[go: up one dir, main page]

JP2001242133A - Disposable bun sensor and production method thereof - Google Patents

Disposable bun sensor and production method thereof

Info

Publication number
JP2001242133A
JP2001242133A JP2000053784A JP2000053784A JP2001242133A JP 2001242133 A JP2001242133 A JP 2001242133A JP 2000053784 A JP2000053784 A JP 2000053784A JP 2000053784 A JP2000053784 A JP 2000053784A JP 2001242133 A JP2001242133 A JP 2001242133A
Authority
JP
Japan
Prior art keywords
enzyme
layer
electrode
sensor
disposable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000053784A
Other languages
Japanese (ja)
Other versions
JP4404433B2 (en
Inventor
Kinsou Dan
金宗 檀
Hiroki Yamazaki
浩樹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Medica Co Ltd
Original Assignee
Techno Medica Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Medica Co Ltd filed Critical Techno Medica Co Ltd
Priority to JP2000053784A priority Critical patent/JP4404433B2/en
Publication of JP2001242133A publication Critical patent/JP2001242133A/en
Application granted granted Critical
Publication of JP4404433B2 publication Critical patent/JP4404433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a disposable 'BUN' sensor and a production method thereof, which enable detection of pH changes, using a pH electrode at lower cost, and moreover along with a shorter measurement time and a higher measuring accuracy. SOLUTION: The disposable BUN sensor is provided with a pH electrode which is formed on an insulating film to detect pH changes, an enzyme layer which is provided on the pH electrode and comprises a mixture of an enzyme, a water-swelling high polymer material, a surfactant, a buffer material and the like and a filter layer, which is provided covering the enzyme layer to prevent the spillage of the enzyme from the enzyme layer and restricts the diffusion of urea and nitrogen, to remove cross substance in a measurement liquid. In the production method of the disposable BUN sensor, an electrode layer is formed by a screen printing method on a polyethylene film and the pH electrode, the enzyme layer and the filter layer are formed separately in a drip drying process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、全血、血漿、血
清、尿など生体液中の尿素窒素を測定する使い捨てBU
Nセンサー及びその製造法に関するものである。
The present invention relates to a disposable BU for measuring urea nitrogen in a biological fluid such as whole blood, plasma, serum, urine and the like.
The present invention relates to an N sensor and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、検量線の校正や電極の洗浄が不要
で小型、使い捨てタイプの酵素センサーが実用に供され
ている。酵素センサーは、一般的には酵素反応を検知す
る作用極(酵素電極又は測定極とも言う)と、電気回路
を形成する参照極(又は対極)を有する構造を持ち、作
用極における酵素反応による物質変化を、それら電極に
より電気信号の変化として取り出し、その変化からその
酵素と特異的に作用する基質の濃度を測定するものであ
る。その中でよく使われている酵素センサーには酸化還
元酵素を利用するものがある。例えば生成する過酸化水
素、又は消費する酸素を検出物質とするアンペロメトリ
ック型酵素センサーである(例えば特開平のグルコース
酵素センサー)。また、酵素の酸化還元をメディエーシ
ョンする電子伝達物質(メディエーターと呼ばれる)を
介して電気信号を検出するアンペロメトリック型酵素セ
ンサーもある。更に、水解酵素を利用し、それと選択的
に反応する基質の水解生成物により電極信号の変化をポ
テンシオメトリックに測定することによって、その基質
の濃度を定量することも可能である。
2. Description of the Related Art In recent years, small and disposable enzyme sensors which do not require calibration of a calibration curve or washing of electrodes have been put to practical use. An enzyme sensor generally has a structure having a working electrode (also referred to as an enzyme electrode or a measuring electrode) for detecting an enzyme reaction and a reference electrode (or a counter electrode) forming an electric circuit. The change is extracted as a change in the electric signal by the electrodes, and the concentration of the substrate that specifically acts on the enzyme is measured from the change. Among them, some of the commonly used enzyme sensors utilize oxidoreductase. For example, it is an amperometric enzyme sensor using hydrogen peroxide generated or consumed oxygen as a detection substance (for example, a glucose enzyme sensor disclosed in JP-A-Hei). There is also an amperometric enzyme sensor that detects an electric signal via an electron mediator (referred to as a mediator) that mediates the oxidation-reduction of an enzyme. Furthermore, it is also possible to quantify the concentration of the substrate by utilizing a hydrolase and potentiometrically measuring the change in the electrode signal with the hydrolysis product of the substrate that selectively reacts with the enzyme.

【0003】例えば、尿素、特に血液中の尿素窒素(B
UN)は、肝臓のタンパク中間代謝機能及び腎臓機能を
反映する重要な臨床検査項目である為、それの測定用酵
素センサーの開発は多数報告されている。尿素の測定に
は一般的に、水解酵素であるウレアーゼが利用されてい
る。その水解反応の反応式を次に示す: CO(NH2)2 + H2O → CO2 + 2NH3 反応は、二酸化炭素(CO2 )及びアンモニア(NH3 )を
生成する為、従来技術ではPCO2電極、即ちCO2 ガス透過
膜を持つpH電極(例えば、G.G.Guilbault ら、Anal.C
hem.,44,2161(1972)) 、又はNH3 電極、即ちNH3 ガス透
過膜を持つpH電極(例えば、米国特許明細書第3,92
6,734 号参照)を用いて測定する。又は、水溶液中NH3
はアンモニアムイオン(NH4 )選択性電極(例え
ば、米国特許明細書第4,476,005 号参照)、電気伝導
度変化(例えば、米国明細書特許第5,698,083 号参
照)又はpH変化(例えば、文献R.M.Ianniello ら、An
al.Chim.Acta,146,249 (1983))による測定も研究され
ている。
[0003] For example, urea, especially urea nitrogen (B
UN) is an important clinical test item that reflects liver protein metabolic function and renal function, and thus many enzyme sensors have been developed for its measurement. Urease, which is a hydrolase, is generally used for measuring urea. The reaction equation of the hydrolysis reaction is as follows: CO (NH 2 ) 2 + H 2 O → CO 2 + 2NH 3 The reaction produces carbon dioxide (CO 2 ) and ammonia (NH 3 ), so that the conventional technology PCO 2 electrode, a pH electrode with a CO 2 gas permeable membrane (eg, GGGuilbault et al., Anal.
Chem., 44, 2161 (1972)), or an NH 3 electrode, ie, a pH electrode having an NH 3 gas permeable membrane (see, for example, US Pat.
Measured using 6,734). Or NH 3 in aqueous solution
Is an ammonium ion (NH 4 + ) selective electrode (see, eg, US Pat. No. 4,476,005), a change in electrical conductivity (see, eg, US Pat. No. 5,698,083) or pH. Changes (eg RMIanniello et al., An
al. Chim. Acta, 146, 249 (1983)).

【0004】このように、BUNセンサーはバイオセン
サーの一種で、この種のセンサーは一般に、測定すべき
血液中の尿素窒素とウレアーゼという酵素との間で生じ
る酵素反応により生成するアンモニウムイオンや重炭酸
イオンのような生成物或いはこのようなイオンの生成に
伴うpHの変化を検出するように構成され、検出した値
から尿素窒素の濃度に換算する。
[0004] As described above, the BUN sensor is a kind of biosensor, and this type of sensor generally has ammonium ion or bicarbonate generated by an enzymatic reaction between urea nitrogen in blood to be measured and an enzyme called urease. It is configured to detect a product such as an ion or a change in pH accompanying the generation of such an ion, and converts the detected value into a concentration of urea nitrogen.

【0005】ところで、このようなBUNセンサーはそ
の使用環境からして取扱い者の安全性の観点で使用後は
破棄され、つまり使い捨てのものが一般的となってきて
いる。そのため、測定の信頼性を高く維持しながらセン
サー自体のコストをできるだけ低く抑えることが要求さ
れる。しかしながら、従来のこの種のセンサーの製造に
は普通、電子回路製造技術、特にエッチングやイオンプ
レーティングのような薄膜形成技術が使用されており、
高価で大規模な製造装置が必要であり、製造工程が複雑
となり、製造コストを十分に低減させることができてい
ないのが実情である。またこの種のセンサーは、センサ
ーの校正及び測定にかかる時間もできるだけ短いことが
望まれている。
[0005] By the way, such a BUN sensor is discarded after use from the viewpoint of the environment of use, from the viewpoint of the safety of the operator, that is, a disposable sensor is becoming common. Therefore, it is necessary to keep the cost of the sensor itself as low as possible while maintaining high measurement reliability. However, the manufacture of this type of conventional sensor typically involves the use of electronic circuit manufacturing techniques, especially thin film forming techniques such as etching and ion plating.
The fact is that an expensive and large-scale manufacturing apparatus is required, the manufacturing process is complicated, and the manufacturing cost cannot be sufficiently reduced. It is also desired that this type of sensor requires as little time as possible to calibrate and measure the sensor.

【0006】[0006]

【発明が解決しようとする課題】従来の尿素測定センサ
ーにおける問題点について説明する。PCO2電極及びNH3
電極による尿素測定では、ガス選択透過膜を使う為、p
H電極とガス透過膜の間に支持電解質液を保持させてお
く必要がある。これは使い捨てセンサーにとっては製造
上の欠点となる。また、溶液中長時間保存しておくと、
pH電極の性能が低下し、溶液の蒸発の問題もあり、セ
ンサーの保存寿命が限定される。また、アンモニアムイ
オン選択電極による測定方法では、その電極自体の選択
性が悪い(他のイオンに対しても反応する)為、実用的
ではない。従来のpH測定に基づく尿素センサーでは、
ガラスのpH電極とウレアーゼ酵素とを組み合わせたも
のである為、同様に支持電解質が必要であり、小型化や
製造の容易性の面で使い捨てセンサーとして利用するの
は困難である。電気伝導度による測定では、検体試料の
イオン強度が高いため、酵素反応によるイオン強度の変
化量が少なく、実用的には問題が多い。従って、安価に
製造ができ、構造が簡単、さらに支持電解質溶液の不要
なドライタイプの使い捨てのポテンシオメトリック型酵
素センサーの提供が期待されている。
Problems with the conventional urea measurement sensor will be described. PCO 2 electrode and NH 3
In the urea measurement using an electrode, p is selected because a gas selective permeable membrane is used.
It is necessary to hold a supporting electrolyte solution between the H electrode and the gas permeable membrane. This is a manufacturing disadvantage for disposable sensors. Also, if you keep it in solution for a long time,
The performance of the pH electrode is degraded and the solution evaporates, which limits the shelf life of the sensor. In addition, the measurement method using an ammonia ion selection electrode is not practical because the electrode itself has poor selectivity (reacts with other ions). In a urea sensor based on conventional pH measurement,
Since it is a combination of a glass pH electrode and a urease enzyme, it also requires a supporting electrolyte and is difficult to use as a disposable sensor in terms of miniaturization and ease of production. In the measurement by the electric conductivity, since the ionic strength of the sample is high, the amount of change in the ionic strength due to the enzymatic reaction is small, and there are many practical problems. Therefore, it is expected to provide a dry disposable potentiometric enzyme sensor that can be manufactured at low cost, has a simple structure, and does not require a supporting electrolyte solution.

【0007】そこで、本発明は、上記のような従来技術
に伴う問題点を解決して、低価格でしかも測定時間が短
くかつ測定精度が高く、pH変化をpH電極で検出する
使い捨てBUNセンサー及びその製造法を提供すること
を目的としている。
Therefore, the present invention solves the above-mentioned problems associated with the prior art, and provides a disposable BUN sensor which is inexpensive, has a short measurement time, has high measurement accuracy, and detects a pH change with a pH electrode. It is intended to provide a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の第1の発明により提供される使い捨てB
UNセンサーは、絶縁性フィルムの上に形成された少な
くともpH変化を検出するpH電極と、このpH電極上
に設けられ、酵素、水膨潤性高分子材料、界面活性剤及
び緩衝物質等の混合物から成る酵素層と、酵素層を覆っ
て設けられ、酵素層の酵素の流失を防止し、尿素の拡散
を制限し、測定液中の夾雑物質(例えば、全血中の血
球、蛋白質)を除去するフィルター層とを有することを
特徴としている。pH電極は好ましくはトリイドデシル
アミンのような水素イオンに反応する物質から成り得
る。酵素層は、測定時に測定液が速やかに浸透して酵素
が溶けて反応が起こり易く、また酵素層中の界面活性剤
は、水分の吸収を助けると共に測定に誤差を生じさせ易
い気泡の発生を抑える働きをする。
In order to achieve the above object, a disposable B provided by the first invention of the present invention is provided.
The UN sensor is provided on the pH electrode for detecting at least a pH change formed on the insulating film, and a UN electrode comprising a mixture of an enzyme, a water-swellable polymer material, a surfactant and a buffer substance. And an enzyme layer formed over the enzyme layer to prevent the enzyme from flowing out of the enzyme layer, limit the diffusion of urea, and remove contaminants (eg, blood cells and proteins in whole blood) from the measurement solution. And a filter layer. The pH electrode may preferably be composed of a substance that reacts with hydrogen ions, such as triiddecylamine. In the enzyme layer, the measurement solution penetrates quickly during measurement, the enzyme dissolves easily, and the reaction easily occurs.The surfactant in the enzyme layer assists in the absorption of moisture and generates bubbles that easily cause errors in measurement. It works to suppress.

【0009】、本発明の第1の発明により提供される使
い捨てBUNセンサーでは、スクリーン印刷を利用した
低コスト、保存性良好で、構造が簡単なコーテッドワイ
ヤタイプのpH液膜電極を採用した。このpH液膜電極
は一定の感度があり、しかも室温保存で半年以上の保存
寿命を持つ。また、直接このpH液膜電極の表面に酵素
反応層を設けることにより、検体試料を注入する際、検
体中水分及びイオンは、酵素反応層を通してpH電極の
表面に達し、pH電極が働くようになる。同時に、測定
基質も酵素層に拡散し、その中に固定されている酵素
(及び補酵素)と反応し、その反応によるpHの変化を
その下に設けたpH電極でセンシングする。従って、本
発明では、pH電極が働く為の支持電解質溶液の構成は
不要である。それに一定な感度を持つコーテッドワイヤ
型pH液膜電極を使用する為、従来のポテンシオメトリ
ック型酵素センサーの検量線校正など面倒な手順も省略
できる。従って、乾燥状態で保存ができ、安価、安定、
使い捨てタイプのポテンシオメトリック型酵素センサー
が提供できるようになる。
In the disposable BUN sensor provided by the first aspect of the present invention, a coated wire type pH liquid membrane electrode having a simple structure, which is low cost, has good storage stability, and has a simple structure using screen printing is used. This pH liquid membrane electrode has a certain sensitivity and has a storage life of more than half a year at room temperature. In addition, by providing an enzyme reaction layer directly on the surface of the pH liquid membrane electrode, when injecting a specimen sample, moisture and ions in the sample reach the surface of the pH electrode through the enzyme reaction layer so that the pH electrode works. Become. At the same time, the measurement substrate also diffuses into the enzyme layer, reacts with the enzyme (and coenzyme) immobilized therein, and changes in pH due to the reaction are sensed by a pH electrode provided thereunder. Therefore, in the present invention, the structure of the supporting electrolyte solution for the operation of the pH electrode is unnecessary. In addition, since a coated wire type pH liquid membrane electrode having a constant sensitivity is used, complicated procedures such as calibration of a calibration curve of a conventional potentiometric enzyme sensor can be omitted. Therefore, it can be stored in a dry state and is inexpensive, stable,
A disposable potentiometric enzyme sensor can be provided.

【0010】また、本発明の第2の発明による使い捨て
BUNセンサーの製造法は、絶縁性フィルムの上に、ス
クリーン印刷法により、電極層及び電極層の周囲を囲む
絶縁層を順次印刷する工程と、カーボン層上に有機系合
成物質を滴下乾燥して、pH変化を検出するpH電極を
形成する工程と、このpH電極上に、酵素、水膨潤性高
分子材料、界面活性剤及び緩衝物質の混合物の水溶液を
滴下乾燥して、酵素層を形成する工程と、酵素層の表面
を覆って、酵素層の酵素の流失を防止し、尿素の拡散を
制限し、測定液中の夾雑物質を除去する働きをする高分
子物質の溶液を滴下乾燥して、フィルター層を形成する
工程とから成ることを特徴としている。
[0010] A method of manufacturing a disposable BUN sensor according to a second aspect of the present invention includes a step of sequentially printing an electrode layer and an insulating layer surrounding the electrode layer on the insulating film by screen printing. Forming a pH electrode for detecting a change in pH by dropping and drying an organic synthetic substance on a carbon layer, and forming an enzyme, a water-swellable polymer material, a surfactant and a buffer substance on the pH electrode. Step of forming an enzyme layer by dropping and drying the aqueous solution of the mixture, and covering the surface of the enzyme layer, preventing the enzyme from flowing out of the enzyme layer, limiting diffusion of urea, and removing contaminants in the measurement solution Forming a filter layer by dropping and drying a solution of a polymer substance that functions as a filter layer.

【0011】好ましくは、酵素層は、酵素(ウレアー
ゼ)0〜100V、水膨潤性高分子材料0.01〜2m
g、界面活性剤0〜1μl及び緩衝物質50μlから成
る水溶液を所定量滴下乾燥して形成され得る。pH電極
を形成する有機系合成物質は、ポリ塩化ビニル(PV
C)を基材としたpH感応物質から成り得る。
Preferably, the enzyme layer comprises an enzyme (urease) of 0 to 100 V, a water-swellable polymer material of 0.01 to 2 m
g, an aqueous solution consisting of 0 to 1 µl of a surfactant and 50 µl of a buffer substance is dropped and dried in a predetermined amount to form a solution. The organic synthetic material forming the pH electrode is polyvinyl chloride (PV).
It can consist of a pH sensitive substance based on C).

【0012】本発明の方法は、BUN測定だけに限ら
ず、反応によるpHの変化、他の物質の測定にも適用で
きる。例えば、クレアチン、クレアチニンなどにも応用
できる。
The method of the present invention can be applied not only to the measurement of BUN but also to the change of pH due to the reaction and the measurement of other substances. For example, it can be applied to creatine, creatinine and the like.

【0013】[0013]

【発明の実施の形態】以下、添付図面を参照して本発明
の実施の形態について説明する。図1には、本発明の一
実施の形態による使い捨てBUNセンサーを示す。図示
BUNセンサーにおいて、1は基体を成すポリエチレン
フィルムで、その上に銀ペースト層2、カーボン層3、
及び絶縁体層4が設けられ、これらの層はスクリーン印
刷法により形成される。カーボン層3上に絶縁体層4で
画定された領域には、pH変化を検出するpH電極5が
設けられ、このpH電極5はトリイドデシルアミンのよ
うな水素イオンに反応する有機系合成物質のPVC膜か
ら成る。pH電極5上には、酵素、水膨潤性高分子材
料、界面活性剤及び緩衝物質等の混合物から成る酵素層
6が設けられ、この酵素層6の径は図示したようにpH
電極5の径より小さく形成されている。酵素層6中の水
膨潤性高分子材料は水分を吸収して保持する働きをし、
また緩衝物質としては、NaHPO−NaHPO
、CHCOONa−HCl、Tris−HClなど
が使用され得る。酵素層6上には、この酵素層6の上面
及び側周面を覆って、酵素層6の酵素の流失を防止し、
尿素及び窒素の拡散を制限し、測定液中の夾雑物質(血
球)を除去するフィルター層7が設けられている。フィ
ルター層の材料としてはNafion、ポリビニルブチラール
のような高分子物質が使用され得る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a disposable BUN sensor according to an embodiment of the present invention. In the illustrated BUN sensor, reference numeral 1 denotes a polyethylene film forming a base, on which a silver paste layer 2, a carbon layer 3,
And an insulator layer 4, which are formed by a screen printing method. In a region defined by the insulator layer 4 on the carbon layer 3, a pH electrode 5 for detecting a change in pH is provided. The pH electrode 5 is made of an organic synthetic substance that reacts with hydrogen ions such as triid decylamine. It consists of a PVC film. On the pH electrode 5 is provided an enzyme layer 6 made of a mixture of an enzyme, a water-swellable polymer material, a surfactant, a buffer substance, and the like.
It is formed smaller than the diameter of the electrode 5. The water-swellable polymer material in the enzyme layer 6 functions to absorb and retain moisture.
As the buffer substance, Na 2 HPO 4 —NaH 2 PO
4, CH 3 COONa-HCl, etc. Tris-HCl may be used. On the enzyme layer 6, the upper surface and the side peripheral surface of the enzyme layer 6 are covered to prevent the enzyme from flowing out of the enzyme layer 6,
A filter layer 7 for limiting the diffusion of urea and nitrogen and removing contaminants (blood cells) in the measurement solution is provided. As a material for the filter layer, a polymer material such as Nafion or polyvinyl butyral may be used.

【0014】図2には、本発明の使い捨てBUNセンサ
ーの製造法の好ましい実施の形態を示す。図2のAに示
す第1の工程では、ポリエチレンフィルム1の上面に銀
ペーストがスクリーン印刷法により印刷され、銀ペース
トの薄膜層2が形成される。図2のBに示す第2の工程
では、銀ペーストの薄膜層2の外表面を覆うようにカー
ボン層3がスクリーン印刷法により印刷される。図2の
Cに示す第3の工程において、カーボン層3を囲んで絶
縁体から成るレジスト層4がスクリーン印刷法により形
成され、このレジスト層4は図示したようにカーボン層
3上にpH電極5の形成領域を画定する。
FIG. 2 shows a preferred embodiment of the method for manufacturing a disposable BUN sensor according to the present invention. In a first step shown in FIG. 2A, a silver paste is printed on the upper surface of the polyethylene film 1 by a screen printing method to form a thin layer 2 of the silver paste. In a second step shown in FIG. 2B, the carbon layer 3 is printed by a screen printing method so as to cover the outer surface of the thin film layer 2 of the silver paste. In a third step shown in FIG. 2C, a resist layer 4 made of an insulator is formed around the carbon layer 3 by a screen printing method, and the resist layer 4 is formed on the carbon layer 3 as shown in FIG. Is defined.

【0015】図2のDに示す第4の工程において、レジ
スト層4で画定されたカーボン層3上の凹部に、ポリ塩
化ビニルを基材としたトリイドデシルアミンのようなp
H感応物質の水溶液が滴下され、そして乾燥される。こ
うしてカーボン層3上にpH電極5が形成される。図2
のEに示す第5の工程において、pH電極5上に、酵素
(ウレアーゼ)0〜100Vと、水膨潤性高分子材料
0.01〜2mgと、界面活性剤0〜1μlと緩衝物質
50μlとからなる水溶液が滴下され、そして予定の乾
燥速度で乾燥される。こうしてpH電極5上に、酵素層
6が形成され、酵素層6の周縁部は図示しようにレジス
ト層4上にのびている。
In the fourth step shown in FIG. 2D, a recess such as triid decylamine based on polyvinyl chloride is formed in the concave portion on the carbon layer 3 defined by the resist layer 4.
An aqueous solution of the H-sensitive material is added dropwise and dried. Thus, the pH electrode 5 is formed on the carbon layer 3. FIG.
In the fifth step (E), an enzyme (urease) of 0 to 100 V, a water-swellable polymer material of 0.01 to 2 mg, a surfactant of 0 to 1 μl, and a buffer substance of 50 μl are placed on the pH electrode 5. The resulting aqueous solution is added dropwise and dried at a predetermined drying rate. Thus, the enzyme layer 6 is formed on the pH electrode 5, and the peripheral portion of the enzyme layer 6 extends on the resist layer 4 as shown in the figure.

【0016】最後の工程において、酵素層6上に、ポリ
ビニルブチラールのような高分子物質の水溶液が滴下さ
れ、そして予定の乾燥速度で乾燥される。こうして酵素
層6を覆うようにフィルター層7が形成される(図1参
照)。なお、図示実施の形態においては酵素層6は、酵
素反応によって生じるPH変化を測定するため初期pH
値を7.4に維持するように構成されている。
In the last step, an aqueous solution of a high molecular substance such as polyvinyl butyral is dropped on the enzyme layer 6 and dried at a predetermined drying speed. Thus, the filter layer 7 is formed so as to cover the enzyme layer 6 (see FIG. 1). In the illustrated embodiment, the enzyme layer 6 has an initial pH for measuring a pH change caused by an enzyme reaction.
It is configured to keep the value at 7.4.

【0017】[0017]

【実施例】次に、本発明の尿素センサーの実施例につい
て具体的に説明する。 実施例1 生体試料中尿素を測定する為の尿素センサーを下記のよ
うに作製した。 (1)pH電極基板の作製。 先ず、図3に示したように、絶縁性基板10上に銀の指
示電極11及び参照電極12の下地電極を内円及び外環
形状に設ける。次に、内円銀の上に銀が露出しないよう
に、また、外環の銀と繋がらないように導電性カーボン
ペーストを印刷し乾燥してカーボン層13を形成した。
更に基板の上にレジストを内円カーボン層13の露出直
径が1.0mm Φになるように、また参照電極12を被せな
いように印刷し乾燥してレジスト層14を形成し、電極
基板を作製した。
Next, an embodiment of the urea sensor of the present invention will be specifically described. Example 1 A urea sensor for measuring urea in a biological sample was prepared as follows. (1) Preparation of pH electrode substrate. First, as shown in FIG. 3, base electrodes of a silver indicator electrode 11 and a reference electrode 12 are provided on an insulating substrate 10 in an inner circle and an outer ring shape. Next, a carbon layer 13 was formed by printing and drying a conductive carbon paste so that silver was not exposed on the inner circle silver and was not connected to silver on the outer ring.
Further, a resist was printed on the substrate so that the exposed diameter of the inner circular carbon layer 13 became 1.0 mm Φ, and was not covered with the reference electrode 12, and was dried to form a resist layer 14, thereby producing an electrode substrate. .

【0018】(2)コーテッドワイヤ型pH液膜の構
成。 上記の電極基板の銀参照電極を0.7M塩化カリウム中に、
1mA の定電流で10秒間塩化銀形成処理を行い、洗浄、乾
燥して参照電極12を完成させた。また、指示電極カー
ボン層13の上に規定組成で調製したpH液膜溶液を一
定容量滴下し、室温で乾燥させて、コーテッドワイヤp
H液膜電極15を作製した。
(2) Structure of coated wire type pH liquid film. Place the silver reference electrode of the above electrode substrate in 0.7 M potassium chloride,
A silver chloride forming treatment was performed at a constant current of 1 mA for 10 seconds, followed by washing and drying to complete the reference electrode 12. In addition, a fixed volume of a pH liquid film solution prepared with a prescribed composition was dropped on the indicator electrode carbon layer 13 and dried at room temperature.
An H liquid film electrode 15 was produced.

【0019】(3)酵素反応層の構成。 先ず、酵素−ポリマー溶液を次のように調製した、ウレ
アーゼ(東洋紡(株)製、120 IU/mg )10mg、PVA (和
光純薬(株)製、ポリビニルアルコール、n =500 )1.0
g をりん酸塩緩衝液100ml(0.02M) に溶解し均一に混
合した。次に、上記の溶液0.5ul を上記のpH液膜指示
電極15の上に滴下し、室温で乾燥して酵素反応層16
を形成した。こうして尿素酵素センサーを作製した。上
記の尿素センサーの酵素反応層16の表面に、更に高分
子膜でコートした。この高分子膜は、例えばNafion溶液
(5%、Wt% in water:n-propanol = 1:1 )0.5 ulを上記
の酵素反応層の上に滴下し、室温で乾燥して完成した。
(3) Structure of enzyme reaction layer. First, 10 mg of urease (manufactured by Toyobo Co., Ltd., 120 IU / mg) and PVA (manufactured by Wako Pure Chemical Industries, Ltd., polyvinyl alcohol, n = 500) were prepared as follows.
g was dissolved in 100 ml (0.02M) of phosphate buffer and mixed uniformly. Next, 0.5 ul of the above solution is dropped on the pH liquid membrane indicator electrode 15 and dried at room temperature to remove the enzyme reaction layer 16.
Was formed. Thus, a urea enzyme sensor was produced. The surface of the enzyme reaction layer 16 of the urea sensor was further coated with a polymer film. This polymer membrane was completed by, for example, dropping 0.5 ul of a Nafion solution (5%, Wt% in water: n-propanol = 1: 1) onto the enzyme reaction layer and drying at room temperature.

【0020】試験例1 次に、実施例1に記載した尿素センサーを本発明の例と
して、試験例にてセンサー性能をテストした。 (1)尿素標準測定溶液の調製 まず、尿素標準水溶液を次のように調製する。80℃で乾
燥した尿素(和光純薬(株)製、生化学用品)を50mMり
ん酸塩緩衝液(pH 7.38 )に溶かし尿素の終濃度が40
mMになるように調製した。次に、上記の40mMの尿素溶液
を50mMのりん酸塩緩衝液(pH 7.38 )で希釈して尿素
の終濃度が0mM から40mMまでの約15段階の濃度になるよ
うに調製した。
Test Example 1 Next, using the urea sensor described in Example 1 as an example of the present invention, the sensor performance was tested in Test Examples. (1) Preparation of urea standard measurement solution First, a urea standard aqueous solution is prepared as follows. Urea (biochemical products, manufactured by Wako Pure Chemical Industries, Ltd.) dried at 80 ° C. was dissolved in 50 mM phosphate buffer (pH 7.38) and the final concentration of urea was 40
It was adjusted to be mM. Next, the above 40 mM urea solution was diluted with 50 mM phosphate buffer (pH 7.38) to prepare a final concentration of urea of about 15 steps from 0 mM to 40 mM.

【0021】(2)ポテンシオメトリー法による尿素応
答 先ず、尿素酵素センサーの作用極端子17及び参照極端
子18をDigital Electrometer((株)アドバンテスト
製)の電位差測定端子に接続した。次ぎにそのセンサー
を50mMのりん酸塩緩衝液(pH 7.38 、以下blank とい
う)に浸けて、センサーの電位応答をGPIBコネクタを介
してコンピュータに120秒間取り込んだ。次に、そのセ
ンサーを上記の溶液から取り出し、尿素標準測定溶液の
尿素濃度が2mM の溶液に浸け、60秒 間の電位応答を測
定した。更に新しいセンサーを付け替え、新しい濃度の
尿素溶液を同じ様な測定で繰り返した。尿素濃度が0 〜
40mMまでの約15段階での測定を全て行った。 測定結果
は、図4及び図5に示した。
(2) Urea response by potentiometry First, the working electrode terminal 17 and the reference electrode terminal 18 of the urea enzyme sensor were connected to a potential difference measuring terminal of a Digital Electrometer (manufactured by Advantest Co., Ltd.). Next, the sensor was immersed in 50 mM phosphate buffer (pH 7.38, hereinafter referred to as blank), and the potential response of the sensor was taken into a computer via a GPIB connector for 120 seconds. Next, the sensor was taken out of the above solution, immersed in a urea standard measurement solution having a urea concentration of 2 mM, and the potential response was measured for 60 seconds. A new sensor was replaced and a new concentration of urea solution was repeated with similar measurements. Urea concentration is 0 to
All measurements were performed in about 15 steps up to 40 mM. The measurement results are shown in FIGS.

【0022】図4は、尿素酵素センサーのblank 及び尿
素に対する応答曲線である。尿素とウレアーゼの酵素反
応により溶液が、アルカリ性になるため、pH液膜電極
の出力電位は低くなる。この電位変化(絶対値)は、尿
素濃度の上昇によって大きくなる傾向がある。図5に
は、図4に示した様な応答曲線からデータに基づき、尿
素濃度とセンサーの電位変化との対数関係を示す。この
結果、本発明の尿素センサーは、尿素の濃度が5mM 前後
で、感度は約55mV/Decade であった。また、1 〜20mMの
範囲では直線関係があり、充分なダイナミックレンジを
示した。
FIG. 4 is a response curve of the urea enzyme sensor to blank and urea. Since the solution becomes alkaline due to the enzymatic reaction of urea and urease, the output potential of the pH liquid membrane electrode decreases. This potential change (absolute value) tends to increase as the urea concentration increases. FIG. 5 shows the logarithmic relationship between the urea concentration and the sensor potential change based on the data from the response curve as shown in FIG. As a result, the urea sensor of the present invention had a urea concentration of about 5 mM and a sensitivity of about 55 mV / Decade. In the range of 1 to 20 mM, there was a linear relationship, indicating a sufficient dynamic range.

【0023】(3)尿素応答のpH依存性 本発明では、pH液膜電極の上に載せた酵素反応層が、
測定液の水素イオンの拡散に対してブロックしない為、
測定液中の水素イオンが、酵素反応層を通してpH電極
へ拡散し、pH電極の応答に直接影響を与える。ここで
サンプルのpHから尿素測定への影響を下記のように確
認した。先ず、pH 6.2〜pH 7.8のりん酸塩緩衝液
(50mM)を数種類作った。その中に尿素を一定量溶かし
て終濃度が8mM になるように調製した。次に、この尿素
溶液を(2)に記載したような手順で、ポテンシオメト
リーによる測定を行った。測定結果は図6に示した。そ
の結果、尿素の電位応答は、測定液のpHに大きく依存
することが分かった。つまり。確認したpH範囲(6.2
〜7.8 )ではpHの上昇に伴い、センサーの電位変化
(絶対値)も上昇した。図6に示したようなpH依存性
を解決する為には、測定の時、サンプルのpHも同時に
測定し、その測定値に基づき、尿素の測定値に対して補
正が必要である。
(3) pH Dependency of Urea Response In the present invention, the enzyme reaction layer placed on the pH liquid membrane electrode is
Because it does not block the diffusion of hydrogen ions in the measurement solution,
Hydrogen ions in the measurement solution diffuse through the enzyme reaction layer to the pH electrode, directly affecting the response of the pH electrode. Here, the influence of the pH of the sample on the urea measurement was confirmed as follows. First, several kinds of phosphate buffers (50 mM) of pH 6.2 to pH 7.8 were prepared. A certain amount of urea was dissolved therein to prepare a final concentration of 8 mM. Next, the urea solution was measured by potentiometry according to the procedure described in (2). The measurement results are shown in FIG. As a result, it was found that the potential response of urea greatly depends on the pH of the measurement solution. I mean. Confirmed pH range (6.2
In 7.8), the change in the potential of the sensor (absolute value) also increased as the pH increased. In order to solve the pH dependence as shown in FIG. 6, at the time of measurement, the pH of the sample is also measured, and it is necessary to correct the measured value of urea based on the measured value.

【0024】生体サンプル、例えば、血液、尿等中のク
レアラチン、クレアニチン等及びその他酵素反応によ
り、溶液中水素イオンの濃度が変わるものであれば、本
発明を利用できる。例えば、グルコースディヒトロギナ
ーゼ(Glucose Dehydrogenase)及び補酵素のNAD(P)+
を利用して、グルコースとの反応から水素イオンを生成
する為、本発明によりグルコースの測定もできる。
The present invention can be used as long as the concentration of hydrogen ions in a solution changes due to creatine, creatinine and the like in a biological sample such as blood and urine and other enzyme reactions. For example, glucose dehydrogenase (Glucose Dehydrogenase) and the coenzyme NAD (P) +
Is used to generate hydrogen ions from the reaction with glucose, so that glucose can be measured according to the present invention.

【0025】[0025]

【発明の効果】以上説明してきたように、本発明による
使い捨てBUNセンサーにおいては、絶縁性フィルムの
上に形成され、PH変化を検出するPH電極と、このP
H電極上に設けられ、酵素、水膨潤性高分子材料、界面
活性剤及び緩衝物質等の混合物から成る酵素層と、酵素
層を覆って設けられ、酵素層の酵素の流失を防止し、尿
素窒素の拡散を制限し、測定液中の夾雑物質を除去する
フィルター層とを備えているので、測定時に校正液がフ
ィルター層に速かに浸透し、酵素層の酵素が溶けて反応
し易い状態となり、しかも酵素層に含まれた緩衝物質の
働きで酵素層に気泡が生じることがなく、従って、尿素
及び窒素の濃度を精度良く測定することができるように
なる。
As described above, in the disposable BUN sensor according to the present invention, a PH electrode formed on an insulating film to detect a change in PH,
An enzyme layer comprising a mixture of an enzyme, a water-swellable polymer material, a surfactant, a buffer substance, etc., provided on the H electrode, and provided over the enzyme layer to prevent the enzyme from flowing out of the enzyme layer; A filter layer that limits the diffusion of nitrogen and removes contaminants in the measurement solution.The calibration solution quickly penetrates the filter layer during measurement, and the enzyme in the enzyme layer dissolves and reacts easily. In addition, bubbles do not occur in the enzyme layer due to the action of the buffer substance contained in the enzyme layer, so that the concentrations of urea and nitrogen can be accurately measured.

【0026】また、本発明による使い捨てBUNセンサ
ーの製造法によれば、ポリエチレンフィルムの上にスク
リーン印刷法により電極層を形成し、滴下乾燥工程でP
H電極と酵素層とフィルター層とをそれぞれ形成するこ
とで、BUNセンサーを製造するので、製造コストを大
幅に低減でき、使い捨てセンサーとして安価な製品を提
供できるようになる。
Further, according to the method for manufacturing a disposable BUN sensor according to the present invention, an electrode layer is formed on a polyethylene film by a screen printing method, and P
Since the BUN sensor is manufactured by forming the H electrode, the enzyme layer, and the filter layer, respectively, the manufacturing cost can be significantly reduced, and an inexpensive product as a disposable sensor can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態による使い捨てBUN
センサーを示す概略断面図。
FIG. 1 shows a disposable BUN according to an embodiment of the present invention.
FIG. 2 is a schematic sectional view showing a sensor.

【図2】 図1に示すBUNセンサーの製造法の各工程
態をを示す概略断面図。
FIG. 2 is a schematic cross-sectional view showing each step of a method of manufacturing the BUN sensor shown in FIG.

【図3】 本発明による実施例の尿素酵素センサーの概
略図。
FIG. 3 is a schematic diagram of a urea enzyme sensor of an embodiment according to the present invention.

【図4】 ポテンシオメトリーで測定した尿素酵素セン
サーの尿素標準溶液に対する電位応答曲線図であり、測
定した尿素溶液の尿素濃度は0 、2 、5 、10、20、30mM
である。
FIG. 4 is a potential response curve of a urea enzyme sensor measured by potentiometry with respect to a urea standard solution. The measured urea solutions have urea concentrations of 0, 2, 5, 10, 20, and 30 mM.
It is.

【図5】 尿素濃度とセンサーの電位応答の対数関係を
示す図。
FIG. 5 is a diagram showing a logarithmic relationship between a urea concentration and a potential response of a sensor.

【図6】 本発明の尿素酵素センサーのpH依存性を示
す図。
FIG. 6 is a diagram showing the pH dependence of the urea enzyme sensor of the present invention.

【符号の説明】[Explanation of symbols]

1:ポリエチレンフィルム 2:銀ペーストの薄膜層(電極層) 3:カーボン層 4:レジスト層 5:PH電極 6:酵素層 7:フィルター層 10:絶縁性基板 11:銀の指示電極 12:参照電極 13:カーボン層 14:レジスト層 15: pH液膜電極 16:酵素反応層 1: Polyethylene film 2: Thin layer of silver paste (electrode layer) 3: Carbon layer 4: Resist layer 5: PH electrode 6: Enzyme layer 7: Filter layer 10: Insulating substrate 11: Silver indicating electrode 12: Reference electrode 13: carbon layer 14: resist layer 15: pH liquid membrane electrode 16: enzyme reaction layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G045 AA13 AA15 AA25 CA25 CA26 CB03 DA16 FB01 FB05 GC18 JA01 JA02 JA07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G045 AA13 AA15 AA25 CA25 CA26 CB03 DA16 FB01 FB05 GC18 JA01 JA02 JA07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】絶縁性フィルムの上に形成された少なくと
もpH変化を検出するpH電極と、このpH電極上に設
けられ、酵素、水膨潤性高分子材料、界面活性剤及び緩
衝物質等の混合物から成る酵素層と、酵素層を覆って設
けられ、酵素層の酵素の流失を防止し、尿素の拡散を制
限し、測定液中の夾雑物質を除去するフィルター層とを
有することを特徴とする使い捨てBUNセンサー。
1. A pH electrode formed on an insulating film for detecting at least a change in pH, and a mixture of an enzyme, a water-swellable polymer material, a surfactant and a buffer substance provided on the pH electrode. And a filter layer provided over the enzyme layer, which prevents the enzyme from flowing out of the enzyme layer, restricts the diffusion of urea, and removes contaminants in the measurement solution. Disposable BUN sensor.
【請求項2】絶縁性フィルムの上に、スクリーン印刷法
により、電極層及び電極層の周囲を囲む絶縁層を順次印
刷する工程と、カーボン層上に有機系合成物質を滴下乾
燥して、pH変化を検出するpH電極を形成する工程
と、このpH電極上に、酵素、水膨潤性高分子材料、界
面活性剤及び緩衝物質の混合物の水溶液を滴下乾燥し
て、酵素層を形成する工程と、酵素層の表面を覆って、
酵素層の酵素の流失を防止し、尿素の拡散を制限し、測
定液中の夾雑物質を除去する働きをする高分子物質の溶
液を滴下乾燥して、フィルター層を形成する工程とから
成ることを特徴とする使い捨てBUNセンサーの製造
法。
2. A step of sequentially printing an electrode layer and an insulating layer surrounding the electrode layer on the insulating film by a screen printing method, and dropping and drying an organic synthetic substance on the carbon layer to obtain a pH value. A step of forming a pH electrode for detecting a change, and a step of dropping and drying an aqueous solution of a mixture of an enzyme, a water-swellable polymer material, a surfactant and a buffer substance on the pH electrode to form an enzyme layer. , Covering the surface of the enzyme layer,
Forming a filter layer by dropping and drying a solution of a polymer substance that functions to prevent the enzyme from flowing out of the enzyme layer, limit the diffusion of urea, and remove contaminants in the measurement solution. The manufacturing method of a disposable BUN sensor characterized by the above-mentioned.
【請求項3】酵素層が、酵素(ウレアーゼ)0〜100
V、水膨潤性高分子材料0.01〜2mg、界面活性剤
0〜1μl及びpH緩衝物質水溶液50μlから成る水
溶液を滴下乾燥して形成されることを特徴とする請求項
2に記載の使い捨てBUNセンサーの製造法。
3. The method according to claim 1, wherein the enzyme layer comprises an enzyme (urease) of 0 to 100.
V. The disposable BUN according to claim 2, wherein an aqueous solution comprising 0.01 to 2 mg of a water-swellable polymer material, 0 to 1 µl of a surfactant and 50 µl of a pH buffer solution is dropped and dried. Sensor manufacturing method.
【請求項4】pH電極を形成する有機系合成物質がポリ
塩化ビニル(PVC)を基材としたpH感応物質である
ことを特徴とする請求項2に記載の使い捨てBUNセン
サーの製造法。
4. The method for producing a disposable BUN sensor according to claim 2, wherein the organic synthetic substance forming the pH electrode is a pH-sensitive substance based on polyvinyl chloride (PVC).
JP2000053784A 2000-02-29 2000-02-29 Disposable BUN sensor and manufacturing method thereof Expired - Lifetime JP4404433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000053784A JP4404433B2 (en) 2000-02-29 2000-02-29 Disposable BUN sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053784A JP4404433B2 (en) 2000-02-29 2000-02-29 Disposable BUN sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001242133A true JP2001242133A (en) 2001-09-07
JP4404433B2 JP4404433B2 (en) 2010-01-27

Family

ID=18575116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053784A Expired - Lifetime JP4404433B2 (en) 2000-02-29 2000-02-29 Disposable BUN sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4404433B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332197C (en) * 2002-10-31 2007-08-15 爱科来株式会社 Analyzing electrode for content density and density analyzer
WO2007069182A3 (en) * 2005-12-12 2007-10-11 Nova Biomedical Corp Disposable urea sensor and system for determining creatinine and urea nitrogen-to-creatinine ratio in a single device
JP2008502921A (en) * 2004-06-09 2008-01-31 インストゥルメンテーション ラボラトリー カンパニー Electrochemical urea sensor and manufacturing method thereof
JP2008511837A (en) * 2004-09-02 2008-04-17 アイ−スタット コーポレーション Blood urea nitrogen (BUN) sensor
WO2010107941A3 (en) * 2009-03-19 2011-01-13 Edwards Lifesciences Corporation Membrane system with sufficient buffering capacity
KR20200043574A (en) * 2018-10-17 2020-04-28 동국대학교 산학협력단 pH SENSOR FABRICATED ON CYLINDRICAL SINGLE FIBER

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332197C (en) * 2002-10-31 2007-08-15 爱科来株式会社 Analyzing electrode for content density and density analyzer
JP2008502921A (en) * 2004-06-09 2008-01-31 インストゥルメンテーション ラボラトリー カンパニー Electrochemical urea sensor and manufacturing method thereof
JP2008511837A (en) * 2004-09-02 2008-04-17 アイ−スタット コーポレーション Blood urea nitrogen (BUN) sensor
JP4659041B2 (en) * 2004-09-02 2011-03-30 アボット ポイント オブ ケア インコーポレイテッド Blood urea nitrogen (BUN) sensor
WO2007069182A3 (en) * 2005-12-12 2007-10-11 Nova Biomedical Corp Disposable urea sensor and system for determining creatinine and urea nitrogen-to-creatinine ratio in a single device
WO2010107941A3 (en) * 2009-03-19 2011-01-13 Edwards Lifesciences Corporation Membrane system with sufficient buffering capacity
US8721870B2 (en) 2009-03-19 2014-05-13 Edwards Lifesciences Corporation Membrane system with sufficient buffering capacity
KR20200043574A (en) * 2018-10-17 2020-04-28 동국대학교 산학협력단 pH SENSOR FABRICATED ON CYLINDRICAL SINGLE FIBER
KR102175939B1 (en) * 2018-10-17 2020-11-09 동국대학교 산학협력단 pH SENSOR FABRICATED ON CYLINDRICAL SINGLE FIBER

Also Published As

Publication number Publication date
JP4404433B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
Schaffar Thick film biosensors for metabolites in undiluted whole blood and plasma samples
EP0710358B1 (en) Potentiometric biosensor and the method of its use
US5078854A (en) Polarographic chemical sensor with external reference electrode
EP0255291B1 (en) Method and apparatus for electrochemical measurements
EP1688742B1 (en) Electrochemical biosensor
KR970001146B1 (en) Gas measuring bio-sensor and manufacturing method
US10352890B2 (en) Biosensor system, sensor chip, and method of measuring analyte concentration in blood sample
Jobst et al. Thin-film Clark-type oxygen sensor based on novel polymer membrane systems for in vivo and biosensor applications
JPH09500450A (en) Method and device for electrochemical measurement
CN108474758B (en) Mixed ionophore ion-selective electrode for improved urea detection in blood
JP3709919B2 (en) Equipment for measuring components in liquid samples
CN105572199A (en) Working electrode biological reactant and electrode type test strip
WO1995021934A1 (en) Hexacyanoferrate modified electrodes
JP3267933B2 (en) Substrate quantification method
JP4404433B2 (en) Disposable BUN sensor and manufacturing method thereof
KR101163678B1 (en) Creatinine biosensors with reduced interference from creatine
JP4601809B2 (en) Biosensor and substrate measurement method
US12098413B2 (en) Method for removing dissolved oxygen, used in an electrochemical biosensor that uses an oxidase as the sensor enzyme
CA1260538A (en) Biochemical detector
TW201432258A (en) Electrochemical-based analytical test strip with soluble acidic material coating
JP2006105615A (en) Electrochemical measuring method and measuring apparatus using it
JP2009281907A (en) Method, device and instrument for measuring creatinine, and method, device and instrument for measuring amount of salt in urine using those means
JP2010008182A (en) Creatinine measuring method, creatinine measuring device, creatinine measuring apparatus, and urinary salinity measuring method, urinary salinity measuring device, and urinary salinity measuring apparatus using them
KR20110034730A (en) Biosensor using double pulse method
CN116297746A (en) All-solid-state glucose detection electrode, preparation method thereof and application thereof in blood detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4404433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term