3, the surface area of the solid particles growth does not occur can be present in substantial proportions, it is possible to maintain the supply of Ca ions into the surface adhesion water from this region (elution), CO 2 Can be efficiently absorbed and fixed in a short time.

【0044】本発明の装置で使用される固体粒子の集合
体は、組成としてCaOおよび/またはCa(OH)
を含む固体粒子の集合体である。固体粒子中に含まれる
Ca(OH)も、CaOと同様にCOと反応し、こ
れをCaCOとして固定できるため、固体粒子はこの
Ca(OH)を含むものであってもよい。固体粒子中
に含まれるCaO、Ca(OH)は、少なくとも固体
粒子の組成の一部として含まれるものであればよく、し
たがって、鉱物としてのCaO、Ca(OH) の他
に、2CaO・SiO、3CaO・SiO、ガラス
などのように組成の一部として固体粒子中に存在するも
のも含まれる。
Aggregation of solid particles used in the apparatus of the present invention
The body is composed of CaO and / or Ca (OH)2
Is an aggregate of solid particles containing: Contained in solid particles
Ca (OH)2Also, like CaO, CO2Reacts with
This is CaCO3Solid particles can be fixed as
Ca (OH)2May be included. In solid particles
, Ca (OH) contained in2Is at least solid
It only needs to be included as part of the particle composition,
Therefore, CaO and Ca (OH) as minerals 2Other
2CaO.SiO2、 3CaO ・ SiO2, Glass
Such as those present in solid particles as part of the composition
Is also included.

【0045】このような固体粒子の種類に特に制限はな
いが、特にCaO(および/またはCa(OH))の
含有率が高く、しかも資源のリサイクルを図ることがで
きるという点で、鉄鋼製造プロセスで発生するスラグ、
コンクリート(例えば、廃コンクリート)が好ましい。
また、上記スラグやコンクリート以外に、モルタル、ガ
ラス、アルミナセメント、CaO含有耐火物、MgO含
有耐火物などが挙げられ、これらの固体粒子の集合体の
1種以上を単独でまたは混合して、或いはスラグおよび
/またはコンクリートと混合して使用することもでき
る。これらの素材は必要に応じて粉状または粒状などに
破砕処理され、固体粒子の集合体として用いられる。
There is no particular limitation on the kind of such solid particles. However, in particular, the content of CaO (and / or Ca (OH) 2 ) is high and resources can be recycled. Slag generated in the process,
Concrete (eg, waste concrete) is preferred.
Further, in addition to the slag and concrete, mortar, glass, alumina cement, CaO-containing refractories, MgO-containing refractories, and the like, and one or more of these aggregates of solid particles may be used alone or in combination, or It can be used in combination with slag and / or concrete. These materials are optionally crushed into powder or granules, and used as an aggregate of solid particles.

【0046】一般に、鉄鋼製造プロセスで発生するスラ
グのCaO濃度は約13〜55wt%、また、コンクリ
ート(例えば、廃コンクリート)のCaO濃度は約5〜
15wt%(セメント中のCaO濃度:50〜60wt
%)であり、また、これらは入手も極めて容易であるた
め、CO吸収材となる固体粒子として極めて好適な素
材であるといえる。
In general, the slag generated in the steelmaking process has a CaO concentration of about 13 to 55% by weight, and the concrete (eg, waste concrete) has a CaO concentration of about 5 to 55%.
15wt% (CaO concentration in cement: 50-60wt%
%), And since these are very easily available, it can be said that these are extremely suitable materials as solid particles to be a CO 2 absorbent.

【0047】鉄鋼製造プロセスで発生するスラグとして
は、高炉徐冷スラグ、高炉水砕スラグなどの高炉系スラ
グ、予備処理、転炉、鋳造等の工程で発生する脱炭スラ
グ、脱燐スラグ、脱硫スラグ、脱珪スラグ、鋳造スラグ
などの製鋼系スラグ、鉱石還元スラグ、電気炉スラグな
どを挙げることができるが、これらに限定されるもので
はなく、また、2種以上のスラグを混合して用いること
もできる。また、コンクリートとしては、例えば、建築
物や土木構造物の取壊しなどにより生じた廃コンクリー
トなどを用いることができる。また、固体粒子の粒度は
特に限定されないが、排ガスとの接触面積を確保して反
応性を高めるためにはなるべく粒度が細かい方が好まし
く、具体的には実質的に(すなわち、不可避的に含まれ
る粒度の大きい固体粒子を除き)5mm以下、特に望ま
しくは1mm以下の粒度が好ましい。
The slag generated in the steelmaking process includes blast furnace slag such as blast furnace slow cooling slag and blast furnace granulated slag, decarburized slag, dephosphorized slag, and desulfurization generated in the steps of pretreatment, converter and casting. Examples include slag, desiliconized slag, steelmaking slag such as cast slag, ore reduction slag, electric furnace slag, and the like, but are not limited thereto, and a mixture of two or more slags is used. You can also. Further, as the concrete, for example, waste concrete generated by demolishing a building or civil engineering structure or the like can be used. Although the particle size of the solid particles is not particularly limited, it is preferable that the particle size be as small as possible in order to secure the contact area with the exhaust gas and enhance the reactivity, and specifically, it is substantially (ie, unavoidably included). A particle size of 5 mm or less, particularly preferably 1 mm or less, is preferred (except for solid particles having a large particle size).

【0048】本発明の装置が処理の対象とするCO
有排ガスとは、各種設備や装置から排出されるCO
含むガスのことであり、このような排ガス源に特別な制
限がないことは言うまでもない。比較的CO濃度が高
い排ガスとしては、CaCO 焼成炉の排ガス、熱風炉
ガス、ボイラー排ガス、コークス炉排ガス、焼結炉排ガ
ス、スラブ加熱炉排ガス、焼鈍炉排ガスなどが挙げられ
る。また、この排ガスは燃焼排ガスであるか否か、或い
は燃料などとして利用可能か否かも問わず、例えば、鉄
鋼製造プロセスで発生し、燃料ガスとして利用されてい
る所謂副生ガス(例えば、高炉ガス、転炉ガス、コーク
ス炉ガスなど)も本発明装置が処理の対象とするCO
含有排ガスに含まれる。
The CO to be processed by the apparatus of the present invention2Including
Exhaust gas refers to CO emitted from various facilities and equipment.2To
Gas, which has special restrictions on such exhaust gas sources.
It goes without saying that there is no limit. Relatively CO2High concentration
The exhaust gas is CaCO 3Exhaust gas from sintering furnace, hot blast furnace
Gas, boiler exhaust gas, coke oven exhaust gas, sintering furnace exhaust gas
Slab heating furnace exhaust gas, annealing furnace exhaust gas, etc.
You. Also, whether this exhaust gas is a combustion exhaust gas,
Can be used as fuel or not, for example, iron
Generated in the steel manufacturing process and used as fuel gas
So-called by-product gas (eg, blast furnace gas, converter gas, coke
Furnace gas, etc.)2
Contained in contained exhaust gas.

【0049】また、処理効率を上げるためには、反応槽
内に供給する排ガスを加圧した状態とすることが好まし
い。このガス圧力は特に限定しないが、CO分圧が高
いほど固体粒子の表面付着水中へのCO溶解速度が大
きくなるので、加圧した状態で固体粒子の集合体と接触
させれば、大気圧での接触に較べて処理効率を効果的に
向上させることができる。排ガスは、その温度をある程
度高くすることにより固体粒子との反応性が高まるが、
反応槽内に導入する排ガス温度が、当該反応槽内での水
の沸点を超えると固体粒子に付着した水を蒸発させ、却
って反応性を阻害する。このため排ガス温度は反応槽内
での水の沸点以下とすることが好ましい。
Further, in order to increase the processing efficiency, it is preferable that the exhaust gas supplied into the reaction tank is pressurized. Although the gas pressure is not particularly limited, the higher the partial pressure of CO 2 , the higher the dissolution rate of CO 2 in the water adhering to the surface of the solid particles. The processing efficiency can be effectively improved as compared with the contact at atmospheric pressure. By increasing the temperature of the exhaust gas to some extent, the reactivity with solid particles increases,
When the temperature of the exhaust gas introduced into the reaction tank exceeds the boiling point of water in the reaction tank, water attached to the solid particles is evaporated, and the reactivity is rather inhibited. For this reason, it is preferable that the exhaust gas temperature be equal to or lower than the boiling point of water in the reaction tank.

【0050】また同様の理由から、反応槽内の温度を水
の沸点以下に保つこと、さらに、固体粒子の集合体の温
度も反応槽内での水の沸点以下に保つことが好ましい。
また、同様の観点から、排ガス中の水蒸気濃度は高い
方が好ましく、このため予め排ガスを水中に通すことで
Oを飽和させ、しかる後、反応槽に供給するように
することが好ましい。また、反応槽内における固体粒子
の集合体の充填率が小さいと排ガスが固体粒子に接触す
る機会が少なくなり、処理効率に影響を与えるため、固
体粒子の集合体の充填率は40〜80容積%以上、望ま
しくは50〜70容積%であることが好ましい。
For the same reason, it is preferable that the temperature in the reaction vessel is kept below the boiling point of water, and the temperature of the aggregate of solid particles is kept below the boiling point of water in the reaction vessel.
In addition, from the same viewpoint, it is preferable that the concentration of water vapor in the exhaust gas is higher. Therefore, it is preferable that the exhaust gas be passed through water in advance to saturate H 2 O and then be supplied to the reaction tank. In addition, when the filling rate of the aggregate of solid particles in the reaction tank is small, the chance of contact of the exhaust gas with the solid particles decreases, which affects the processing efficiency. Therefore, the filling rate of the aggregate of solid particles is 40 to 80 volumes. % Or more, preferably 50 to 70% by volume.

【0051】[0051]

【実施例】[実施例1]縦×横×高さがそれぞれ1m×
1m×3mの直方体反応槽(反応槽の底部に排ガス導入
部を設けるとともに、反応槽の上部に排ガス排出部を設
け、前記排ガス導入部を反応槽の底部に設けられる多孔
板とその下方に形成される排ガス室とにより構成し、こ
の排ガス室に排ガス導入管を接続し、前記多孔板にはそ
の全面に均一にガス通孔を設けた反応槽)を有する反応
装置に対して、下記に示すような吹き抜け改善策1〜3
を単独で又は2つ以上組み合わせて施し、各々の装置を
使用した場合の充填層の吹き抜けの発生状況を調べた。
[Embodiment 1] Length x width x height are each 1m x
A 1 m × 3 m rectangular parallelepiped reaction tank (an exhaust gas introduction section is provided at the bottom of the reaction tank, an exhaust gas discharge section is provided at the top of the reaction tank, and the exhaust gas introduction section is formed below the porous plate provided at the bottom of the reaction tank. An exhaust gas chamber is provided, and an exhaust gas introduction pipe is connected to the exhaust gas chamber, and the perforated plate has a reaction vessel provided with gas holes uniformly on the entire surface thereof. Stairwell improvement measures 1-3
Was used alone or in combination of two or more, and the occurrence of blow-through of the packed bed when each device was used was examined.

【0052】改善策1:反応槽の両側壁の外側(槽高さ
方向の中間位置)に2基の偏芯質量型振動装置(出力1
KW)を付設し、この振動装置を排ガス通気の初期段階
から作動させ、反応槽の側壁に連続して振動を付与し
た。 改善策2:反応槽の内壁面の高さ方向に1/5と1/1
0の2水準の傾斜を付した。 改善策3:反応槽の4つの隅部に100mmのアールを
付した。
Remedy 1: Two eccentric mass vibrators (output 1) are provided outside the side walls of the reaction tank (intermediate position in the tank height direction).
KW), the vibration device was operated from the initial stage of exhaust gas ventilation, and vibration was continuously applied to the side wall of the reaction tank. Remedy 2: 1/5 and 1/1 in the height direction of the inner wall of the reactor
A two-level slope of 0 was assigned. Remedy 3: A 100 mm radius was attached to the four corners of the reaction tank.

【0053】上記改善策1〜3を単独で又は2つ以上組
み合わせて施した試験例2〜5と、上記改善策を全く施
さなかった試験例1の結果を表1に示す。なお、試験例
1〜5では反応槽内に粒度5mm以下の製鋼スラグを装
入して充填層を形成し、排ガス導入部からCOを25
%、他は概略N2よりなる排ガスを供給して、48時間
の処理を行った。試験1〜5では槽内に供給する排ガス
流量や充填物などの条件は全て同じにした。また、試験
例1及び試験例5でのCO吸収固定率は、化学分析法
により試験後及び保存しておいた試験前のスラグ中のC
含有率(CaCO量から換算されるCO含有
率)を測定し、両者を比較することにより求めた。
Table 1 shows the results of Test Examples 2 to 5 in which the above-mentioned improvement measures 1 to 3 were used alone or in combination of two or more, and Test Example 1 in which the above-mentioned improvement measures were not applied at all. In Test Examples 1 to 5, steelmaking slag having a particle size of 5 mm or less was charged into the reaction tank to form a packed bed, and CO 2 was discharged from the exhaust gas introduction section by 25% CO 2 .
%, And the others were supplied with an exhaust gas of approximately N2, and the treatment was carried out for 48 hours. In Tests 1 to 5, the conditions such as the flow rate of exhaust gas to be supplied into the tank and the packing were all the same. The CO 2 absorption fixed rate in Test Example 1 and Test Example 5 was determined by the chemical analysis method after the test and in the stored slag in the slag before the test.
The O 2 content (CO 2 content converted from the amount of CaCO 3 ) was measured and determined by comparing the two.

【0054】表1によれば、試験例2〜5は程度の差は
あるものの吹き抜け発生の改善効果が得られている。ま
た、その中でも「改善策1」を単独で実施した試験例2
に較べて「改善策1」と「改善策2」を組み合わせた試
験例3,4の方が吹き抜け発生の改善効果が高く、さら
に「改善策1」〜「改善策3」を組み合わせた試験例5
が最も高い改善効果が得られている。また、この試験例
5では試験例1に較べてCO吸収固定率が約20%増
加した。
According to Table 1, although the results of Test Examples 2 to 5 are somewhat different, the effect of improving the occurrence of blow-through is obtained. Test example 2 in which “Improvement 1” was implemented alone
Test examples 3 and 4 in which "Improvement measure 1" and "Improvement measure 2" are combined have a higher effect of improving the occurrence of blow-through, and test examples in which "Improvement measure 1" to "Improvement measure 3" are combined. 5
Has the highest improvement effect. In Test Example 5, the CO 2 absorption fixed rate increased by about 20% as compared with Test Example 1.

【0055】[0055]

【表1】 [Table 1]

【0056】[実施例2]縦×横×高さがそれぞれ1m
×1m×3mの直方体反応槽を有し、且つ以下のような
構造を有する反応装置(試験例1〜3)を用い、各々の
装置におけるCO 吸収固定率を調べた。
[Embodiment 2] Each of length × width × height is 1 m
It has a rectangular parallelepiped reaction tank of × 1m × 3m, and
Using a reactor having a structure (Test Examples 1 to 3),
CO in equipment 2The absorption fixation rate was examined.

【0057】試験例1:反応槽の底部に排ガス導入部を
設けるとともに、反応槽の上部に排ガス排出部を設け、
前記排ガス導入部を反応槽の底部に設けられる多孔板と
その下方に形成される排ガス室とにより構成し、この排
ガス室に排ガス導入管を接続した。多孔板にはその全面
にガス通孔を等間隔で設けた。 試験例2:反応槽の上部に排ガス導入部を設けるととも
に、反応槽の底部に排ガス排出部を設け、この排ガス排
出部を反応槽の底部に設けられる多孔板とその下方に形
成される排ガス室とにより構成し、この排ガス室に排ガ
ス排出管を接続した。多孔板にはその全面にガス通孔を
等間隔で設けた。 試験例3:装置の基本構造は試験例2と同じであるが、
多孔板については、その外縁部の幅120mmの部分を
除く部分にガス通孔を等間隔で設けた。
Test Example 1: An exhaust gas introduction part was provided at the bottom of the reaction tank, and an exhaust gas discharge part was provided at the top of the reaction tank.
The exhaust gas introduction section was constituted by a perforated plate provided at the bottom of the reaction tank and an exhaust gas chamber formed below the porous plate, and an exhaust gas introduction pipe was connected to the exhaust gas chamber. Gas perforations were provided on the entire surface of the perforated plate at equal intervals. Test Example 2: An exhaust gas introduction section was provided at the top of the reaction tank, and an exhaust gas discharge section was provided at the bottom of the reaction tank. The exhaust gas discharge section was provided at the bottom of the reaction tank with a perforated plate and an exhaust gas chamber formed therebelow. And an exhaust gas discharge pipe was connected to the exhaust gas chamber. Gas perforations were provided on the entire surface of the perforated plate at equal intervals. Test Example 3: Although the basic structure of the device is the same as Test Example 2,
Regarding the perforated plate, gas holes were provided at equal intervals in a portion other than a portion having a width of 120 mm at the outer edge.

【0058】なお、試験例1〜3では反応槽内に粒度5
mm以下の製鋼スラグを装入して充填層を形成し、排ガ
ス導入部からCOを25%、他は概略Nによりなる
排ガスを供給して、48時間の処理を行った。試験例1
〜3では槽内に供給する排ガス流量や充填物などの条件
は全て同じにした。CO吸収固定率は、化学分析法に
より試験後及び保存しておいた試験前のスラグ中のCO
含有率(CaCO量から換算されるCO含有率)
を測定し、両者を比較することにより求めた。これらの
試験結果では、試験例2のCO吸収固定率は試験例1
に較べて約12%増加し、試験例3のCO吸収固定率
は試験例1に較べて約18%増加した。
In Test Examples 1 to 3, the particle size of 5
A steelmaking slag of not more than 1 mm was charged to form a packed bed, and an exhaust gas consisting of 25% of CO 2 and the other approximately N 2 was supplied from an exhaust gas introduction portion, and the treatment was performed for 48 hours. Test example 1
In Nos. 1 to 3, the conditions such as the flow rate of the exhaust gas supplied into the tank and the packing were all the same. The CO 2 absorption fixed rate was determined by measuring the CO 2 in the slag after the test and before storage by the chemical analysis method.
2 content (CO 2 content converted from CaCO 3 amount)
Was measured, and both were determined. According to these test results, the CO 2 absorption fixed rate of Test Example 2 was
And the CO 2 absorption fixed rate of Test Example 3 was increased by about 18% as compared with Test Example 1.

【0059】[0059]

【発明の効果】以上述べた本発明の装置によれば、Ca
OやCa(OH)を含む固体粒子の充填層に適当な水
分の存在下でCO含有排ガスを導入することにより、
排ガス中のCOを固体粒子に吸収固定することがで
き、また、その際に充填層内でのガス吹き抜けを適切に
防止し、COの効率的な吸収固定を行うことができ
る。
According to the apparatus of the present invention described above, Ca
By introducing a CO 2 -containing exhaust gas into the packed bed of solid particles containing O and Ca (OH) 2 in the presence of appropriate moisture,
CO 2 in the exhaust gas can be absorbed and fixed to the solid particles. At that time, gas blow-through in the packed bed can be appropriately prevented, and CO 2 can be efficiently absorbed and fixed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の反応装置の一実施形態を示す縦断面模
式図
FIG. 1 is a schematic longitudinal sectional view showing an embodiment of the reaction apparatus of the present invention.

【図2】図1のII-II線に沿う断面模式図FIG. 2 is a schematic cross-sectional view taken along the line II-II of FIG.

【図3】本発明の反応装置の他の実施形態を示す縦断面
模式図
FIG. 3 is a schematic longitudinal sectional view showing another embodiment of the reaction apparatus of the present invention.

【図4】反応槽内での吹き抜けの発生状況を示す説明図FIG. 4 is an explanatory diagram showing the occurrence of blow-by in a reaction tank.

【符号の説明】[Explanation of symbols]

1,1a,1b…反応槽、2…排ガス導入部、3…排ガ
ス排出部、4…排ガス供給管、5…排ガス排出管、6…
多孔板、7a…排ガス室、7b…反応室、8…隅部、9
…内壁面、10…振動装置、11,11a,11b…反
応槽、12…排ガス導入部、13…排ガス排出部、14
…排ガス供給管、15…排ガス排出管、16…多孔板、
17a…排ガス室、17b…反応室、60,160…ガ
ス通孔
1, 1a, 1b ... reaction tank, 2 ... exhaust gas introduction part, 3 ... exhaust gas discharge part, 4 ... exhaust gas supply pipe, 5 ... exhaust gas discharge pipe, 6 ...
Perforated plate, 7a: exhaust gas chamber, 7b: reaction chamber, 8: corner, 9
... inner wall surface, 10 ... vibration device, 11, 11a, 11b ... reaction tank, 12 ... exhaust gas introduction part, 13 ... exhaust gas discharge part, 14
... exhaust gas supply pipe, 15 ... exhaust gas discharge pipe, 16 ... perforated plate,
17a: Exhaust gas chamber, 17b: Reaction chamber, 60, 160: Gas through hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 達人 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4D002 AA09 BA03 CA07 DA05 DA11 DA12 DA35 FA02 GA03 GB03 GB04 GB20 HA10 4D020 AA03 BA02 BA08 BB03 CB08 CC30 DA03 DB01 4G066 AA14D AA17B BA09 CA35 DA02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tatsuto Takahashi 1-2-1 Marunouchi, Chiyoda-ku, Tokyo F-term in Nihon Kokan Co., Ltd. 4D002 AA09 BA03 CA07 DA05 DA11 DA12 DA35 FA02 GA03 GB03 GB04 GB20 HA10 4D020 AA03 BA02 BA08 BB03 CB08 CC30 DA03 DB01 4G066 AA14D AA17B BA09 CA35 DA02

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 組成としてCaOおよび/またはCa
(OH)を含む固体粒子の集合体が水分を含んだ状態
で充填される反応槽を有し、該反応槽内にCO含有排
ガスを導入して前記固体粒子にCO含有排ガス中のC
を吸収固定させるための反応装置であって、 前記反応槽に槽側壁に振動を与えるための振動装置を付
設したことを特徴とする排出炭酸ガス吸収反応用の反応
装置。
1. A composition comprising CaO and / or Ca
A reaction vessel in which an aggregate of solid particles containing (OH) 2 is filled in a state containing water; a CO 2 -containing exhaust gas is introduced into the reaction vessel to allow the solid particles to contain the CO 2 -containing exhaust gas; C
A reactor for absorbing and fixing O 2 , wherein a vibrator for imparting vibration to a side wall of the reactor is attached to the reactor, and a reactor for absorbing carbon dioxide gas discharged.
【請求項2】 組成としてCaOおよび/またはCa
(OH)を含む固体粒子の集合体が水分を含んだ状態
で充填される反応槽を有し、該反応槽内にCO含有排
ガスを導入して前記固体粒子にCO含有排ガス中のC
を吸収固定させるための反応装置であって、 前記反応槽の内壁面に、槽下方に向けて槽内部の水平断
面積を減ずるような傾斜を付したことを特徴とする排出
炭酸ガス吸収反応用の反応装置。
2. A composition comprising CaO and / or Ca
A reaction vessel in which an aggregate of solid particles containing (OH) 2 is filled in a state containing water; a CO 2 -containing exhaust gas is introduced into the reaction vessel to allow the solid particles to contain the CO 2 -containing exhaust gas; C
A reactor for absorbing and fixing O 2 , wherein an inner wall surface of the reaction tank is inclined downward to reduce a horizontal cross-sectional area of the inside of the tank. A reactor for the reaction.
【請求項3】 組成としてCaOおよび/またはCa
(OH)を含む固体粒子の集合体が水分を含んだ状態
で充填される反応槽を有し、該反応槽内にCO含有排
ガスを導入して前記固体粒子にCO含有排ガス中のC
を吸収固定させるための反応装置であって、 前記反応槽内部の水平断面形状を、円形状、楕円形状又
は隅部が円弧若しくは楕円弧状である形状に構成したこ
とを特徴とする排出炭酸ガス吸収反応用の反応装置。
3. A composition comprising CaO and / or Ca
A reaction vessel in which an aggregate of solid particles containing (OH) 2 is filled in a state containing water; a CO 2 -containing exhaust gas is introduced into the reaction vessel to allow the solid particles to contain the CO 2 -containing exhaust gas; C
A reactor for absorbing and fixing O 2 , wherein the horizontal cross-sectional shape of the inside of the reaction tank is configured to have a circular shape, an elliptical shape, or a shape in which a corner is a circular arc or an elliptical arc. Reactor for gas absorption reaction.
【請求項4】 反応槽の排ガス導入部を、槽底部に設け
られる多孔板とその下方に形成される排ガス室とにより
構成し、該排ガス室に排ガス供給管を接続したこと特徴
とする請求項1、2又は3に記載の排出炭酸ガス吸収反
応用の反応装置。
4. The exhaust gas introduction section of the reaction tank is constituted by a perforated plate provided at the bottom of the tank and an exhaust gas chamber formed below the perforated plate, and an exhaust gas supply pipe is connected to the exhaust gas chamber. 4. The reaction apparatus for an exhaust carbon dioxide absorption reaction according to 1, 2, or 3.
【請求項5】 組成としてCaOおよび/またはCa
(OH)を含む固体粒子の集合体が水分を含んだ状態
で充填される反応槽を有し、該反応槽内にCO含有排
ガスを導入して前記固体粒子にCO含有排ガス中のC
を吸収固定させるための反応装置であって、 前記反応槽の上部に排ガス導入部を設けるとともに、反
応槽の底部に排ガス排出部を設けたことを特徴とする排
出炭酸ガス吸収反応用の反応装置。
5. A composition comprising CaO and / or Ca
A reaction vessel in which an aggregate of solid particles containing (OH) 2 is filled in a state containing water; a CO 2 -containing exhaust gas is introduced into the reaction vessel to allow the solid particles to contain the CO 2 -containing exhaust gas; C
A reaction device for absorbing and fixing O 2 , wherein an exhaust gas introduction portion is provided at an upper portion of the reaction tank, and an exhaust gas discharge portion is provided at a bottom portion of the reaction tank. Reactor.
【請求項6】 排ガス排出部を、槽底部に設けられる多
孔板とその下方に形成される排ガス室とにより構成し、
該排ガス室に排ガス排出管を接続したこと特徴とする請
求項5に記載の排出炭酸ガス吸収反応用の反応装置。
6. An exhaust gas discharge part comprises a perforated plate provided at the bottom of the tank and an exhaust gas chamber formed below the perforated plate,
6. The reaction apparatus for an exhaust carbon dioxide absorption reaction according to claim 5, wherein an exhaust gas discharge pipe is connected to the exhaust gas chamber.
【請求項7】 多孔板が、槽側壁に近い外縁部を除く領
域にのみガス通孔を有していること特徴とする請求項6
に記載の排出炭酸ガス吸収反応用の反応装置。
7. The perforated plate has gas holes only in a region except for an outer edge portion near a tank side wall.
The reactor for exhaust carbon dioxide absorption reaction according to 1.
【請求項8】 組成としてCaOおよび/またはCa
(OH)を含む固体粒子の集合体が水分を含んだ状態
で充填される反応槽を有し、該反応槽内にCO含有排
ガスを導入して前記固体粒子にCO含有排ガス中のC
を吸収固定させるための反応装置であって、 前記反応槽が下記(a)〜(d)の中から選ばれる2つ以上の
構成を備えていることを特徴とする排出炭酸ガス吸収反
応用の反応装置。 (a) 反応槽に槽側壁に振動を与えるための振動装置を付
設する。 (b) 反応槽の内壁面に、槽下方に向けて槽内部の水平断
面積を減ずるような傾斜を付す。 (c) 反応槽内部の水平断面形状を、円形状、楕円形状又
は隅部が円弧若しくは楕円弧状である形状に構成する。 (d) 反応槽の上部に排ガス導入部を設けるとともに、反
応槽の底部に排ガス排出部を設ける。
8. A composition comprising CaO and / or Ca
A reaction vessel in which an aggregate of solid particles containing (OH) 2 is filled in a state containing water; a CO 2 -containing exhaust gas is introduced into the reaction vessel to allow the solid particles to contain the CO 2 -containing exhaust gas; C
A reaction apparatus for absorbing and fixing O 2 , wherein the reaction tank has two or more components selected from the following (a) to (d): For reactors. (a) The reaction tank is provided with a vibration device for applying vibration to the side wall of the tank. (b) The inner wall surface of the reaction tank is inclined downward to reduce the horizontal cross-sectional area inside the reaction tank. (c) The horizontal cross-sectional shape inside the reaction tank is formed into a circular shape, an elliptical shape, or a shape in which a corner is a circular arc or an elliptical arc. (d) An exhaust gas introduction section is provided at the top of the reaction tank, and an exhaust gas discharge section is provided at the bottom of the reaction tank.
【請求項9】 反応槽が(a)〜(c)の構成を備えているこ
とを特徴とする請求項8に記載の排出炭酸ガス吸収反応
用の反応装置。
9. The reaction apparatus for an exhaust carbon dioxide absorption reaction according to claim 8, wherein the reaction tank has the configuration of (a) to (c).
【請求項10】 反応槽が(a)〜(c)の中から選ばれる2
つ以上の構成を備え、且つ反応槽の排ガス導入部を、槽
底部に設けられる多孔板とその下方に形成される排ガス
室とにより構成し、該排ガス室に排ガス供給管を接続し
たこと特徴とする請求項8又は9に記載の排出炭酸ガス
吸収反応用の反応装置。
10. The reaction tank is selected from the group consisting of (a) to (c).
The exhaust gas introduction part of the reaction tank is constituted by a perforated plate provided at the bottom of the tank and an exhaust gas chamber formed below the exhaust gas chamber, and an exhaust gas supply pipe is connected to the exhaust gas chamber. The reaction apparatus for an exhaust carbon dioxide absorption reaction according to claim 8 or 9, wherein:
【請求項11】 反応槽が(a)〜(d)の構成を備えている
ことを特徴とする請求項8に記載の排出炭酸ガス吸収反
応用の反応装置。
11. The reactor according to claim 8, wherein the reaction tank has a configuration of (a) to (d).
【請求項12】 反応槽が(d)の構成と(a)〜(c)の中か
ら選ばれる1つ以上の構成とを備え、且つ排ガス排出部
を、槽底部に設けられる多孔板とその下方に形成される
排ガス室とにより構成し、該排ガス室に排ガス排出管を
接続したこと特徴とする請求項8又は11に記載の排出
炭酸ガス吸収反応用の反応装置。
12. The reaction tank has the configuration of (d) and at least one configuration selected from (a) to (c), and the exhaust gas discharge unit is provided with a perforated plate provided at the bottom of the tank. 12. The reaction apparatus for an exhaust carbon dioxide absorption reaction according to claim 8 or 11, comprising an exhaust gas chamber formed below, and an exhaust gas discharge pipe connected to the exhaust gas chamber.
【請求項13】 多孔板が、槽側壁に近い外縁部を除く
領域にのみガス通孔を有していること特徴とする請求項
12に記載の排出炭酸ガス吸収反応用の反応装置。
13. The reactor according to claim 12, wherein the perforated plate has gas holes only in a region except an outer edge portion near the tank side wall.
JP2000069265A 2000-03-13 2000-03-13 Reactor for carbon dioxide absorption reaction Expired - Fee Related JP3624784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000069265A JP3624784B2 (en) 2000-03-13 2000-03-13 Reactor for carbon dioxide absorption reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000069265A JP3624784B2 (en) 2000-03-13 2000-03-13 Reactor for carbon dioxide absorption reaction

Publications (2)

Publication Number Publication Date
JP2001252525A true JP2001252525A (en) 2001-09-18
JP3624784B2 JP3624784B2 (en) 2005-03-02

Family

ID=18588183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000069265A Expired - Fee Related JP3624784B2 (en) 2000-03-13 2000-03-13 Reactor for carbon dioxide absorption reaction

Country Status (1)

Country Link
JP (1) JP3624784B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160562A (en) * 2008-01-10 2009-07-23 Yamaguchi Univ How to fix carbon in carbon dioxide
JP2009196865A (en) * 2008-02-22 2009-09-03 Nippon Steel Corp Method of stabilization of steel slag
JP2017060949A (en) * 2007-11-15 2017-03-30 ラトガーズ, ザ ステイト ユニバーシティ オブ ニュー ジャージー Recovery and sequestration system and method for gas and composition obtained therefrom
JP2020015659A (en) * 2018-07-11 2020-01-30 太平洋セメント株式会社 How to fix carbon dioxide
WO2020166176A1 (en) * 2019-02-14 2020-08-20 太平洋セメント株式会社 Carbon dioxide fixation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100595792B1 (en) 2005-04-13 2006-07-03 한국과학기술연구원 Carbon dioxide separation and removal device and method using a calcium-based absorption liquid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312323A (en) * 1986-07-03 1988-01-19 Sumitomo Heavy Ind Ltd Reactor for carbon dioxide removing device by ion-exchange resin
JPH04243910A (en) * 1991-01-29 1992-09-01 Suzuki Kogyo Kk Carbon dioxide recovering material and method for recovering carbon dioxide utilizing the same
JPH0716427A (en) * 1993-06-22 1995-01-20 Kaoru Umeya Air purifying device
JPH09276641A (en) * 1996-04-15 1997-10-28 Matsushita Electric Ind Co Ltd Adsorption device and desorption device
JPH1066821A (en) * 1996-08-29 1998-03-10 Ishikawajima Harima Heavy Ind Co Ltd Fixed bed desulfurization equipment
JP2000197810A (en) * 1998-10-29 2000-07-18 Nkk Corp Method for lessening carbon dioxide gas emission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312323A (en) * 1986-07-03 1988-01-19 Sumitomo Heavy Ind Ltd Reactor for carbon dioxide removing device by ion-exchange resin
JPH04243910A (en) * 1991-01-29 1992-09-01 Suzuki Kogyo Kk Carbon dioxide recovering material and method for recovering carbon dioxide utilizing the same
JPH0716427A (en) * 1993-06-22 1995-01-20 Kaoru Umeya Air purifying device
JPH09276641A (en) * 1996-04-15 1997-10-28 Matsushita Electric Ind Co Ltd Adsorption device and desorption device
JPH1066821A (en) * 1996-08-29 1998-03-10 Ishikawajima Harima Heavy Ind Co Ltd Fixed bed desulfurization equipment
JP2000197810A (en) * 1998-10-29 2000-07-18 Nkk Corp Method for lessening carbon dioxide gas emission

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017060949A (en) * 2007-11-15 2017-03-30 ラトガーズ, ザ ステイト ユニバーシティ オブ ニュー ジャージー Recovery and sequestration system and method for gas and composition obtained therefrom
JP2009160562A (en) * 2008-01-10 2009-07-23 Yamaguchi Univ How to fix carbon in carbon dioxide
JP2009196865A (en) * 2008-02-22 2009-09-03 Nippon Steel Corp Method of stabilization of steel slag
JP2020015659A (en) * 2018-07-11 2020-01-30 太平洋セメント株式会社 How to fix carbon dioxide
JP7378213B2 (en) 2018-07-11 2023-11-13 太平洋セメント株式会社 Carbon dioxide fixation method
WO2020166176A1 (en) * 2019-02-14 2020-08-20 太平洋セメント株式会社 Carbon dioxide fixation method
JP2020131076A (en) * 2019-02-14 2020-08-31 太平洋セメント株式会社 Immobilization method of carbon dioxide
US11878268B2 (en) 2019-02-14 2024-01-23 Taiheiyo Cement Corporation Carbon dioxide fixation method

Also Published As

Publication number Publication date
JP3624784B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
JP3248514B2 (en) How to reduce carbon dioxide emissions
ES2488825T3 (en) Carbon dioxide sequestration materials and procedures
JP2001252525A (en) Reaction apparatus for discharged carbon dioxide absorbing reaction
JP2000247711A (en) Production of artificial stone
JPH06198126A (en) Method for treating exhaust gas
Wu et al. Generation, utilization, and environmental impact of ladle furnace slag: A minor review
JP2002012480A (en) Method of manufacturing carbonated solid
RU2005140564A (en) METHOD FOR FORMING FOAMY SLAG OVER MELT WITH HIGH CHROMIUM CONTENT IN ELECTRIC FURNACE
DE69942399D1 (en) Process and apparatus for purifying exhaust gases.
JP2006255705A (en) Manufacturing method of solidifying carbonic acid
JP2007332403A (en) Method for desulfurizing molten iron
JP2000246267A (en) Method for fixing fluorine in wastewater and method for stabilizing wastewater
KR100279171B1 (en) Landfill, landfill and its production method using landfill sludge
JPH09105105A (en) Roadbed material
CN101642667B (en) Method for using cooling-tower circulating water as water used by flue gas desulfurization system
JP3714229B2 (en) Method for producing a molded body using sulfur-containing slag as a raw material
JP2004209378A (en) Method for treating coal ash
JP2000203903A (en) Production of artificial stone material and production equipment therefor
JPS6279890A (en) Treatment of ash of fluidized bed combustion boiler
JPS6129458Y2 (en)
JP3872604B2 (en) Hydrogen chloride gas scavenger and acidic exhaust gas treatment method
JPS6336834A (en) Dry desulfurization agent
JPH1171611A (en) Lime flux for smelting metal
JPH04256416A (en) Treatment of exhaust gas
JP2023103807A (en) Oxidation accelerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3624784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees