JP2001185213A - Nonaqueous electrolyte battery and manufacturing method therefor - Google Patents
Nonaqueous electrolyte battery and manufacturing method thereforInfo
- Publication number
- JP2001185213A JP2001185213A JP37549599A JP37549599A JP2001185213A JP 2001185213 A JP2001185213 A JP 2001185213A JP 37549599 A JP37549599 A JP 37549599A JP 37549599 A JP37549599 A JP 37549599A JP 2001185213 A JP2001185213 A JP 2001185213A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- discharge characteristics
- halogen
- charge
- rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 33
- 239000003792 electrolyte Substances 0.000 claims abstract description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 16
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 16
- 150000002367 halogens Chemical class 0.000 claims abstract description 15
- 150000001875 compounds Chemical class 0.000 claims abstract description 13
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 9
- 125000001424 substituent group Chemical group 0.000 claims abstract description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 3
- 125000004429 atom Chemical group 0.000 claims abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 3
- 239000011593 sulfur Substances 0.000 claims abstract description 3
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 3
- 239000008151 electrolyte solution Substances 0.000 claims description 54
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 claims description 32
- 238000007600 charging Methods 0.000 claims description 27
- 239000002245 particle Substances 0.000 claims description 25
- 239000011164 primary particle Substances 0.000 claims description 23
- 239000007774 positive electrode material Substances 0.000 claims description 21
- 239000007773 negative electrode material Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 5
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 239000011737 fluorine Substances 0.000 claims description 4
- 125000003172 aldehyde group Chemical group 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 125000003277 amino group Chemical group 0.000 claims description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 3
- 125000001174 sulfone group Chemical group 0.000 claims description 3
- 125000005843 halogen group Chemical group 0.000 abstract 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 78
- -1 benzene compound Chemical class 0.000 description 47
- 239000002131 composite material Substances 0.000 description 30
- 239000011149 active material Substances 0.000 description 28
- 239000011148 porous material Substances 0.000 description 25
- 238000010280 constant potential charging Methods 0.000 description 19
- 239000005518 polymer electrolyte Substances 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- 229920005989 resin Polymers 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 230000002265 prevention Effects 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 10
- 238000007599 discharging Methods 0.000 description 10
- 239000011888 foil Substances 0.000 description 10
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 10
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 9
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 8
- 229910052744 lithium Inorganic materials 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 230000010220 ion permeability Effects 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 238000010248 power generation Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 150000005678 chain carbonates Chemical class 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 150000001555 benzenes Chemical class 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- KBTMGSMZIKLAHN-UHFFFAOYSA-N 4-bromo-1,2-dimethoxybenzene Chemical compound COC1=CC=C(Br)C=C1OC KBTMGSMZIKLAHN-UHFFFAOYSA-N 0.000 description 1
- DAGKHJDZYJFWSO-UHFFFAOYSA-N 4-fluoro-1,2-dimethoxybenzene Chemical compound COC1=CC=C(F)C=C1OC DAGKHJDZYJFWSO-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013398 LiN(SO2CF2CF3)2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002265 redox agent Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- BHZCMUVGYXEBMY-UHFFFAOYSA-N trilithium;azanide Chemical compound [Li+].[Li+].[Li+].[NH2-] BHZCMUVGYXEBMY-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解質電池お
よびその製造方法に関する。The present invention relates to a non-aqueous electrolyte battery and a method for manufacturing the same.
【0002】[0002]
【従来の技術】近年、携帯用無線電話、携帯用パソコ
ン、携帯用ビデオカメラ等の電子機器が開発され、各種
電子機器が携帯可能な程度に小型化されている。それに
伴って、内蔵される電池としても、高エネルギー密度を
有し、且つ軽量なものが採用されている。そのような要
求を満たす典型的な電池は、特にリチウム金属やリチウ
ム合金等の活物質、又はリチウムイオンをホスト物質
(ここでホスト物質とは、リチウムイオンを吸蔵及び放
出できる物質をいう。)である炭素に吸蔵させたリチウ
ムインターカレーション化合物を負極材料とし、LiC
lO4、LiPF6等のリチウム塩を溶解した非プロトン
性の有機溶媒を電解液とする非水電解質二次電池であ
る。2. Description of the Related Art In recent years, electronic devices such as a portable radio telephone, a portable personal computer, and a portable video camera have been developed, and various electronic devices have been reduced in size to be portable. Along with this, a battery having a high energy density and a light weight is also adopted as a built-in battery. A typical battery that satisfies such a requirement is an active material such as lithium metal or lithium alloy, or a host material containing lithium ions (here, a host material refers to a material that can occlude and release lithium ions). Lithium intercalation compound occluded in a certain carbon is used as a negative electrode material, and LiC
This is a non-aqueous electrolyte secondary battery using an aprotic organic solvent in which a lithium salt such as 10 4 or LiPF 6 is dissolved as an electrolyte.
【0003】この非水電解質二次電池は、上記の負極材
料をその支持体である負極集電体に保持してなる負極
板、リチウムコバルト複合酸化物のようにリチウムイオ
ンと可逆的に電気化学反応をする正極活物質をその支持
体である正極集電体に保持してなる正極板、電解液を保
持するとともに負極板と正極板との間に介在して両極の
短絡を防止するセパレータからなっている。This non-aqueous electrolyte secondary battery has a negative electrode plate in which the above-mentioned negative electrode material is held on a negative electrode current collector as a support, and a reversible electrochemical reaction with lithium ions such as a lithium-cobalt composite oxide. The positive electrode plate, which holds the positive electrode active material that reacts on the positive electrode current collector that is the support, from the separator that holds the electrolytic solution and intervenes between the negative electrode plate and the positive electrode plate to prevent a short circuit between the two electrodes Has become.
【0004】そして、上記正極板及び負極板は、いずれ
も薄いシートないし箔状に成形されたものを、セパレー
タを介して順に積層又は渦巻き状に巻回した発電要素と
する。そしてこの発電要素を、ステンレス、ニッケルメ
ッキを施した鉄、又はアルミニウム製等の金属缶からな
る電池容器または金属箔を樹脂フィルムでラミネートし
た材質を用いた電池容器に収納され、電解液を注液後、
電池ケースを密封して、電池が組み立てられる。[0004] Each of the positive electrode plate and the negative electrode plate is formed into a thin sheet or foil shape, and is a power generating element formed by sequentially laminating or spirally winding through a separator. The power generation element is housed in a battery container made of a metal can made of stainless steel, nickel-plated iron, or aluminum, or a battery container made of a material obtained by laminating a metal foil with a resin film, and injecting an electrolytic solution. rear,
The battery case is sealed and the battery is assembled.
【0005】このような非水電解質二次電池を電子機器
に用いる場合、単電池又は複数個の直列接続したものと
して所某の電圧を得るようにする。この単数又は複数個
の電池は、充放電制御回路とともに樹脂もしくは金属と
樹脂からなる筐体に収納され、内容物を取り出せないよ
う封口して電池パックとして用いられる。When such a non-aqueous electrolyte secondary battery is used in electronic equipment, a predetermined voltage is obtained as a unit cell or a plurality of cells connected in series. The single or plural batteries are housed in a housing made of resin or metal and resin together with the charge / discharge control circuit, and sealed so that the contents cannot be taken out, and used as a battery pack.
【0006】電池の過充電安全性を向上させることを目
的として、4−ブロモ−1,2−ジメトキシベンゼン、
4−フルオロ−1,2−ジメトキシベンゼンなどを電解
液中に添加することが提案されている(J. Elec
trochem. Soc.,146, 1256(19
99))。この報告においては、電池が過充電された際
に、前記添加剤が酸化還元剤として正・負極間を行き来
することによって自己放電を促進して、過充電の進行を
抑制することを提案している。In order to improve the overcharge safety of a battery, 4-bromo-1,2-dimethoxybenzene,
It has been proposed to add 4-fluoro-1,2-dimethoxybenzene and the like to the electrolyte (J. Elec).
trochem. Soc. , 146 , 1256 (19
99)). This report proposes that when the battery is overcharged, the additive promotes self-discharge by moving back and forth between the positive electrode and the negative electrode as a redox agent, thereby suppressing the progress of overcharge. I have.
【0007】[0007]
【発明が解決しようとする課題】しかし、非水電解質中
は電極反応に関与するカチオンの輸率が通常0.5以下
であるために充放電特性がイオンの濃度拡散によって支
配される。しかも、非水電解質は水溶液電解質と比較し
て粘性が高いために、イオンの拡散係数が小さい。した
がって、非水電解質電池は、ニッケル・カドミウム電
池、ニッケル・水素電池などの水溶液電解質を使用した
電池と比較して高率充放電特性が劣るという問題点があ
った。特に低温においては、非水電解質の粘性が高くな
ってイオン拡散係数が小さくなるため、高率充放電特性
が著しく劣るという問題点があった。However, in a non-aqueous electrolyte, since the transport number of cations involved in the electrode reaction is usually 0.5 or less, the charge / discharge characteristics are governed by the ion concentration diffusion. Moreover, since the non-aqueous electrolyte has a higher viscosity than the aqueous electrolyte, the ion diffusion coefficient is small. Therefore, the non-aqueous electrolyte battery has a problem that the high-rate charge / discharge characteristics are inferior to batteries using an aqueous electrolyte such as a nickel-cadmium battery and a nickel-hydrogen battery. In particular, at low temperatures, the viscosity of the non-aqueous electrolyte increases and the ionic diffusion coefficient decreases, so that there has been a problem that the high-rate charge / discharge characteristics are significantly poor.
【0008】そこで、高率充放電特性および低温充放電
特性に優れる非水電解質電池が求められていた。Therefore, a non-aqueous electrolyte battery excellent in high-rate charge / discharge characteristics and low-temperature charge / discharge characteristics has been demanded.
【0009】[0009]
【課題を解決するための手段】本発明になる非水電解質
電池は、上記問題を鑑みてなされたものであり、ベンゼ
ン環に、少なくとも1つのハロゲンと、ハロゲン以外の
置換基が結合し、ハロゲン以外の置換基のベンゼン環と
結合する原子が炭素、窒素、硫黄からなる群から選ばれ
た1種である化合物(以下この化合物を「ハロゲン結合
ベンゼン化合物」と略す)を電解液中に含むことを特徴
とする。The non-aqueous electrolyte battery according to the present invention has been made in view of the above problems, and has at least one halogen and a substituent other than a halogen bonded to a benzene ring. A compound in which the atom bonded to the benzene ring of the other substituent is one selected from the group consisting of carbon, nitrogen and sulfur (hereinafter, this compound is abbreviated as "halogen-bonded benzene compound") in the electrolyte solution It is characterized by.
【0010】さらに本発明は、上記ハロゲン以外の置換
基がアルキル基、シアン基、ニトロ基、アミノ基、スル
フォン基、カルボニル基、カルボキシル基、アルデヒド
基からなる群から選ばれた1種であることを特徴とす
る。Further, in the present invention, the substituent other than the halogen is one selected from the group consisting of an alkyl group, a cyano group, a nitro group, an amino group, a sulfone group, a carbonyl group, a carboxyl group and an aldehyde group. It is characterized by.
【0011】また本発明は、上記非水電解質電池におい
て、ハロゲンがフッ素であることを特徴とし、ハロゲン
結合ベンゼン化合物がフルオロベンゼンであることを特
徴とする。The present invention is also characterized in that, in the above nonaqueous electrolyte battery, the halogen is fluorine and the halogen-bonded benzene compound is fluorobenzene.
【0012】さらに本発明は、上記非水電解質電池にお
いて、ベンゼン環にハロゲンが結合した化合物の電解液
中の濃度が、0.01wt%以上15wt%以下である
ことを特徴とする。Further, the present invention is characterized in that, in the above nonaqueous electrolyte battery, the concentration of the compound having a halogen bonded to a benzene ring in the electrolytic solution is 0.01 wt% or more and 15 wt% or less.
【0013】また本発明は、一次粒子の粒子径が0.5
μm以上30μm以下である正極活物質または一次粒子
の粒子径が3μm以上50μm以下である負極活物質を
備えることを特徴とする。In the present invention, the primary particles have a particle diameter of 0.5.
A positive electrode active material having a size of not less than μm and not more than 30 μm or a negative electrode active material having a primary particle size of not less than 3 μm and not more than 50 μm is provided.
【0014】さらに本発明になる非水電解質電池の製造
方法は、炭素を備えた負極を備えた非水電解質電池の製
造方法であって、充電工程の後に、ベンゼン環にハロゲ
ンが結合した化合物を電池内に添加することを特徴とす
る。Further, the method for producing a non-aqueous electrolyte battery according to the present invention is a method for producing a non-aqueous electrolyte battery provided with a negative electrode having carbon, wherein a compound having a halogen bonded to a benzene ring is added after a charging step. It is characterized in that it is added into the battery.
【0015】[0015]
【発明の実施の形態】電解液に、ハロゲン結合ベンゼン
化合物を添加することによって、高率充放電特性および
低温充放電特性に優れる非水電解質電池とすることがで
きる。DESCRIPTION OF THE PREFERRED EMBODIMENTS By adding a halogen-bonded benzene compound to an electrolytic solution, a non-aqueous electrolyte battery having excellent high-rate charge / discharge characteristics and low-temperature charge / discharge characteristics can be obtained.
【0016】またこのハロゲン結合ベンゼン化合物にお
いて、ハロゲン以外の置換基としては、アルキル基、シ
アン基、ニトロ基、アミノ基、スルフォン基、カルボニ
ル基、カルボキシル基、アルデヒド基から選ばれた1種
である場合に、高率充放電特性および低温充放電特性に
優れた非水電解質電池を得ることができる。In the halogen-bonded benzene compound, the substituent other than halogen is one selected from an alkyl group, a cyano group, a nitro group, an amino group, a sulfone group, a carbonyl group, a carboxyl group and an aldehyde group. In this case, a nonaqueous electrolyte battery having excellent high-rate charge / discharge characteristics and low-temperature charge / discharge characteristics can be obtained.
【0017】本発明においては、ハロゲン結合ベンゼン
化合物がフッ素である化合物を電解液に添加した場合
に、特に優れた高率充放電特性および低温充放電特性が
得られ、ハロゲン結合ベンゼン化合物がフルオロベンゼ
ンである場合に、さらに優れた高率充放電特性および低
温充放電特性が得られる。In the present invention, when a compound in which the halogen-bonded benzene compound is fluorine is added to the electrolytic solution, particularly excellent high-rate charge-discharge characteristics and low-temperature charge-discharge characteristics can be obtained. In this case, more excellent high-rate charge / discharge characteristics and low-temperature charge / discharge characteristics can be obtained.
【0018】本発明は、ハロゲン結合ベンゼン化合物の
電解液中における濃度が、0.01wt%以上15wt
%以下である場合に、特に優れた高率充放電特性および
低温充放電特性が得られることを、後述の実験で確認し
た。According to the present invention, the concentration of the halogen-bonded benzene compound in the electrolytic solution is from 0.01 wt% to 15 wt%.
%, It was confirmed by experiments described later that particularly excellent high-rate charge-discharge characteristics and low-temperature charge-discharge characteristics were obtained.
【0019】本発明は、非水電解質中に、ジエチルカー
ボネートまたはメチルエチルカーボネートのうち、少な
くとも一つを備える場合に特に効果的である。非水電解
質中に、ジエチルカーボネートまたはメチルエチルカー
ボネートを用いると、ジメチルカーボネートを用いた場
合と比較して、充電状態での高温放置時に電解液が酸化
分解されにくく、電池内圧力の上昇による電池ケースの
膨れが小さい優れた電池とすることができる。The present invention is particularly effective when the non-aqueous electrolyte contains at least one of diethyl carbonate and methyl ethyl carbonate. When diethyl carbonate or methyl ethyl carbonate is used in the non-aqueous electrolyte, the electrolytic solution is less likely to be oxidized and decomposed when left at a high temperature in a charged state than in the case where dimethyl carbonate is used, and the battery case due to an increase in the pressure inside the battery. An excellent battery with small swelling can be obtained.
【0020】しかし、ジエチルカーボネートおよびメチ
ルエチルカーボネートは、ジメチルカーボネートと比較
して高粘性であるために、電解質中のイオンの拡散が遅
くなって、高率充放電特性および低温での充放電特性が
低下するという問題点があった。したがって、高率充放
電特性および低温での充放電特性に優れ、併せて充電状
態での高温放置時に電池ケースの膨れが小さい電池を製
作することは非常に困難であった。However, since diethyl carbonate and methyl ethyl carbonate have a higher viscosity than dimethyl carbonate, diffusion of ions in the electrolyte is slowed, and high-rate charge-discharge characteristics and low-temperature charge-discharge characteristics are low. There was a problem that it decreased. Therefore, it has been extremely difficult to manufacture a battery having excellent high-rate charge / discharge characteristics and low-temperature charge / discharge characteristics and having a small battery case swelling when left in a charged state at a high temperature.
【0021】本発明を用いた場合には、非水電解質中
に、ジエチルカーボネートまたはメチルエチルカーボネ
ートのうち、少なくとも一つを備え、併せてハロゲン結
合ベンゼン化合物を含む電解液を用いることによって、
高率充放電特性および低温での充放電特性に優れ、併せ
て充電状態での高温放置時の電池ケースの膨れが小さい
電池を製作することが可能となる。In the case of using the present invention, by using at least one of diethyl carbonate and methyl ethyl carbonate in the non-aqueous electrolyte and using an electrolytic solution containing a halogen-bonded benzene compound,
It is possible to manufacture a battery that has excellent high-rate charge-discharge characteristics and low-temperature charge-discharge characteristics, and that has a small swelling of the battery case when left at high temperature in a charged state.
【0022】本発明は、正極活物質が、リチウムニッケ
ル複合酸化物またはリチウムマンガン複合酸化物を含む
場合に特に効果的である。リチウムニッケル複合酸化物
およびリチウムマンガン複合酸化物は、リチウムコバル
ト複合酸化物と比較して安価である。しかし、リチウム
ニッケル複合酸化物またはリチウムマンガン複合酸化物
を正極活物質として用いた場合には、リチウムコバルト
複合酸化物を用いた場合と比較して高率充放電特性およ
び低温での充放電特性に劣るという問題点があった。し
たがって、高率充放電特性および低温での充放電特性に
優れ、併せて安価な電池を製作することは非常に困難で
あった。The present invention is particularly effective when the positive electrode active material contains a lithium nickel composite oxide or a lithium manganese composite oxide. The lithium nickel composite oxide and the lithium manganese composite oxide are less expensive than the lithium cobalt composite oxide. However, when the lithium nickel composite oxide or lithium manganese composite oxide is used as the positive electrode active material, the charge / discharge characteristics at a high rate and the low-temperature charge / discharge characteristics are lower than when the lithium cobalt composite oxide is used. There was a problem that it was inferior. Therefore, it has been very difficult to manufacture a low-cost battery that is excellent in high-rate charge-discharge characteristics and low-temperature charge-discharge characteristics.
【0023】本発明を用いた場合には、正極活物質がリ
チウムニッケル複合酸化物またはリチウムマンガン複合
酸化物を含み、併せてハロゲン結合ベンゼン化合物を含
む電解液を用いることによって、高率充放電特性および
低温での充放電特性に優れ、併せて安価である電池を製
作することが可能となる。In the case of using the present invention, high-rate charge / discharge characteristics can be obtained by using an electrolyte containing a lithium nickel composite oxide or a lithium manganese composite oxide as well as a halogen-bonded benzene compound. In addition, it is possible to manufacture a battery which is excellent in charge / discharge characteristics at low temperature and inexpensive.
【0024】本発明は、正極活物質または負極活物質の
少なくともひとつと接する高分子電解質を備えた非水電
解質電池において特に効果的である。活物質と接する高
分子電解質を用いることによって、活物質と接する有機
電解液の量を減少させることができ、高温放置時の活物
質と電解液との反応によって生じる気体量を減少させる
ことができる。結果として、高温放置時に電池が膨れる
という問題点を解決することができる。The present invention is particularly effective in a non-aqueous electrolyte battery provided with a polymer electrolyte in contact with at least one of the positive electrode active material and the negative electrode active material. By using the polymer electrolyte in contact with the active material, the amount of the organic electrolyte in contact with the active material can be reduced, and the amount of gas generated by the reaction between the active material and the electrolyte when left at a high temperature can be reduced. . As a result, the problem that the battery swells when left at high temperature can be solved.
【0025】しかし、高分子電解質中は、イオンの拡散
が遅いために高率充放電特性および低温での充放電特性
に劣るという問題点があった。したがって、高率充放電
特性および低温での充放電特性に優れ、併せて高温放置
時に膨れにくい電池を製作することは非常に困難であっ
た。本発明を用いた場合には、高分子電解質を備え、併
せてハロゲン結合ベンゼン化合物を含む電解液を用いる
ことによって、高率充放電特性および低温での充放電特
性に優れ、併せて高温放置時に膨れにくい電池を製作す
ることが可能となる。However, in the polymer electrolyte, there is a problem that high-rate charge / discharge characteristics and low-temperature charge / discharge characteristics are inferior due to slow diffusion of ions. Therefore, it has been extremely difficult to produce a battery that has excellent high-rate charge / discharge characteristics and low-temperature charge / discharge characteristics and that does not easily swell when left at high temperatures. When the present invention is used, the polymer electrolyte is provided, and by using an electrolyte solution containing a halogen-bonded benzene compound, the high-rate charge / discharge characteristics and the charge / discharge characteristics at a low temperature are excellent. It is possible to manufacture a battery that does not easily swell.
【0026】本発明は、負極中に炭素を備え、正極また
は負極の少なくとも一方の厚さが120μm以上である
非水電解質電池において特に効果的である。正極または
負極の少なくとも一方の厚さを厚くすることによって、
活物質層厚さに対する、活物質層厚さの誤差の比を小さ
くすることができる。したがって、正・負極のいかなる
部位においても均等な正・負極の容量比が維持され、負
極上への金属リチウムの析出を抑制することができ、電
池のサイクル寿命の低下を抑制することができる。The present invention is particularly effective in a non-aqueous electrolyte battery having carbon in the negative electrode and at least one of the positive electrode and the negative electrode having a thickness of 120 μm or more. By increasing the thickness of at least one of the positive electrode or the negative electrode,
The ratio of the error of the active material layer thickness to the active material layer thickness can be reduced. Therefore, a uniform positive / negative capacity ratio is maintained at any part of the positive / negative electrode, the deposition of metallic lithium on the negative electrode can be suppressed, and a decrease in the cycle life of the battery can be suppressed.
【0027】しかし、正極または負極を厚くした場合に
は、電解質中においてイオンが移動しなければならない
距離が長くなるために、高率充放電特性および低温での
充放電特性に劣るという問題点があった。したがって、
高率充放電特性および低温での充放電特性に優れる非水
電解質電池とするためには、正極および負極の厚さを1
20μm未満とする必要があった。このような理由によ
って、高率充放電特性および低温での充放電特性に優
れ、併せてサイクル寿命に優れる電池を製作することは
非常に困難であった。However, when the thickness of the positive electrode or the negative electrode is increased, the distance over which ions must move in the electrolyte becomes longer, and thus the high-rate charge-discharge characteristics and the charge-discharge characteristics at low temperatures are inferior. there were. Therefore,
In order to obtain a non-aqueous electrolyte battery having excellent high-rate charge / discharge characteristics and low-temperature charge / discharge characteristics, the thickness of the positive and negative electrodes must be
It was necessary to be less than 20 μm. For these reasons, it has been very difficult to produce a battery that has excellent high-rate charge-discharge characteristics and low-temperature charge-discharge characteristics, as well as excellent cycle life.
【0028】本発明を用いた場合には、厚さが120μ
m以上である正極または負極を備え、併せてハロゲン結
合ベンゼン化合物を含む電解液を用いることによって、
高率充放電特性および低温での充放電特性に優れ、併せ
てサイクル寿命特性に優れる電池を製作することが可能
となる。When the present invention is used, the thickness is 120 μm.
m or more, by using an electrolyte solution containing a halogen-bonded benzene compound together,
A battery having excellent high-rate charge / discharge characteristics and low-temperature charge / discharge characteristics, as well as excellent cycle life characteristics, can be manufactured.
【0029】本発明は、正極と負極との間に短絡防止膜
を備え、前記短絡防止膜の空孔率が65%以下である非
水電解質電池において特に効果的である。短絡防止膜の
空孔率を低くすることによって、短絡防止膜の機械的強
度が強くなり、電池製造時に内部短絡が生じにくくな
る。しかし、短絡防止膜の空孔率を低くした場合には、
正・負極間のイオンの透過経路が狭くなるために、高率
充放電特性および低温での充放電特性に劣るという問題
点があった。The present invention is particularly effective in a non-aqueous electrolyte battery provided with a short-circuit prevention film between the positive electrode and the negative electrode, wherein the porosity of the short-circuit prevention film is 65% or less. By lowering the porosity of the short-circuit preventing film, the mechanical strength of the short-circuit preventing film is increased, so that an internal short circuit is less likely to occur during battery production. However, when the porosity of the short-circuit prevention film is reduced,
Since the ion transmission path between the positive electrode and the negative electrode is narrowed, there is a problem that the high-rate charge / discharge characteristics and the charge / discharge characteristics at a low temperature are inferior.
【0030】したがって、高率充放電特性および低温で
の充放電特性に優れる非水電解質電池とするためには、
短絡防止膜の空孔率を65%よりも高くする必要があっ
た。このような理由によって、高率充放電特性および低
温での充放電特性に優れ、併せて内部短絡の生じにくい
電池を製作することは非常に困難であった。Therefore, in order to obtain a non-aqueous electrolyte battery having excellent high-rate charge-discharge characteristics and low-temperature charge-discharge characteristics,
The porosity of the short circuit prevention film had to be higher than 65%. For these reasons, it has been very difficult to manufacture a battery that has excellent high-rate charge-discharge characteristics and low-temperature charge-discharge characteristics and is less likely to cause internal short circuits.
【0031】本発明を用いた場合には、短絡防止膜の空
孔率が65%以下であることに併せて、ハロゲン結合ベ
ンゼン化合物を含む電解液を用いることによって、高率
充放電特性および低温での充放電特性に優れ、併せて内
部短絡が生じにくい電池を製作することが可能となる。When the present invention is used, in addition to the fact that the porosity of the short-circuit preventing film is 65% or less and the use of an electrolytic solution containing a halogen-bonded benzene compound, high-rate charge / discharge characteristics and low temperature It is possible to manufacture a battery which is excellent in charge-discharge characteristics at the same time and hardly causes an internal short circuit.
【0032】本発明は、正極と負極との間に短絡防止膜
を備え、前記短絡防止膜の平均孔径が3μm以下である
非水電解質電池において特に効果的である。短絡防止膜
の孔径を小さくすることによって、脱落した活物質粒子
が孔中に入りにくくなり、電池製造時に内部短絡が生じ
にくくなる。しかし、短絡防止膜の孔径を小さくした場
合には、正・負極間をイオンが拡散しにくくなり、高率
充放電特性および低温での充放電特性に劣るという問題
点があった。The present invention is particularly effective in a non-aqueous electrolyte battery provided with a short-circuit prevention film between the positive electrode and the negative electrode, wherein the short-circuit prevention film has an average pore size of 3 μm or less. By reducing the hole diameter of the short-circuit prevention film, the dropped active material particles are less likely to enter the holes, and an internal short circuit is less likely to occur during battery manufacture. However, when the pore diameter of the short-circuit prevention film is reduced, ions are difficult to diffuse between the positive electrode and the negative electrode, and there is a problem that high-rate charge / discharge characteristics and low-temperature charge / discharge characteristics are inferior.
【0033】したがって、高率充放電特性および低温で
の充放電特性に優れる非水電解質電池とするためには、
短絡防止膜の平均孔径を3μmよりも大きくする必要が
あった。このような理由によって、高率充放電特性およ
び低温での充放電特性に優れ、併せて内部短絡の生じに
くい電池を製作することは非常に困難であった。Therefore, in order to obtain a nonaqueous electrolyte battery having excellent high rate charge / discharge characteristics and low temperature charge / discharge characteristics,
It was necessary to make the average pore diameter of the short circuit prevention film larger than 3 μm. For these reasons, it has been very difficult to manufacture a battery that has excellent high-rate charge-discharge characteristics and low-temperature charge-discharge characteristics and is less likely to cause internal short circuits.
【0034】本発明を用いた場合には、短絡防止膜の平
均孔径が3μm以下であることに併せて、ハロゲン結合
ベンゼン化合物を含む電解液を用いることによって、高
率充放電特性および低温での充放電特性に優れ、併せて
内部短絡が生じにくい電池を製作することが可能とな
る。When the present invention is used, in addition to the fact that the average pore size of the short-circuit preventing film is 3 μm or less and the use of an electrolytic solution containing a halogen-bonded benzene compound, high-rate charge / discharge characteristics and low-temperature It is possible to manufacture a battery that has excellent charge / discharge characteristics and hardly causes an internal short circuit.
【0035】本発明は、一次粒子の粒子径が0.5μm
以上である正極活物質または一次粒子の粒子径が3μm
以上である負極活物質を備える非水電解質電池において
特に効果的である。活物質粒子を大きくすることによっ
て活物質表面積が小さくなり、高温放置時の活物質と電
解液との反応によって生じる気体量を減少させることが
できる。結果として、高温放置時に電池が膨れるという
問題点を解決することができる。According to the present invention, the primary particles have a particle diameter of 0.5 μm.
The particle diameter of the positive electrode active material or the primary particles is 3 μm
It is particularly effective in a non-aqueous electrolyte battery provided with the negative electrode active material described above. By increasing the size of the active material particles, the surface area of the active material is reduced, and the amount of gas generated by the reaction between the active material and the electrolyte when left at a high temperature can be reduced. As a result, the problem that the battery swells when left at high temperature can be solved.
【0036】しかし、活物質粒子を大きくした場合に
は、電極表面積の低下によって速やかな電極反応がおこ
なわれにくくなり、高率充放電特性および低温での充放
電特性に劣るという問題点があった。したがって、高率
充放電特性および低温での充放電特性に優れる非水電解
質電池とするためには、正極活物質の一次粒子の粒子径
が0.5μmよりも小さく、負極活物質の一次粒子の粒
子径が3μmよりも小さくする必要があった。このよう
な理由によって、高率充放電特性および低温での充放電
特性に優れ、併せて高温放置時に膨れにくい電池を製作
することは非常に困難であった。However, when the size of the active material particles is increased, a rapid electrode reaction becomes difficult to occur due to a decrease in the electrode surface area, and there is a problem that high-rate charge / discharge characteristics and low-temperature charge / discharge characteristics are inferior. . Therefore, in order to obtain a nonaqueous electrolyte battery having excellent high-rate charge / discharge characteristics and low-temperature charge / discharge characteristics, the particle diameter of the primary particles of the positive electrode active material is smaller than 0.5 μm, The particle size had to be smaller than 3 μm. For these reasons, it has been very difficult to manufacture a battery that has excellent high-rate charge-discharge characteristics and low-temperature charge-discharge characteristics, and that does not easily swell when left at high temperatures.
【0037】本発明を用いた場合には、一次粒子の粒子
径が0.5μm以上である正極活物質または一次粒子の
粒子径が3μm以上である負極活物質を備えることに併
せて、ハロゲン結合ベンゼン化合物を含む電解液を用い
ることによって、高率充放電特性および低温での充放電
特性に優れ、併せて高温放置時に膨れにくい電池を製作
することが可能となる。In the case of using the present invention, in addition to providing a positive electrode active material having primary particles having a particle diameter of 0.5 μm or more or a negative electrode active material having primary particles having a particle diameter of 3 μm or more, a halogen bond By using an electrolytic solution containing a benzene compound, it is possible to manufacture a battery that is excellent in high-rate charge / discharge characteristics and charge / discharge characteristics at low temperatures and that does not easily swell when left at high temperatures.
【0038】負極中に炭素を備えた非水電解質電池にお
いては、初回の充電時に炭素表面に皮膜が形成されるこ
とによって、それ以後の電解液の負極での分解が抑制さ
れる。しかし、ハロゲン結合ベンゼン化合物を電解液に
添加した場合には、炭素負極表面に形成される皮膜のイ
オン透過性がわずかに低下する。In a nonaqueous electrolyte battery provided with carbon in the negative electrode, a film is formed on the carbon surface at the time of the first charge, so that subsequent decomposition of the electrolytic solution at the negative electrode is suppressed. However, when a halogen-bonded benzene compound is added to the electrolytic solution, the ion permeability of the film formed on the surface of the carbon negative electrode slightly decreases.
【0039】したがって、ハロゲン結合ベンゼン化合物
を含まない電解液を用いて充電工程をおこなうことによ
って、イオン透過性の高い皮膜を炭素表面に形成した後
に、ハロゲン結合ベンゼン化合物を電池内に添加するこ
とによって、皮膜のイオン透過性の低下を抑制すること
ができる。結果として、この製造法によって、高率充放
電特性および低温での充放電特性に特に優れた非水電解
質を製造することができる。Therefore, by performing a charging step using an electrolyte solution containing no halogen-bonded benzene compound, a film having high ion permeability is formed on the carbon surface, and then the halogen-bonded benzene compound is added into the battery. In addition, it is possible to suppress a decrease in ion permeability of the film. As a result, a non-aqueous electrolyte having particularly excellent high-rate charge / discharge characteristics and low-temperature charge / discharge characteristics can be manufactured by this manufacturing method.
【0040】なお、本発明による発電要素は、正極板及
び負極板を、いずれも薄いシートないし箔状に成形した
ものを、順に積層したもの又は渦巻き状に巻回したもの
のどちらであってもよい。The power generating element according to the present invention may be either a positive electrode plate or a negative electrode plate formed into a thin sheet or foil shape, which are sequentially laminated or spirally wound. .
【0041】電池ケースの材質としては、金属箔と樹脂
フィルムとを貼り合わせたシート、鉄、またはアルミニ
ウムのいずれであってもよい。The material of the battery case may be any of a sheet in which a metal foil and a resin film are bonded, iron, or aluminum.
【0042】電池ケースの材質として、金属箔と樹脂フ
ィルムとを貼り合わせたシートを用いた場合には、金属
ラミネート樹脂フィルムの金属の材質としては、アルミ
ニウム、アルミニウム合金、チタン箔などを使用するこ
とができる。金属ラミネート樹脂フィルムの熱溶着部の
材質としては、ポリエチレン、ポリプロピレン、ポリエ
チレンテレフタレートなどの熱可塑性高分子材料であれ
ばどのような物質でもよい。When a sheet in which a metal foil and a resin film are bonded to each other is used as the material of the battery case, aluminum, an aluminum alloy, titanium foil, or the like should be used as the metal material of the metal laminated resin film. Can be. As the material of the heat-welded portion of the metal laminate resin film, any material may be used as long as it is a thermoplastic polymer material such as polyethylene, polypropylene, and polyethylene terephthalate.
【0043】また、金属ラミネート樹脂フィルムの樹脂
層や金属箔層は、それぞれ1層に限定されるものではな
く、2層以上であってもかまわない。また単電池ケース
としては、金属ラミネート樹脂フィルムを熱溶着するこ
とによって封筒状に成形したラミネートケースや、2枚
の金属ラミネート樹脂シートの4辺を熱溶着したもの
や、一枚のシートを二つ折りにして3辺を熱溶着したも
の、金属ラミネート樹脂シートをプレス成形してカップ
状にしたものに発電要素を入れるようなラミネートケー
スなど、あらゆる形状の金属ラミネート樹脂フィルムケ
ースを用いることができる。Further, the resin layer and the metal foil layer of the metal laminated resin film are not limited to one layer each, but may be two or more layers. As the cell case, a laminated case formed into an envelope shape by heat welding a metal laminated resin film, a case in which four sides of two metal laminated resin sheets are heat welded, or one sheet folded in two A metal-laminated resin film case of any shape can be used, such as a case in which the three sides are heat-welded and a metal-laminated resin sheet formed by press-forming a metal-laminated resin sheet into a cup-like shape and a power generation element.
【0044】本発明になる非水電解質電池に使用する電
解液溶媒としては、エチレンカーボネート、プロピレン
カーボネート、ジメチルカーボネート、ジエチルカーボ
ネート、γ−ブチロラクトン、スルホラン、ジメチルス
ルホキシド、アセトニトリル、ジメチルホルムアミド、
ジメチルアセトアミド、1,2−ジメトキシエタン、
1,2−ジエトキシエタン、テトラヒドロフラン、2−
メチルテトラヒドロフラン、ジオキソラン、メチルアセ
テート等の極性溶媒、もしくはこれらの混合物を使用し
てもよい。The electrolyte solvent used in the nonaqueous electrolyte battery according to the present invention includes ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide,
Dimethylacetamide, 1,2-dimethoxyethane,
1,2-diethoxyethane, tetrahydrofuran, 2-
A polar solvent such as methyl tetrahydrofuran, dioxolan, methyl acetate, or a mixture thereof may be used.
【0045】また、有機溶媒に溶解するリチウム塩とし
ては、LiPF6、LiClO4、LiBF4、LiAs
F6、LiCF3CO2、LiCF3SO3、LiN(SO2
CF3)2、LiN(SO2CF2CF3)2、LiN(CO
CF3)2およびLiN(COCF2CF3)2などの塩も
しくはこれらの混合物でもよい。The lithium salts dissolved in the organic solvent include LiPF 6 , LiClO 4 , LiBF 4 , LiAs
F 6 , LiCF 3 CO 2 , LiCF 3 SO 3 , LiN (SO 2
CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (CO
Salts such as CF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 or mixtures thereof may be used.
【0046】また、本発明になる非水電解質電池の短絡
防止膜としては、絶縁性のポリエチレン微多孔膜に電解
液を含浸したものや、高分子固体電解質、高分子固体電
解質に電解液を含有させたゲル状電解質等も使用でき
る。また、絶縁性の微多孔膜と高分子固体電解質等を組
み合わせて使用してもよい。さらに、高分子固体電解質
として有孔性高分子固体電解質膜を使用する場合、高分
子中に含有させる電解液と、細孔中に含有させる電解液
とが異なっていてもよい。The short-circuit preventing film of the non-aqueous electrolyte battery according to the present invention may be a material obtained by impregnating an electrolytic solution into an insulating microporous polyethylene film, a solid polymer electrolyte, or a solid polymer electrolyte containing an electrolytic solution. A gelled electrolyte or the like can also be used. Further, an insulating microporous film and a solid polymer electrolyte may be used in combination. Further, when a porous solid polymer electrolyte membrane is used as the solid polymer electrolyte, the electrolyte contained in the polymer and the electrolyte contained in the pores may be different.
【0047】さらに、正極材料たるリチウムを吸蔵放出
可能な化合物としては、無機化合物としては、組成式L
ixMO2、またはLiyM2O4(ただしM は遷移金属、
0≦x≦1、0≦y≦2 )で表される、複合酸化物、
トンネル状の空孔を有する酸化物、層状構造の金属カル
コゲン化物を用いることができる。その具体例として
は、LiCoO2 、LiNiO2、LiMn2O4 、Li
2Mn2O4 、MnO2、FeO2、V2O5、V6O13、T
iO2、TiS2等が挙げられる。また、有機化合物とし
ては、例えばポリアニリン等の導電性ポリマー等が挙げ
られる。さらに、無機化合物、有機化合物を問わず、上
記各種活物質を混合して用いてもよい。Further, as a compound capable of inserting and extracting lithium as a cathode material, an inorganic compound is represented by a composition formula L
i x MO 2 or Li y M 2 O 4, (where M is a transition metal,
A composite oxide represented by 0 ≦ x ≦ 1, 0 ≦ y ≦ 2),
An oxide having tunnel-like holes and a metal chalcogenide having a layered structure can be used. As specific examples, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li
2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , T
iO 2 , TiS 2 and the like. Examples of the organic compound include a conductive polymer such as polyaniline. Further, the above-mentioned various active materials may be mixed and used regardless of an inorganic compound or an organic compound.
【0048】さらに、負極材料たる化合物としては、A
l、Si、Pb、Sn、Zn、Cd等とリチウムとの合
金、スズ酸化物、LiFe2O3、WO2、MoO2等の遷
移金属酸化物、グラファイト、カーボン等の炭素質材
料、Li5(Li3N)等の窒化リチウム、もしくは金属
リチウム箔、又はこれらの混合物を用いてもよい。Further, as a compound as a negative electrode material, A
Alloys of lithium with l, Si, Pb, Sn, Zn, Cd, etc., tin oxides, transition metal oxides such as LiFe 2 O 3 , WO 2 , MoO 2 , carbonaceous materials such as graphite, carbon, Li 5 Lithium nitride such as (Li 3 N) or metallic lithium foil, or a mixture thereof may be used.
【0049】また、本発明は二次電池に限定されるもの
ではなく、負極活物質として金属リチウム、正極活物質
としてマンガン酸化物、フッ化カーボンまたは塩化チオ
ニルなどを用いた一次電池であってもよい。The present invention is not limited to a secondary battery, but may be applied to a primary battery using lithium metal as a negative electrode active material and manganese oxide, carbon fluoride or thionyl chloride as a positive electrode active material. Good.
【0050】[0050]
【実施例】次に、本発明を好適な実施例にもとづき説明
する。Next, the present invention will be described based on preferred embodiments.
【0051】[実施例1]正極活物質には、一次粒子の
平均粒径が0.5μmであるリチウムコバルト複合酸化
物を用いた。正極板は集電体に上記のリチウムコバルト
複合酸化物が活物質として保持したものである。集電体
には厚さ20μmのアルミニウム箔を用いた。正極板
は、結着剤であるポリフッ化ビニリデン6部と導電剤で
あるアセチレンブラック3部とを活物質91部とともに
混合し、適宜N−メチルピロリドンを加えてペースト状
に調製した後、その集電体材料の両面に塗布、乾燥した
後にプレスすることによって製作した。正極板の活物質
層の片面の厚さは60μmであり、集電体と併せた正極
板の厚さは120μmとなった。Example 1 A lithium-cobalt composite oxide having an average primary particle size of 0.5 μm was used as a positive electrode active material. The positive electrode plate is obtained by holding the above-mentioned lithium cobalt composite oxide as an active material on a current collector. An aluminum foil having a thickness of 20 μm was used for the current collector. The positive electrode plate was prepared by mixing 6 parts of polyvinylidene fluoride as a binder and 3 parts of acetylene black as a conductive agent together with 91 parts of an active material, appropriately adding N-methylpyrrolidone to prepare a paste, and then collecting the paste. It was manufactured by applying on both sides of an electric conductor material, drying and pressing. The thickness of one side of the active material layer of the positive electrode plate was 60 μm, and the thickness of the positive electrode plate together with the current collector was 120 μm.
【0052】負極板は、集電体の両面に、ホスト物質と
してのグラファイト(一次粒子の平均粒径3μm)92
部と結着剤としてのポリフッ化ビニリデン8部とを混合
し、適宜N−メチルピロリドンを加えてペースト状に調
製したものを塗布、乾燥した後にプレスすることによっ
て製作した。負極板の集電体に、厚さ14μmの銅箔を
用いた。負極板の活物質層の片面の厚さは63μmであ
り、集電体と併せた負極板の厚さは120μmとなっ
た。The negative electrode plate has graphite (average primary particle size: 3 μm) 92 as a host material on both surfaces of the current collector.
The mixture was mixed with 8 parts of polyvinylidene fluoride as a binder, N-methylpyrrolidone was appropriately added to prepare a paste, applied, dried, and pressed. A 14-μm-thick copper foil was used as the current collector of the negative electrode plate. The thickness of one side of the active material layer of the negative electrode plate was 63 μm, and the thickness of the negative electrode plate together with the current collector was 120 μm.
【0053】短絡防止膜は空孔率65%、平均孔径3μ
mのポリエチレン微多孔膜とした。極板の寸法は、正極
板が幅49mm、セパレータが厚さ25μm、幅53m
m、負極板が幅51mmであり、正極板及び負極板にそ
れぞれリード端子を溶接し、順に重ね合わせてポリエチ
レンの長方形状の巻芯を中心として、長辺が発電要素の
巻回中心軸と平行になるよう、その周囲に長円渦状に巻
回して、53×35×4mmの大きさの発電要素とし
た。The short-circuit prevention film has a porosity of 65% and an average pore diameter of 3 μm.
m of polyethylene microporous membrane. The dimensions of the electrode plate are 49 mm in width for the positive electrode plate, 25 μm in thickness for the separator, and 53 m in width.
m, the negative electrode plate has a width of 51 mm, and the lead terminals are welded to the positive electrode plate and the negative electrode plate, respectively, and superposed in order, with the long side parallel to the winding central axis of the power generating element with the rectangular core of polyethylene as the center. To form a power generating element having a size of 53 × 35 × 4 mm.
【0054】そして、電極の絶縁部分をポリプロピレン
からなる巻き止め用テープ(ここでは接着剤が片面に塗
布されている)で電極幅(発電要素の巻回中心軸と平行
な発電要素の長さ)に相当する長さを、巻回中心軸と平
行な発電要素側壁部分に貼り付け、発電要素を巻き止め
固定した。Then, the insulating portion of the electrode is covered with a winding tape made of polypropylene (here, an adhesive is applied on one side) to the width of the electrode (the length of the power generating element parallel to the winding central axis of the power generating element). Was attached to the side wall of the power generation element parallel to the winding center axis, and the power generation element was stopped and fixed.
【0055】これを金属ラミネート樹脂フィルムケース
に、長円形巻回型発電要素はその巻回中心軸が袋状金属
ラミネート樹脂フィルムケースの開口面に垂直となるよ
うに収納した。その後、電解液の真空注液によって、各
電極と短絡防止膜が十分湿潤し、発電要素外にフリーな
電解液が存在しないようにした。電解液には、エチレン
カーボネートとジメチルカーボネートとを5:5の重量
比で混合した溶媒に、LiPF6を1mol/Lの濃度
で添加し、さらにフルオロベンゼンを0.01、0.
1、1、3、15、30wt%の各濃度で添加したもの
を用いて6種類の電池を製作した。This was housed in a metal-laminated resin film case so that the winding center axis of the elliptical wound type power generation element was perpendicular to the opening surface of the bag-shaped metal-laminated resin film case. Thereafter, each electrode and the short-circuit preventing film were sufficiently wetted by the vacuum injection of the electrolytic solution so that no free electrolytic solution was present outside the power generating element. To the electrolytic solution, LiPF 6 was added at a concentration of 1 mol / L to a solvent in which ethylene carbonate and dimethyl carbonate were mixed at a weight ratio of 5: 5, and 0.01 to 0.1 mol of fluorobenzene was added.
Six types of batteries were manufactured using the ones added at the respective concentrations of 1, 1, 3, 15, and 30 wt%.
【0056】ラミネート樹脂フィルムは、最外層に表面
保護用の12μmのPETフィルム、その内側にバリア
層として9μmのアルミニウム箔、最内層に熱溶着層と
して100μmの酸変性低密度ポリエチレン層を用いて
いる。この金属ラミネート樹脂フィルムは、最外層の表
面保護用PETフィルムとバリア層としてのアルミニウ
ム箔とをウレタン系接着剤で接着している。また、正極
リード端子および負極リード端子は、厚み50〜100
μmの銅、アルミニウム、ニッケルなどの金属導体であ
る。The laminated resin film uses a 12 μm PET film for surface protection as the outermost layer, a 9 μm aluminum foil as a barrier layer inside the PET film, and a 100 μm acid-modified low-density polyethylene layer as a heat welding layer as the innermost layer. . In this metal laminated resin film, the outermost PET film for surface protection and an aluminum foil as a barrier layer are bonded with a urethane-based adhesive. The positive electrode lead terminal and the negative electrode lead terminal have a thickness of 50 to 100.
It is a metal conductor of copper, aluminum, nickel or the like of μm.
【0057】最後に、密封溶着を行って、本発明による
公称容量500mAhのラミネート単電池(A)を試作
した。また、電解液にフルオロベンゼンを添加しないこ
と以外は本発明による電池(A)と同様にして、比較用
の電池(B)を製作した。Finally, a sealed unit cell (A) having a nominal capacity of 500 mAh according to the present invention was produced by sealing and welding. A comparative battery (B) was produced in the same manner as the battery (A) according to the present invention except that fluorobenzene was not added to the electrolytic solution.
【0058】これらの製作したすべての電池を、25℃
において、500mA定電流で4.1Vまで充電してか
ら4.1Vで2時間の定電圧充電をおこなった後に、2
5℃で1,500mA定電流で3.3Vまで放電して高
率放電試験をおこなった。さらに、25℃において、5
00mA定電流で4.1Vまで充電してから4.1Vで
2時間の定電圧充電をおこなった後に、−20℃におい
て500mA定電流で3.3Vまで放電して低温放電試
験をおこなった。その際に得られた放電容量を表1に示
す。All these batteries were manufactured at 25 ° C.
, After charging to 4.1 V with a constant current of 500 mA, and then performing constant-voltage charging at 4.1 V for 2 hours,
A high-rate discharge test was performed by discharging to 3.3 V at a constant current of 1,500 mA at 5 ° C. Furthermore, at 25 ° C., 5
After charging to 4.1 V at a constant current of 00 mA and then performing constant-voltage charging at 4.1 V for 2 hours, the battery was discharged at -20 ° C. to a constant current of 500 mA to 3.3 V to perform a low-temperature discharge test. Table 1 shows the discharge capacities obtained at that time.
【0059】[0059]
【表1】 [Table 1]
【0060】表1から、電解液にフルオロベンゼンを添
加した本発明による電池は、フルオロベンゼンを使用し
ない比較用の電池と比較して、高率放電時の容量および
低温放電時の容量が増加することがわかった。また、電
解液中におけるフルオロベンゼンの濃度が0.01wt
%以上15wt%以下である場合に特に効果的であるこ
とがわかった。From Table 1, it can be seen that the battery according to the present invention in which fluorobenzene is added to the electrolyte has a higher capacity at high rate discharge and a lower capacity at low temperature discharge as compared with a comparative battery not using fluorobenzene. I understand. The concentration of fluorobenzene in the electrolyte is 0.01 wt.
% Was found to be particularly effective when the content was 15% by weight or more and 15% by weight or less.
【0061】[実施例2]電解液中にフルオロベンゼン
を添加するかわりに、フルオロベンゼン以外の、23種
類のハロゲン結合ベンゼン化合物を3wt%の濃度で電
解液に添加したこと以外は、実施例1における本発明に
よる電池(A)と同様にして、本発明による23種類の
電池(C)を製作した。Example 2 Example 1 was repeated except that, instead of adding fluorobenzene to the electrolytic solution, 23 kinds of halogen-bonded benzene compounds other than fluorobenzene were added to the electrolytic solution at a concentration of 3 wt%. 23 types of batteries (C) according to the present invention were manufactured in the same manner as the battery (A) according to the present invention.
【0062】これらの製作したすべての電池を、25℃
において、500mA定電流で4.1Vまで充電してか
ら4.1Vで2時間の定電圧充電をおこなった後に、2
5℃、1,500mA定電流で3.3Vまで放電して高
率放電試験をおこなった。さらに、25℃において、5
00mA定電流で4.1Vまで充電してから4.1Vで
2時間の定電圧充電をおこなった後に、−20℃におい
て500mA定電流で3.3Vまで放電して低温放電試
験をおこなった。電池(C)に適用した、ハロゲン結合
ベンゼン化合物の一覧と、その際に得られた放電容量を
表2に示す。[0062] All of these fabricated batteries were stored at 25 ° C.
, After charging to 4.1 V with a constant current of 500 mA, and then performing constant-voltage charging at 4.1 V for 2 hours,
A high-rate discharge test was performed by discharging to 3.3 V at 5 ° C. and a constant current of 1,500 mA. Furthermore, at 25 ° C., 5
After charging to 4.1 V at a constant current of 00 mA and then performing constant-voltage charging at 4.1 V for 2 hours, the battery was discharged at -20 ° C. to a constant current of 500 mA to 3.3 V to perform a low-temperature discharge test. Table 2 shows a list of the halogen-bonded benzene compounds applied to the battery (C) and the discharge capacities obtained at that time.
【0063】[0063]
【表2】 [Table 2]
【0064】表1と表2との比較から、本発明による電
池(C)のすべてが、比較用の電池(B)よりも優れた
高率放電特性および低温放電特性を示していることがわ
かる。また、ベンゼン環に結合したハロゲンがフッ素で
ある場合には、塩素またはヨウ素の場合と比較して優れ
た高率放電特性および低温放電特性を示していることが
わかった。さらに、ハロゲン結合ベンゼン化合物がフル
オロベンゼンである場合に、特に優れた高率放電特性お
よび低温放電特性を示していることがわかった。From the comparison between Tables 1 and 2, it can be seen that all of the batteries (C) according to the present invention exhibited better high-rate discharge characteristics and lower-temperature discharge characteristics than the comparative battery (B). . In addition, it was found that when the halogen bonded to the benzene ring was fluorine, it exhibited excellent high-rate discharge characteristics and low-temperature discharge characteristics as compared with the case of chlorine or iodine. Furthermore, it was found that when the halogen-bonded benzene compound was fluorobenzene, it exhibited particularly excellent high-rate discharge characteristics and low-temperature discharge characteristics.
【0065】[実施例3]電解液に使用する鎖状カーボ
ネートとして、ジメチルカーボネートのかわりにジエチ
ルカーボネートまたはメチルエチルカーボネートを使用
したこと以外は、電解液にフルオロベンゼンを3wt%
添加した実施例1における本発明による電池(A)と同
様にして、本発明による電池(D)を製作した。また、
電解液にフルオロベンゼンを添加しないこと以外は、本
発明による電池(D)と同様にして、従来から公知であ
る比較用の電池(E)を製作した。Example 3 Except that diethyl carbonate or methyl ethyl carbonate was used instead of dimethyl carbonate as the chain carbonate used in the electrolytic solution, 3 wt% of fluorobenzene was contained in the electrolytic solution.
A battery (D) according to the present invention was manufactured in the same manner as the battery (A) according to the present invention in Example 1 to which addition was made. Also,
A conventionally known comparative battery (E) was manufactured in the same manner as the battery (D) according to the present invention, except that no fluorobenzene was added to the electrolytic solution.
【0066】これらの製作したすべての電池を、25℃
において、500mA定電流で4.1Vまで充電してか
ら4.1Vで2時間の定電圧充電をおこなった後に、2
5℃で1,500mA定電流で3.3Vまで放電して高
率放電試験をおこなった。さらに、25℃において、5
00mA定電流で4.1Vまで充電してから4.1Vで
2時間の定電圧充電をおこなった後に、−20℃におい
て500mA定電流で3.3Vまで放電して低温放電試
験をおこなった。その際に得られた放電容量を、実施例
1で試験をおこなった電池(A)および(B)の結果と
併せて表3に示す。 また、本発明による電池(D)お
よび比較用の電池(E)、および実施例1で製作した電
池(B)および電解液へのフルオロベンゼンの添加量が
3wt%である電池(A)を用いて、25℃において、
500mA定電流で4.1Vまで充電し、さらに4.1
Vで2時間の定電圧充電をおこなった後に、85℃で4
時間加熱した際の、加熱による電池厚さの増加量を表3
に示す。All of these batteries were manufactured at 25 ° C.
, After charging to 4.1 V with a constant current of 500 mA, and then performing constant-voltage charging at 4.1 V for 2 hours,
A high-rate discharge test was performed by discharging to 3.3 V at a constant current of 1,500 mA at 5 ° C. Furthermore, at 25 ° C., 5
After charging to 4.1 V at a constant current of 00 mA and then performing constant-voltage charging at 4.1 V for 2 hours, the battery was discharged at -20 ° C. to a constant current of 500 mA to 3.3 V to perform a low-temperature discharge test. The discharge capacity obtained at that time is shown in Table 3 together with the results of the batteries (A) and (B) tested in Example 1. In addition, the battery (D) according to the present invention and the battery (E) for comparison, the battery (B) manufactured in Example 1, and the battery (A) in which the amount of fluorobenzene added to the electrolyte was 3 wt% were used. At 25 ° C.
The battery was charged to 4.1 V at a constant current of 500 mA, and further charged to 4.1 V.
After charging at constant voltage for 2 hours at 85 V,
Table 3 shows the amount of increase in battery thickness due to heating when heated for 3 hours.
Shown in
【0067】[0067]
【表3】 [Table 3]
【0068】表3から、ハロゲン結合ベンゼン化合物を
使用しない従来の電池においては、電解液中の鎖状カー
ボネートとしてジエチルカーボネートまたはメチルエチ
ルカーボネートを用いると高率放電特性および低温放電
特性が劣ることがわかった。From Table 3, it can be seen that in a conventional battery not using a halogen-bonded benzene compound, when diethyl carbonate or methyl ethyl carbonate is used as the chain carbonate in the electrolytic solution, the high-rate discharge characteristics and the low-temperature discharge characteristics are inferior. Was.
【0069】このような問題点から、良好な高率放電特
性および低温での放電特性を得るためには、電解液中の
鎖状カーボネートとしてジメチルカーボネートを使用す
る必要があった。一方、高温放置時の膨れにおいては、
表3から理解されるように、ジメチルカーボネートを使
用した場合には、ジエチルカーボネートまたはメチルエ
チルカーボネートを使用した場合と比較して膨れやすく
なっている。From these problems, in order to obtain good high-rate discharge characteristics and low-temperature discharge characteristics, it was necessary to use dimethyl carbonate as the chain carbonate in the electrolytic solution. On the other hand, in the case of blistering when left at high temperatures,
As can be seen from Table 3, when dimethyl carbonate is used, swelling is more likely than when diethyl carbonate or methyl ethyl carbonate is used.
【0070】したがって、従来は、充電状態での高温放
置時に膨れにくく、かつ高率または低温での放電特性が
優れる電池を製作することは困難であった。表3から、
ハロゲン結合ベンゼン化合物を含む電解液を使用するこ
とと、電解液にジエチルカーボネートまたはメチルエチ
ルカーボネートを使用することを組み合わせることによ
って、充電状態での高温放置時に膨れにくく、かつ高率
および低温での放電特性が優れる電池を製作することが
可能となることが理解される。Therefore, conventionally, it has been difficult to manufacture a battery which is unlikely to swell when left at a high temperature in a charged state and has excellent discharge characteristics at a high rate or at a low temperature. From Table 3,
By combining the use of an electrolyte containing a halogen-bonded benzene compound with the use of diethyl carbonate or methyl ethyl carbonate for the electrolyte, it is unlikely to swell when left at high temperature in a charged state, and discharge at a high rate and low temperature It is understood that a battery having excellent characteristics can be manufactured.
【0071】[実施例4]正極活物質として、リチウム
コバルト複合酸化物のかわりに、リチウムニッケル複合
酸化物またはリチウムマンガン複合酸化物を使用したこ
と以外は、電解液にフルオロベンゼンを3wt%添加し
た実施例1における本発明による電池(A)と同様にし
て、本発明による電池(F)を製作した。リチウムコバ
ルト複合酸化物と体積当たりの容量を比較すると、リチ
ウムニッケル複合酸化物は容量が多くリチウムマンガン
複合酸化物は容量が少ない。Example 4 Except that a lithium nickel composite oxide or a lithium manganese composite oxide was used as the positive electrode active material instead of the lithium cobalt composite oxide, 3 wt% of fluorobenzene was added to the electrolytic solution. A battery (F) according to the present invention was manufactured in the same manner as the battery (A) according to the present invention in Example 1. Comparing the capacity per volume with the lithium cobalt composite oxide, the lithium nickel composite oxide has a large capacity and the lithium manganese composite oxide has a small capacity.
【0072】このため、同サイズの電池を製作したにも
かかわらず、リチウムニッケル複合酸化物を用いた場合
には530mAh、リチウムマンガン複合酸化物を用い
た場合には455mAhの容量の電池となった。また、
電解液にフルオロベンゼンを添加しないこと以外は、本
発明による電池(F)と同様にして、従来から公知であ
る比較用の電池(G)を製作した。For this reason, even though batteries of the same size were manufactured, the batteries had a capacity of 530 mAh when the lithium nickel composite oxide was used and 455 mAh when the lithium manganese composite oxide was used. . Also,
A conventionally known comparative battery (G) was produced in the same manner as the battery (F) according to the present invention, except that no fluorobenzene was added to the electrolytic solution.
【0073】これらの製作したすべての電池を、25℃
において、500mA定電流で4.1Vまで充電してか
ら4.1Vで2時間の定電圧充電をおこなった後に、2
5℃で100mAの低率放電によって3.3Vまで放電
した。さらに、25℃において、500mA定電流で
4.1Vまで充電してから4.1Vで2時間の定電圧充
電をおこなった後に、25℃で1,500mA定電流で
3.3Vまで放電して高率放電試験をおこなった。その
際に得られた100mA放電時の容量に対する1,50
0mA放電時の容量の比を、実施例1で製作した電池
(A)および(B)の結果と併せて表4に示す。All of these batteries were manufactured at 25 ° C.
, After charging to 4.1 V with a constant current of 500 mA, and then performing constant-voltage charging at 4.1 V for 2 hours,
The battery was discharged to 3.3 V by a low-rate discharge of 100 mA at 5 ° C. Further, at 25 ° C., the battery was charged to 4.1 V at a constant current of 500 mA, and then was charged at 4.1 V for 2 hours, and then discharged at 25 ° C. to 3.3 V at a constant current of 1,500 mA. Rate discharge test was performed. 1,50 with respect to the capacity at the time of 100 mA discharge obtained at that time
Table 4 shows the capacity ratio at the time of 0 mA discharge together with the results of the batteries (A) and (B) manufactured in Example 1.
【0074】[0074]
【表4】 [Table 4]
【0075】表4から、ハロゲン結合ベンゼン化合物を
使用しない従来の電池においては、正極活物質としてリ
チウムニッケル複合酸化物またはリチウムマンガン複合
酸化物を用いると高率放電特性が劣ることがわかった。
このような問題点から、良好な高率放電特性を得るため
には、正極活物質としてリチウムコバルト複合酸化物を
使用する必要があった。From Table 4, it was found that in a conventional battery not using a halogen-bonded benzene compound, when a lithium nickel composite oxide or a lithium manganese composite oxide was used as a positive electrode active material, high-rate discharge characteristics were inferior.
From these problems, in order to obtain good high-rate discharge characteristics, it was necessary to use a lithium-cobalt composite oxide as the positive electrode active material.
【0076】一方、コストにおいては、リチウムコバル
ト複合酸化物は、リチウムニッケル複合酸化物またはリ
チウムマンガン複合酸化物と比較して高価である。した
がって、従来は、安価であり、かつ高率放電特性が優れ
る電池を製作することは困難であった。On the other hand, in terms of cost, lithium cobalt composite oxide is more expensive than lithium nickel composite oxide or lithium manganese composite oxide. Therefore, conventionally, it has been difficult to manufacture a battery that is inexpensive and has excellent high-rate discharge characteristics.
【0077】表4から、ハロゲン結合ベンゼンハロゲン
結合ベンゼン化合物を含む電解液を使用することと、正
極活物質としてリチウムニッケル複合酸化物またはリチ
ウムマンガン複合酸化物を使用することを組み合わせる
ことによって、安価であり、かつ高率での放電特性が優
れる電池を製作することが可能となることが理解され
る。From Table 4, it can be seen that the combination of the use of an electrolyte containing a halogen-bonded benzene compound and the use of a lithium nickel composite oxide or a lithium manganese composite oxide as a positive electrode active material makes it possible to reduce the cost. It is understood that it is possible to manufacture a battery having excellent discharge characteristics at a high rate.
【0078】[実施例5]正極および負極の活物質層の
孔中に、微細孔を有する高分子電解質を充填し、その体
積分だけ電解液の添加量を減少させたこと以外は、電解
液にフルオロベンゼンを3wt%添加した実施例1にお
ける本発明による電池(A)と同様にして、本発明によ
る電池(H)を製作した。正極および負極の活物質層の
孔中への、微細孔を有する高分子電解質の充填はつぎの
通りおこなった。ポリビニリデンフルオライド(PVD
F)をN−メチルピロリドンに溶解した溶液を活物質層
の孔中に充填したのち、電極を水に浸漬する溶媒抽出法
によってPVDFを多孔化および固化した。この電極を
乾燥した後電池を組み立てた。電解液の注液によって、
活物質層の孔中の微細孔を有するPVDFは膨潤して、
高分子電解質となった。また、電解液にフルオロベンゼ
ンを添加しないこと以外は、本発明による電池(H)と
同様にして、従来から公知である比較用の電池(I)を
製作した。Example 5 The electrolyte solution was the same as that of the first embodiment except that the pores of the active material layers of the positive electrode and the negative electrode were filled with a polymer electrolyte having fine pores, and the amount of the electrolyte added was reduced by the volume. A battery (H) according to the present invention was manufactured in the same manner as the battery (A) according to the present invention in Example 1 in which 3 wt% of fluorobenzene was added to the battery. The filling of the polymer electrolyte having fine pores into the pores of the active material layers of the positive electrode and the negative electrode was performed as follows. Polyvinylidene fluoride (PVD
After filling a solution of F) in N-methylpyrrolidone into the pores of the active material layer, PVDF was made porous and solidified by a solvent extraction method in which the electrode was immersed in water. After drying the electrode, a battery was assembled. By injecting the electrolyte,
PVDF having fine pores in the pores of the active material layer swells,
It became a polymer electrolyte. In addition, a conventionally known comparative battery (I) was manufactured in the same manner as the battery (H) according to the present invention except that fluorobenzene was not added to the electrolytic solution.
【0079】これらの製作したすべての電池を、25℃
において、500mA定電流で4.1Vまで充電してか
ら4.1Vで2時間の定電圧充電をおこなった後に、2
5℃で1,500mA定電流で3.3Vまで放電して高
率放電試験をおこなった。さらに、25℃において、5
00mA定電流で4.1Vまで充電してから4.1Vで
2時間の定電圧充電をおこなった後に、−20℃におい
て500mA定電流で3.3Vまで放電して低温放電試
験をおこなった。その際に得られた放電容量を、実施例
1で試験をおこなった電池(A)および(B)の結果と
併せて表5に示す。All of these batteries were manufactured at 25 ° C.
, After charging to 4.1 V with a constant current of 500 mA, and then performing constant-voltage charging at 4.1 V for 2 hours,
A high-rate discharge test was performed by discharging to 3.3 V at a constant current of 1,500 mA at 5 ° C. Furthermore, at 25 ° C., 5
After charging to 4.1 V at a constant current of 00 mA and then performing constant-voltage charging at 4.1 V for 2 hours, the battery was discharged at -20 ° C. to a constant current of 500 mA to 3.3 V to perform a low-temperature discharge test. The discharge capacity obtained at that time is shown in Table 5 together with the results of the batteries (A) and (B) tested in Example 1.
【0080】また、本発明による電池(H)および比較
用の電池(I)、および実施例1で製作した電池(B)
および電解液へのフルオロベンゼンの添加量が3wt%
である電池(A)を用いて、25℃において、500m
A定電流で4.1Vまで充電し、さらに4.1Vで2時
間の定電圧充電をおこなった後に、85℃で4時間加熱
した際の、加熱による電池厚さの増加量を表5に示す。The battery (H) according to the present invention, the battery (I) for comparison, and the battery (B) manufactured in Example 1
And 3wt% of fluorobenzene added to electrolyte
500 m at 25 ° C. using the battery (A)
Table 5 shows the amount of increase in battery thickness due to heating when the battery was charged to 4.1 V with a constant current of A, and further charged at 4.1 V for 2 hours and then heated at 85 ° C. for 4 hours. .
【0081】[0081]
【表5】 [Table 5]
【0082】表5から、ハロゲン結合ベンゼン化合物を
使用しない従来の電池においては、正極および負極の活
物質層の孔中に、微細孔を有する高分子電解質を充填す
ると高率放電特性および低温放電特性が劣ることがわか
った。From Table 5, it can be seen that in the conventional battery not using the halogen-bonded benzene compound, the high-rate discharge characteristics and the low-temperature discharge characteristics were obtained by filling the pores of the active material layers of the positive electrode and the negative electrode with a polymer electrolyte having fine pores. Was found to be inferior.
【0083】このような問題点から、良好な高率放電特
性および低温での放電特性を得るためには、正極および
負極の活物質層の孔中に高分子電解質を使用することが
できなかった。一方、高温放置時の膨れにおいては、表
5から理解されるように、高分子電解質を使用しない場
合には、高分子電解質を使用した場合と比較して膨れや
すくなっている。したがって、従来は、充電状態での高
温放置時に膨れにくく、かつ高率または低温での放電特
性が優れる電池を製作することは困難であった。From the above problems, in order to obtain good high-rate discharge characteristics and low-temperature discharge characteristics, a polymer electrolyte cannot be used in the pores of the active material layers of the positive electrode and the negative electrode. . On the other hand, as can be understood from Table 5, when the polymer electrolyte is not left, the swelling when the polymer electrolyte is not used is swelled more easily than when the polymer electrolyte is used. Therefore, conventionally, it has been difficult to manufacture a battery that is unlikely to swell when left at a high temperature in a charged state and has excellent discharge characteristics at a high rate or at a low temperature.
【0084】表5から、ハロゲン結合ベンゼン化合物を
含む電解液を使用することと、正極および負極の活物質
層の孔中に、微細孔を有する高分子電解質を充填するこ
とを組み合わせることによって、充電状態での高温放置
時に膨れにくく、かつ高率および低温での放電特性が優
れる電池を製作することが可能となることが理解され
る。From Table 5, it can be seen that the combination of using an electrolytic solution containing a halogen-bonded benzene compound and filling a polymer electrolyte having fine pores into the pores of the active material layers of the positive electrode and the negative electrode provides a charge. It is understood that it becomes possible to manufacture a battery which is less likely to swell when left at a high temperature in a state and has excellent discharge characteristics at a high rate and a low temperature.
【0085】[実施例6]活物質層の厚さを変化させる
ことによって、正極および負極の厚さを、100、12
0、150、200、300、400、500、600
μmとしたこと以外は、電解液にフルオロベンゼンを3
wt%添加した実施例1における本発明による電池
(A)と同様にして、本発明による8種類の電池(J)
を製作した。巻回したエレメントが同一の電池ケースに
収納されるように、電極の厚さに応じて電極の長さを変
化させた。その結果、電極の厚さが厚くなるにつれて、
容量の多い高エネルギー密度の電池となった。また、電
解液にフルオロベンゼンを添加しないこと以外は、本発
明による電池(J)と同様にして、従来から公知である
比較用の電池(K)を製作した。Example 6 By changing the thickness of the active material layer, the thickness of the positive electrode and the negative electrode was reduced to 100, 12
0, 150, 200, 300, 400, 500, 600
except that fluorobenzene was added to the electrolyte.
Eight kinds of batteries (J) according to the present invention in the same manner as the battery (A) according to the present invention in Example 1 in which wt% was added.
Was made. The length of the electrode was changed according to the thickness of the electrode so that the wound element was housed in the same battery case. As a result, as the thickness of the electrode increases,
This resulted in a battery with a large capacity and a high energy density. A conventionally known comparative battery (K) was manufactured in the same manner as the battery (J) according to the present invention except that fluorobenzene was not added to the electrolytic solution.
【0086】これらの製作したすべての電池を、25℃
において、500mA定電流で4.1Vまで充電してか
ら4.1Vで2時間の定電圧充電をおこなった後に、2
5℃で100mAの低率放電によって3.3Vまで放電
した。さらに、25℃において、500mA定電流で
4.1Vまで充電してから4.1Vで2時間の定電圧充
電をおこなった後に、25℃で1,500mA定電流で
3.3Vまで放電して高率放電試験をおこなった。その
際に得られた100mA放電時の容量に対する1,50
0mA放電時の容量の比を表6に示す。[0086] All of these batteries were manufactured at 25 ° C.
, After charging to 4.1 V with a constant current of 500 mA, and then performing constant-voltage charging at 4.1 V for 2 hours,
The battery was discharged to 3.3 V by a low-rate discharge of 100 mA at 5 ° C. Further, at 25 ° C., the battery was charged to 4.1 V at a constant current of 500 mA, and then was charged at 4.1 V for 2 hours, and then discharged at 25 ° C. to 3.3 V at a constant current of 1,500 mA. Rate discharge test was performed. 1,50 with respect to the capacity at the time of 100 mA discharge obtained at that time
Table 6 shows the capacity ratio at the time of 0 mA discharge.
【0087】さらに、これらの電池を用いて、500m
A定電流で4.1Vまで充電してから4.1Vで2時間
の定電圧充電をおこなった後に、500mAの定電流に
よって2.75Vまで放電することを1サイクルとし
て、25℃で100サイクル充放電をおこなった。この
100サイクルの1サイクル目の容量に対する100サ
イクル目の容量の比を表6に示す。Further, by using these batteries, 500 m
After charging to 4.1 V with a constant current A and performing constant voltage charging at 4.1 V for 2 hours, discharging to 2.75 V with a constant current of 500 mA is defined as one cycle, and 100 cycles of charging at 25 ° C. Discharge occurred. Table 6 shows the ratio of the capacity at the 100th cycle to the capacity at the first cycle of the 100 cycles.
【0088】[0088]
【表6】 [Table 6]
【0089】表6から、ハロゲン結合ベンゼン化合物を
使用しない従来の電池においては、電極が厚くなるにつ
れて高率放電特性が劣ることがわかった。このような問
題点から、良好な高率放電特性を得るためには、電極の
厚さを120μm未満とする必要があった。一方、電極
が薄くなった場合には、活物質層厚さに対する、活物質
層厚さの誤差の比が大きくなる。したがって、電極の部
位による正・負極の容量比の誤差が大きくなるため、負
極上に金属リチウムが析出しやすくなる。金属リチウム
は充放電高率が低いので、電池の充放電サイクルによっ
て容量低下が生じやすいという問題点があった。From Table 6, it was found that in the conventional battery using no halogen-bonded benzene compound, the higher the discharge rate, the lower the high-rate discharge characteristics. From such a problem, in order to obtain good high-rate discharge characteristics, the thickness of the electrode needs to be less than 120 μm. On the other hand, when the electrode becomes thin, the ratio of the error of the active material layer thickness to the active material layer thickness increases. Therefore, the error in the capacity ratio between the positive electrode and the negative electrode depending on the location of the electrode becomes large, so that metallic lithium is easily deposited on the negative electrode. Since lithium metal has a low charge / discharge high rate, there is a problem that the capacity is easily reduced by the charge / discharge cycle of the battery.
【0090】したがって、従来は、充放電サイクル特性
に優れ、かつ高率放電特性が優れる電池を製作すること
は困難であった。表6から、ハロゲン結合ベンゼン化合
物を含む電解液を使用することと、電極の厚さを120
μm以上とすることを組み合わせることによって、充放
電サイクル特性に優れ、かつ高率での放電特性が優れる
電池を製作することが可能となることが理解される。な
お、表6から、電極の厚さが500μmを超える場合に
は、実用的な高率充放電特性が得られなかったことがわ
かった。Therefore, conventionally, it has been difficult to manufacture a battery having excellent charge-discharge cycle characteristics and high-rate discharge characteristics. From Table 6, it can be seen that the electrolyte containing the halogen-bonded benzene compound was used, and that the thickness of the electrode was 120
It is understood that a combination of the thicknesses of not less than μm makes it possible to manufacture a battery having excellent charge-discharge cycle characteristics and excellent discharge characteristics at a high rate. From Table 6, it was found that when the electrode thickness exceeded 500 μm, practical high-rate charge / discharge characteristics could not be obtained.
【0091】[実施例7]短絡防止膜の空孔率を、2
5、30、40、50、60、65、70%としたこと
以外は、電解液にフルオロベンゼンを3wt%添加した
実施例1における本発明による電池(A)と同様にし
て、本発明による8種類の電池(L)を製作した。ま
た、電解液にフルオロベンゼンを添加しないこと以外
は、本発明による電池(L)と同様にして、従来から公
知である比較用の電池(M)を製作した。これらの電池
はすべて10個ずつ製作した。[Example 7] The porosity of the short-circuit preventing film was set to 2
Except that 5, 30, 40, 50, 60, 65, and 70% were used, 3% by weight of fluorobenzene was added to the electrolytic solution in the same manner as in the battery (A) according to the present invention in Example 1 to obtain 8% of the present invention. Various types of batteries (L) were manufactured. A conventionally known comparative battery (M) was manufactured in the same manner as the battery (L) according to the present invention except that fluorobenzene was not added to the electrolytic solution. All of these batteries were manufactured in 10 units.
【0092】これらの製作したすべての電池を、25℃
において、500mA定電流で4.1Vまで充電してか
ら4.1Vで2時間の定電圧充電をおこなった後に、室
温で3日間放置してその間の電圧低下を調べることによ
って、内部短絡した電池の数を確認した。この結果を表
7に示す。この試験において内部短絡していなかった電
池を1個ずつ用いて、25℃で1,500mA定電流で
3.3Vまで放電して高率放電試験をおこなった。さら
に、25℃において、500mA定電流で4.1Vまで
充電してから4.1Vで2時間の定電圧充電をおこなっ
た後に、−20℃において500mA定電流で3.3V
まで放電して低温放電試験をおこなった。その際に得ら
れた放電容量を表7に示す。All of these batteries were manufactured at 25 ° C.
After charging to 4.1 V at a constant current of 500 mA and then performing constant-voltage charging at 4.1 V for 2 hours, the battery was left at room temperature for 3 days to check the voltage drop during that time. Checked the number. Table 7 shows the results. A high-rate discharge test was performed by using each of the batteries that had not been internally short-circuited in this test and discharging the battery to 3.3 V at a constant current of 1,500 mA at 25 ° C. Further, the battery was charged to 4.1 V at a constant current of 500 mA at 25 ° C., and then charged at a constant voltage of 4.1 V for 2 hours, and then 3.3 V at a constant current of 500 mA at −20 ° C.
And a low-temperature discharge test was performed. Table 7 shows the discharge capacities obtained at that time.
【0093】[0093]
【表7】 [Table 7]
【0094】表7から、ハロゲン結合ベンゼン化合物を
使用しない従来の電池においては、短絡防止膜の空孔率
が低くなるにつれて高率放電特性および低温での放電特
性が劣ることがわかった。このような問題点から、良好
な高率放電特性を得るためには、短絡防止膜の空孔率を
65%よりも高くする必要があった。From Table 7, it was found that in the conventional battery using no halogen-bonded benzene compound, as the porosity of the short-circuit preventing film became lower, the high-rate discharge characteristics and the discharge characteristics at low temperatures were inferior. From such a problem, in order to obtain good high-rate discharge characteristics, it is necessary to make the porosity of the short-circuit preventing film higher than 65%.
【0095】一方、短絡防止膜の空孔率が高くなった場
合には、膜の機械的強度が弱くなって内部短絡が生じや
すいという問題点があった。したがって、従来は、内部
短絡が生じにくく、かつ高率放電特性が優れる電池を製
作することは困難であった。On the other hand, when the porosity of the short-circuit preventing film is increased, there is a problem that the mechanical strength of the film is weakened and an internal short-circuit is likely to occur. Therefore, conventionally, it has been difficult to manufacture a battery in which an internal short circuit hardly occurs and which has excellent high-rate discharge characteristics.
【0096】表7から、ハロゲン結合ベンゼン化合物を
含む電解液を使用することと、短絡防止膜の空孔率を6
5%以下とすることを組み合わせることによって、内部
短絡が生じにくく、かつ高率での放電特性が優れる電池
を製作することが可能となることが理解される。なお、
表7から、短絡防止膜の空孔率が30%未満の場合に
は、実用的な高率充放電特性が得られなかったことがわ
かった。From Table 7, it can be seen that the use of the electrolytic solution containing the halogen-bonded benzene compound and the porosity of
It is understood that the combination of the content of 5% or less makes it possible to produce a battery which is less likely to cause an internal short circuit and has excellent discharge characteristics at a high rate. In addition,
From Table 7, it was found that when the porosity of the short-circuit preventing film was less than 30%, practical high-rate charge / discharge characteristics could not be obtained.
【0097】[実施例8]短絡防止膜の平均孔径を0.
005、0.01、0.1、1、3、5μmとしたこと
以外は、電解液にフルオロベンゼンを3wt%添加した
実施例1における本発明による電池(A)と同様にし
て、本発明による6種類の電池(N)を製作した。ま
た、電解液にフルオロベンゼンを添加しないこと以外
は、本発明による電池(N)と同様にして、従来から公
知である比較用の電池(O)を製作した。これらの電池
はすべて10個ずつ製作した。[Example 8] The average pore size of the short-circuit preventing film was set to 0.
005, 0.01, 0.1, 1, 3, 5 μm according to the present invention in the same manner as the battery (A) according to the present invention in Example 1 in which 3 wt% of fluorobenzene was added to the electrolytic solution. Six types of batteries (N) were manufactured. In addition, a conventionally known comparative battery (O) was manufactured in the same manner as the battery (N) according to the present invention except that no fluorobenzene was added to the electrolytic solution. All of these batteries were manufactured in 10 units.
【0098】これらの製作したすべての電池を、25℃
において、500mA定電流で4.1Vまで充電してか
ら4.1Vで2時間の定電圧充電をおこなった後に、室
温で3日間放置してその間の電圧低下を調べることによ
って、内部短絡した電池の数を確認した。この結果を表
8に示す。この試験において内部短絡していなかった電
池を1個ずつ用いて、25℃で1,500mA定電流で
3.3Vまで放電して高率放電試験をおこなった。さら
に、25℃において、500mA定電流で4.1Vまで
充電してから4.1Vで2時間の定電圧充電をおこなっ
た後に、−20℃において500mA定電流で3.3V
まで放電して低温放電試験をおこなった。その際に得ら
れた放電容量を表8に示す。[0098] All of these batteries were manufactured at 25 ° C.
After charging to 4.1 V at a constant current of 500 mA and then performing constant-voltage charging at 4.1 V for 2 hours, the battery was left at room temperature for 3 days to check the voltage drop during that time. Checked the number. Table 8 shows the results. A high-rate discharge test was performed by using each of the batteries that had not been internally short-circuited in this test and discharging the battery to 3.3 V at a constant current of 1,500 mA at 25 ° C. Further, the battery was charged to 4.1 V at a constant current of 500 mA at 25 ° C., and then charged at a constant voltage of 4.1 V for 2 hours, and then 3.3 V at a constant current of 500 mA at −20 ° C.
And a low-temperature discharge test was performed. Table 8 shows the discharge capacities obtained at that time.
【0099】[0099]
【表8】 [Table 8]
【0100】表8から、ハロゲン結合ベンゼン化合物を
使用しない従来の電池においては、短絡防止膜の平均孔
径が小さくなるにつれて高率放電特性および低温での放
電特性が劣ることがわかった。このような問題点から、
良好な高率放電特性を得るためには、短絡防止膜の平均
孔径を3μmよりも大きくする必要があった。一方、短
絡防止膜の平均孔径が大きくなった場合には、脱落した
活物質粒子が孔中に入りやすくなり、内部短絡が生じや
すいという問題点があった。したがって、従来は、内部
短絡が生じにくく、かつ高率放電特性が優れる電池を製
作することは困難であった。From Table 8, it was found that in the conventional battery not using the halogen-bonded benzene compound, as the average pore diameter of the short-circuit preventing film became smaller, the high-rate discharge characteristics and the low-temperature discharge characteristics were inferior. Because of these problems,
In order to obtain good high-rate discharge characteristics, it was necessary to make the average pore diameter of the short circuit prevention film larger than 3 μm. On the other hand, when the average pore diameter of the short-circuit prevention film is large, there is a problem that the dropped active material particles easily enter the pores, and an internal short circuit is easily generated. Therefore, conventionally, it has been difficult to manufacture a battery in which an internal short circuit hardly occurs and which has excellent high-rate discharge characteristics.
【0101】表8から、ハロゲン結合ベンゼン化合物を
含む電解液を使用することと、短絡防止膜の平均孔径を
3μm以下とすることを組み合わせることによって、内
部短絡が生じにくく、かつ高率での放電特性が優れる電
池を製作することが可能となることが理解される。な
お、表8から、短絡防止膜の平均孔径が0.01μm未
満の場合には、実用的な高率充放電特性が得られなかっ
たことがわかった。From Table 8, it can be seen that the combination of the use of an electrolyte containing a halogen-bonded benzene compound and the reduction of the average pore diameter of the short-circuit prevention film to 3 μm or less makes it difficult for internal short-circuits to occur and to discharge at a high rate. It is understood that a battery having excellent characteristics can be manufactured. From Table 8, it was found that when the average pore diameter of the short-circuit prevention film was less than 0.01 μm, practical high-rate charge / discharge characteristics could not be obtained.
【0102】[実施例9]一次粒子の平均粒子径を0.
2〜0.4、0.5〜0.8、1〜4、5〜8、10〜
15、20〜30、35〜50μmとした正極活物質を
使用したこと以外は、電解液にフルオロベンゼンを3w
t%添加した実施例1における本発明による電池(A)
と同様にして、本発明による7種類の電池(P)を製作
した。また、電解液にフルオロベンゼンを添加しないこ
と以外は、本発明による電池(P)と同様にして、従来
から公知である比較用の電池(Q)を製作した。Example 9 The average particle size of the primary particles was 0.1%.
2-0.4, 0.5-0.8, 1-4, 5-8, 10
Except that a positive electrode active material having a size of 15, 20 to 30, 35 to 50 μm was used, fluorobenzene was added to the electrolyte solution in 3w.
Battery (A) according to the invention in Example 1 with addition of t%
In the same manner as in the above, seven types of batteries (P) according to the present invention were produced. A conventionally known comparative battery (Q) was manufactured in the same manner as the battery (P) according to the present invention except that fluorobenzene was not added to the electrolytic solution.
【0103】これらの製作したすべての電池を、25℃
において、500mA定電流で4.1Vまで充電してか
ら4.1Vで2時間の定電圧充電をおこなった後に、2
5℃で1,500mA定電流で3.3Vまで放電して高
率放電試験をおこなった。さらに、25℃において、5
00mA定電流で4.1Vまで充電してから4.1Vで
2時間の定電圧充電をおこなった後に、−20℃におい
て500mA定電流で3.3Vまで放電して低温放電試
験をおこなった。その際に得られた放電容量を表9に示
す。また、本発明による電池(P)および比較用の電池
(Q)を用いて、25℃において、500mA定電流で
4.1Vまで充電し、さらに4.1Vで2時間の定電圧
充電をおこなった後に、85℃で4時間加熱した際の、
加熱による電池厚さの増加量を表9に示す。[0103] All of these batteries were manufactured at 25 ° C.
, After charging to 4.1 V with a constant current of 500 mA, and then performing constant-voltage charging at 4.1 V for 2 hours,
A high-rate discharge test was performed by discharging to 3.3 V at a constant current of 1,500 mA at 5 ° C. Furthermore, at 25 ° C., 5
After charging to 4.1 V at a constant current of 00 mA and then performing constant-voltage charging at 4.1 V for 2 hours, the battery was discharged at -20 ° C. to a constant current of 500 mA to 3.3 V to perform a low-temperature discharge test. Table 9 shows the discharge capacities obtained at that time. Further, the battery (P) according to the present invention and the battery (Q) for comparison were charged at 25 ° C. at a constant current of 500 mA to 4.1 V, and further charged at 4.1 V for 2 hours at a constant voltage. Later, when heated at 85 ° C. for 4 hours,
Table 9 shows the increase in battery thickness due to heating.
【0104】[0104]
【表9】 [Table 9]
【0105】表9から、ハロゲン結合ベンゼン化合物を
使用しない従来の電池においては、正極活物質の一次粒
子の粒子径を大きくすると高率放電特性および低温放電
特性が劣ることがわかった。このような問題点から、良
好な高率放電特性および低温での放電特性を得るために
は、正極活物質の一次粒子の粒径を0.5μm未満とす
る必要があった。From Table 9, it was found that in the conventional battery not using the halogen-bonded benzene compound, the high-rate discharge characteristics and the low-temperature discharge characteristics were inferior when the particle diameter of the primary particles of the positive electrode active material was increased. From these problems, in order to obtain good high-rate discharge characteristics and low-temperature discharge characteristics, it is necessary to make the particle diameter of primary particles of the positive electrode active material less than 0.5 μm.
【0106】一方、高温放置時の膨れにおいては、表9
から理解されるように、正極活物質の一次粒子の粒径が
小さくなると膨れやすくなっている。したがって、従来
は、充電状態での高温放置時に膨れにくく、かつ高率ま
たは低温での放電特性が優れる電池を製作することは困
難であった。On the other hand, in the case of blistering when left at high temperature, Table 9
As will be understood from the above, the primary particles of the positive electrode active material tend to swell as the particle diameter becomes smaller. Therefore, conventionally, it has been difficult to manufacture a battery that is unlikely to swell when left at a high temperature in a charged state and has excellent discharge characteristics at a high rate or at a low temperature.
【0107】表9から、ハロゲン結合ベンゼン化合物を
含む電解液を使用することと、正極活物質の一次粒子の
粒径を0.5μm以上とすることを組み合わせることに
よって、充電状態での高温放置時に膨れにくく、かつ高
率および低温での放電特性が優れる電池を製作すること
が可能となることが理解される。From Table 9, it can be seen that the combination of the use of the electrolyte containing the halogen-bonded benzene compound and the setting of the primary particles of the positive electrode active material having a particle diameter of 0.5 μm or more allows the high-temperature storage in a charged state. It is understood that it is possible to manufacture a battery that is less likely to swell and has excellent high-rate and low-temperature discharge characteristics.
【0108】なお、表9から、正極活物質の一次粒子の
粒径が30μmよりも大きい場合には、実用的な高率充
放電特性が得られなかったことがわかった。From Table 9, it was found that when the particle size of the primary particles of the positive electrode active material was larger than 30 μm, practical high-rate charge / discharge characteristics could not be obtained.
【0109】[実施例10]一次粒子の平均粒子径を1
〜2、3〜10、15〜25、30〜50、60〜70
μmとした負極活物質を使用したこと以外は、電解液に
フルオロベンゼンを3wt%添加した実施例1における
本発明による電池(A)と同様にして、本発明による5
種類の電池(R)を製作した。負極活物質が大きい場合
には、プレスの際に活物質がつぶれて変形した。また、
電解液にフルオロベンゼンを添加しないこと以外は、本
発明による電池(R)と同様にして、従来から公知であ
る比較用の電池(S)を製作した。Example 10 The average particle size of primary particles was 1
22, 3 to 10, 15 to 25, 30 to 50, 60 to 70
Except that a negative active material having a thickness of μm was used, the same method as in the battery (A) according to the present invention in Example 1 except that 3 wt% of fluorobenzene was added to the electrolytic solution was used.
Types of batteries (R) were produced. When the negative electrode active material was large, the active material was crushed and deformed during pressing. Also,
A conventionally known comparative battery (S) was manufactured in the same manner as the battery (R) according to the present invention, except that no fluorobenzene was added to the electrolytic solution.
【0110】これらの製作したすべての電池を、25℃
において、500mA定電流で4.1Vまで充電してか
ら4.1Vで2時間の定電圧充電をおこなった後に、2
5℃で1,500mA定電流で3.3Vまで放電して高
率放電試験をおこなった。さらに、25℃において、5
00mA定電流で4.1Vまで充電してから4.1Vで
2時間の定電圧充電をおこなった後に、−20℃におい
て500mA定電流で3.3Vまで放電して低温放電試
験をおこなった。その際に得られた放電容量を表10に
示す。また、本発明による電池(R)および比較用の電
池(S)を用いて、25℃において、500mA定電流
で4.1Vまで充電し、さらに4.1Vで2時間の定電
圧充電をおこなった後に、85℃で4時間加熱した際
の、加熱による電池厚さの増加量を表10に示す。[0110] All of these batteries were manufactured at 25 ° C.
, After charging to 4.1 V with a constant current of 500 mA, and then performing constant-voltage charging at 4.1 V for 2 hours,
A high-rate discharge test was performed by discharging to 3.3 V at a constant current of 1,500 mA at 5 ° C. Furthermore, at 25 ° C., 5
After charging to 4.1 V at a constant current of 00 mA and then performing constant-voltage charging at 4.1 V for 2 hours, the battery was discharged at -20 ° C. to a constant current of 500 mA to 3.3 V to perform a low-temperature discharge test. Table 10 shows the discharge capacities obtained at that time. Using the battery (R) according to the present invention and the battery (S) for comparison, the battery was charged at 25 ° C. at a constant current of 500 mA to 4.1 V, and further charged at 4.1 V for 2 hours at a constant voltage. Table 10 shows the amount of increase in battery thickness due to heating when heated at 85 ° C. for 4 hours.
【0111】[0111]
【表10】 [Table 10]
【0112】表10から、ハロゲン結合ベンゼン化合物
を使用しない従来の電池においては、負極活物質の一次
粒子の粒子径を大きくすると高率放電特性および低温放
電特性が劣ることがわかった。このような問題点から、
良好な高率放電特性および低温での放電特性を得るため
には、負極活物質の一次粒子の粒径を3μm未満とする
必要があった。From Table 10, it was found that in the conventional battery not using the halogen-bonded benzene compound, when the primary particles of the negative electrode active material had a large particle diameter, the high-rate discharge characteristics and the low-temperature discharge characteristics were inferior. Because of these problems,
In order to obtain good high-rate discharge characteristics and low-temperature discharge characteristics, the primary particles of the negative electrode active material had to have a particle diameter of less than 3 μm.
【0113】一方、高温放置時の膨れにおいては、表1
0から理解されるように、負極活物質の一次粒子の粒径
が小さくなると膨れやすくなっている。したがって、従
来は、充電状態での高温放置時に膨れにくく、かつ高率
または低温での放電特性が優れる電池を製作することは
困難であった。On the other hand, in the case of blistering when left at high temperature, Table 1
As can be understood from FIG. 0, the primary particles of the negative electrode active material tend to swell as the particle size decreases. Therefore, conventionally, it has been difficult to manufacture a battery that is unlikely to swell when left at a high temperature in a charged state and has excellent discharge characteristics at a high rate or at a low temperature.
【0114】表10から、ハロゲン結合ベンゼン化合物
を含む電解液を使用することと、負極活物質の一次粒子
の粒径を3μm以上とすることを組み合わせることによ
って、充電状態での高温放置時に膨れにくく、かつ高率
および低温での放電特性が優れる電池を製作することが
可能となることが理解される。From Table 10, it can be seen that the combination of the use of the electrolytic solution containing the halogen-bonded benzene compound and the setting of the primary particles of the negative electrode active material having a particle diameter of 3 μm or more makes it hard to swell when left at high temperature in a charged state. It can be understood that a battery having excellent discharge characteristics at high rate and low temperature can be manufactured.
【0115】なお、表10から、負極活物質の一次粒子
の粒径が50μmよりも大きい場合には、実用的な高率
充放電特性が得られなかったことがわかった。From Table 10, it was found that when the particle size of the primary particles of the negative electrode active material was larger than 50 μm, practical high-rate charge / discharge characteristics could not be obtained.
【0116】[実施例11]フルオロベンゼンを含まな
い電解液を注液して、200mAhの電気量を充電した
後に、電解液中におけるフルオロベンゼンの濃度が3w
t%となるようにフルオロベンゼンを加えたこと以外
は、電解液にフルオロベンゼンを3wt%添加した実施
例1における本発明による電池(A)と同様にして、本
発明による電池(T)を製作した。[Example 11] An electrolyte solution containing no fluorobenzene was injected and charged with a quantity of electricity of 200 mAh, and then the concentration of fluorobenzene in the electrolyte solution was reduced to 3 watts.
A battery (T) according to the present invention was manufactured in the same manner as the battery (A) according to the present invention in Example 1 in which 3 wt% of fluorobenzene was added to the electrolytic solution, except that fluorobenzene was added so as to be t%. did.
【0117】この電池を、25℃において、500mA
定電流で4.1Vまで充電してから4.1Vで2時間の
定電圧充電をおこなった後に、25℃で1,500mA
定電流で3.3Vまで放電して高率放電試験をおこなっ
た。さらに、25℃において、500mA定電流で4.
1Vまで充電してから4.1Vで2時間の定電圧充電を
おこなった後に、−20℃において500mA定電流で
3.3Vまで放電して低温放電試験をおこなった。その
際に得られた放電容量を本発明による電池(A)の結果
と併せて表11に示す。This battery was charged to 500 mA at 25 ° C.
After charging to 4.1 V with a constant current, and then performing constant voltage charging at 4.1 V for 2 hours, 1,500 mA at 25 ° C.
A high-rate discharge test was performed by discharging to 3.3 V at a constant current. Further, at 25 ° C. and 500 mA constant current, 4.
After charging to 1 V and then performing constant-voltage charging at 4.1 V for 2 hours, the battery was discharged at −20 ° C. at a constant current of 500 mA to 3.3 V to perform a low-temperature discharge test. The discharge capacity obtained at that time is shown in Table 11 together with the result of the battery (A) according to the present invention.
【0118】[0118]
【表11】 [Table 11]
【0119】表11から、充電工程の後に、ハロゲン結
合ベンゼン化合物を電池内に添加した場合には、充電工
程をおこなう前にハロゲン結合ベンゼン化合物を添加し
た場合と比較して、さらに優れた高率放電特性および低
温での放電特性を示していることがわかった。From Table 11, it can be seen that when the halogen-bonded benzene compound was added to the battery after the charging step, an even higher rate was obtained as compared with the case where the halogen-bonded benzene compound was added before the charging step. It was found that the battery exhibited discharge characteristics and discharge characteristics at a low temperature.
【0120】炭素を備えた負極を備えた非水電解質電池
においては、初回の充電時に炭素表面に皮膜が形成され
ることによって、それ以後の電解液の負極での分解が抑
制される。しかし、ハロゲン結合ベンゼン化合物を電解
液に添加した場合には、炭素負極表面に形成される皮膜
のイオン透過性がわずかに低下する。In a non-aqueous electrolyte battery provided with a negative electrode provided with carbon, a film is formed on the carbon surface at the time of the first charge, so that subsequent decomposition of the electrolytic solution at the negative electrode is suppressed. However, when a halogen-bonded benzene compound is added to the electrolytic solution, the ion permeability of the film formed on the surface of the carbon negative electrode slightly decreases.
【0121】したがって、ハロゲン結合ベンゼン化合物
を含まない電解液を用いて充電工程をおこなうことによ
って、イオン透過性の高い皮膜を炭素表面に形成した後
に、ハロゲン結合ベンゼン化合物を電池内に添加するこ
とによって、皮膜のイオン透過性の低下を抑制すること
ができる。結果として、この製造法によって、高率充放
電特性および低温での充放電特性に特に優れた非水電解
質を製造することができる。Therefore, by performing a charging process using an electrolyte solution containing no halogen-bonded benzene compound, a film having high ion permeability is formed on the carbon surface, and then the halogen-bonded benzene compound is added into the battery. In addition, it is possible to suppress a decrease in ion permeability of the film. As a result, a non-aqueous electrolyte having particularly excellent high-rate charge / discharge characteristics and low-temperature charge / discharge characteristics can be manufactured by this manufacturing method.
【0122】[0122]
【発明の効果】本発明においては、電解液に、ハロゲン
結合ベンゼン化合物を添加することによって、高率充放
電特性および低温充放電特性に優れる非水電解質電池と
することができる。According to the present invention, by adding a halogen-bonded benzene compound to the electrolytic solution, a non-aqueous electrolyte battery having excellent high-rate charge / discharge characteristics and low-temperature charge / discharge characteristics can be obtained.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H024 AA01 AA02 AA03 AA06 AA07 AA09 AA12 BB10 FF14 FF18 FF31 FF32 HH08 HH13 5H029 AJ02 AJ05 AK02 AK03 AK05 AK16 AK18 AL01 AL02 AL03 AL06 AL07 AL12 AL18 AM02 AM03 AM04 AM05 AM07 BJ02 BJ12 BJ14 CJ16 DJ08 EJ11 HJ05 HJ10 ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) CJ16 DJ08 EJ11 HJ05 HJ10
Claims (7)
ンと、ハロゲン以外の置換基が結合し、前記ハロゲン以
外の置換基のベンゼン環と結合する原子が炭素、窒素、
硫黄からなる群から選ばれた1種である化合物を電解液
中に含むことを特徴とする非水電解質電池。At least one halogen and a substituent other than a halogen are bonded to a benzene ring, and an atom bonded to the benzene ring of the substituent other than the halogen is carbon, nitrogen,
A non-aqueous electrolyte battery comprising a compound selected from the group consisting of sulfur in the electrolytic solution.
アン基、ニトロ基、アミノ基、スルフォン基、カルボニ
ル基、カルボキシル基、アルデヒド基からなる群から選
ばれた1種であることを特徴とする請求項1記載の非水
電解質電池。2. The non-halogen substituent is one selected from the group consisting of an alkyl group, a cyan group, a nitro group, an amino group, a sulfone group, a carbonyl group, a carboxyl group, and an aldehyde group. The non-aqueous electrolyte battery according to claim 1.
る請求項1または2記載の非水電解質電池。3. The non-aqueous electrolyte battery according to claim 1, wherein the halogen is fluorine.
特徴とする請求項1または3記載の非水電解質電池。4. The non-aqueous electrolyte battery according to claim 1, wherein the compound is fluorobenzene.
t%以上15wt%以下であることを特徴とする、請求
項1、2、3または4記載の非水電解質電池。5. A compound having a concentration of 0.01 w in an electrolyte.
5. The nonaqueous electrolyte battery according to claim 1, wherein the content is at least t% and at most 15 wt%.
μm以下である正極活物質または一次粒子の粒子径が3
μm以上50μm以下である負極活物質を備えることを
特徴とする、請求項1、2、3、4または5記載の非水
電解質電池。6. The particle diameter of primary particles is 0.5 μm or more and 30 or more.
The positive electrode active material or the primary particles having a particle size of 3 μm or less
The nonaqueous electrolyte battery according to claim 1, further comprising a negative electrode active material having a size of not less than 50 μm and not more than 50 μm.
方法であって、充電工程の後に、ベンゼン環に少なくと
も1つのハロゲンが結合した化合物を電池内に添加する
ことを特徴とする、非水電解質電池の製造方法。7. A method for producing a non-aqueous electrolyte battery provided with carbon on a negative electrode, wherein after the charging step, a compound having at least one halogen bonded to a benzene ring is added to the battery. A method for manufacturing a non-aqueous electrolyte battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37549599A JP4710099B2 (en) | 1999-12-28 | 1999-12-28 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37549599A JP4710099B2 (en) | 1999-12-28 | 1999-12-28 | Nonaqueous electrolyte secondary battery |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001185213A true JP2001185213A (en) | 2001-07-06 |
JP2001185213A5 JP2001185213A5 (en) | 2007-01-25 |
JP4710099B2 JP4710099B2 (en) | 2011-06-29 |
Family
ID=18505611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP37549599A Expired - Fee Related JP4710099B2 (en) | 1999-12-28 | 1999-12-28 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4710099B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003054998A1 (en) * | 2001-12-21 | 2003-07-03 | Hitachi Maxell, Ltd. | Non-aqueous secondary battery and portable apparatus using this |
JP2004022208A (en) * | 2002-06-12 | 2004-01-22 | Nissan Motor Co Ltd | Battery pack |
JP2004139963A (en) * | 2002-08-21 | 2004-05-13 | Mitsubishi Chemicals Corp | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte |
JP2005005154A (en) * | 2003-06-12 | 2005-01-06 | Mitsubishi Chemicals Corp | Non-aqueous electrolyte secondary battery electrolyte and non-aqueous electrolyte secondary battery |
WO2005008700A1 (en) * | 2003-07-17 | 2005-01-27 | Asahi Glass Company, Limited | Electric double layer capacitor |
EP1526600A1 (en) * | 2003-10-24 | 2005-04-27 | Samsung SDI Co., Ltd. | Organic electrolytic solution and lithium battery using the same |
JP2005243490A (en) * | 2004-02-27 | 2005-09-08 | Mitsui Chemicals Inc | Nonaqueous electrolyte and nonaqueous electrolyte battery |
JP2006236981A (en) * | 2005-01-26 | 2006-09-07 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
US7223502B2 (en) | 2002-03-08 | 2007-05-29 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte and lithium secondary battery employing the same |
JP2008147117A (en) * | 2006-12-13 | 2008-06-26 | Sony Corp | Electrolyte and battery |
JP2009277395A (en) * | 2008-05-13 | 2009-11-26 | Hitachi Maxell Ltd | Nonaqueous secondary battery, and nonaqueous secondary battery system |
US7943257B2 (en) | 2001-12-21 | 2011-05-17 | Samsung Sdi Co., Ltd. | Electrolyte solvent and rechargeable lithium battery |
US7998615B2 (en) | 2004-01-15 | 2011-08-16 | Panasonic Corporation | Nonaqueous electrolyte for electrochemical devices |
KR101333880B1 (en) | 2010-12-07 | 2013-11-27 | 가부시키가이샤 히타치세이사쿠쇼 | Lithium secondary battery |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06168739A (en) * | 1992-11-30 | 1994-06-14 | Canon Inc | Secondary battery |
JPH09106833A (en) * | 1995-10-09 | 1997-04-22 | Fujitsu Ltd | Electrolyte for lithium secondary battery and lithium secondary battery |
JPH09120816A (en) * | 1995-10-26 | 1997-05-06 | Sony Corp | Aluminum nonaquoeus electrolyte secondary battery |
JPH1055822A (en) * | 1996-08-08 | 1998-02-24 | Hitachi Ltd | Lithium secondary battery and power supply |
JPH10106579A (en) * | 1996-09-25 | 1998-04-24 | Sanyo Electric Co Ltd | Lithium secondary battery |
JPH10112335A (en) * | 1996-10-03 | 1998-04-28 | Hitachi Maxell Ltd | Organic electrolyte secondary battery |
JPH11329490A (en) * | 1998-05-18 | 1999-11-30 | Ube Ind Ltd | Electrolyte for lithium secondary battery and lithium secondary battery using the same |
JP2000156243A (en) * | 1998-11-18 | 2000-06-06 | Sony Corp | Nonaqueous electrolyte battery |
JP2000188128A (en) * | 1998-12-24 | 2000-07-04 | Mitsubishi Chemicals Corp | Non-aqueous electrolyte secondary battery |
JP2000223150A (en) * | 1999-02-01 | 2000-08-11 | Mitsui Chemicals Inc | Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery |
-
1999
- 1999-12-28 JP JP37549599A patent/JP4710099B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06168739A (en) * | 1992-11-30 | 1994-06-14 | Canon Inc | Secondary battery |
JPH09106833A (en) * | 1995-10-09 | 1997-04-22 | Fujitsu Ltd | Electrolyte for lithium secondary battery and lithium secondary battery |
JPH09120816A (en) * | 1995-10-26 | 1997-05-06 | Sony Corp | Aluminum nonaquoeus electrolyte secondary battery |
JPH1055822A (en) * | 1996-08-08 | 1998-02-24 | Hitachi Ltd | Lithium secondary battery and power supply |
JPH10106579A (en) * | 1996-09-25 | 1998-04-24 | Sanyo Electric Co Ltd | Lithium secondary battery |
JPH10112335A (en) * | 1996-10-03 | 1998-04-28 | Hitachi Maxell Ltd | Organic electrolyte secondary battery |
JPH11329490A (en) * | 1998-05-18 | 1999-11-30 | Ube Ind Ltd | Electrolyte for lithium secondary battery and lithium secondary battery using the same |
JP2000156243A (en) * | 1998-11-18 | 2000-06-06 | Sony Corp | Nonaqueous electrolyte battery |
JP2000188128A (en) * | 1998-12-24 | 2000-07-04 | Mitsubishi Chemicals Corp | Non-aqueous electrolyte secondary battery |
JP2000223150A (en) * | 1999-02-01 | 2000-08-11 | Mitsui Chemicals Inc | Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7943257B2 (en) | 2001-12-21 | 2011-05-17 | Samsung Sdi Co., Ltd. | Electrolyte solvent and rechargeable lithium battery |
US7285361B2 (en) | 2001-12-21 | 2007-10-23 | Hitachi Maxell, Ltd. | Non-aqueous secondary battery and portable equipment using the same |
US7282303B2 (en) | 2001-12-21 | 2007-10-16 | Hitachi Maxell, Ltd. | Non-aqueous secondary battery and portable equipment using the same |
WO2003054998A1 (en) * | 2001-12-21 | 2003-07-03 | Hitachi Maxell, Ltd. | Non-aqueous secondary battery and portable apparatus using this |
US7981553B2 (en) | 2002-03-08 | 2011-07-19 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte and lithium secondary battery employing the same |
US9065146B2 (en) | 2002-03-08 | 2015-06-23 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte and lithium secondary battery employing the same |
US8551662B2 (en) | 2002-03-08 | 2013-10-08 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte and lithium secondary battery employing the same |
US8029935B2 (en) | 2002-03-08 | 2011-10-04 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte and lithium secondary battery employing the same |
US7223502B2 (en) | 2002-03-08 | 2007-05-29 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte and lithium secondary battery employing the same |
US7575833B2 (en) | 2002-03-08 | 2009-08-18 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte and lithium secondary battery employing the same |
JP2004022208A (en) * | 2002-06-12 | 2004-01-22 | Nissan Motor Co Ltd | Battery pack |
JP2004139963A (en) * | 2002-08-21 | 2004-05-13 | Mitsubishi Chemicals Corp | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte |
JP2005005154A (en) * | 2003-06-12 | 2005-01-06 | Mitsubishi Chemicals Corp | Non-aqueous electrolyte secondary battery electrolyte and non-aqueous electrolyte secondary battery |
US7173807B2 (en) | 2003-07-17 | 2007-02-06 | Asahi Glass Company, Limited | Electric double layer capacitor |
WO2005008700A1 (en) * | 2003-07-17 | 2005-01-27 | Asahi Glass Company, Limited | Electric double layer capacitor |
EP1526600A1 (en) * | 2003-10-24 | 2005-04-27 | Samsung SDI Co., Ltd. | Organic electrolytic solution and lithium battery using the same |
US7998615B2 (en) | 2004-01-15 | 2011-08-16 | Panasonic Corporation | Nonaqueous electrolyte for electrochemical devices |
JP2005243490A (en) * | 2004-02-27 | 2005-09-08 | Mitsui Chemicals Inc | Nonaqueous electrolyte and nonaqueous electrolyte battery |
JP2006236981A (en) * | 2005-01-26 | 2006-09-07 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JP2008147117A (en) * | 2006-12-13 | 2008-06-26 | Sony Corp | Electrolyte and battery |
JP2009277395A (en) * | 2008-05-13 | 2009-11-26 | Hitachi Maxell Ltd | Nonaqueous secondary battery, and nonaqueous secondary battery system |
KR101333880B1 (en) | 2010-12-07 | 2013-11-27 | 가부시키가이샤 히타치세이사쿠쇼 | Lithium secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP4710099B2 (en) | 2011-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1284261C (en) | Nonaqueous electrolyte secondary battery and its manufacture | |
JP3797197B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5420614B2 (en) | 4.35V or higher lithium secondary battery | |
JP5195499B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4961654B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4454950B2 (en) | Nonaqueous electrolyte secondary battery | |
US20090017374A1 (en) | Battery | |
JP5109359B2 (en) | Nonaqueous electrolyte secondary battery | |
US10707539B2 (en) | Battery | |
US6984471B2 (en) | Nonaqueous electrolyte and nonaqueous electrolyte battery | |
JP4710099B2 (en) | Nonaqueous electrolyte secondary battery | |
US20010016281A1 (en) | Secondary battery | |
JP2006344505A (en) | Electrolyte solution and battery | |
JP2001185213A5 (en) | ||
JP2005347222A (en) | Electrolyte liquid and battery | |
JP2001273880A (en) | Nonaqueous electrolyte secondary battery | |
JP2002203551A (en) | Non-aqueous electrolyte battery | |
JP2001167752A (en) | Non-aqueous electrolyte secondary battery | |
JP2000285902A5 (en) | ||
JP2000277160A (en) | Nonaqueous electrolyte secondary battery | |
JP3402233B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4784133B2 (en) | Secondary battery and battery | |
JP4134556B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2000058065A (en) | Nonaqueous electrolyte secondary battery | |
JP2001202990A (en) | Nonaqueous electrolytic battery and charging method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061205 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100412 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110307 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4710099 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |