[go: up one dir, main page]

JP2001141312A - Water heater consisting of refrigerating cycle - Google Patents

Water heater consisting of refrigerating cycle

Info

Publication number
JP2001141312A
JP2001141312A JP32197999A JP32197999A JP2001141312A JP 2001141312 A JP2001141312 A JP 2001141312A JP 32197999 A JP32197999 A JP 32197999A JP 32197999 A JP32197999 A JP 32197999A JP 2001141312 A JP2001141312 A JP 2001141312A
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat exchanger
pipe
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32197999A
Other languages
Japanese (ja)
Inventor
Katsumi Kuwabara
克己 桑原
Junji Wakikawa
準治 脇川
Michiyuki Takahashi
道之 高橋
Akihiro Kobayashi
章浩 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Science Inc Japan
Original Assignee
Science Inc Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Science Inc Japan filed Critical Science Inc Japan
Priority to JP32197999A priority Critical patent/JP2001141312A/en
Priority to KR1020000026993A priority patent/KR100720165B1/en
Priority to US09/574,258 priority patent/US6405551B1/en
Publication of JP2001141312A publication Critical patent/JP2001141312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water heater consisting of a refrigerating cycle wherein a condensation pressure is lower than an allowable value and besides hot water of 70 deg.C or higher is generated. SOLUTION: A supply water pipe 21 and a supply hot water pipe 22 are connected to a heat-exchanger 10 for hot water supply of a refrigerating cycle and a pressure type temperature regulating valve 30 to control a supply water flow rate by sensing the pressure of the refrigerant of the refrigerating cycle is situated in the supply water pipe 21. A supply water flow rate of the pressure type temperature regulating valve 30 and the heat transfer area, the size, and the degree of supercooling of the heat-exchanger 10 for hot water supply are properly decided, and hot water having a condensation pressure of 2.15 MPa or less and a supply hot water temperature of 70 deg.C or higher is generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機、凝縮器、
蒸発器等からなる冷凍サイクルの前記凝縮器が給湯用熱
交換器に選定され、前記給湯用熱交換器には給水管と出
湯管とが接続されている、冷凍サイクルからなる給湯装
置に関するものである。
TECHNICAL FIELD The present invention relates to a compressor, a condenser,
The present invention relates to a water heater comprising a refrigeration cycle, wherein the condenser of a refrigeration cycle including an evaporator or the like is selected as a hot water supply heat exchanger, and a water supply pipe and a tapping pipe are connected to the hot water supply heat exchanger. is there.

【0002】[0002]

【従来の技術】ヒートポンプあるいは冷凍サイクルは、
文献名を挙げるまでもなく従来周知で、圧縮機、凝縮
器、膨張弁、蒸発器等から構成されている。したがっ
て、圧縮機を起動して冷媒を凝縮器、膨張弁、蒸発器等
の間を循環させると、冷媒が液体、気体、液体と状態変
化し、そのとき凝縮器で熱を外部へ放出し、蒸発器で外
部の熱を吸収するので、凝縮器を加熱源とし、蒸発器を
冷却源として冷暖房に利用することができる。このよう
な冷凍サイクルを応用した給湯装置も従来周知で、冷媒
を圧縮する圧縮機、圧縮機から送られる高温の冷媒によ
り温水を作る凝縮器すなわち給湯用熱交換器、冷媒が外
部から熱を受けて気体となる蒸発器等から構成されてい
る。
2. Description of the Related Art A heat pump or a refrigeration cycle is
It is well known in the art, not to mention the name of the document, and is composed of a compressor, a condenser, an expansion valve, an evaporator, and the like. Therefore, when the compressor is started and the refrigerant is circulated between the condenser, the expansion valve, the evaporator, and the like, the refrigerant changes state to liquid, gas, and liquid, and at that time, the condenser emits heat to the outside, Since the external heat is absorbed by the evaporator, the condenser can be used as a heating source and the evaporator can be used as a cooling source for cooling and heating. A water heater using such a refrigeration cycle is also well known in the art. A compressor for compressing a refrigerant, a condenser for producing hot water by a high-temperature refrigerant sent from the compressor, that is, a heat exchanger for hot water supply, and the refrigerant receives heat from the outside And a gas evaporator.

【0003】したがって、冷媒が給湯用熱交換器の方へ
流れるように切換弁を切り換えると、冷媒は給湯用熱交
換器において気体から液体に凝縮される。このとき、潜
熱を放出するので、給湯用熱交換器に例えば水道管から
冷水を供給すると、冷水は給湯用熱交換器において高温
の冷媒と熱交換され、加温されて出湯管から瞬間的に出
湯される。また、貯湯タンクの水を、貯湯タンクと給湯
用熱交換器との間を循環させて加温することもできる。
Therefore, when the switching valve is switched so that the refrigerant flows toward the hot water supply heat exchanger, the refrigerant is condensed from gas to liquid in the hot water supply heat exchanger. At this time, since latent heat is released, when cold water is supplied to the hot water supply heat exchanger from, for example, a water pipe, the cold water exchanges heat with a high-temperature refrigerant in the hot water supply heat exchanger, is heated, and is instantaneously discharged from the hot water supply pipe. Hot water is taken out. Also, the water in the hot water storage tank can be heated by circulating it between the hot water storage tank and the hot water supply heat exchanger.

【0004】[0004]

【発明が解決しようとする課題】上記のように、従来か
ら冷凍サイクルによって瞬間に温水を得ることも、また
循環加熱して温水を得ることも行われているが、次のよ
うな理由により充分には利用されていない。すなわち、
従来のヒートポンプにより得られる温水の湯温は、高く
て55°C程度で、出湯温度が低いからである。この出
湯温度は、ヒートポンプの凝縮圧力を例えば2.2MP
a以上に高くすることにより、ある程度上げることがで
きると予想されるが、凝縮圧力を高くすると、圧縮機は
過酷な運転を強いられ、現実には運転時における高圧と
低圧との圧力差が大きく、なお且つ多くの機械には高圧
運転防止を目的とした安全装置が取られており、その運
転圧力は例えば2.75MPa以下に制限されており、
出湯温度は55°C程度になっている。また、従来の瞬
時の温水を得ることのできるヒートポンプにおいても出
湯温度が60°C以上の温水を得ることは可能である
が、給湯用熱交換器に給水する水の温度は、0〜35°
C程度が限度となり、冷暖房等の熱源として利用した直
後の35〜55°C程度の温水を再昇温することができ
ず不効率である。以上の理由により、瞬間方式、循環方
式を問わず、空調、給湯をはじめ、24時間随意に入浴
できる浴湯の保温、床暖房の熱源、乾燥用の熱源等に利
用し難いという問題がある。
As described above, hot water has been conventionally obtained instantaneously by a refrigeration cycle, and hot water has been obtained by circulating heating. However, sufficient water has been obtained for the following reasons. Is not used. That is,
This is because the hot water temperature obtained by the conventional heat pump is as high as about 55 ° C. and the tapping temperature is low. The tapping temperature is determined by adjusting the condensing pressure of the heat pump to, for example, 2.2MPa.
It is expected that the pressure can be increased to some extent by increasing the pressure to a or more.However, when the condensing pressure is increased, the compressor is forced to operate severely, and the pressure difference between the high pressure and the low pressure during operation is actually large. In addition, many machines are provided with safety devices for the purpose of preventing high-pressure operation, and the operation pressure is limited to, for example, 2.75 MPa or less.
The tapping temperature is about 55 ° C. Further, with a conventional heat pump capable of obtaining instantaneous hot water, it is possible to obtain hot water having a tapping temperature of 60 ° C. or higher, but the temperature of water supplied to the hot water supply heat exchanger is 0 to 35 °.
C is the limit, and the temperature of hot water of about 35 to 55 ° C. immediately after being used as a heat source for cooling and heating cannot be raised again, which is inefficient. For the above reasons, regardless of the instantaneous method or the circulation method, there is a problem that it is difficult to use as a heat source for air-conditioning and hot water supply, a heat source for floor heating, a heat source for drying, etc.

【0005】以上のような理由により、冷凍サイクルの
熱効率の良さにも拘わらず、給湯装置には充分に利用さ
れていない。したがって、本発明は、上記したような従
来の欠点あるいは問題点を解決した給湯装置を提供する
ことを目的とし、具体的には凝縮圧力は低く、しかも出
湯温度の高い、冷凍サイクルからなる給湯装置を提供す
ることを目的としている。また、他の発明は、出湯温度
が高くて貯湯タンク中の比較的高温の湯を循環加熱もす
ることができ、さらに他の発明は、貯湯タンク中の湯を
循環加熱することができると共に、貯湯タンク中の湯を
浴湯の昇温、床暖房の熱源、乾燥用の熱源等に利用する
こともできる、冷凍サイクルからなる給湯装置を提供す
ることを目的としている。
[0005] For the reasons described above, despite the good thermal efficiency of the refrigeration cycle, it has not been fully utilized in hot water supply devices. Accordingly, an object of the present invention is to provide a hot water supply apparatus which solves the above-mentioned conventional drawbacks or problems. Specifically, a hot water supply apparatus comprising a refrigeration cycle having a low condensing pressure and a high tapping temperature. It is intended to provide. In addition, another invention is capable of circulating and heating relatively hot water in a hot water storage tank having a high tapping temperature, and another invention is capable of circulating and heating hot water in a hot water storage tank, It is an object of the present invention to provide a hot water supply device including a refrigeration cycle that can use hot water in a hot water storage tank as a heat source for bath water, a heat source for floor heating, a heat source for drying, and the like.

【0006】[0006]

【課題を解決するための手段】本発明は、冷凍サイクル
の凝縮器を給湯用熱交換器に選定し、この給湯用熱交換
器に接続されている給水管あるいは出湯管に流量調整弁
望ましくは圧力式温調弁を介装し、そして流量調整弁に
よる給水流量、給湯用熱交換器の伝熱面積、大きさ等を
適宜組み合わせて給湯用熱交換器の出湯温度を実験で調
べた結果、流量調整弁による給水流量、給湯用熱交換器
の伝熱面積、大きさ、過冷却度等を最適に組み合わせる
と、本発明の上記目的が達成されるという知見に基づい
て成されたもので、請求項1に記載の発明は、上記目的
を達成するために、圧縮機、凝縮器、蒸発器等からなる
冷凍サイクルの前記凝縮器が給湯用熱交換器に選定さ
れ、前記給湯用熱交換器には給水管と出湯管とが接続さ
れている給湯装置であって、前記給水管と出湯管のいず
れかには流量調整弁が介装され、前記流量調整弁による
給水流量、前記給湯用熱交換器の伝熱面積、大きさ、過
冷却度等を適宜決定し、それによって凝縮圧力が許容圧
力以下で出湯温度が60°C以上の温水が得られるよう
に構成されている。請求項2に記載の発明は、圧縮機、
凝縮器、蒸発器等からなる冷凍サイクルの前記凝縮器が
給湯用熱交換器に選定され、前記給湯用熱交換器には給
水管と出湯管とが接続されている給湯装置であって、前
記給水管と出湯管のいずれかには流量調整弁が介装さ
れ、前記流量調整弁による給水流量、前記給湯用熱交換
器の伝熱面積、大きさ、過冷却度等を適宜決定し、それ
によって凝縮圧力が許容圧力以下で前記給湯用熱交換器
に35°C以上の温水を供給でき、出湯温度が60°C
以上の温水が得られるように構成されている。請求項3
に記載の発明は、圧縮機、凝縮器、蒸発器等からなる冷
凍サイクルの前記凝縮器が給湯用熱交換器に選定され、
前記給湯用熱交換器に貯湯タンクが給水管と出湯管とに
より接続され、前記貯湯タンク内で検知される湯温が所
定温度以下に下がると、前記貯湯タンク中の湯が、前記
貯湯タンクと前記給湯用熱交換器との間を循環して加温
されるようになっている給湯装置であって、前記給水管
と出湯管のいずれかには流量調整弁が介装され、前記流
量調整弁による給水流量、前記給湯用熱交換器の伝熱面
積、大きさ、過冷却度等を適宜決定することにより、前
記貯湯タンク内の所定箇所の温度が所定温度に下がる
と、前記貯湯タンク中の湯が、前記貯湯タンクと前記給
湯用熱交換器との間を循環して凝縮圧力が許容圧力以下
で60°Cの温水が貯湯されるように構成されている。
請求項4に記載の発明は、請求項3に記載の貯湯タンク
に、浴湯用、暖房用、乾燥用等の熱負荷装置が接続され
て、そして請求項5に記載の発明は、請求項1〜4のい
ずれかの項に記載の流量調整弁は、冷凍サイクルの冷媒
の圧力を感知して、給水流量を制御する圧力式温調弁か
ら構成されている。
According to the present invention, a condenser of a refrigeration cycle is selected as a heat exchanger for hot water supply, and a water supply pipe or a tap water pipe connected to the heat exchanger for hot water supply preferably has a flow control valve. As a result of experimentally examining the tapping temperature of the hot water supply heat exchanger by appropriately combining the water supply flow rate by the flow rate control valve, the heat transfer area of the hot water supply heat exchanger, the size, etc. The water supply flow rate by the flow control valve, the heat transfer area of the hot water supply heat exchanger, the size, based on the knowledge that the above object of the present invention is achieved by optimally combining the degree of supercooling, According to the first aspect of the present invention, in order to achieve the above object, the condenser of a refrigeration cycle including a compressor, a condenser, an evaporator and the like is selected as a heat exchanger for hot water supply, and the heat exchanger for hot water supply is selected. Is a hot water supply device with a water supply pipe and a tap water pipe connected to Therefore, a flow rate control valve is interposed in any of the water supply pipe and the tapping pipe, and the flow rate of water supplied by the flow rate control valve, the heat transfer area, the size, the degree of supercooling, etc. of the heat exchanger for hot water supply are appropriately determined. The hot water having a condensing pressure equal to or lower than the allowable pressure and a tapping temperature of 60 ° C. or higher is obtained. The invention according to claim 2 is a compressor,
The condenser of the refrigeration cycle comprising a condenser, an evaporator and the like is selected as a hot water supply heat exchanger, and the hot water supply heat exchanger is connected to a water supply pipe and a tapping pipe. Either the water supply pipe or the tapping pipe is provided with a flow control valve, and the flow rate of the water supplied by the flow control valve, the heat transfer area of the heat exchanger for hot water supply, the size, the degree of supercooling, and the like are appropriately determined. The hot water of 35 ° C. or more can be supplied to the hot water supply heat exchanger when the condensing pressure is equal to or lower than the allowable pressure, and the outlet temperature is 60 ° C.
It is configured so that the above warm water can be obtained. Claim 3
In the invention described in the above, the condenser of the refrigeration cycle including a compressor, a condenser, an evaporator and the like is selected as a heat exchanger for hot water supply,
A hot water storage tank is connected to the hot water supply heat exchanger by a water supply pipe and a hot water supply pipe, and when the hot water temperature detected in the hot water storage tank falls below a predetermined temperature, the hot water in the hot water storage tank is connected to the hot water storage tank. A hot water supply apparatus configured to circulate heat between the hot water supply heat exchanger and the hot water supply apparatus, wherein one of the water supply pipe and the hot water supply pipe is provided with a flow control valve, By appropriately determining the flow rate of the water supplied by the valve, the heat transfer area of the heat exchanger for hot water supply, the size, the degree of supercooling, etc., when the temperature of a predetermined location in the hot water storage tank drops to a predetermined temperature, The hot water is circulated between the hot water storage tank and the hot water supply heat exchanger, and hot water of 60 ° C. is stored at a condensing pressure equal to or lower than an allowable pressure.
According to a fourth aspect of the present invention, a heat load device for bathing, heating, drying, or the like is connected to the hot water storage tank of the third aspect. The flow control valve according to any one of the items 1 to 4, is configured by a pressure-type temperature control valve that senses the pressure of the refrigerant in the refrigeration cycle and controls the supply flow rate.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は、本発明の第1の実施の形態を示す模式図
で、その(イ)は全体の正面図、その(ロ)は給湯用熱
交換器の斜視図であるが、図1の(イ)に示されている
ように、第1の実施の形態に係わる冷凍サイクルからな
る給湯装置は、冷凍サイクル部1と、給湯部20とから
なっている。冷凍サイクル部1は、従来周知のように、
圧縮機2、凝縮器の作用を奏する給湯用熱交換器10、
膨張弁3、蒸発器4等からなり、これらは管路6、
7、、8および9で接続され、密閉サイクルを構成して
いる。そして、圧縮機2から出た、例えばフロンに代わ
るアンモニアのような冷媒は、給湯用熱交換器10の一
方の上方に設けられている入口管11から入り、一方の
下方に設けられている出口管12から出て管路7を介し
て膨張弁3に入り、以下従来周知のように蒸発器4、圧
縮機2と循環し、給湯用熱交換器10において、冷媒の
潜熱により水あるいは温水が加温されるようになってい
る。なお、蒸発器4 に対応して冷却フアン5が設けら
れている。
Embodiments of the present invention will be described below. FIG. 1 is a schematic view showing a first embodiment of the present invention, in which (a) is a front view of the whole, and (b) is a perspective view of a heat exchanger for hot water supply. As shown in (a), the hot water supply device including the refrigeration cycle according to the first embodiment includes a refrigeration cycle unit 1 and a hot water supply unit 20. The refrigeration cycle unit 1 is, as is well known,
A compressor 2, a heat exchanger 10 for hot water supply that functions as a condenser,
It consists of an expansion valve 3, an evaporator 4, etc.
7, 8 and 9 form a closed cycle. A refrigerant such as ammonia instead of Freon, which has exited from the compressor 2, enters through an inlet pipe 11 provided above one of the hot water supply heat exchangers 10, and has an outlet provided below one of the heat exchangers. After exiting from the pipe 12, it enters the expansion valve 3 through the pipe 7, and circulates with the evaporator 4 and the compressor 2 as is well known in the art. In the hot water supply heat exchanger 10, water or hot water is generated by the latent heat of the refrigerant. It is designed to be heated. A cooling fan 5 is provided corresponding to the evaporator 4.

【0008】給湯用熱交換器10は、本実施の形態では
プレート型熱交換器で、構造自体は従来周知であるので
詳しい説明はしないが、図1の(ロ)に示されているよ
うに、全体は縦長の略立方形を呈し、その内部に複数枚
のプレートが設けられている。この複数枚のプレートの
面積、枚数等により伝熱面積、容量等が適宜選定されて
いる。このような給湯用熱交換器10の上方に冷媒の入
口管11と、水あるいは温水の出口管22’とが設けら
れ、その下方に冷媒の出口管12と、水あるいは温水の
入口管21’とが設けられている。
The heat exchanger 10 for hot water supply is a plate type heat exchanger in the present embodiment, and the structure itself is well known in the prior art, and therefore will not be described in detail, but as shown in FIG. The whole has a vertically elongated substantially cubic shape, and a plurality of plates are provided therein. The heat transfer area, capacity, and the like are appropriately selected according to the area, the number, and the like of the plurality of plates. A refrigerant inlet pipe 11 and a water or hot water outlet pipe 22 'are provided above such a hot water supply heat exchanger 10, and a refrigerant outlet pipe 12 and a water or hot water inlet pipe 21' are provided therebelow. Are provided.

【0009】給湯部20は、例えば水道源に接続されて
いる給水管21と、出湯管22とからなっている。そし
て、給水管21は給湯用熱交換器10の入口管21’に
接続され、出湯管22は出口管22’にそれぞれ接続さ
れている。このような給水管21には、圧力式温調弁3
0が介装されている。この圧力式温調弁30は、圧縮機
2の吐出管路6に取り付けられている圧力センサ6’と
信号ラインbで接続されている。これにより、圧力式温
調弁30の開度が、運転時の冷媒の圧力に応じて制御さ
れる。換言すると、外気温等の周辺の条件に伴う機械す
なわち冷媒の圧力変動に応じて給水量あるいは出湯量が
制御されることになる。
The hot water supply unit 20 includes, for example, a water supply pipe 21 connected to a water supply source and a tapping pipe 22. The water supply pipe 21 is connected to an inlet pipe 21 'of the heat exchanger 10 for hot water supply, and the tapping pipe 22 is connected to an outlet pipe 22'. Such a water supply pipe 21 has a pressure-type temperature control valve 3.
0 is interposed. The pressure type temperature control valve 30 is connected to a pressure sensor 6 ′ attached to the discharge pipe 6 of the compressor 2 via a signal line b. Thereby, the opening degree of the pressure type temperature control valve 30 is controlled according to the pressure of the refrigerant during operation. In other words, the amount of water supply or the amount of hot water is controlled in accordance with the pressure fluctuation of the machine, that is, the refrigerant, due to peripheral conditions such as the outside air temperature.

【0010】次に、上記第1の実施の形態の作用につい
て説明する。冷凍サイクル部1を起動する。そうする
と、冷媒は圧縮機2、給湯用熱交換器10、膨張弁3、
蒸発器4および圧縮機2の順に循環する。この間に従来
周知のように状態変化をして給湯用熱交換器10におい
て液体になり、そのとき潜熱を放出する。給湯用熱交換
器10は、その伝熱面積、大きさ等が適宜選定されてい
るので、圧力式温調弁30により流量が調節されて給湯
用熱交換器10に供給されると、凝縮圧力は約2.15
MPaで比較的低く、従来の冷凍サイクルの過冷却度は
5°Cより、はるかに高い30°C以上になり、70°
C以上の温水が得られる。
Next, the operation of the first embodiment will be described. The refrigeration cycle unit 1 is started. Then, the refrigerant flows into the compressor 2, the hot water supply heat exchanger 10, the expansion valve 3,
Circulation is performed in the order of the evaporator 4 and the compressor 2. During this time, the state changes as is well known in the art, and becomes liquid in the hot water supply heat exchanger 10, at which time latent heat is released. Since the heat transfer area and size of the hot water supply heat exchanger 10 are appropriately selected, when the flow rate is adjusted by the pressure type temperature control valve 30 and supplied to the hot water supply heat exchanger 10, the condensing pressure Is about 2.15
MPa is relatively low, and the supercooling degree of the conventional refrigeration cycle is much higher than 5 ° C., higher than 30 ° C., and 70 ° C.
C or more warm water is obtained.

【0011】なお、本実施の形態によると、得られる湯
の温度が70°C以上のように高いので、図1の(イ)
において鎖線で示されているように、得られる高温の温
水を貯湯タンクTに貯めておき、必要時に蛇口Jを開い
て、冷水と適宜混合して使用することもできる。このと
きの貯湯タンクTの容量は、貯湯する湯の温度が高いの
で、小さくて済む利点がある。また、上記実施の形態で
は、圧力式温調弁30は、給水管21に介装されている
が、出湯管22に設けることもできる。このように、出
湯管22に設けても略同じような高温の温水が得られる
ことは明らかである。また、圧力式温調弁30は、外気
温等の周辺の条件に伴う機械すなわち冷媒の圧力変動に
応じて出湯量を制御するものであるから、例えば給水量
あるいは出湯量を手動的に、あるいは外気温により調整
できる流量調整弁で実施できることも明らかである。
According to the present embodiment, since the temperature of the obtained hot water is as high as 70 ° C. or more, FIG.
As shown by the dashed line in, the obtained high-temperature hot water can be stored in the hot water storage tank T, and the faucet J can be opened when necessary, and can be used by appropriately mixing with cold water. At this time, the capacity of the hot water storage tank T has an advantage that it can be small because the temperature of the hot water to be stored is high. Further, in the above embodiment, the pressure type temperature control valve 30 is interposed in the water supply pipe 21, but may be provided in the tapping pipe 22. As described above, it is apparent that substantially the same high-temperature hot water can be obtained even when provided in the tapping pipe 22. Further, since the pressure-type temperature control valve 30 controls the hot water supply amount in accordance with the pressure fluctuation of the machine, that is, the refrigerant, due to peripheral conditions such as the outside air temperature, for example, the water supply amount or the hot water output amount is manually or It is clear that the present invention can be implemented with a flow control valve that can be adjusted according to the outside air temperature.

【0012】上記のような高温の温水が得られる理由
は、定かではないが、供給される水量に対して、給湯用
熱交換器10の伝熱面積を広く、容量を大きくすると、
給湯用熱交換器10の中でガス状の冷媒と熱交換される
時間が長くなり、冷媒は充分凝縮でき、過冷却を多くと
ることができ、したがって凝縮圧力は約2.15MPa
のように低くて、70°C以上の高温の温水が得られる
とも考えられる。さらに考えられる理由を説明すると、
図3は冷媒の流れを示すモリエル線図であるが、従来の
方式により、例えば給水温度が65°Cの温水を給湯用
熱交換器へ供給して70°Cの温水を得ようとすると、
冷媒の流れは図3においてa、b、c、d、aのように
なり、凝縮圧力は約2.94MPa(30kg/c
)になる。この圧力は機械の許容耐圧を越えてお
り、通常は2.7MPa(28kg/cm )で機械は
安全のために停止するようになっているので、実際は7
0°Cの温水は得られない。これに対し、本実施の形態
では、図3に示されているように過冷却度Kを大きくと
り、また給湯用熱交換器の伝熱面積を、通常の凝縮器に
必要とされている伝熱面積よりも広く、例えば2倍にし
たことにより、凝縮圧力は約2.15MPaに下がり、
しかも70°C以上の高温の温水が得られるとも考えら
れる。このときの冷媒の流れをA、B、C、D、Aで示
す。なお、過冷却は色々な方法例えば蒸発器に冷媒を2
度通すことによっても多くとることができる。
[0012] Reasons why such high-temperature hot water can be obtained
Is not certain, but for the amount of water supplied,
When the heat transfer area of the heat exchanger 10 is increased and the capacity is increased,
Heat exchange with gaseous refrigerant in the hot water supply heat exchanger 10
The time becomes longer, the refrigerant can be sufficiently condensed,
So that the condensation pressure is about 2.15 MPa
As low as 70 ° C or higher.
You might also say that. To further explain possible reasons,
FIG. 3 is a Mollier diagram showing the flow of the refrigerant,
Depending on the method, for example, hot water with a water supply temperature of 65 ° C for hot water supply
If you try to get 70 ° C hot water by supplying to the heat exchanger,
The flow of the refrigerant is like a, b, c, d, a in FIG.
And the condensation pressure is about 2.94 MPa (30 kg / c
m2)become. This pressure exceeds the allowable pressure of the machine.
2.7 MPa (28 kg / cm 2) In the machine
It is actually 7 because it is stopped for safety.
Hot water at 0 ° C. cannot be obtained. In contrast, the present embodiment
Then, as shown in FIG.
The heat transfer area of the heat exchanger for hot water supply to an ordinary condenser.
Larger than the required heat transfer area, e.g.
As a result, the condensation pressure dropped to about 2.15 MPa,
Moreover, it is thought that hot water with a high temperature of 70 ° C or more can be obtained.
It is. The flow of the refrigerant at this time is indicated by A, B, C, D, and A.
You. The supercooling can be performed in various ways, for example, by adding the refrigerant to the evaporator.
You can also get a lot by passing through.

【0013】次に、図2により本発明の第2の実施の形
態を説明する。なお、図1に示されている第1の実施の
形態と同じ構成要素には同じ参照符号を付けて、また同
様な構成要素には同じ参照数字にダッシュ「’」を付け
て重複説明はしない。第2の実施の形態によると、給湯
装置は、冷凍サイクル部1と、給湯部20’と、熱負荷
部40とからなっている。そして、給湯部20’は貯湯
タンク25を備え、この貯湯タンク25の下部と給水管
21は、第1の制御弁27が介装されている管路26で
接続されている。また、給水管21には第2の制御弁2
8とポンプ29とが介装され2次側給水管21”となっ
て入口管21’に接続されている。貯湯タンク25の上
部には、出湯管22から分岐した分岐管24が接続され
ている。なお、貯湯タンク25の下方部分には温度セン
サSが取り付けられ、この温度センサSとポンプ29と
は信号ラインaで接続され、貯湯タンク25内の湯温が
設定温度以下になったことを温度センサSが検知する
と、ポンプ29が起動し貯湯タンク25内の温水が給湯
用熱交換器10により循環加熱されるようになってい
る。
Next, a second embodiment of the present invention will be described with reference to FIG. The same components as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and the same components are denoted by the same reference numerals with dashes “′” and will not be described repeatedly. . According to the second embodiment, the hot water supply apparatus includes the refrigeration cycle unit 1, the hot water supply unit 20 ', and the heat load unit 40. The hot water supply unit 20 ′ includes a hot water storage tank 25, and a lower portion of the hot water storage tank 25 and the water supply pipe 21 are connected by a pipe 26 in which a first control valve 27 is interposed. The water supply pipe 21 has a second control valve 2.
8 and a pump 29 are interposed and are connected to an inlet pipe 21 ′ as a secondary side water supply pipe 21 ″. A branch pipe 24 branched from a tapping pipe 22 is connected to an upper part of the hot water storage tank 25. A temperature sensor S is attached to a lower part of the hot water storage tank 25, and the temperature sensor S and the pump 29 are connected by a signal line a, and the temperature of the hot water in the hot water storage tank 25 becomes lower than a set temperature. Is detected by the temperature sensor S, the pump 29 is activated and the hot water in the hot water storage tank 25 is circulated and heated by the hot water supply heat exchanger 10.

【0014】熱負荷部40は、熱交換器41と、浴槽、
暖房機、乾燥機のような熱消費部42とからなってい
る。そして、熱交換器41と貯湯タンク25は、1次側
温水供給管43と1次側温水戻管44とで接続されてい
る。また、熱交換器41と熱消費部42は、2次側温水
供給管46と2次側温水戻管47とで接続されている。
したがって、1次側温水戻管44に介装されている第1
のポンプ45が起動すると、貯湯タンク25中の比較的
高温の温水が、貯湯タンク25と熱交換器41との間を
循環し、2次側温水戻管47に介装されている第2のポ
ンプ48が起動すると、2次側温水供給管46と2次側
温水戻管47に満たされている熱媒体例えば水あるいは
温水が、熱交換器41と熱消費部42との間を循環する
ことになる。
The heat load section 40 includes a heat exchanger 41, a bathtub,
It comprises a heat consuming unit 42 such as a heater and a dryer. The heat exchanger 41 and the hot water storage tank 25 are connected by a primary side hot water supply pipe 43 and a primary side hot water return pipe 44. Further, the heat exchanger 41 and the heat consuming unit 42 are connected by a secondary-side hot water supply pipe 46 and a secondary-side hot water return pipe 47.
Therefore, the first hot water return pipe 44
When the pump 45 is started, the relatively high-temperature hot water in the hot water storage tank 25 circulates between the hot water storage tank 25 and the heat exchanger 41 and the second hot water return pipe 47 is interposed in the second hot water return pipe 47. When the pump 48 is started, the heat medium, for example, water or hot water filled in the secondary hot water supply pipe 46 and the secondary hot water return pipe 47 circulates between the heat exchanger 41 and the heat consuming unit 42. become.

【0015】第2の実施の形態は、上記のように構成さ
れているので、次のような色々な加熱ができる。 (a)直接温水を得る場合:貯湯タンク25、1次側温
水供給管43、1次側温水戻管44等は、温水で満たさ
れているものと仮定する。冷凍サイクル部1を起動す
る。一方、管路26の第1の制御弁27を閉じ、給水管
21の第2の制御弁28を開く、また出湯管22の蛇口
23を開く。圧力式温調弁30を調節する。そうして、
ポンプ29を起動する。そうすると、給水管21から供
給された冷水は、その流量が圧力式温調弁30で調節さ
れて給湯用熱交換器10に供給される。この給湯用熱交
換器10において、前述したようにして冷凍サイクル部
1の冷媒と熱交換されて高温例えば70°C以上となっ
て出湯管22から出る。貯湯タンク25、1次側温水供
給管43、1次側温水戻管44等は温水で満たされてい
るので、流体抵抗があり、加熱された温水は蛇口23か
らでる。これにより、高温の温水が直接得られる。な
お、分岐管24、1次側温水供給管43等に開閉弁を設
けて、直接出湯する場合はこれらの管24、43を閉じ
るように実施できることは明らかである。
Since the second embodiment is configured as described above, the following various types of heating can be performed. (A) When hot water is directly obtained: It is assumed that the hot water storage tank 25, the primary hot water supply pipe 43, the primary hot water return pipe 44, and the like are filled with hot water. The refrigeration cycle unit 1 is started. On the other hand, the first control valve 27 of the pipe 26 is closed, the second control valve 28 of the water supply pipe 21 is opened, and the faucet 23 of the tapping pipe 22 is opened. The pressure type temperature control valve 30 is adjusted. And then
The pump 29 is started. Then, the flow rate of the cold water supplied from the water supply pipe 21 is adjusted by the pressure-type temperature control valve 30 and supplied to the hot water supply heat exchanger 10. In the heat exchanger 10 for hot water supply, as described above, heat exchange is performed with the refrigerant in the refrigeration cycle unit 1, and the temperature of the heat is increased to 70 ° C. or more, and the heat exits the tapping pipe 22. Since the hot water storage tank 25, the primary side hot water supply pipe 43, the primary side hot water return pipe 44 and the like are filled with hot water, there is a fluid resistance, and the heated hot water flows out of the faucet 23. Thereby, high-temperature hot water is directly obtained. It should be noted that an on-off valve is provided in the branch pipe 24, the primary-side hot water supply pipe 43, and the like, and it is clear that the pipes 24 and 43 can be closed when tapping directly.

【0016】(b)貯湯タンク25から出湯する場合:
今、貯湯タンク25には温水が満たされているので、管
路26の第1の制御弁27の開度を調節し、給水管21
の第2の制御弁28を閉じる。そうして、給水管21か
ら冷水を供給する。そうすると、貯湯タンク25中の温
水は押し上げられる。1次側温水供給管43、1次側温
水戻管44等は温水で満たされているので、流体抵抗が
あり、押し上げられる貯湯タンク25中の高温の温水
は、蛇口23から出湯する。
(B) When tapping out of hot water storage tank 25:
Since the hot water storage tank 25 is now filled with hot water, the opening of the first control valve 27 in the pipe 26 is adjusted, and the water supply pipe 21 is
The second control valve 28 is closed. Then, cold water is supplied from the water supply pipe 21. Then, the hot water in hot water storage tank 25 is pushed up. Since the primary-side hot water supply pipe 43, the primary-side hot water return pipe 44, and the like are filled with hot water, there is fluid resistance, and the high-temperature hot water in the hot water storage tank 25 that is pushed up flows out of the faucet 23.

【0017】(c)貯湯タンク25中の温水を循環加熱
する場合:貯湯タンク25の温度センサSが設定温度に
低下したことを検知すると、例えば50°C以下に低下
したことを検知すると、ポンプ29が作動する。貯湯タ
ンク25の下方の温水が、第1、2の制御弁27、28
を通り、圧力式温調弁30により調節されて給湯用熱交
換器10に供給される。この給湯用熱交換器10におい
て、前述したようにして冷凍サイクル部1の冷媒と熱交
換されて高温となって貯湯タンク25の上方に供給さ
れ、上方から順に貯湯される。以下同様にして貯湯タン
ク25中の温水は循環され、そして加熱される。温度セ
ンサSが設定温度になったことを検知して停止する。
(C) When circulating and heating the hot water in the hot water storage tank 25: When the temperature sensor S of the hot water storage tank 25 detects that the temperature has dropped to the set temperature, for example, when it detects that the temperature has dropped to 50 ° C. or less, the pump 29 operates. Hot water below the hot water storage tank 25 is supplied to the first and second control valves 27 and 28.
And supplied to the hot water supply heat exchanger 10 after being adjusted by the pressure type temperature control valve 30. In the hot water supply heat exchanger 10, as described above, heat is exchanged with the refrigerant in the refrigeration cycle unit 1 to be heated to a high temperature, supplied to the upper part of the hot water storage tank 25, and stored sequentially from above. Thereafter, the hot water in the hot water storage tank 25 is circulated and heated in the same manner. When the temperature sensor S detects that the temperature has reached the set temperature, it stops.

【0018】(d)消費部42を加熱する場合:1、2
次側温水戻管44、47の第1、2のポンプ45、48
を起動する。そうすると、貯湯タンク25中の温水が1
次側温水供給管43、熱交換器41、1次側温水戻管4
4、貯湯タンク25の順に循環する。一方、消費部42
が例えば床暖房の場合は熱媒体である温水、浴槽の場合
は浴湯が、熱交換器41、2次側温水供給管46、消費
部42、2次側温水戻管47、熱交換器41の順に循環
する。この熱交換器41において、熱媒体である温水、
あるいはが加熱され、そして消費部42で放熱される。
これにより、消費部42は加温される。消費部42の加
温と共に、貯湯タンク25中の温水の温度が低下する
と、前述したようにして、冷凍サイクル部1が起動する
と共にポンプ29が起動し、貯湯タンク25中の温水は
循環加熱される。なお、浴湯の循環加熱回路には、例え
ば本出願人が特開平7−21195号、特開平10−3
14255号等により提案している濾過装置、活性石、
殺菌装置等を適宜組み込むこともできる。
(D) When heating the consuming unit 42: 1, 2
First and second pumps 45, 48 of the secondary side hot water return pipes 44, 47
Start Then, the hot water in the hot water storage tank 25 becomes 1
Secondary side hot water supply pipe 43, heat exchanger 41, primary side hot water return pipe 4
4. Circulate in the order of hot water storage tank 25. On the other hand, the consumer unit 42
For example, in the case of floor heating, hot water which is a heat medium in the case of floor heating, and in the case of a bathtub, hot water is supplied by the heat exchanger 41, the secondary hot water supply pipe 46, the consuming section 42, the secondary hot water return pipe 47, the heat exchanger 41. Circulate in order. In this heat exchanger 41, hot water as a heat medium,
Alternatively, it is heated and radiated by the consuming unit 42.
Thereby, the consuming unit 42 is heated. When the temperature of the hot water in the hot water storage tank 25 decreases with the heating of the consuming unit 42, as described above, the refrigeration cycle unit 1 starts and the pump 29 starts, and the hot water in the hot water storage tank 25 is circulated and heated. You. In addition, for example, the present applicant has disclosed in Japanese Patent Application Laid-Open Nos. 7-21195 and 10-3
14255, a filtration device proposed by No.
A sterilizer or the like can be appropriately incorporated.

【0019】第2の実施の形態は、上記以外の組み合わ
せでいろいろ加熱できることは明らかである。例えば貯
湯タンク25から出湯し、貯湯タンク25中の温水が所
定量減少したら直接加熱するように実施できる。また、
貯湯タンク25中の温水を循環加熱しているときに、第
1の制御弁27から冷水を供給して出湯できることも明
らかである。さらには、貯湯タンク25は、開放型のタ
ンクでも略同様にして実施できることは明らかである。
It is clear that the second embodiment can be variously heated in combinations other than the above. For example, the hot water can be discharged from the hot water storage tank 25 and directly heated when the hot water in the hot water storage tank 25 decreases by a predetermined amount. Also,
It is also clear that when the hot water in the hot water storage tank 25 is being circulated and heated, cold water can be supplied from the first control valve 27 to supply hot water. Further, it is apparent that the hot water storage tank 25 can be implemented in substantially the same manner even with an open type tank.

【0020】実施例1:図2に示されているような給湯
装置を使用してテストした。このときの、圧縮機の能力
は3馬力、給湯用熱交換器はプレート型(プレート枚数
50枚)で伝熱面積が1.2mm(外径寸法:幅、奥
横、高さは103mm、135mm、302mm)、容
積は1、4リットルであった。外気温度が6°Cで出湯
温度が70°Cの温水が得られた。このときの圧力式温
調弁による給水量(出湯量)は161リットル/時間で
あった。また、凝縮圧力は、2.1MPaであった。給
水温度を上げて51°Cでテストしたが、問題なく60
°Cの温水が得られた。
Example 1 A test was carried out using a water heater as shown in FIG. At this time, the capacity of the compressor was 3 horsepower, the heat exchanger for hot water supply was a plate type (the number of plates was 50), and the heat transfer area was 1.2 mm 2 (outer diameter: width, depth, width, height was 103 mm, 135 mm, 302 mm), and the volume was 1, 4 liters. Hot water having an outside air temperature of 6 ° C and a tapping temperature of 70 ° C was obtained. At this time, the amount of water supplied by the pressure-type temperature control valve (the amount of hot water) was 161 liters / hour. The condensation pressure was 2.1 MPa. The water temperature was raised and tested at 51 ° C.
° C warm water was obtained.

【0021】実施例2:実施例1と同様な給湯装置を使
用してテストした。このときの、圧縮機の能力は、実施
例1と同じ3馬力、給湯用熱交換器はプレート型(プレ
ート枚数30枚)で伝熱面積は1.76mm(外径寸
法:幅、奥横、高さは125mm、85mm、532m
m)、容積は2.0リットルであった。外気温度が10
°C、給水温度20°Cで、出湯温度が71°Cの温水
が得られた。このときの圧力式温調弁による給水量(出
湯量)は197リットル/時間であった。また、凝縮圧
力は、2.15MPaであった。給水温度を上げて51
°Cでテストしたが問題はなかった。
Example 2 A test was performed using the same hot water supply apparatus as in Example 1. At this time, the capacity of the compressor was 3 hp, which is the same as that of the first embodiment. The heat exchanger for hot water supply was a plate type (the number of plates was 30), and the heat transfer area was 1.76 mm 2 (outer diameter dimensions: width, depth and width). , Height is 125mm, 85mm, 532m
m), the volume was 2.0 liters. Outside air temperature is 10
Hot water with a tap water temperature of 71 ° C. was obtained at a temperature of 20 ° C. and a feed water temperature of 20 ° C. At this time, the amount of water supplied by the pressure-type temperature control valve (the amount of hot water) was 197 liters / hour. The condensation pressure was 2.15 MPa. Increase the temperature of the water supply 51
Tested at ° C, no problem.

【0022】上記実施例1、2の結果から、給湯用熱交
換器の伝熱面積あるいは容量と、給湯用熱交換器に供給
する水あるいは温水の量は、得られる温水の温度と密接
な関係があり、給湯用熱交換器の中でガス状の冷媒と熱
交換される時間、冷媒の凝縮度、過冷却の量等が影響す
ると推量され、上記関係を適切に選定することにより、
凝縮圧力を上げることなく、60°C以上の温水が得ら
れることが判明した。また、上記とも関連して給湯用熱
交換器に供給する温水の温度が高くなった場合でも51
°C程度までの温水を給湯用熱交換器に供給できること
も判明した。
From the results of Examples 1 and 2, the heat transfer area or capacity of the hot water supply heat exchanger and the amount of water or hot water supplied to the hot water supply heat exchanger are closely related to the temperature of the obtained hot water. It is estimated that the time of heat exchange with the gaseous refrigerant in the heat exchanger for hot water supply, the degree of condensation of the refrigerant, the amount of supercooling, etc. will be affected, and by appropriately selecting the above relationship,
It has been found that hot water of 60 ° C. or higher can be obtained without increasing the condensation pressure. Also in connection with the above, even when the temperature of the hot water supplied to the hot water supply heat exchanger becomes high,
It was also found that hot water up to about ° C could be supplied to the hot water supply heat exchanger.

【0023】[0023]

【発明の効果】以上のように、本発明によると、給水管
と出湯管のいずれかに設けられている流量調整弁による
給水流量、冷凍サイクルの給湯用熱交換器の伝熱面積、
大きさ、過冷却度等を適宜決定されているので、凝縮圧
力が許容圧力以下で出湯温度が60°C以上の高温の温
水が得られるという本発明に特有の効果が得られる。ま
た、流量調整弁による給水流量、給湯用熱交換器の伝熱
面積、大きさ、過冷却度等が適宜決定されているので、
給湯用熱交換器に35°C以上の温水を供給できる効果
も得られる。さらには、給湯用熱交換器に35°C以上
の温水を供給できるので、貯湯タンク中の高温の温水を
循環加熱し、貯湯タンクに55°C以上の高温の温水を
貯湯することもできる。このように、高温の温水を循
環、貯湯できるので、貯湯タンクの温水を浴湯の加熱、
暖房、乾燥等の熱源としても利用できる。
As described above, according to the present invention, the water supply flow rate by the flow control valve provided in either the water supply pipe or the tapping pipe, the heat transfer area of the heat exchanger for hot water supply of the refrigeration cycle,
Since the size, the degree of supercooling, and the like are appropriately determined, an effect unique to the present invention is obtained in which high-temperature hot water having a condensing pressure of not more than an allowable pressure and a tapping temperature of 60 ° C. or more can be obtained. In addition, since the flow rate of the water supply by the flow rate control valve, the heat transfer area and the size of the heat exchanger for hot water supply, and the degree of supercooling are appropriately determined,
The effect that hot water of 35 ° C. or more can be supplied to the hot water supply heat exchanger is also obtained. Furthermore, since hot water of 35 ° C. or more can be supplied to the hot water supply heat exchanger, high-temperature hot water in the hot water storage tank can be circulated and heated, and hot water of 55 ° C. or more can be stored in the hot water storage tank. In this way, high-temperature hot water can be circulated and stored, so that the hot water in the hot water storage tank can be heated,
It can also be used as a heat source for heating and drying.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態を示す図で、その
(イ)は全体を模式的に示す正面図、その(ロ)は給湯
用熱交換器を一部断面にして示す斜視図である。
FIG. 1 is a view showing a first embodiment of the present invention, in which (a) is a front view schematically showing the whole, and (b) is a perspective view showing a heat exchanger for hot water supply in a partial cross section. FIG.

【図2】 本発明の第2の実施の形態の全体を模式的に
示す正面図である。
FIG. 2 is a front view schematically showing the whole second embodiment of the present invention.

【図3】 冷媒の流れを示すモリエル線図である。FIG. 3 is a Mollier diagram showing a flow of a refrigerant.

【符号の説明】 1 冷凍サイクル部 2 圧縮
機 4 蒸発器 10 給湯
用熱交換器 20 給湯部 21 給
水管 22 出湯管 25 貯
湯タンク 40 熱負荷部 41 熱
交換器
[Description of Signs] 1 Refrigeration cycle unit 2 Compressor 4 Evaporator 10 Heat exchanger for hot water supply 20 Hot water supply unit 21 Water supply pipe 22 Hot water supply pipe 25 Hot water storage tank 40 Heat load unit 41 Heat exchanger

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年11月18日(1999.11.
18)
[Submission date] November 18, 1999 (1999.11.
18)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【図1】 FIG.

【図3】 FIG. 3

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 道之 埼玉県大宮市宮原町2丁目15番地10 サイ エンス株式会社内 (72)発明者 小林 章浩 埼玉県大宮市宮原町2丁目15番地10 サイ エンス株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Michiyuki Takahashi 2-15-15 Miyahara-cho, Omiya-shi, Saitama Science Inside (72) Inventor Akihiro Kobayashi 2-15-10 Miyahara-cho, Omiya-shi, Saitama Ensu Inc.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、蒸発器等からなる冷凍サ
イクルの前記凝縮器が給湯用熱交換器に選定され、前記
給湯用熱交換器には給水管と出湯管とが接続されている
給湯装置であって、 前記給水管と出湯管のいずれかには流量調整弁が介装さ
れ、前記流量調整弁による給水流量、前記給湯用熱交換
器の伝熱面積、大きさ、過冷却度等を適宜決定し、それ
によって凝縮圧力が許容圧力以下で、出湯温度が60°
C以上の温水が得られることを特徴とする、冷凍サイク
ルからなる給湯装置。
1. The condenser of a refrigeration cycle comprising a compressor, a condenser, an evaporator and the like is selected as a hot water supply heat exchanger, and a water supply pipe and a tap water pipe are connected to the hot water supply heat exchanger. A flow control valve is interposed in one of the water supply pipe and the tapping pipe, a flow rate of water supplied by the flow control valve, a heat transfer area, a size, and supercooling of the heat exchanger for hot water supply. The condensing pressure is below the allowable pressure, and the tapping temperature is 60 °.
A hot water supply device comprising a refrigeration cycle, wherein hot water of C or more is obtained.
【請求項2】圧縮機、凝縮器、蒸発器等からなる冷凍サ
イクルの前記凝縮器が給湯用熱交換器に選定され、前記
給湯用熱交換器には給水管と出湯管とが接続されている
給湯装置であって、 前記給水管と出湯管のいずれかには流量調整弁が介装さ
れ、前記流量調整弁による給水流量、前記給湯用熱交換
器の伝熱面積、大きさ、過冷却度等を適宜決定し、それ
によって凝縮圧力が許容圧力以下で前記給湯用熱交換器
に35°C以上の温水を供給でき、出湯温度が60°C
以上の温水が得られることを特徴とする、冷凍サイクル
からなる給湯装置。
2. The condenser of a refrigeration cycle including a compressor, a condenser, an evaporator and the like is selected as a hot water supply heat exchanger, and a water supply pipe and a tap water pipe are connected to the hot water supply heat exchanger. A flow control valve is interposed in one of the water supply pipe and the tapping pipe, a flow rate of water supplied by the flow control valve, a heat transfer area, a size, and supercooling of the heat exchanger for hot water supply. The hot water of 35 ° C. or more can be supplied to the hot water supply heat exchanger at a condensing pressure of not more than the allowable pressure, and the tap water temperature is 60 ° C.
A hot water supply device comprising a refrigeration cycle, wherein the hot water is obtained.
【請求項3】圧縮機、凝縮器、蒸発器等からなる冷凍サ
イクルの前記凝縮器が給湯用熱交換器に選定され、前記
給湯用熱交換器に貯湯タンクが給水管と出湯管とにより
接続され、前記貯湯タンク内で検知される湯温が所定温
度以下に下がると、前記貯湯タンク中の湯が、前記貯湯
タンクと前記給湯用熱交換器との間を循環して加温され
るようになっている給湯装置であって、 前記給水管と出湯管のいずれかには流量調整弁が介装さ
れ、前記流量調整弁による給水流量、前記給湯用熱交換
器の伝熱面積、大きさ、過冷却度等を適宜決定すること
により、前記貯湯タンク内の所定箇所の温度が所定温度
に下がると、前記貯湯タンク中の湯が、前記貯湯タンク
と前記給湯用熱交換器との間を循環して凝縮圧力が許容
圧力以下で60°Cの温水が貯湯されることを特徴とす
る、冷凍サイクルからなる給湯装置。
3. The condenser of a refrigeration cycle comprising a compressor, a condenser, an evaporator and the like is selected as a hot water supply heat exchanger, and a hot water storage tank is connected to the hot water supply heat exchanger by a water supply pipe and a tapping pipe. When the hot water temperature detected in the hot water storage tank falls below a predetermined temperature, the hot water in the hot water storage tank is circulated between the hot water storage tank and the hot water supply heat exchanger to be heated. A flow control valve is interposed in one of the water supply pipe and the tapping pipe, a flow rate of water supplied by the flow control valve, a heat transfer area of the heat exchanger for hot water supply, and a size. By appropriately determining the degree of supercooling and the like, when the temperature of a predetermined location in the hot water storage tank falls to a predetermined temperature, the hot water in the hot water storage tank causes a gap between the hot water storage tank and the hot water supply heat exchanger. Circulates and stores hot water at 60 ° C with condensing pressure below allowable pressure Characterized in that it is hot water supply apparatus comprising a refrigeration cycle.
【請求項4】請求項3に記載の貯湯タンクに、浴湯用、
暖房用、乾燥用等の熱負荷装置が接続されている、冷凍
サイクルからなる給湯装置。
4. A hot water storage tank according to claim 3, wherein
A hot water supply device comprising a refrigeration cycle to which a heat load device for heating, drying, etc. is connected.
【請求項5】請求項1〜4のいずれかの項に記載の流量
調整弁は、冷凍サイクルの冷媒の圧力を感知して、給水
流量を制御する圧力式温調弁である、冷凍サイクルから
なる給湯装置。
5. The refrigeration cycle according to claim 1, wherein the flow control valve is a pressure-type temperature control valve that senses the pressure of the refrigerant in the refrigeration cycle and controls the flow rate of water supply. Become a hot water supply device.
JP32197999A 1999-05-20 1999-11-12 Water heater consisting of refrigerating cycle Pending JP2001141312A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32197999A JP2001141312A (en) 1999-11-12 1999-11-12 Water heater consisting of refrigerating cycle
KR1020000026993A KR100720165B1 (en) 1999-05-20 2000-05-19 Refrigeration cycle heater
US09/574,258 US6405551B1 (en) 1999-05-20 2000-05-19 Heating apparatus having refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32197999A JP2001141312A (en) 1999-11-12 1999-11-12 Water heater consisting of refrigerating cycle

Publications (1)

Publication Number Publication Date
JP2001141312A true JP2001141312A (en) 2001-05-25

Family

ID=18138572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32197999A Pending JP2001141312A (en) 1999-05-20 1999-11-12 Water heater consisting of refrigerating cycle

Country Status (1)

Country Link
JP (1) JP2001141312A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017426A (en) * 2004-07-05 2006-01-19 Kansai Electric Power Co Inc:The Heat pump type steam/hot water generator
JP2007107825A (en) * 2005-10-14 2007-04-26 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2013007500A (en) * 2011-06-22 2013-01-10 Mitsubishi Electric Corp Refrigerating apparatus
CN103047753A (en) * 2012-12-24 2013-04-17 苏宇贵 Domestic heat-pump hot water and drying dual-purpose machine system
KR101357469B1 (en) 2011-11-28 2014-02-03 엘지전자 주식회사 Hot water supply device associated with heat pump
WO2014203514A1 (en) * 2013-06-18 2014-12-24 パナソニックIpマネジメント株式会社 Heat pump apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017426A (en) * 2004-07-05 2006-01-19 Kansai Electric Power Co Inc:The Heat pump type steam/hot water generator
JP2007107825A (en) * 2005-10-14 2007-04-26 Matsushita Electric Ind Co Ltd Heat pump water heater
JP4701982B2 (en) * 2005-10-14 2011-06-15 パナソニック株式会社 Heat pump water heater
JP2013007500A (en) * 2011-06-22 2013-01-10 Mitsubishi Electric Corp Refrigerating apparatus
KR101357469B1 (en) 2011-11-28 2014-02-03 엘지전자 주식회사 Hot water supply device associated with heat pump
CN103047753A (en) * 2012-12-24 2013-04-17 苏宇贵 Domestic heat-pump hot water and drying dual-purpose machine system
WO2014203514A1 (en) * 2013-06-18 2014-12-24 パナソニックIpマネジメント株式会社 Heat pump apparatus

Similar Documents

Publication Publication Date Title
JP4868354B2 (en) Refrigeration cycle equipment
JP2010175106A (en) Refrigerating apparatus
WO2009142004A1 (en) Heating system
JP4058696B2 (en) Heat pump hot water supply system
JP2003176957A (en) Refrigeration cycle device
JP2004197958A (en) Storage water heater
JP2001141312A (en) Water heater consisting of refrigerating cycle
JP2002048420A (en) Heat pump hot water heater
JP4298666B2 (en) Heat pump water heater
JP2003222395A (en) Multi-functional water heater
JP3348402B2 (en) Air conditioner
JP2002147891A (en) Hot-water supplier consisting of refrigerating cycle
JP2003336896A (en) Heat pump hot water supply system
JP3915637B2 (en) Water heater
EP0027995B1 (en) System for transferring heat energy from a refrigeration circuit to a hot water circuit
KR20220102923A (en) A Water Heater
JP4922843B2 (en) Cooling system
JP2004205116A (en) Cold and hot water generator and control method thereof
JP2008309384A (en) Hot water supply device
JP2002098438A (en) Packaged air-conditioning apparatus
JP4010922B2 (en) Hot water storage water heater
JP2003065629A (en) Package type cooling-heating and floor heating equipment
JP2009133542A (en) Refrigerating apparatus
JP3594426B2 (en) Air conditioner
JP2004101135A (en) Heat pump type hot-water feeder