JP2001057239A - Nonaqueous electrolyte battery - Google Patents
Nonaqueous electrolyte batteryInfo
- Publication number
- JP2001057239A JP2001057239A JP11233242A JP23324299A JP2001057239A JP 2001057239 A JP2001057239 A JP 2001057239A JP 11233242 A JP11233242 A JP 11233242A JP 23324299 A JP23324299 A JP 23324299A JP 2001057239 A JP2001057239 A JP 2001057239A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- aqueous electrolyte
- lithium
- positive electrode
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 77
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 26
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000003792 electrolyte Substances 0.000 claims abstract description 22
- 239000007774 positive electrode material Substances 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 16
- 239000011572 manganese Substances 0.000 claims abstract description 15
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 14
- 239000002131 composite material Substances 0.000 claims abstract description 13
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 11
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000007773 negative electrode material Substances 0.000 claims abstract description 8
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims abstract description 6
- 229910000733 Li alloy Inorganic materials 0.000 claims abstract description 5
- 239000001989 lithium alloy Substances 0.000 claims abstract description 5
- 239000003125 aqueous solvent Substances 0.000 claims description 24
- 239000000126 substance Substances 0.000 claims description 11
- 239000003575 carbonaceous material Substances 0.000 claims description 9
- 239000013078 crystal Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 claims description 2
- 239000002904 solvent Substances 0.000 abstract description 3
- 239000000243 solution Substances 0.000 abstract description 2
- 239000008151 electrolyte solution Substances 0.000 abstract 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 229910052736 halogen Inorganic materials 0.000 abstract 1
- 125000005843 halogen group Chemical group 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 30
- 239000011230 binding agent Substances 0.000 description 14
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 13
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 11
- 229910013870 LiPF 6 Inorganic materials 0.000 description 10
- -1 graphites Substances 0.000 description 10
- 239000012046 mixed solvent Substances 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 8
- KBTMGSMZIKLAHN-UHFFFAOYSA-N 4-bromo-1,2-dimethoxybenzene Chemical compound COC1=CC=C(Br)C=C1OC KBTMGSMZIKLAHN-UHFFFAOYSA-N 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- WNCYZVMZKSOPMU-UHFFFAOYSA-N 2-fluoro-1,4-dimethoxybenzene Chemical compound COC1=CC=C(OC)C(F)=C1 WNCYZVMZKSOPMU-UHFFFAOYSA-N 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910013063 LiBF 4 Inorganic materials 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- 229910013733 LiCo Inorganic materials 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 229910052976 metal sulfide Inorganic materials 0.000 description 2
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- NIUZVSQOXJIHBL-UHFFFAOYSA-N 1-bromo-2,4-dimethoxybenzene Chemical compound COC1=CC=C(Br)C(OC)=C1 NIUZVSQOXJIHBL-UHFFFAOYSA-N 0.000 description 1
- WQHNWJBSROXROL-UHFFFAOYSA-N 1-chloro-3,5-dimethoxybenzene Chemical compound COC1=CC(Cl)=CC(OC)=C1 WQHNWJBSROXROL-UHFFFAOYSA-N 0.000 description 1
- IWFKMNAEFPEIOY-UHFFFAOYSA-N 1-fluoro-3,5-dimethoxybenzene Chemical compound COC1=CC(F)=CC(OC)=C1 IWFKMNAEFPEIOY-UHFFFAOYSA-N 0.000 description 1
- DWCGNRKFLRLWCJ-UHFFFAOYSA-N 2-bromo-1,4-dimethoxybenzene Chemical compound COC1=CC=C(OC)C(Br)=C1 DWCGNRKFLRLWCJ-UHFFFAOYSA-N 0.000 description 1
- DAGKHJDZYJFWSO-UHFFFAOYSA-N 4-fluoro-1,2-dimethoxybenzene Chemical compound COC1=CC=C(F)C=C1OC DAGKHJDZYJFWSO-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013375 LiC Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 239000011809 glassy carbon fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Primary Cells (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解液電池に
関する。さらに詳しくは、非水電解液中に特定の化合物
を含有させることによりサイクル特性を向上させた非水
電解液電池に関する。[0001] The present invention relates to a non-aqueous electrolyte battery. More specifically, the present invention relates to a non-aqueous electrolyte battery having improved cycle characteristics by including a specific compound in the non-aqueous electrolyte.
【0002】[0002]
【従来の技術】近年、カメラ一体型ビデオテープレコー
ダ、携帯電話、携帯用コンピュータ等のポータブル電子
機器が多く登場し、その小型軽量化が図られている。そ
してこれらの電子機器のポータブル電源となる電池、特
に二次電池について、エネルギー密度を向上させるため
の研究がなされている。二次電池の中でもリチウムイオ
ン電池は、従来の水溶液系電解液を用いた二次電池であ
る鉛電池、ニッケルカドミウム電池と比較して大きなエ
ネルギー密度が得られるため、期待が大きく、研究開発
が活発に進められている。2. Description of the Related Art In recent years, many portable electronic devices such as a camera-integrated video tape recorder, a mobile phone, and a portable computer have appeared and their size and weight have been reduced. Researches have been made to improve the energy density of batteries that are portable power sources for these electronic devices, particularly secondary batteries. Among secondary batteries, lithium-ion batteries are expected to have higher energy density than lead batteries and nickel-cadmium batteries, which are secondary batteries using conventional aqueous electrolytes. It is being advanced.
【0003】リチウムあるいはリチウムイオン二次電池
に使用する非水電解液としては、炭酸プロピレンや炭酸
ジエチル等の炭酸エステル系非水溶媒に、電解質として
LiPF6を溶解させたものが、比較的導電率も高く、
電位的にも安定である点から広く用いられている。As a non-aqueous electrolyte used for a lithium or lithium ion secondary battery, one obtained by dissolving LiPF 6 as an electrolyte in a carbonate-based non-aqueous solvent such as propylene carbonate or diethyl carbonate has a relatively high conductivity. Also high,
It is widely used because it is stable in potential.
【0004】また、リチウムイオン二次電池の正極活物
質としては、高い放電電位を持つLixMn2O4、Lix
MyO2(MはNi又はCoである。また、xの値は充放
電によって変化するが、通常、合成時にはx≒1、y≒
1である。)等が知られている。そして、高い放電電位
と、高いエネルギー密度を持つ正極活物質として知られ
るLiCoyO2を用いたリチウムイオン二次電池が実用
化されている。Further, as a positive electrode active material of a lithium ion secondary battery, Li x Mn 2 O 4 , Li x having a high discharge potential are used.
M y O 2 (M is Ni or Co. The value of x changes with charge and discharge, but usually x {1, y} during synthesis.
It is one. ) Etc. are known. Then, a lithium ion secondary battery using LiCo y O 2 known as a positive electrode active material having a high discharge potential and a high energy density has been put to practical use.
【0005】しかしながら、この複合酸化物の原材料で
あるコバルトは、資源的に稀少であり、また商業的に利
用可能な鉱床が、数少ない国に偏在しているため、高価
で、価格変動が大きく、かつ、将来的には供給不安の伴
うものである。[0005] However, cobalt, which is a raw material of this composite oxide, is scarce in terms of resources, and commercially available mineral deposits are unevenly distributed in a few countries. In the future, supply will be uncertain.
【0006】従って、このような非水電解液二次電池の
広範囲な普及を図る上で、より安価で、資源的にも豊富
な原材料で作製でき、なおかつ性能的にも見劣りしない
正極活物質が望まれている。Therefore, in order to promote the widespread use of such non-aqueous electrolyte secondary batteries, a positive electrode active material which can be made of less expensive, resource-rich raw materials and which is not inferior in performance is required. Is desired.
【0007】上記の課題の解決策として、LiCoyO2
とほぼ同等の放電電位と実用エネルギー密度を持つLi
xNiO2あるいはLixMn2O4が提案されている。As a solution to the above problem, LiCo y O 2
Li with discharge potential and practical energy density almost equivalent to
x NiO 2 or Li x Mn 2 O 4 has been proposed.
【0008】ニッケルはコバルトに比べれば安価な材料
であるが、更に安価で供給不安の少ない原材料を用いて
正極活物質を製造することがより望ましいことは言うま
でもない。マンガンは、コバルト、ニッケルに比べて安
価であり、資源的にも豊富である。かつ、マンガン乾電
池、アルカリマンガン乾電池、リチウム一次電池の材料
としての二酸化マンガンは大量に流通しており、材料供
給の面からも不安の少ない材料である。そこで、マンガ
ンを原料とする非水電解液二次電池の正極活物質の研究
が、近年盛んに行われている。Although nickel is an inexpensive material as compared with cobalt, it goes without saying that it is more desirable to manufacture a positive electrode active material using a raw material that is less expensive and has less supply concerns. Manganese is cheaper than cobalt and nickel, and is rich in resources. In addition, manganese dioxide as a material for manganese dry batteries, alkaline manganese dry batteries, and lithium primary batteries is distributed in large quantities, and is a material with little concern in terms of material supply. Therefore, research on a positive electrode active material of a non-aqueous electrolyte secondary battery using manganese as a raw material has been actively conducted in recent years.
【0009】各種マンガン原料とリチウム原料より合成
されるリチウムマンガン複合酸化物には様々なものが報
告されているが、このうち例えばスピネル型構造を持つ
LixMnyO4 (x≒1、y≒1)は、電気化学的に酸
化することによりリチウムに対し3V以上の電位を示
し、148mAh/gの理論充放電容量をもつ材料であ
る。[0009] The various manganese raw material and a lithium-manganese composite oxide is synthesized from lithium compounds have been reported various things, but, Li x Mn y O 4 ( x ≒ 1, y with these example spinel structure # 1) is a material having a potential of 3 V or more with respect to lithium by electrochemical oxidation and having a theoretical charge / discharge capacity of 148 mAh / g.
【0010】[0010]
【発明が解決しようとする課題】一方、近年、電気自動
車またはロードレベリング用として、大型非水電解液二
次電池の開発が各方面で行われているが、電池が大型化
するほどに原材料も多量に必要となることから、その広
範な普及のためには安価で、資源的に豊富な原材料で作
製できることが重要となる。したがって大型非水電解液
二次電池では、上記のスピネル型リチウムマンガン酸化
物が正極活物質として有力視されている。On the other hand, in recent years, large-scale non-aqueous electrolyte secondary batteries have been developed in various fields for use in electric vehicles or road leveling. Since it is required in large quantities, it is important for its widespread use that it can be made of inexpensive and resource-rich raw materials. Therefore, in a large nonaqueous electrolyte secondary battery, the above-mentioned spinel-type lithium manganese oxide is considered to be promising as a positive electrode active material.
【0011】また、これに組み合わせる非水電解液とし
ては多数の候補が考えられるが、なかでも炭酸プロピレ
ンや炭酸ジエチル等の炭酸エステル系非水溶媒に、電解
質としてLiPF6を溶解させた電解液を使用すると良
好な電池特性を示すことから、これが1つの有力な候補
として考えられている。There are many possible non-aqueous electrolytes to be combined with the electrolyte. Among them, an electrolyte obtained by dissolving LiPF 6 as an electrolyte in a carbonate-based non-aqueous solvent such as propylene carbonate or diethyl carbonate is used. Since it shows good battery characteristics when used, it is considered as one promising candidate.
【0012】ところが、LiPF6は比較的高価な材料
であり、また大型電池ではこれを多量に使用しなければ
ならないために、大型非水電解液二次電池の広範囲な普
及を妨げる原因となりかねないという問題があった。ま
た、LiPF6は電池特性としては比較的良好な特性を
示すが、連続充電特性についてはやや見劣りするものが
あった。連続充電特性とは、電池の自己放電による容量
損失を補うため、電池に微小な電流を流し、常に電池を
充電状態に保とうとするものである。このようにして、
長時間連続充電を行うと、正極のMnが溶出し、負極表
面に析出するため、微細な内部ショートを起こし充電電
流が上昇する。すなわち、この充電電流が上昇するまで
の時間が長ければ長いほど良好な電池と言える。However, LiPF 6 is a relatively expensive material and must be used in large quantities in large batteries, which may hinder widespread use of large non-aqueous electrolyte secondary batteries. There was a problem. LiPF 6 has relatively good battery characteristics, but continuous charging characteristics are somewhat inferior. The continuous charging characteristic is to supply a small current to the battery and always keep the battery in a charged state in order to compensate for a capacity loss due to self-discharge of the battery. In this way,
When continuous charging is performed for a long time, Mn of the positive electrode elutes and precipitates on the surface of the negative electrode, so that a minute internal short circuit occurs and the charging current increases. That is, it can be said that the longer the time until the charging current increases, the better the battery.
【0013】そこで、LiPF6にかわる電解質の有力
な候補として、LiBF4が考えられるが、この電解質
を用いて電解液を作製し、これを使用した二次電池で
は、室温以上の環境下で使用した場合の劣化がLiPF
6を用いた場合に比べて大きいという欠点があった。Therefore, LiBF 4 is considered as a promising electrolyte alternative to LiPF 6. An electrolyte is prepared using this electrolyte, and a secondary battery using the same is used in an environment above room temperature. Deterioration by LiPF
There was a drawback that it was larger than when 6 was used.
【0014】電気自動車用又はロードレベリング用な
ど、電池が大型化するほどに使用時の内部発熱が無視で
きなくなり、周囲の環境温度が室温付近であっても、電
池内部は比較的高温となる可能性が増大する。また、小
型携帯機器等として使用される比較的小型の電池であっ
ても、真夏の自動車の車室内等の高温環境下で使用され
ることも考慮すれば、室温以上の環境における電池の劣
化は少ないほど望ましいといえる。As the size of the battery increases, such as for electric vehicles or road leveling, the internal heat generation during use becomes not negligible, and the temperature inside the battery can be relatively high even when the ambient temperature is around room temperature. Sex is increased. In addition, even if a relatively small battery used as a small portable device or the like is used in a high-temperature environment such as a cabin of a car in midsummer, deterioration of the battery in an environment above room temperature is considered. It can be said that less is more desirable.
【0015】本発明は、このような従来の実情に鑑みて
提案されたものであり、安定に供給可能な正極活物質を
用い、高温環境下においても劣化の少ない非水電解液電
池を提供することを目的とする。The present invention has been proposed in view of such conventional circumstances, and provides a non-aqueous electrolyte battery that uses a positive electrode active material that can be stably supplied and has little deterioration even in a high temperature environment. The purpose is to:
【0016】[0016]
【課題を解決するための手段】本発明の非水電解質電池
は、マンガンの酸化物又はリチウムとマンガンとの複合
酸化物を正極活物質として有する正極と、リチウム金
属、リチウム合金又はリチウムをドープ・脱ドープ可能
な材料を負極活物質として有する負極と、非水溶媒中に
電解質が溶解されてなる非水電解液とを備え、上記非水
電解液は、化2で表される有機化合物を上記非水溶媒と
して含有することを特徴とする。A nonaqueous electrolyte battery according to the present invention comprises a positive electrode having an oxide of manganese or a composite oxide of lithium and manganese as a positive electrode active material, a lithium metal, a lithium alloy or lithium doped. A negative electrode having a material capable of being undoped as a negative electrode active material, and a non-aqueous electrolyte obtained by dissolving an electrolyte in a non-aqueous solvent, wherein the non-aqueous electrolyte is an organic compound represented by Chemical Formula 2 It is characterized by containing as a non-aqueous solvent.
【0017】[0017]
【化2】 Embedded image
【0018】上述したような本発明に係る非水電解液電
池は、非水電解液の非水溶媒として上記化2で表される
有機化合物を含有しているので、充放電を繰り返すこと
により引き起こされる、非水電解液の化学反応の生成物
による電極表面への被膜生成を抑えて、特性劣化が抑制
される。Since the non-aqueous electrolyte battery according to the present invention as described above contains the organic compound represented by the above formula (2) as a non-aqueous solvent of the non-aqueous electrolyte, it is caused by repeated charge and discharge. Thus, the formation of a film on the electrode surface due to the product of the chemical reaction of the non-aqueous electrolyte is suppressed, and the characteristic deterioration is suppressed.
【0019】[0019]
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。Embodiments of the present invention will be described below.
【0020】図1は、本発明に係る非水電解液電池の一
構成例を示す縦断面図である。この非水電解液電池1
は、フィルム状の正極2と、フィルム状の負極3とが、
セパレータ4を介して密着状態で巻回された巻層体が、
電池缶5の内部に装填されてなる。FIG. 1 is a longitudinal sectional view showing one configuration example of the nonaqueous electrolyte battery according to the present invention. This non-aqueous electrolyte battery 1
Is a film-shaped positive electrode 2 and a film-shaped negative electrode 3,
The wound layer body wound in close contact with the separator 4 interposed therebetween,
It is mounted inside the battery can 5.
【0021】上記正極2は、正極活物質と結着剤とを含
有する正極合剤を集電体上に塗布、乾燥することにより
作製される。集電体には例えばアルミニウム箔等の金属
箔が用いられる。The positive electrode 2 is manufactured by applying a positive electrode mixture containing a positive electrode active material and a binder on a current collector and drying the mixture. A metal foil such as an aluminum foil is used for the current collector.
【0022】正極活物質には、目的とする電池の種類に
応じて金属酸化物、金属硫化物又は特定の高分子を用い
ることができる。As the positive electrode active material, a metal oxide, a metal sulfide, or a specific polymer can be used depending on the type of the intended battery.
【0023】例えば、リチウム一次電池を構成する場
合、正極活物質としては、TiS2、MnO2、黒鉛、F
eS2等を使用することができる。また、リチウム二次
電池を構成する場合、正極活物質としては、TiS2、
MoS2、NbSe2、V2O5等の金属硫化物あるいは酸
化物を使用することができる。また、LiMxO2(式中
Mは一種以上の遷移金属を表し、xは電池の充放電状態
によって異なり、通常0.05以上、1.10以下であ
る。)を主体とするリチウム複合酸化物等を使用するこ
とができる。このリチウム複合酸化物を構成する遷移金
属Mとしては、Co、Ni、Mn等が好ましい。このよ
うなリチウム複合酸化物の具体例としてはLiCo
O2、LiNiO2、LiNiyCo1-yO2(式中、0<
y<1である。)、LiMn2O4等を挙げることができ
る。これらのリチウム複合酸化物は、高電圧を発生で
き、エネルギー密度的に優れた正極活物質となる。特
に、大容量を得られるという点から、正極活物質として
スピネル型結晶構造を有するマンガン酸化物又はリチウ
ムマンガン複合酸化物を用いることが好ましい。正極2
には、これらの正極活物質の複数種をあわせて使用して
もよい。For example, when forming a lithium primary battery, TiS 2 , MnO 2 , graphite, F
eS 2 or the like can be used. When a lithium secondary battery is configured, TiS 2 ,
Metal sulfides or oxides such as MoS 2 , NbSe 2 , and V 2 O 5 can be used. Further, a lithium composite oxide mainly composed of LiM x O 2 (where M represents one or more transition metals and x varies depending on the charge / discharge state of the battery and is usually 0.05 or more and 1.10 or less). Things and the like can be used. As the transition metal M constituting the lithium composite oxide, Co, Ni, Mn, or the like is preferable. A specific example of such a lithium composite oxide is LiCo.
O 2 , LiNiO 2 , LiNiyCo 1-y O 2 (where 0 <
y <1. ), LiMn 2 O 4 and the like. These lithium composite oxides can generate a high voltage and become positive electrode active materials excellent in energy density. In particular, from the viewpoint that a large capacity can be obtained, it is preferable to use a manganese oxide or a lithium manganese composite oxide having a spinel crystal structure as the positive electrode active material. Positive electrode 2
, A plurality of these positive electrode active materials may be used together.
【0024】また、上記正極合剤の結着剤としては、通
常、電池の正極合剤に用いられている公知の結着剤を用
いることができるほか、上記正極合剤に導電剤等、公知
の添加剤を添加することができる。As the binder for the above-mentioned positive electrode mixture, a known binder which is usually used for a positive electrode mixture of a battery can be used. Can be added.
【0025】負極3は、負極活物質と結着剤とを含有す
る負極合剤を、集電体上に塗布、乾燥することにより作
製される。上記集電体には、例えば銅箔等の金属箔が用
いられる。The negative electrode 3 is manufactured by applying a negative electrode mixture containing a negative electrode active material and a binder on a current collector and drying the mixture. For the current collector, for example, a metal foil such as a copper foil is used.
【0026】リチウム一次電池又はリチウム二次電池を
構成する場合、負極材料としては、リチウム、リチウム
合金、又はリチウムをドープ、脱ドープできる材料を使
用することが好ましい。リチウムをドープ、脱ドープで
きる材料として、例えば、難黒鉛化炭素系材料やグラフ
ァイト系材料等の炭素材料を使用することができる。具
体的には、熱分解炭素類、コークス類、グラファイト
類、ガラス状炭素繊維、有機高分子化合物焼成体、炭素
繊維、活性炭等の炭素材料を使用することができる。上
記コークス類には、ピッチコークス、ニートルコーク
ス、石油コークス等がある。また、上記有機高分子化合
物焼成体とは、フェノール樹脂、フラン樹脂等を適当な
温度で焼成し炭素化したものを示す。When forming a lithium primary battery or a lithium secondary battery, it is preferable to use lithium, a lithium alloy, or a material capable of doping or undoping lithium as a negative electrode material. As a material that can be doped and de-doped with lithium, for example, a carbon material such as a non-graphitizable carbon-based material and a graphite-based material can be used. Specifically, carbon materials such as pyrolytic carbons, cokes, graphites, glassy carbon fibers, organic polymer compound fired bodies, carbon fibers, and activated carbon can be used. Examples of the coke include pitch coke, needle coke, and petroleum coke. The fired organic polymer compound is obtained by firing a phenol resin, a furan resin or the like at an appropriate temperature and carbonizing the same.
【0027】上述した炭素材料のほか、リチウムをドー
プ、脱ドープできる材料として、ポリアセチレン、ポリ
ピロール等の高分子やSnO2等の酸化物を使用するこ
ともできる。また、リチウム合金として、リチウム−ア
ルミニウム合金等を使用することができる。In addition to the above-mentioned carbon materials, polymers such as polyacetylene and polypyrrole and oxides such as SnO 2 can also be used as materials capable of doping and undoping lithium. Further, as the lithium alloy, a lithium-aluminum alloy or the like can be used.
【0028】また、上記負極合剤の結着剤としては、通
常リチウムイオン電池の負極合剤に用いられている公知
の結着剤を用いることができるほか、上記負極合剤に公
知の添加剤等を添加することができる。As the binder of the above-mentioned negative electrode mixture, a known binder which is usually used for a negative electrode mixture of a lithium ion battery can be used, and a known additive of the above-mentioned negative electrode mixture can be used. Etc. can be added.
【0029】セパレータ4は、正極2と負極3との間に
配され、正極2と負極3との物理的接触による短絡を防
止する。このセパレータ4としては、ポリエチレンフィ
ルム、ポリプロピレンフィルム等の微孔性ポリオレフィ
ンフィルムが用いられる。The separator 4 is disposed between the positive electrode 2 and the negative electrode 3 to prevent a short circuit due to physical contact between the positive electrode 2 and the negative electrode 3. As the separator 4, a microporous polyolefin film such as a polyethylene film and a polypropylene film is used.
【0030】非水電解液は、電解質を非水溶媒に溶解し
て調製される。The non-aqueous electrolyte is prepared by dissolving an electrolyte in a non-aqueous solvent.
【0031】電解質としては、通常、電池電解液に用い
られている公知の電解質を使用することができる。具体
的には、LiPF6、LiBF4、LiAsF6、LiC
lO4、LiCF3SO3、LiN(SO2CF3)2、Li
C(SO2CF3)3、LiAlCl4、LiSiF6等の
リチウム塩を挙げることができる。As the electrolyte, a known electrolyte usually used for a battery electrolyte can be used. Specifically, LiPF 6 , LiBF 4 , LiAsF 6 , LiC
10 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , Li
Lithium salts such as C (SO 2 CF 3 ) 3 , LiAlCl 4 , and LiSiF 6 can be given.
【0032】上記のリチウム塩の中でも特に、LiPF
6が酸化安定性の点から望ましい。しかし、LiPF6は
比較的高価な材料であり、また、大型電池ではこれを多
量に使用しなければならないことから、LiPF6に代
わる電解質の有力な候補として、LiBF4が考えられ
る。このLiBF4は、LiPF6と比較して連続充電特
性が優れるという利点がある。Among the above lithium salts, LiPF
6 is desirable from the viewpoint of oxidation stability. However, since LiPF 6 is a relatively expensive material and must be used in large quantities in large batteries, LiBF 4 is considered as a promising electrolyte alternative to LiPF 6 . This LiBF 4 has an advantage that the continuous charging characteristics are superior to LiPF 6 .
【0033】このような電解質は、非水溶媒中に0.1
mol/l〜3.0mol/lの濃度で溶解されている
ことが好ましい。さらに好ましくは、0.5mol/l
〜2.0mol/lである。Such an electrolyte is contained in a non-aqueous solvent at a concentration of 0.1%.
Preferably, it is dissolved at a concentration of from mol / l to 3.0 mol / l. More preferably, 0.5 mol / l
2.02.0 mol / l.
【0034】また、非水溶媒としては、従来より非水電
解液に使用されている種々の非水溶媒を使用することが
できる。例えば、炭酸プロピレン、炭酸エチレン等の環
状炭酸エステルや、炭酸ジエチル、炭酸ジメチル等の鎖
状炭酸エステル、プロピオン酸メチルや酪酸メチル等の
カルボン酸エステル、γ−ブチルラクトン、スルホラ
ン、2−メチルテトラヒドロフランやジメトキシエタン
等のエーテル類等を使用することができる。これらの非
水溶媒は単独で使用してもよく、複数種を混合して使用
してもよい。その中でも特に、酸化安定性の点からは、
炭酸エステルを用いることが好ましい。As the non-aqueous solvent, various non-aqueous solvents conventionally used for non-aqueous electrolytes can be used. For example, propylene carbonate, cyclic carbonates such as ethylene carbonate, chain carbonates such as diethyl carbonate and dimethyl carbonate, carboxylate esters such as methyl propionate and methyl butyrate, γ-butyl lactone, sulfolane, 2-methyltetrahydrofuran Ethers such as dimethoxyethane can be used. These non-aqueous solvents may be used alone or in combination of two or more. Among them, especially from the viewpoint of oxidation stability,
It is preferable to use a carbonate ester.
【0035】そして、本発明に係る非水電解液電池で
は、非水電解液中に、化3で表されるような有機化合物
を非水溶媒として含有している。化3で表される有機化
合物を、非水電解液中に非水溶媒として含有させること
で、充放電を繰り返すことにより引き起こされる、非水
電解液の化学反応の生成物による電極表面への被膜生成
を抑えることができる。これにより非水電解質電池1の
高温でのサイクル特性が向上する。In the non-aqueous electrolyte battery according to the present invention, the non-aqueous electrolyte contains an organic compound represented by Chemical Formula 3 as a non-aqueous solvent. The coating on the electrode surface by the product of the chemical reaction of the non-aqueous electrolyte caused by repeating the charge and discharge by including the organic compound represented by the chemical formula 3 as a non-aqueous solvent in the non-aqueous electrolyte. Generation can be suppressed. This improves the cycle characteristics of the nonaqueous electrolyte battery 1 at high temperatures.
【0036】[0036]
【化3】 Embedded image
【0037】上記化3で表される有機化合物としては、
例えば1,4−ジメトキシ−2−フルオロベンゼン、
1,3−ジメトキシ−5−クロロベンゼン、3,5−ジ
メトキシ−1−フルオロベンゼン、1,2−ジメトキシ
−4−フルオロベンゼン、1,2−ジメトキシ−4−ブ
ロモベンゼン、1,3−ジメトキシ−4−ブロモベンゼ
ン、2,5−ジメトキシ−1−ブロモベンゼン等が挙げ
られる。The organic compound represented by the above formula 3 includes:
For example, 1,4-dimethoxy-2-fluorobenzene,
1,3-dimethoxy-5-chlorobenzene, 3,5-dimethoxy-1-fluorobenzene, 1,2-dimethoxy-4-fluorobenzene, 1,2-dimethoxy-4-bromobenzene, 1,3-dimethoxy-4 -Bromobenzene, 2,5-dimethoxy-1-bromobenzene and the like.
【0038】そして、この非水電解液電池1では、上述
したような化3で表される有機化合物を、非水溶媒中に
0.5体積%以上、5体積%以下の範囲で含有されてい
る。化3で表される有機化合物の量が、非水溶媒の0.
5体積%よりも少ないと、サイクル特性を向上させる効
果が十分に得られない。また、化3で表される有機化合
物の量が、非水溶媒の5体積%よりも多いと、サイクル
特性以外の他の電池特性に好ましくない影響を与えてし
まうおそれがある。In the non-aqueous electrolyte battery 1, the organic compound represented by Chemical Formula 3 described above is contained in the non-aqueous solvent in a range of 0.5% by volume or more and 5% by volume or less. I have. The amount of the organic compound represented by Chemical formula 3 is 0.1% of the non-aqueous solvent.
If it is less than 5% by volume, the effect of improving the cycle characteristics cannot be sufficiently obtained. On the other hand, if the amount of the organic compound represented by Chemical Formula 3 is more than 5% by volume of the non-aqueous solvent, the battery characteristics other than the cycle characteristics may be adversely affected.
【0039】従って、非水電解液中に、非水溶媒として
化3で表されるような有機化合物を0.5体積%以上、
5体積%以下の範囲で含有している非水電解質電池1
は、他の電池特性を低下させることなく、高温でのサイ
クル特性に優れたものとなる。Therefore, in the non-aqueous electrolyte, 0.5% by volume or more of an organic compound represented by Chemical Formula 3 as a non-aqueous solvent is used.
Non-aqueous electrolyte battery 1 containing 5% by volume or less
Has excellent high-temperature cycle characteristics without deteriorating other battery characteristics.
【0040】そして、このような非水電解液電池1は、
次のようにして製造される。And such a non-aqueous electrolyte battery 1 is
It is manufactured as follows.
【0041】正極2は、正極活物質と結着剤とを含有す
る正極合剤を、正極集電体となる例えばアルミニウム箔
等の金属箔上に均一に塗布、乾燥して正極活物質層を形
成することにより作製される。上記正極合剤の結着剤と
しては、公知の結着剤を用いることができるほか、上記
正極合剤に公知の添加剤等を添加することができる。The positive electrode 2 is uniformly coated with a positive electrode mixture containing a positive electrode active material and a binder on a metal foil such as an aluminum foil, which serves as a positive electrode current collector, and dried to form a positive electrode active material layer. It is produced by forming. Known binders can be used as the binder of the positive electrode mixture, and known additives and the like can be added to the positive electrode mixture.
【0042】負極3は、負極活物質と結着剤とを含有す
る負極合剤を、負極集電体となる例えば銅箔等の金属箔
上に均一に塗布、乾燥して負極活物質層を形成すること
により作製される。上記負極合剤の結着剤としては、公
知の結着剤を用いることができるほか、上記負極合剤に
公知の添加剤等を添加することができる。The negative electrode 3 is formed by uniformly applying a negative electrode mixture containing a negative electrode active material and a binder on a metal foil such as a copper foil serving as a negative electrode current collector and drying the same to form a negative electrode active material layer. It is produced by forming. As the binder of the negative electrode mixture, a known binder can be used, and a known additive or the like can be added to the negative electrode mixture.
【0043】以上のようにして得られる正極2と、負極
3とを、例えば微孔性ポリプロピレンフィルムからなる
セパレータ4を介して密着させ、渦巻型に多数回巻回す
ることにより巻層体が構成される。The positive electrode 2 and the negative electrode 3 obtained as described above are brought into close contact with each other via a separator 4 made of, for example, a microporous polypropylene film, and wound in a spiral form many times to form a wound layer body. Is done.
【0044】次に、その内側にニッケルメッキを施した
鉄製の電池缶5の底部に絶縁板6を挿入し、さらに巻層
体を収納する。そして負極の集電をとるために、例えば
ニッケルからなる負極リード7の一端を負極3に圧着さ
せ、他端を電池缶5に溶接する。これにより、電池缶5
は負極3と導通をもつこととなり、非水電解液電池1の
外部負極となる。また、正極2の集電をとるために、例
えばアルミニウムからなる正極リード8の一端を正極2
に取り付け、他端を電流遮断用薄板9を介して電池蓋1
0と電気的に接続する。この電流遮断用薄板9は、電池
内圧に応じて電流を遮断するものである。これにより、
電池蓋10は正極2と導通をもつこととなり、非水電解
液電池1の外部正極となる。Next, the insulating plate 6 is inserted into the bottom of the nickel-plated iron battery can 5 and the wound body is further housed. Then, in order to collect the current of the negative electrode, one end of a negative electrode lead 7 made of, for example, nickel is pressed against the negative electrode 3 and the other end is welded to the battery can 5. Thereby, the battery can 5
Has conductivity with the negative electrode 3 and becomes an external negative electrode of the nonaqueous electrolyte battery 1. In order to collect the current of the positive electrode 2, one end of a positive electrode lead 8 made of, for example, aluminum is connected to the positive electrode 2.
To the battery cover 1 at the other end via a current interrupting thin plate 9.
0 is electrically connected. The current interrupting thin plate 9 interrupts the current in accordance with the internal pressure of the battery. This allows
The battery lid 10 has conductivity with the positive electrode 2, and serves as an external positive electrode of the nonaqueous electrolyte battery 1.
【0045】次に、この電池缶5の中に非水電解液を注
入する。この非水電解液は、電解質を非水溶媒に溶解さ
せて調製される。ここで、本発明に係る非水電解液電池
1では、非水電解液が、上記化3で表されるような有機
化合物を0.5体積%以上、5体積%以下の範囲で含有
している。Next, a non-aqueous electrolyte is injected into the battery can 5. This non-aqueous electrolyte is prepared by dissolving an electrolyte in a non-aqueous solvent. Here, in the non-aqueous electrolyte battery 1 according to the present invention, the non-aqueous electrolyte contains an organic compound represented by Chemical Formula 3 in a range of 0.5% by volume or more and 5% by volume or less. I have.
【0046】次に、アスファルトを塗布した絶縁封口ガ
スケット11を介して電池缶5をかしめることにより電
池蓋10が固定されて円筒型の非水電解液電池1が作製
される。Next, the battery lid 5 is fixed by caulking the battery can 5 via the insulating sealing gasket 11 coated with asphalt, and the cylindrical nonaqueous electrolyte battery 1 is manufactured.
【0047】なお、この非水電解液電池1においては、
図1に示すように、負極リード7及び正極リード8に接
続するセンターピン12が設けられているとともに、電
池内部の圧力が所定値よりも高くなったときに内部の気
体を抜くための安全弁装置13及び電池内部の温度上昇
を防止するためのPTC素子14が設けられている。In this non-aqueous electrolyte battery 1,
As shown in FIG. 1, a center pin 12 connected to the negative electrode lead 7 and the positive electrode lead 8 is provided, and a safety valve device for bleeding gas when the pressure inside the battery becomes higher than a predetermined value. 13 and a PTC element 14 for preventing a rise in temperature inside the battery.
【0048】なお、上述した実施の形態では、非水電解
液を用いた非水電解液電池を例に挙げて説明したが、本
発明はこれに限定されるものではなく、導電性高分子化
合物の単体あるいは混合物を含有する高分子固体電解質
を用いた固体電解質電池や、膨潤溶媒を含有するゲル状
の固体電解質を用いたゲル状電解質電池についても適用
可能である。In the above embodiment, a non-aqueous electrolyte battery using a non-aqueous electrolyte has been described as an example. However, the present invention is not limited to this. The present invention is also applicable to a solid electrolyte battery using a polymer solid electrolyte containing a simple substance or a mixture thereof, and a gel electrolyte battery using a gel solid electrolyte containing a swelling solvent.
【0049】また、上述した実施の形態では、二次電池
を例に挙げて説明したが、本発明はこれに限定されるも
のではなく、一次電池についても適用可能である。ま
た、本発明の電池は、円筒型、角型、コイン型、ボタン
型等、その形状については特に限定されることはなく、
また、薄型、大型等の種々の大きさにすることができ
る。Further, in the above-described embodiment, the description has been given by taking the secondary battery as an example. However, the present invention is not limited to this, and can be applied to a primary battery. In addition, the battery of the present invention has a cylindrical shape, a square shape, a coin shape, a button shape, and the like, and its shape is not particularly limited,
In addition, various sizes such as a thin type and a large size can be used.
【0050】[0050]
【実施例】上述したような非水電解液電池を作製し、そ
の特性を評価した。EXAMPLES A non-aqueous electrolyte battery as described above was manufactured and its characteristics were evaluated.
【0051】〈実施例1〉まず、負極を以下のようにし
て作製した。<Example 1> First, a negative electrode was manufactured as follows.
【0052】出発原料に石油ピッチを用い、不活性ガス
気流中1000℃で焼成し、ガラス状炭素に近い性質の
難黒鉛化炭素材料を得た。得られた材料についてX線回
折測定を行ったところ、(002)面の面間隔は、3.
76オングストロームであり、真比重は1.58g/c
m3であった。この難黒鉛化炭素材料を粉砕し、平均粒
径10μmの炭素材料粉末とした。Using petroleum pitch as a starting material, the mixture was calcined at 1000 ° C. in an inert gas stream to obtain a non-graphitizable carbon material having properties similar to glassy carbon. When an X-ray diffraction measurement was performed on the obtained material, the (002) plane spacing was 3.
76 Angstroms, true specific gravity 1.58 g / c
m 3 . This non-graphitizable carbon material was pulverized to obtain a carbon material powder having an average particle size of 10 μm.
【0053】次に、この炭素材料粉末を90重量部と、
結着剤としてポリフッ化ビニリデンを10重量部とを混
合して負極合剤を調製した。Next, 90 parts by weight of the carbon material powder was added.
A negative electrode mixture was prepared by mixing 10 parts by weight of polyvinylidene fluoride as a binder.
【0054】次に、得られた負極合剤をN−メチル−2
−ピロリドンに分散させてスラリー状とした。そして、
このスラリーを負極集電体である厚さ10μmの帯状の
銅箔の両面に均一に塗布、乾燥して負極活物質層を形成
した後、ロールプレス機で圧縮成型し、負極を作製し
た。Next, the obtained negative electrode mixture was mixed with N-methyl-2.
-Dispersed in pyrrolidone to form a slurry. And
This slurry was uniformly coated on both sides of a 10 μm-thick strip-shaped copper foil as a negative electrode current collector, dried to form a negative electrode active material layer, and then compression-molded with a roll press to produce a negative electrode.
【0055】次に、正極を次のように作製した。Next, a positive electrode was produced as follows.
【0056】まず、炭酸リチウム(Li2CO3)粉末と
炭酸マンガン(MnCO3)粉末とをモル比でLi/M
n=1/2となるように混合し、空気中800℃で焼成
して正極活物質となるリチウムマンガン複合酸化物を得
た。この試料を粉末X線回折により解析したところ、I
SDDカード35−782に記載のLiMn2O4とほぼ
一致した。First, lithium carbonate (Li 2 CO 3 ) powder and manganese carbonate (MnCO 3 ) powder were mixed in a molar ratio of Li / M
It mixed so that it might become n = 1/2, and baked at 800 degreeC in air, and obtained the lithium manganese composite oxide used as a positive electrode active material. When this sample was analyzed by powder X-ray diffraction, I
It almost coincided with LiMn 2 O 4 described in SDD card 35-782.
【0057】次に、得られたリチウムマンガン複合酸化
物を91重量部と、導電剤としてグラファイトを6重量
部と、結着剤としてポリフッ化ビニリデンを3重量部と
を混合して正極合剤を調製した。Next, 91 parts by weight of the obtained lithium manganese composite oxide, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture. Prepared.
【0058】次に、得られた正極合剤を、N−メチル−
2−ピロリドンに分散させてスラリーとした。そして、
このスラリーを正極集電体となる厚さ20μmのアルミ
ニウム箔の両面に均一に塗布、乾燥して正極活物質層を
形成した後、ロールプレス機で圧縮成形することにより
正極を作製した。Next, the obtained positive electrode mixture was mixed with N-methyl-
It was dispersed in 2-pyrrolidone to form a slurry. And
This slurry was uniformly coated on both sides of a 20 μm-thick aluminum foil serving as a positive electrode current collector, dried to form a positive electrode active material layer, and then compression-molded with a roll press to produce a positive electrode.
【0059】以上のようにして得られる正極と、負極と
を、厚さ25μmの微孔性ポリプロピレンフィルムから
なるセパレータを介して密着させ、渦巻型に多数回巻回
することにより巻層体を作製した。The positive electrode obtained as described above and the negative electrode are brought into close contact with each other via a separator made of a microporous polypropylene film having a thickness of 25 μm, and are wound in a spiral form many times to form a wound body. did.
【0060】次に、その内側にニッケルメッキを施した
鉄製の電池缶の底部に絶縁板を挿入し、さらに巻層体を
収納した。そして負極の集電をとるために、ニッケル製
の負極リードの一端を負極に圧着させ、他端を電池缶に
溶接した。また、正極の集電をとるために、アルミニウ
ム製の正極リードの一端を正極に取り付け、他端を電流
遮断用薄板を介して電池蓋と電気的に接続した。この電
流遮断用薄板は、電池内圧に応じて電流を遮断するもの
である。Next, an insulating plate was inserted into the bottom of a nickel-plated iron battery can, and the wound body was further housed. Then, in order to collect the current of the negative electrode, one end of a nickel negative electrode lead was pressed against the negative electrode, and the other end was welded to the battery can. Further, in order to collect the current of the positive electrode, one end of an aluminum positive electrode lead was attached to the positive electrode, and the other end was electrically connected to the battery lid via a current interrupting thin plate. The current interrupting thin plate interrupts the current according to the internal pressure of the battery.
【0061】そして、この電池缶の中に非水電解液を注
入した。この非水電解液は、プロピレンカーボネートを
49.9体積%と、炭酸ジメチルを49.9体積%と、
1,2−ジメトキシ−4−ブロモベンゼンを0.2体積
%との混合溶媒中に、電解質としてLiBF4を1.5
mol/lの濃度で溶解させて調製した。Then, a non-aqueous electrolyte was injected into the battery can. This non-aqueous electrolyte contained 49.9% by volume of propylene carbonate, 49.9% by volume of dimethyl carbonate,
In a mixed solvent of 1,2-dimethoxy-4-bromobenzene and 0.2% by volume, 1.5 parts of LiBF 4 was used as an electrolyte.
It was prepared by dissolving at a concentration of mol / l.
【0062】最後に、アスファルトを塗布した絶縁封口
ガスケットを介して電池缶をかしめることにより電池蓋
を固定して、直径が約18mm、高さが約65mmの円
筒型の非水電解液電池を作製した。Finally, the battery cover is fixed by caulking the battery can through an insulating sealing gasket coated with asphalt, and a cylindrical non-aqueous electrolyte battery having a diameter of about 18 mm and a height of about 65 mm is obtained. Produced.
【0063】〈実施例2〉非水電解液の混合溶媒の組成
を、プロピレンカーボネートを49.75体積%と、炭
酸ジメチルを49.75体積%と、1,2−ジメトキシ
−4−ブロモベンゼンを0.5体積%としたこと以外
は、実施例1と同様にして非水電解液電池を作製した。Example 2 The composition of the mixed solvent of the non-aqueous electrolyte was 49.75% by volume of propylene carbonate, 49.75% by volume of dimethyl carbonate, and 1,2-dimethoxy-4-bromobenzene. A non-aqueous electrolyte battery was produced in the same manner as in Example 1, except that the volume was 0.5% by volume.
【0064】〈実施例3〉非水電解液の混合溶媒の組成
を、プロピレンカーボネートを49体積%と、炭酸ジメ
チルを49体積%と、1,2−ジメトキシ−4−ブロモ
ベンゼンを2体積%としたこと以外は、実施例1と同様
にして非水電解液電池を作製した。Example 3 The composition of the mixed solvent of the non-aqueous electrolyte was as follows: propylene carbonate was 49% by volume, dimethyl carbonate was 49% by volume, and 1,2-dimethoxy-4-bromobenzene was 2% by volume. A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 except for the above.
【0065】〈実施例4〉非水電解液の混合溶媒の組成
を、プロピレンカーボネートを47.5体積%と、炭酸
ジメチルを47.5体積%と、1,2−ジメトキシ−4
−ブロモベンゼンを5体積%としたこと以外は、実施例
1と同様にして非水電解液電池を作製した。Example 4 The composition of the mixed solvent of the non-aqueous electrolyte was propylene carbonate 47.5% by volume, dimethyl carbonate 47.5% by volume, 1,2-dimethoxy-4
A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that 5% by volume of -bromobenzene was used.
【0066】〈実施例5〉非水電解液の混合溶媒の組成
を、プロピレンカーボネートを47体積%と、炭酸ジメ
チルを47体積%と、1,2−ジメトキシ−4−ブロモ
ベンゼンを6体積%としたこと以外は、実施例1と同様
にして非水電解液電池を作製した。Example 5 The composition of the mixed solvent of the nonaqueous electrolyte was as follows: propylene carbonate was 47% by volume, dimethyl carbonate was 47% by volume, and 1,2-dimethoxy-4-bromobenzene was 6% by volume. A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 except for the above.
【0067】〈実施例6〉非水電解液の混合溶媒の組成
を、プロピレンカーボネートを49.9体積%と、炭酸
ジメチルを49.9体積%と、1,4−ジメトキシ−2
−フルオロベンゼンを0.2体積%としたこと以外は、
実施例1と同様にして非水電解液電池を作製した。Example 6 The composition of the mixed solvent of the non-aqueous electrolyte was propylene carbonate 49.9% by volume, dimethyl carbonate 49.9% by volume, 1,4-dimethoxy-2
-Except that the fluorobenzene was 0.2% by volume
A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1.
【0068】〈実施例7〉非水電解液の混合溶媒の組成
を、プロピレンカーボネートを49.75体積%と、炭
酸ジメチルを49.75体積%と、1,4−ジメトキシ
−2−フルオロベンゼンを0.5体積%としたこと以外
は、実施例1と同様にして非水電解液電池を作製した。Example 7 The composition of the mixed solvent of the non-aqueous electrolyte was 49.75% by volume of propylene carbonate, 49.75% by volume of dimethyl carbonate, and 1,4-dimethoxy-2-fluorobenzene. A non-aqueous electrolyte battery was produced in the same manner as in Example 1, except that the volume was 0.5% by volume.
【0069】〈実施例8〉非水電解液の混合溶媒の組成
を、プロピレンカーボネートを47.5体積%と、炭酸
ジメチルを47.5体積%と、1,4−ジメトキシ−2
−フルオロベンゼンを5体積%としたこと以外は、実施
例1と同様にして非水電解液電池を作製した。Example 8 The composition of the mixed solvent of the non-aqueous electrolyte was as follows: propylene carbonate: 47.5% by volume, dimethyl carbonate: 47.5% by volume, 1,4-dimethoxy-2
A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that 5% by volume of fluorobenzene was used.
【0070】〈実施例9〉非水電解液の混合溶媒の組成
を、プロピレンカーボネートを47体積%と、炭酸ジメ
チルを47体積%と、1,4−ジメトキシ−2−フルオ
ロベンゼンを6体積%としたこと以外は、実施例1と同
様にして非水電解液電池を作製した。Example 9 The composition of the mixed solvent of the non-aqueous electrolyte was 47 volume% of propylene carbonate, 47 volume% of dimethyl carbonate, and 6 volume% of 1,4-dimethoxy-2-fluorobenzene. A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 except for the above.
【0071】〈比較例〉非水電解液の混合溶媒の組成
を、プロピレンカーボネートを50体積%と、炭酸ジメ
チルを50体積%とし、1,2−ジメトキシ−4−ブロ
モベンゼン又は1,4−ジメトキシ−2−フルオロベン
ゼンを含有させなかったこと以外は、実施例1と同様に
して非水電解液電池を作製した。Comparative Example The composition of the mixed solvent of the nonaqueous electrolyte was propylene carbonate at 50% by volume, dimethyl carbonate at 50% by volume, and 1,2-dimethoxy-4-bromobenzene or 1,4-dimethoxy. A non-aqueous electrolyte battery was produced in the same manner as in Example 1, except that -2-fluorobenzene was not contained.
【0072】以上のようにして作製された電池に対し
て、放電容量及び高温サイクル特性についての評価実験
を行った。The batteries manufactured as described above were subjected to an evaluation experiment on the discharge capacity and the high-temperature cycle characteristics.
【0073】まず、23℃の雰囲気下、各電池に対して
1Aの定電流定電圧充電を上限4.1Vまで行った。次
に、1000mAの定電流放電を終止電圧2.5Vまで
行い放電容量を求めた。First, in an atmosphere of 23 ° C., each battery was charged at a constant current and a constant voltage of 1 A to an upper limit of 4.1 V. Next, a constant current discharge of 1000 mA was performed to a final voltage of 2.5 V to determine a discharge capacity.
【0074】また、高温サイクル特性としては、60℃
の雰囲気下、各電池に対して1Aの定電流定電圧充電を
上限4.1Vまで行い、次に、1000mAの定電流放
電を終止電圧2.5Vまで行った。以上の工程を1サイ
クルとしてこれを100サイクル行い、1サイクル目及
び100サイクル目における放電容量を求めた。そし
て、1サイクル目の放電容量(C1)に対する、100
サイクル目の放電容量(C2)の比率((C2/C1)
×100)を、放電容量維持率(%)として求めた。The high-temperature cycle characteristic is 60 ° C.
Under the atmosphere described above, each battery was charged at a constant current and a constant voltage of 1 A up to an upper limit of 4.1 V, and then discharged at a constant current of 1000 mA to a final voltage of 2.5 V. The above process was defined as one cycle, and this cycle was repeated 100 times. Then, 100 with respect to the discharge capacity (C1) in the first cycle.
Ratio of discharge capacity at cycle (C2) ((C2 / C1)
× 100) was obtained as a discharge capacity retention ratio (%).
【0075】実施例1〜実施例9及び比較例の電池につ
いての、放電容量及び放電容量維持率の評価結果を表1
に示す。Table 1 shows the evaluation results of the discharge capacity and the discharge capacity retention rate of the batteries of Examples 1 to 9 and Comparative Example.
Shown in
【0076】[0076]
【表1】 [Table 1]
【0077】表1から明らかなように、電解液中に1,
2−ジメトキシ−4−ブロモベンゼン又は1,4−ジメ
トキシ−2−フルオロベンゼンを添加した実施例1〜実
施例9の電池では、電解液中に1,2−ジメトキシ−4
−ブロモベンゼン又は1,4−ジメトキシ−2−フルオ
ロベンゼンを添加しなかった比較例の電池に比べて優れ
た高温サイクル特性を有することがわかった。As is clear from Table 1, 1, 1
In the batteries of Examples 1 to 9 to which 2-dimethoxy-4-bromobenzene or 1,4-dimethoxy-2-fluorobenzene was added, 1,2-dimethoxy-4 was contained in the electrolyte.
It was found that the battery had excellent high-temperature cycle characteristics as compared with the battery of Comparative Example in which -bromobenzene or 1,4-dimethoxy-2-fluorobenzene was not added.
【0078】この効果は、1,2−ジメトキシ−4−ブ
ロモベンゼン又は1,4−ジメトキシ−2−フルオロベ
ンゼンに限られるものではなく、上記化3で表される化
合物であれば、同様の効果を得ることができる。This effect is not limited to 1,2-dimethoxy-4-bromobenzene or 1,4-dimethoxy-2-fluorobenzene, and the same effect can be obtained if the compound is represented by the above formula (3). Can be obtained.
【0079】しかし、化合物の含有量が非水溶媒中0.
5体積%に満たない実施例1や実施例6の電池では、容
量維持率を向上させる効果が十分とはいえない。また、
化合物の含有量が非水溶媒中5体積%を越える実施例5
や実施例9の電池では、容量維持率は高くなるものの、
一方で容量自体が低下してしまっている。However, the content of the compound in a non-aqueous solvent is 0.1%.
In the batteries of Example 1 and Example 6 less than 5% by volume, the effect of improving the capacity retention rate cannot be said to be sufficient. Also,
Example 5 in which the content of the compound exceeds 5% by volume in the non-aqueous solvent
And the battery of Example 9 has a higher capacity retention rate,
On the other hand, the capacity itself has decreased.
【0080】一方、化合物の含有量を非水溶媒中0.5
体積%以上、5体積%以下の範囲とした実施例2〜実施
例4、実施例7及び実施例8の電池では、何れも良好な
特性が得られている。On the other hand, the content of the compound was adjusted to 0.5 in a non-aqueous solvent.
In the batteries of Examples 2 to 4, Example 7, and Example 8 in the range of not less than 5% by volume and not more than 5% by volume, good characteristics are obtained.
【0081】従って、化合物の含有量を非水溶媒中0.
5体積%以上、5体積%以下の範囲とすることで、特に
良好な特性を有する非水電解液電池が得られることがわ
かった。Accordingly, the content of the compound in a non-aqueous solvent is adjusted to 0.1.
It has been found that a non-aqueous electrolyte battery having particularly good characteristics can be obtained by setting the content to 5% by volume or more and 5% by volume or less.
【0082】[0082]
【発明の効果】本発明では、非水電解液の非水溶媒とし
て上記化3で表される有機化合物を含有させることで、
高温下でのサイクル特性に優れた非水電解液電池を実現
することができる。According to the present invention, the organic compound represented by the above formula (3) is contained as a non-aqueous solvent in a non-aqueous electrolyte solution.
A non-aqueous electrolyte battery having excellent cycle characteristics at high temperatures can be realized.
【図1】本発明の非水電解液電池の一構成例を示す縦断
面図である。FIG. 1 is a longitudinal sectional view showing one configuration example of a nonaqueous electrolyte battery according to the present invention.
1 非水電解液電池、 2 正極、 3 負極、 4
セパレータ、 5 電池缶、 10 電池蓋1 Non-aqueous electrolyte battery, 2 Positive electrode, 3 Negative electrode, 4
Separator, 5 Battery can, 10 Battery lid
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 6/16 H01M 6/16 A Fターム(参考) 5H003 AA04 BB01 BB02 BB04 BB05 BB12 BD03 5H014 AA02 EE05 EE08 EE10 HH01 5H024 AA02 AA03 AA12 CC02 CC12 FF11 FF14 FF18 FF19 FF32 HH01 5H029 AJ05 AJ07 AK02 AK03 AK05 AK16 AL02 AL06 AL07 AL12 AL16 AM00 AM01 AM02 AM03 AM04 AM05 AM07 AM16 BJ02 BJ03 BJ04 BJ14 DJ17 HJ02 HJ07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) H01M 6/16 H01M 6/16 A F term (reference) 5H003 AA04 BB01 BB02 BB04 BB05 BB12 BD03 5H014 AA02 EE05 EE08 EE10 HH01 5H024 AA02 AA03 AA12 CC02 CC12 FF11 FF14 FF18 FF19 FF32 HH01 5H029 AJ05 AJ07 AK02 AK03 AK05 AK16 AL02 AL06 AL07 AL12 AL16 AM00 AM01 AM02 AM03 AM04 AM05 AM07 AM16 BJ02 BJ03 HJ04 BJ14 DJ14
Claims (5)
ンとの複合酸化物を正極活物質として有する正極と、 リチウム金属、リチウム合金又はリチウムをドープ・脱
ドープ可能な材料を負極活物質として有する負極と、 非水溶媒中に電解質が溶解されてなる非水電解液とを備
え、 上記非水電解液は、化1で表される有機化合物を上記非
水溶媒として含有することを特徴とする非水電解質電
池。 【化1】 1. A positive electrode having a manganese oxide or a composite oxide of lithium and manganese as a positive electrode active material; and a negative electrode having a lithium metal, a lithium alloy or a material capable of doping / dedoping lithium as a negative electrode active material. A non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte contains an organic compound represented by Chemical Formula 1 as the non-aqueous solvent. Electrolyte battery. Embedded image
有機化合物を0.5体積%以上、5体積%以下の範囲で
含有することを特徴とする請求項1記載の非水電解液電
池。2. The non-aqueous electrolyte according to claim 1, wherein the non-aqueous electrolyte contains the organic compound represented by Chemical Formula 1 in a range of 0.5% by volume or more and 5% by volume or less. Electrolyte battery.
iBF4を含有することを特徴とする請求項1記載の非
水電解液電池。3. The method according to claim 1, wherein the non-aqueous electrolyte is L
Non-aqueous electrolyte battery according to claim 1, wherein the containing iBF 4.
が、スピネル型結晶構造を有することを特徴とする請求
項1記載の非水電解液電池。4. The non-aqueous electrolyte battery according to claim 1, wherein the composite oxide of lithium and manganese has a spinel-type crystal structure.
材料が、炭素材料であることを特徴とする請求項1記載
の非水電解液電池。5. The non-aqueous electrolyte battery according to claim 1, wherein the material capable of doping / dedoping lithium is a carbon material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11233242A JP2001057239A (en) | 1999-08-19 | 1999-08-19 | Nonaqueous electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11233242A JP2001057239A (en) | 1999-08-19 | 1999-08-19 | Nonaqueous electrolyte battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001057239A true JP2001057239A (en) | 2001-02-27 |
Family
ID=16952007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11233242A Withdrawn JP2001057239A (en) | 1999-08-19 | 1999-08-19 | Nonaqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001057239A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003054998A1 (en) * | 2001-12-21 | 2003-07-03 | Hitachi Maxell, Ltd. | Non-aqueous secondary battery and portable apparatus using this |
-
1999
- 1999-08-19 JP JP11233242A patent/JP2001057239A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003054998A1 (en) * | 2001-12-21 | 2003-07-03 | Hitachi Maxell, Ltd. | Non-aqueous secondary battery and portable apparatus using this |
US7282303B2 (en) | 2001-12-21 | 2007-10-16 | Hitachi Maxell, Ltd. | Non-aqueous secondary battery and portable equipment using the same |
US7285361B2 (en) | 2001-12-21 | 2007-10-23 | Hitachi Maxell, Ltd. | Non-aqueous secondary battery and portable equipment using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1160905A2 (en) | Nonaqueous electrolyte secondary battery | |
JP2001023687A (en) | Nonaqueous electrolyte battery | |
JPH11191431A (en) | Nonaqueous electrolyte battery | |
JPH07235291A (en) | Secondary battery | |
JP2001338684A (en) | Nonaqueous electrolyte cell | |
JP2001015156A (en) | Nonaqueous electrolyte battery | |
JP4910228B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2001006730A (en) | Non-aqueous electrolyte battery | |
JPH08335465A (en) | Nonaqueous electrolytic battery | |
JP4560854B2 (en) | Nonaqueous electrolyte secondary battery | |
JPH1140193A (en) | Nonaqueous electrolyte battery | |
JP4166295B2 (en) | Non-aqueous electrolyte battery | |
JP2002075444A (en) | Nonaqueous electrolyte cell | |
JP4085481B2 (en) | battery | |
JP2002015769A (en) | Non-aqueous electrolyte battery | |
JP4145391B2 (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery | |
EP1220348A2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002117903A (en) | Nonaqueous electrolyte battery | |
JPH08180878A (en) | Lithium secondary battery | |
JP2001236990A (en) | Nonaqueous electrolyte battery | |
JP2001196073A (en) | Nonaqueous electrolyte battery | |
JP2002203600A (en) | Non-aqueous electrolytic solution secondary battery | |
JP2002252038A (en) | Non-aqueous electrolytic solution battery and its manufacturing method | |
JPH07192762A (en) | Nonaqueous electrolyte secondary battery | |
JP2004014248A (en) | Nonaqueous electrolytic solution battery and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20061107 |