[go: up one dir, main page]

JPH11191431A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH11191431A
JPH11191431A JP9361063A JP36106397A JPH11191431A JP H11191431 A JPH11191431 A JP H11191431A JP 9361063 A JP9361063 A JP 9361063A JP 36106397 A JP36106397 A JP 36106397A JP H11191431 A JPH11191431 A JP H11191431A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
group
battery
electrolyte battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9361063A
Other languages
Japanese (ja)
Other versions
JP4092757B2 (en
Inventor
Fui Sam
フイ サム
Shigeru Fujita
茂 藤田
Takeshi Segawa
健 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP36106397A priority Critical patent/JP4092757B2/en
Publication of JPH11191431A publication Critical patent/JPH11191431A/en
Application granted granted Critical
Publication of JP4092757B2 publication Critical patent/JP4092757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a nonaqueous solvent flame-resistant and to improve the cycle characteristic of a battery by providing a positive electrode, a negative electrode and a nonaqueous electrolyte with electrolyte disolved in a nonaqueous solvent, including a specific phosphate compound and a specific phosphagen compound as the nonaqueous solvent. SOLUTION: A nonaqueous solvent to be used contains a phosphate compound expressed by formula I and a phosphagen compound expressed by formula II. In the formula, R1 -R4 represent substituted or nonsubstituted cyclic aromatic groups, and A represents a nonsubstituted cyclic aromatic group or a heterocycle. In the formula, R5 , R6 represent a straight chain or branched alkyl group, a cyclic saturated alkyl group or an alkylene group, and (n) is an integer of 1-100. Flame resistance is displayed because of containing the phosphate compound in the nonaqueous solvent, and the cycle characteristic of a battery is improved since containing the phosphagen compound is contained. In this nonaqueous electrolyte battery, a wound layer body with a positive electrode, and a negative electrode wound through a separator is charged in a battery can.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解液の溶媒に非
水溶媒を用いた、非水電解液電池に関する。
The present invention relates to a non-aqueous electrolyte battery using a non-aqueous solvent as a solvent for an electrolyte.

【0002】[0002]

【従来の技術】近年、カメラ一体型ビデオテープレコー
ダ、携帯電話、携帯用コンピュータ等のポータブル電子
機器が多く登場し、その小型軽量化が図られている。そ
してこれらの電子機器のポータブル電源となる電池、特
に二次電池について、エネルギー密度を向上させるため
の研究がなされている。二次電池の中でもリチウムイオ
ン電池は、従来の水溶液系電解液を用いた二次電池であ
る鉛電池、ニッケルカドミウム電池と比較して大きなエ
ネルギー密度が得られるため、期待が大きく、研究開発
が活発に進められている。
2. Description of the Related Art In recent years, many portable electronic devices such as a camera-integrated video tape recorder, a mobile phone, and a portable computer have appeared and their size and weight have been reduced. Researches have been made to improve the energy density of batteries that are portable power sources for these electronic devices, particularly secondary batteries. Among secondary batteries, lithium-ion batteries are expected to have higher energy density than lead batteries and nickel-cadmium batteries, which are secondary batteries using conventional aqueous electrolytes. It is being advanced.

【0003】リチウム電池又はリチウムイオン電池に使
用する非水電解液としては、炭酸プロピレンや炭酸ジエ
チル等の炭酸エステル系非水溶媒に、電解質としてLi
PF6を溶解させたものが、比較的導電率も高く、電位
的にも安定である点から広く用いられている。これらの
非水電解液を用いた電池のうち、リチウムイオン二次電
池は、金属リチウムを用いた電池と比較して安全性が高
いことが知られている。
[0003] Non-aqueous electrolytes used for lithium batteries or lithium ion batteries include carbonate-based non-aqueous solvents such as propylene carbonate and diethyl carbonate, and Li
A solution in which PF 6 is dissolved is widely used because it has relatively high conductivity and is stable in potential. Among batteries using these nonaqueous electrolytes, lithium ion secondary batteries are known to have higher safety than batteries using metallic lithium.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、今後、
電池の大幅なエネルギー密度の向上や大型化を考えた場
合、一段と安全性を向上させる技術が重要となると考え
られる。ここで用いている電解液は非水系、つまり有機
溶媒系であり、可燃性である。従って、電池から電解液
が漏れ出すことはほとんどありえないが、何らかの原因
で漏液してしまった場合を考えると、難燃性であるほう
がより好ましい。
[Problems to be solved by the invention] However,
When considering a significant increase in the energy density and an increase in the size of a battery, it is considered that a technology for further improving safety is important. The electrolyte used here is a non-aqueous type, that is, an organic solvent type, and is flammable. Therefore, it is almost impossible for the electrolyte to leak from the battery. However, considering the case where the electrolyte leaks for some reason, it is more preferable that the electrolyte is flame-retardant.

【0005】そこで、電解液を難燃化するために、非水
溶媒にリン酸エステル化合物を含有させることが提案さ
れている。しかし、リン酸エステル化合物は電気化学的
に比較的安定であるにも関わらず、正極又は負極に用い
られている材料の酸化力や還元力が非常に強いために、
リン酸エステル化合物と、正極又は負極に用いられてい
る材料とが反応してしまう。この反応による反応生成物
が電極表面に被膜となって成長し、この被膜により電池
のインピーダンスが増加してしまう。その結果、特に大
きな電流で放電したときに電圧降下が大きくなり、サイ
クル特性も悪くなるという問題が生じる。特に非水溶媒
中のリン酸エステル化合物の含有量が30重量%以上の
場合にサイクル特性の劣化が大きくなるという問題があ
った。
[0005] Therefore, it has been proposed to include a phosphate compound in a non-aqueous solvent in order to make the electrolyte solution nonflammable. However, despite the fact that phosphate ester compounds are relatively stable electrochemically, the oxidizing and reducing power of the material used for the positive electrode or negative electrode is very strong,
The phosphoric ester compound reacts with the material used for the positive electrode or the negative electrode. The reaction product of this reaction grows as a film on the electrode surface, and this film increases the impedance of the battery. As a result, there is a problem that the voltage drop becomes large particularly when the battery is discharged with a large current, and the cycle characteristics deteriorate. In particular, when the content of the phosphate compound in the non-aqueous solvent is 30% by weight or more, there is a problem that the deterioration of the cycle characteristics becomes large.

【0006】本発明は、上述したような従来の実情に鑑
みて提案されたものであり、電解液に用いられる非水溶
媒を難燃化するとともに、電池のサイクル特性を向上さ
せた非水電解液電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above-mentioned conventional circumstances, and has been proposed in which a non-aqueous solvent used in an electrolyte is made nonflammable and the cycle characteristics of a battery are improved. It is intended to provide a liquid battery.

【0007】[0007]

【課題を解決するための手段】本発明の非水電解液電池
は、正極活物質を有する正極と、負極活物質を有する負
極と、非水溶媒中に電解質が溶解されてなる非水電解液
とを有し、上記非水溶媒として、一般式(1)で表され
るリン酸エステル化合物と、一般式(2)で表されるホ
スファゼン化合物とを含有することを特徴とする。
A non-aqueous electrolyte battery according to the present invention comprises a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte having an electrolyte dissolved in a non-aqueous solvent. And containing, as the nonaqueous solvent, a phosphate compound represented by the general formula (1) and a phosphazene compound represented by the general formula (2).

【0008】[0008]

【化3】 Embedded image

【0009】(式中、R1乃至R4は、置換又は非置換環
状芳香族基を表し、Aは非置換環状芳香族基又は複素環
を示す。)
(In the formula, R 1 to R 4 represent a substituted or unsubstituted cyclic aromatic group, and A represents an unsubstituted cyclic aromatic group or a heterocyclic ring.)

【0010】[0010]

【化4】 Embedded image

【0011】(式中、R5、R6は、直鎖又は分岐のアル
キル基、環状飽和アルキル基、又はアルキレン基であ
り、nは1〜100の整数である。) 上述したような本発明に係る非水電解液電池では、非水
電解液の非水溶媒が、上記一般式(1)で表されるリン
酸エステル化合物を含有しているので、非水溶媒が難燃
化される。また、この非水電解液電池は上記一般式
(2)で表されるホスファゼン化合物を含有しているの
で、電池サイクル特性が向上する。
(Wherein R 5 and R 6 are a linear or branched alkyl group, a cyclic saturated alkyl group, or an alkylene group, and n is an integer of 1 to 100). In the non-aqueous electrolyte battery according to the above, since the non-aqueous solvent of the non-aqueous electrolyte contains the phosphate compound represented by the general formula (1), the non-aqueous solvent is made flame-retardant. In addition, since the nonaqueous electrolyte battery contains the phosphazene compound represented by the general formula (2), the battery cycle characteristics are improved.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0013】図1は、本発明の非水電解液電池の一構成
例を示す縦断面図である。この非水電解液電池1は、フ
ィルム状の正極2と、フィルム状の負極3とが、セパレ
ータ4を介して密着状態で巻回された巻層体が、電池缶
5内部に装填されてなる。
FIG. 1 is a longitudinal sectional view showing one structural example of the nonaqueous electrolyte battery of the present invention. The non-aqueous electrolyte battery 1 is formed by loading a wound body in which a film-shaped positive electrode 2 and a film-shaped negative electrode 3 are wound in close contact with a separator 4 inside a battery can 5. .

【0014】上記正極2は、正極活物質と結着剤とを含
有する正極合剤を集電体上に塗布、乾燥することにより
作製される。集電体には例えばアルミニウム箔等の金属
箔が用いられる。
The positive electrode 2 is manufactured by applying a positive electrode mixture containing a positive electrode active material and a binder on a current collector and drying the mixture. A metal foil such as an aluminum foil is used for the current collector.

【0015】正極活物質には、目的とする電池の種類に
応じて金属酸化物、金属硫化物又は特定の高分子を用い
ることができる。
As the positive electrode active material, a metal oxide, a metal sulfide, or a specific polymer can be used depending on the type of the intended battery.

【0016】例えば、リチウム一次電池を構成する場
合、正極活物質としては、TiS2、MnO2、黒鉛、F
eS2等を使用することができる。また、リチウム二次
電池を構成する場合、正極活物質としては、TiS2
MoS2、NbSe2、V25等の金属硫化物あるいは酸
化物を使用することができる。また、LiMx2(式中
Mは一種以上の遷移金属を表し、xは電池の充放電状態
によって異なり、通常0.05以上、1.10以下であ
る。)を主体とするリチウム複合酸化物等を使用するこ
とができる。このリチウム複合酸化物を構成する遷移金
属Mとしては、Co、Ni、Mn等が好ましい。このよ
うなリチウム複合酸化物の具体例としてはLiCo
2、LiNiO2、LiNiyCo1-y2(式中、0<
y<1である。)、LiMn24等を挙げることができ
る。これらのリチウム複合酸化物は、高電圧を発生で
き、エネルギー密度的に優れた正極活物質となる。正極
2には、これらの正極活物質の複数種をあわせて使用し
てもよい。
For example, when a lithium primary battery is constructed, TiS 2 , MnO 2 , graphite, F
eS 2 or the like can be used. When a lithium secondary battery is configured, TiS 2 ,
Metal sulfides or oxides such as MoS 2 , NbSe 2 , and V 2 O 5 can be used. Further, a lithium composite oxide mainly composed of LiM x O 2 (where M represents one or more transition metals and x varies depending on the charge / discharge state of the battery and is usually 0.05 or more and 1.10 or less). Things and the like can be used. As the transition metal M constituting the lithium composite oxide, Co, Ni, Mn, or the like is preferable. A specific example of such a lithium composite oxide is LiCo.
O 2 , LiNiO 2 , LiNiyCo 1-y O 2 (where 0 <
y <1. ), LiMn 2 O 4 and the like. These lithium composite oxides can generate a high voltage and become positive electrode active materials excellent in energy density. The positive electrode 2 may use a plurality of these positive electrode active materials in combination.

【0017】また、上記正極合剤の結着剤としては、通
常、電池の正極合剤に用いられている公知の結着剤を用
いることができるほか、上記正極合剤に導電剤等、公知
の添加剤を添加することができる。
As the binder for the above-mentioned positive electrode mixture, a known binder which is usually used for a positive electrode mixture for a battery can be used. Can be added.

【0018】負極3は、負極活物質と結着剤とを含有す
る負極合剤を、集電体上に塗布、乾燥することにより作
製される。上記集電体には、例えば銅箔等の金属箔が用
いられる。
The negative electrode 3 is manufactured by applying a negative electrode mixture containing a negative electrode active material and a binder on a current collector and drying the mixture. For the current collector, for example, a metal foil such as a copper foil is used.

【0019】リチウム一次電池又はリチウム二次電池を
構成する場合、負極材料としては、リチウム、リチウム
合金、又はリチウムをドープ、脱ドープできる材料を使
用することが好ましい。リチウムをドープ、脱ドープで
きる材料として、例えば、難黒鉛化炭素系材料やグラフ
ァイト系材料等の炭素材料を使用することができる。具
体的には、熱分解炭素類、コークス類、黒鉛類、ガラス
状炭素繊維、有機高分子化合物焼成体、炭素繊維、活性
炭等の炭素材料を使用することができる。上記コークス
類には、ピッチコークス、ニートルコークス、石油コー
クス等がある。また、上記有機高分子化合物焼成体と
は、フェノール樹脂、フラン樹脂等を適当な温度で焼成
し炭素化したものを示す。
In forming a lithium primary battery or a lithium secondary battery, it is preferable to use lithium, a lithium alloy, or a material capable of doping or undoping lithium as a negative electrode material. As a material that can be doped and de-doped with lithium, for example, a carbon material such as a non-graphitizable carbon-based material and a graphite-based material can be used. Specifically, carbon materials such as pyrolytic carbons, cokes, graphites, glassy carbon fibers, fired organic polymer compounds, carbon fibers, and activated carbon can be used. Examples of the coke include pitch coke, needle coke, and petroleum coke. The fired organic polymer compound is obtained by firing a phenol resin, a furan resin or the like at an appropriate temperature and carbonizing the same.

【0020】上述した炭素材料のほか、リチウムをドー
プ、脱ドープできる材料として、ポリアセチレン、ポリ
ピロール等の高分子やSnO2等の酸化物を使用するこ
ともできる。また、リチウム合金として、リチウム−ア
ルミニウム合金等を使用することができる。
In addition to the above-mentioned carbon materials, polymers such as polyacetylene and polypyrrole and oxides such as SnO 2 can also be used as materials capable of doping and undoping lithium. Further, as the lithium alloy, a lithium-aluminum alloy or the like can be used.

【0021】また、上記負極合剤の結着剤としては、通
常リチウムイオン電池の負極合剤に用いられている公知
の結着剤を用いることができるほか、上記負極合剤に公
知の添加剤等を添加することができる。
As the binder for the negative electrode mixture, a known binder that is usually used for a negative electrode mixture of a lithium ion battery can be used, and a known additive for the negative electrode mixture can be used. Etc. can be added.

【0022】非水電解液は、電解質を非水溶媒に溶解し
て調製される。
The non-aqueous electrolyte is prepared by dissolving an electrolyte in a non-aqueous solvent.

【0023】電解質としては、通常、電池電解液に用い
られている公知の電解質を使用することができる。具体
的には、LiPF6、LiBF4、LiAsF6、LiC
lO4、LiCF3SO3、LiN(SO2CF32、Li
C(SO2CF33、LiAlCl4、LiSiF6等の
リチウム塩を挙げることができる。その中でも特にLi
PF6、LiBF4が酸化安定性の点から望ましい。
As the electrolyte, a known electrolyte usually used in a battery electrolyte can be used. Specifically, LiPF 6 , LiBF 4 , LiAsF 6 , LiC
10 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , Li
Lithium salts such as C (SO 2 CF 3 ) 3 , LiAlCl 4 , and LiSiF 6 can be given. Among them, especially Li
PF 6 and LiBF 4 are desirable from the viewpoint of oxidation stability.

【0024】このような電解質は、非水溶媒中に0.1
mol/l〜3.0mol/lの濃度で溶解されている
ことが好ましい。さらに好ましくは、0.5mol/l
〜2.0mol/lである。
Such an electrolyte is contained in a non-aqueous solvent at a concentration of 0.1%.
Preferably, it is dissolved at a concentration of from mol / l to 3.0 mol / l. More preferably, 0.5 mol / l
2.02.0 mol / l.

【0025】また、非水溶媒としては、従来より非水電
解液に使用されている種々の非水溶媒を使用することが
できる。例えば、炭酸プロピレン、炭酸エチレン等の環
状炭酸エステルや、炭酸ジエチル、炭酸ジメチル等の鎖
状炭酸エステル、プロピオン酸メチルや酪酸メチル等の
カルボン酸エステル、γ−ブチルラクトン、スルホラ
ン、2−メチルテトラヒドロフランやジメトキシエタン
等のエーテル類等を使用することができる。これらの非
水溶媒は単独で使用してもよく、複数種を混合して使用
してもよい。その中でも特に、酸化安定性の点からは、
炭酸エステルを用いることが好ましい。
As the non-aqueous solvent, various non-aqueous solvents conventionally used for non-aqueous electrolytes can be used. For example, propylene carbonate, cyclic carbonates such as ethylene carbonate, chain carbonates such as diethyl carbonate and dimethyl carbonate, carboxylate esters such as methyl propionate and methyl butyrate, γ-butyl lactone, sulfolane, 2-methyltetrahydrofuran Ethers such as dimethoxyethane can be used. These non-aqueous solvents may be used alone or in combination of two or more. Among them, especially from the viewpoint of oxidation stability,
It is preferable to use a carbonate ester.

【0026】また、非水溶媒は、リン酸エステル化合物
を含有していることが好ましい。非水電解液にリン酸エ
ステル化合物を含有させることで、非水溶媒を難燃化す
ることができる。
Further, the non-aqueous solvent preferably contains a phosphate compound. By making the non-aqueous electrolyte contain a phosphate compound, the non-aqueous solvent can be made flame-retardant.

【0027】このようなリン酸エステル化合物として、
一般式(1)で表される化合物を用いることが電気化学
的安定性の点から好ましい。
As such a phosphate compound,
It is preferable to use the compound represented by the general formula (1) from the viewpoint of electrochemical stability.

【0028】[0028]

【化5】 Embedded image

【0029】(式中、R1乃至R4は、フェニル基、ベン
ジル基、オルト,メタ又はパラ位のトルオイル基又はキ
シリール基であり、Aは、オルト,メタ,又はパラ位の
置換フェニル基又は置換ビフェニル基、非置換フェニル
基、非置換ビフェニル基、又はビスフェノールAであ
る。) リン酸エステル化合物としては、芳香族縮合リン酸エス
テルが好ましく、例えば、R1乃至R4が同じ置換基であ
る対称型芳香族縮合リン酸エステル、R1乃至R4が異な
る置換基である非対称型芳香族縮合リン酸エステル、又
はハロゲン置換した芳香族縮合リン酸エステル等が挙げ
られるが、これらのみに限定されるものではない。
Wherein R 1 to R 4 are a phenyl group, a benzyl group, a toluoyl group or an xylyl group at the ortho, meta or para position, and A is an ortho, meta or para substituted phenyl group or It is a substituted biphenyl group, an unsubstituted phenyl group, an unsubstituted biphenyl group, or bisphenol A.) As the phosphoric ester compound, an aromatic condensed phosphoric ester is preferable, and for example, R 1 to R 4 are the same substituent. Examples include, but are not limited to, symmetric aromatic condensed phosphate esters, asymmetric aromatic condensed phosphate esters in which R 1 to R 4 are different substituents, or halogen-substituted aromatic condensed phosphate esters. Not something.

【0030】これらのリン酸エステル化合物は、1種又
は2種以上を混合して用いることができる。また、これ
らのリン酸エステル化合物は、1種類を単独で用いても
よいし、複数種を混合して用いてもよい。
These phosphoric ester compounds can be used alone or in combination of two or more. In addition, one of these phosphate compounds may be used alone, or a plurality of them may be used as a mixture.

【0031】非水溶媒は、一般式(1)で表されるリン
酸エステル化合物を、0.5重量%〜20重量%の割合
で含有することが好ましい。リン酸エステル化合物が少
なすぎると、非水溶媒の難燃性を高める効果が十分では
ない。また、リン酸エステル化合物が多すぎると、非水
電解液電池1の電池特性が低下してしまう。従って、リ
ン酸エステル化合物の含有量を0.5重量%〜20重量
%とすることで、非水電解液電池1の電池特性を低下さ
せることなく、非水溶媒の難燃性を高めることができ
る。
The non-aqueous solvent preferably contains the phosphate compound represented by the general formula (1) at a ratio of 0.5% by weight to 20% by weight. If the amount of the phosphate ester compound is too small, the effect of enhancing the flame retardancy of the non-aqueous solvent is not sufficient. On the other hand, if the amount of the phosphate ester compound is too large, the battery characteristics of the non-aqueous electrolyte battery 1 will deteriorate. Therefore, by setting the content of the phosphate compound to 0.5% by weight to 20% by weight, the flame retardancy of the non-aqueous solvent can be increased without lowering the battery characteristics of the non-aqueous electrolyte battery 1. it can.

【0032】しかしながら、リン酸エステル化合物は電
気化学的に比較的安定であるにも関わらず、正極2又は
負極3に用いられている材料の酸化力や還元力が非常に
強いために、リン酸エステル化合物と、正極2又は負極
3に用いられている材料とが反応してしまう。この反応
による反応生成物が電極表面に被膜となって成長し、こ
の被膜により電池のインピーダンスが増加し、電池のサ
イクル特性が悪化してしまうという問題があった。
However, although the phosphoric ester compound is relatively stable electrochemically, the oxidizing power and the reducing power of the material used for the positive electrode 2 or the negative electrode 3 are very strong. The ester compound reacts with the material used for the positive electrode 2 or the negative electrode 3. The reaction product of this reaction grows as a film on the electrode surface, and this film increases the impedance of the battery, thereby deteriorating the cycle characteristics of the battery.

【0033】そこで、この非水電解液電池1では、非水
溶媒に一般式(2)で表されるホスファゼン化合物を含
有させている。リン酸エステル化合物を含有する非水電
解液に、一般式(1)で示されるホスファゼン化合物を
含有させることで、電極表面に安定な被膜を生成し、被
膜成長を抑えることができる。
Therefore, in the non-aqueous electrolyte battery 1, the phosphazene compound represented by the general formula (2) is contained in the non-aqueous solvent. By adding the phosphazene compound represented by the general formula (1) to the non-aqueous electrolyte containing the phosphate ester compound, a stable film can be formed on the electrode surface and the film growth can be suppressed.

【0034】[0034]

【化6】 Embedded image

【0035】(式中、R5、R6は、直鎖又は分岐のアル
キル基、環状飽和アルキル基、又はアルキレン基であ
り、nは1〜100の整数である。) 上記ホスファゼン化合物は、あまり分子量が大きくなる
と電解液の粘度が増加し、導電率が下がるので、一般式
(2)において、R5とR6とは同一又は異なっていても
よく、−CH3、−CH2CH3、−CH2CH2CH3、−
CH(CH32、シクロヘキシルなどの炭素数n=1〜
10の群から選択されるアルキル基であることが好まし
い。また上記置換基又は側鎖基中の水素をフッ素、ホウ
素などハロゲン元素で置換することも可能である。
(Wherein, R 5 and R 6 are a linear or branched alkyl group, a cyclic saturated alkyl group, or an alkylene group, and n is an integer of 1 to 100). As the molecular weight increases, the viscosity of the electrolytic solution increases, and the conductivity decreases. Therefore, in the general formula (2), R 5 and R 6 may be the same or different, and —CH 3 , —CH 2 CH 3 , -CH 2 CH 2 CH 3, -
The number of carbon atoms n = 1 to 1 such as CH (CH 3 ) 2 and cyclohexyl
It is preferably an alkyl group selected from the group of 10. Further, it is also possible to replace hydrogen in the above substituents or side chain groups with a halogen element such as fluorine or boron.

【0036】これらのホスファゼン化合物として具体的
には、例えばポリビスプロピルオキシホスファゼン等が
挙げられるがこれに限定されるものではない。また、こ
れらのホスファゼン化合物は、1種類を単独で用いても
よいし、複数種を混合して用いてもよい。
Specific examples of the phosphazene compound include, but are not limited to, polybispropyloxyphosphazene. In addition, one of these phosphazene compounds may be used alone, or a plurality thereof may be used as a mixture.

【0037】非水溶媒は、一般式(2)で表されるホス
ファゼン化合物を、0.5重量%〜20重量%の割合で
含有することが好ましい。ホスファゼン化合物が少なす
ぎると、電極表面の被膜成長を抑えて、非水電解液電池
1のサイクル特性を向上させる効果が十分ではない。ま
た、ホスファゼン化合物が多すぎると、非水電解液の粘
度が増加し、導電率が低下してしまう。従って、ホスフ
ァゼン化合物の含有量を0.5重量%〜20重量%とす
ることで、非水電解液の導電率を低下させることなく、
非水電解液電池1のサイクル特性を向上させることがで
きる。
The non-aqueous solvent preferably contains the phosphazene compound represented by the general formula (2) at a ratio of 0.5% by weight to 20% by weight. If the amount of the phosphazene compound is too small, the effect of suppressing the film growth on the electrode surface and improving the cycle characteristics of the nonaqueous electrolyte battery 1 is not sufficient. On the other hand, if the amount of the phosphazene compound is too large, the viscosity of the non-aqueous electrolyte increases, and the conductivity decreases. Therefore, by setting the content of the phosphazene compound to 0.5% by weight to 20% by weight, the electric conductivity of the non-aqueous electrolytic solution is not reduced.
The cycle characteristics of the nonaqueous electrolyte battery 1 can be improved.

【0038】このような非水電解液電池1は、次のよう
にして製造される。
Such a non-aqueous electrolyte battery 1 is manufactured as follows.

【0039】正極2は、正極活物質と結着剤とを含有す
る正極合剤を、正極集電体となる例えばアルミニウム箔
等の金属箔上に均一に塗布、乾燥して正極活物質層を形
成することにより作製される。上記正極合剤の結着剤と
しては、公知の結着剤を用いることができるほか、上記
正極合剤に公知の添加剤等を添加することができる。
The positive electrode 2 is uniformly coated with a positive electrode mixture containing a positive electrode active material and a binder on a metal foil such as an aluminum foil, which serves as a positive electrode current collector, and dried to form a positive electrode active material layer. It is produced by forming. Known binders can be used as the binder of the positive electrode mixture, and known additives and the like can be added to the positive electrode mixture.

【0040】負極3は、負極活物質と結着剤とを含有す
る負極合剤を、負極集電体となる例えば銅箔等の金属箔
上に均一に塗布、乾燥して負極活物質層を形成すること
により作製される。上記負極合剤の結着剤としては、公
知の結着剤を用いることができるほか、上記負極合剤に
公知の添加剤等を添加することができる。
The negative electrode 3 is formed by uniformly applying a negative electrode mixture containing a negative electrode active material and a binder on a metal foil such as a copper foil serving as a negative electrode current collector and drying the same to form a negative electrode active material layer. It is produced by forming. As the binder of the negative electrode mixture, a known binder can be used, and a known additive or the like can be added to the negative electrode mixture.

【0041】以上のようにして得られる正極2と、負極
3とを、例えば微孔性ポリプロピレンフィルムからなる
セパレータ4を介して密着させ、渦巻型に多数回巻回す
ることにより巻層体が構成される。
The positive electrode 2 and the negative electrode 3 obtained as described above are brought into close contact with each other via a separator 4 made of, for example, a microporous polypropylene film, and wound in a spiral form many times to form a wound layer body. Is done.

【0042】次に、その内側にニッケルメッキを施した
鉄製の電池缶5の底部に絶縁板6を挿入し、さらに巻層
体を収納した。そして負極の集電をとるために、例えば
ニッケルからなる負極リード7の一端を負極3に圧着さ
せ、他端を電池缶5に溶接する。これにより、電池缶5
は負極3と導通をもつこととなり、非水電解液電池1の
外部負極となる。また、正極2の集電をとるために、例
えばアルミニウムからなる正極リード8の一端を正極2
に取り付け、他端を電流遮断用薄板9を介して電池蓋1
0と電気的に接続する。この電流遮断用薄板9は、電池
内圧に応じて電流を遮断するものである。これにより、
電池蓋10は正極2と導通をもつこととなり、非水電解
液電池1の外部正極となる。
Next, an insulating plate 6 was inserted into the bottom of an iron battery can 5 having nickel plating on the inside thereof, and the wound body was further housed. Then, in order to collect the current of the negative electrode, one end of a negative electrode lead 7 made of, for example, nickel is pressed against the negative electrode 3 and the other end is welded to the battery can 5. Thereby, the battery can 5
Has conductivity with the negative electrode 3 and becomes an external negative electrode of the nonaqueous electrolyte battery 1. In order to collect the current of the positive electrode 2, one end of a positive electrode lead 8 made of, for example, aluminum is connected to the positive electrode 2.
To the battery cover 1 at the other end via a current interrupting thin plate 9.
0 is electrically connected. The current interrupting thin plate 9 interrupts the current in accordance with the internal pressure of the battery. This allows
The battery lid 10 has conductivity with the positive electrode 2, and serves as an external positive electrode of the nonaqueous electrolyte battery 1.

【0043】次に、この電池缶5の中に非水電解液を注
入する。この非水電解液は、電解質を非水溶媒に溶解さ
せて調製される。
Next, a non-aqueous electrolyte is injected into the battery can 5. This non-aqueous electrolyte is prepared by dissolving an electrolyte in a non-aqueous solvent.

【0044】次に、アスファルトを塗布した絶縁封口ガ
スケット11を介して電池缶5をかしめることにより電
池蓋10が固定されて円筒型の非水電解液電池1が作製
される。
Next, the battery lid 5 is fixed by caulking the battery can 5 through the insulating sealing gasket 11 coated with asphalt, and the cylindrical nonaqueous electrolyte battery 1 is manufactured.

【0045】なお、この非水電解液電池1においては、
図1に示すように、負極リード7及び正極リード8に接
続するセンターピン12が設けられているとともに、電
池内部の圧力が所定値よりも高くなったときに内部の気
体を抜くための安全弁装置13及び電池内部の温度上昇
を防止するためのPTC素子14が設けられている。
In this non-aqueous electrolyte battery 1,
As shown in FIG. 1, a center pin 12 connected to the negative electrode lead 7 and the positive electrode lead 8 is provided, and a safety valve device for bleeding gas when the pressure inside the battery becomes higher than a predetermined value. 13 and a PTC element 14 for preventing a rise in temperature inside the battery.

【0046】本発明の非水電解液電池は、円筒型、角
型、コイン型、ボタン型等、その形状については特に限
定されることはなく、また、薄型、大型等の種々の大き
さにすることができる。
The shape of the non-aqueous electrolyte battery of the present invention is not particularly limited, such as a cylindrical type, a square type, a coin type, a button type and the like. can do.

【0047】[0047]

【実施例】上述したような非水電解液電池を作製した。EXAMPLE A non-aqueous electrolyte battery as described above was manufactured.

【0048】〈実施例1〉まず、負極を以下のようにし
て作製した。
Example 1 First, a negative electrode was manufactured as follows.

【0049】まず、出発原料に石油ピッチを用い、不活
性ガス気流中1000℃で焼成し、ガラス状炭素に近い
性質の難黒鉛化炭素材料を得た。この難黒鉛化炭素材料
についてX線回折測定を行ったところ、(002)面の
面間隔は3.76オングストロームであり、また、真比
重は1.58g/cm3であった。
First, a petroleum pitch was used as a starting material and calcined at 1000 ° C. in an inert gas stream to obtain a non-graphitizable carbon material having properties similar to glassy carbon. When an X-ray diffraction measurement was performed on the non-graphitizable carbon material, the (002) plane spacing was 3.76 Å, and the true specific gravity was 1.58 g / cm 3 .

【0050】次に、得られた難黒鉛化炭素材料を粉砕
し、平均粒径10μmの炭素材料粉末とした。この炭素
材料粉末を90重量部と、結着剤を10重量部とを混合
して負極合剤を調製した。ここで、結着剤にはポリフッ
化ビニリデンを用いた。
Next, the obtained non-graphitizable carbon material was pulverized to obtain a carbon material powder having an average particle diameter of 10 μm. 90 parts by weight of the carbon material powder and 10 parts by weight of the binder were mixed to prepare a negative electrode mixture. Here, polyvinylidene fluoride was used as the binder.

【0051】最後に、負極合剤をN−メチル−2−ピロ
リドンに分散させてスラリー状とした。そして、このス
ラリーを負極集電体である厚さ10μmの帯状の銅箔の
両面に均一に塗布、乾燥して負極活物質層を形成した
後、ロールプレス機で圧縮成型し、負極を作製した。
Finally, the negative electrode mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry. Then, this slurry was uniformly applied to both surfaces of a 10 μm-thick strip-shaped copper foil as a negative electrode current collector, dried to form a negative electrode active material layer, and then compression-molded with a roll press to prepare a negative electrode. .

【0052】次に、正極を次のように作製した。Next, a positive electrode was produced as follows.

【0053】まず、炭酸リチウムと炭酸コバルトとを
0.5mol対1molの比率で混合し、空気中900
℃で5時間焼成して正極活物質となるLiCoO2を得
た。
First, lithium carbonate and cobalt carbonate were mixed at a ratio of 0.5 mol to 1 mol, and 900
Calcination was performed at 5 ° C. for 5 hours to obtain LiCoO 2 serving as a positive electrode active material.

【0054】次に、得られたLiCoO2を91重量部
と、導電剤を6重量部と、結着剤を10重量部とを混合
して正極合剤を調製した。ここで、導電剤には黒鉛を用
い、結着剤にはビニリデンフルオライドとヘキサフルオ
ロプロピレンとの共重合体を用いた。
Next, 91 parts by weight of the obtained LiCoO 2 , 6 parts by weight of a conductive agent, and 10 parts by weight of a binder were mixed to prepare a positive electrode mixture. Here, graphite was used as the conductive agent, and a copolymer of vinylidene fluoride and hexafluoropropylene was used as the binder.

【0055】最後に、正極合剤を、N−メチル−2−ピ
ロリドンに分散させてスラリーとした。そして、このス
ラリーを正極集電体となる厚さ20μmのアルミニウム
箔の片面に均一に塗布、乾燥して正極活物質層を形成し
た後、ロールプレス機で圧縮成形することにより正極を
作製した。
Finally, the positive electrode mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry. Then, this slurry was uniformly applied on one surface of a 20-μm-thick aluminum foil serving as a positive electrode current collector, dried to form a positive electrode active material layer, and then compression-molded with a roll press to produce a positive electrode.

【0056】以上のようにして得られる正極と、負極と
を、厚さ25μmの微孔性ポリプロピレンフィルムから
なるセパレータを介して密着させ、渦巻型に多数回巻回
することにより巻層体を作製した。
The positive electrode obtained as described above and the negative electrode are brought into close contact with each other via a separator made of a microporous polypropylene film having a thickness of 25 μm, and wound in a spiral form many times to produce a wound layer body. did.

【0057】次に、その内側にニッケルメッキを施した
鉄製の電池缶の底部に絶縁板を挿入し、さらに巻層体を
収納した。そして負極の集電をとるために、ニッケル製
の負極リードの一端を負極に圧着させ、他端を電池缶に
溶接した。また、正極の集電をとるために、アルミニウ
ム製の正極リードの一端を正極に取り付け、他端を電流
遮断用薄板を介して電池蓋と電気的に接続した。この電
流遮断用薄板は、電池内圧に応じて電流を遮断するもの
である。
Next, an insulating plate was inserted into the bottom of the nickel-plated iron battery can, and the wound body was further housed. Then, in order to collect the current of the negative electrode, one end of a nickel negative electrode lead was pressed against the negative electrode, and the other end was welded to the battery can. Further, in order to collect the current of the positive electrode, one end of an aluminum positive electrode lead was attached to the positive electrode, and the other end was electrically connected to the battery lid via a current interrupting thin plate. The current interrupting thin plate interrupts the current according to the internal pressure of the battery.

【0058】そして、この電池缶の中に非水電解液を注
入した。この非水電解液は、炭酸プロピレン(以下、P
Cと称する。)を40重量%と、炭酸ジメチル(以下、
DMCと称する。)を40重量%と、リン酸エステル化
合物を10重量部と、ホスファゼン化合物を10重量部
とを混合することにより作製した。
Then, a non-aqueous electrolyte was injected into the battery can. This non-aqueous electrolyte is made of propylene carbonate (hereinafter referred to as P
Called C. ) And 40% by weight of dimethyl carbonate (hereinafter, referred to as dimethyl carbonate).
Called DMC. ), 40 parts by weight of a phosphoric acid ester compound, and 10 parts by weight of a phosphazene compound.

【0059】ここで、上記リン酸エステル化合物には、
一般式(1)のR1乃至R4及びAが表1に示されるよう
な置換基である化合物1を用いた。
Here, the phosphoric ester compound includes:
Compound 1 in which R 1 to R 4 and A in the general formula (1) are substituents as shown in Table 1 was used.

【0060】[0060]

【化7】 Embedded image

【0061】また、上記ホスファゼン化合物には、一般
式(2)において、R5及びR6が−CH2CH2CH3
nが15〜20の整数である、大塚化学社製のSPR1
00を用いた。
In the phosphazene compound, R 5 and R 6 in the general formula (2) are each —CH 2 CH 2 CH 3 ,
SPR1 manufactured by Otsuka Chemical Co., where n is an integer of 15 to 20
00 was used.

【0062】[0062]

【化8】 Embedded image

【0063】最後に、アスファルトを塗布した絶縁封口
ガスケットを介して電池缶をかしめることにより電池蓋
を固定して、直径が約18mm、高さが約65mmの円
筒型の非水電解液電池を作製した。
Finally, the battery lid is fixed by caulking the battery can through an insulating sealing gasket coated with asphalt, and a cylindrical non-aqueous electrolyte battery having a diameter of about 18 mm and a height of about 65 mm is obtained. Produced.

【0064】〈実施例2〉ホスファゼン化合物の量を5
重量%とし、リン酸エステル化合物の量を15重量%と
したこと以外は、実施例1と同様にして非水電解液電池
を作製した。
Example 2 The amount of the phosphazene compound was 5
A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 except that the amount of the phosphoric acid ester compound was changed to 15% by weight.

【0065】〈実施例3〉ホスファゼン化合物の量を1
重量%とし、リン酸エステル化合物の量を19重量%と
し、リン酸エステル化合物として、一般式(1)のR1
乃至R4及びAが表1に示されるような置換基である化
合物2を用いたこと以外は、実施例1と同様にして非水
電解液電池を作製した。
Example 3 When the amount of the phosphazene compound was 1
And weight%, the amount of phosphoric acid ester compound and 19% by weight, R 1 as phosphoric acid ester compound of the general formula (1)
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that Compound 2 in which R 4 and A were substituents as shown in Table 1 was used.

【0066】〈実施例4〉ホスファゼン化合物の量を5
重量%とし、リン酸エステル化合物の量を15重量%と
し、リン酸エステル化合物として、一般式(1)のR1
乃至R4及びAが表1に示されるような置換基である化
合物3を用いたこと以外は、実施例1と同様にして非水
電解液電池を作製した。
Example 4 The amount of the phosphazene compound was adjusted to 5
% By weight, the amount of the phosphate compound was 15% by weight, and R 1 of the general formula (1) was used as the phosphate compound.
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that Compound 3 in which R 4 and A were substituents as shown in Table 1 was used.

【0067】〈実施例5〉リン酸エステル化合物とし
て、一般式(1)のR1乃至R4及びAが表1に示される
ような置換基である化合物5を用いたこと以外は、実施
例1と同様にして非水電解液電池を作製した。
Example 5 The same procedure as in Example 5 was carried out except that compound 5 in which R 1 to R 4 and A in the formula (1) were substituents as shown in Table 1 was used as the phosphate compound. In the same manner as in Example 1, a non-aqueous electrolyte battery was manufactured.

【0068】〈実施例6〉リン酸エステル化合物とし
て、一般式(1)のR1乃至R4及びAが表1に示される
ような置換基である化合物6を用いたこと以外は、実施
例1と同様にして非水電解液電池を作製した。
Example 6 Example 6 was repeated except that compound 6 in which R 1 to R 4 and A in the general formula (1) were substituents as shown in Table 1 was used as the phosphate compound. In the same manner as in Example 1, a non-aqueous electrolyte battery was manufactured.

【0069】〈実施例7〉リン酸エステル化合物とし
て、一般式(1)のR1乃至R4及びAが表2に示される
ような置換基である化合物7を用いたこと以外は、実施
例1と同様にして非水電解液電池を作製した。
Example 7 Example 7 was repeated except that compound 7 in which R 1 to R 4 and A in the general formula (1) were substituents as shown in Table 2 was used as the phosphate compound. In the same manner as in Example 1, a non-aqueous electrolyte battery was manufactured.

【0070】〈実施例8〉リン酸エステル化合物とし
て、一般式(1)のR1乃至R4及びAが表2に示される
ような置換基である化合物8を用いたこと以外は、実施
例1と同様にして非水電解液電池を作製した。
Example 8 The same procedure as in Example 8 was carried out except that compound 8 in which R 1 to R 4 and A in formula (1) were substituents as shown in Table 2 was used as the phosphate compound. In the same manner as in Example 1, a non-aqueous electrolyte battery was manufactured.

【0071】〈実施例9〉リン酸エステル化合物とし
て、一般式(1)のR1乃至R4及びAが表2に示される
ような置換基である化合物9を用いたこと以外は、実施
例1と同様にして非水電解液電池を作製した。
Example 9 The same procedures as in Example 9 were carried out except that compound 9 in which R 1 to R 4 and A in formula (1) were substituents as shown in Table 2 was used as the phosphate compound. In the same manner as in Example 1, a non-aqueous electrolyte battery was manufactured.

【0072】〈実施例10〉リン酸エステル化合物とし
て、一般式(1)のR1乃至R4及びAが表2に示される
ような置換基である化合物10を用いたこと以外は、実
施例1と同様にして非水電解液電池を作製した。
Example 10 The same procedure as in Example 10 was carried out except that compound 10 in which R 1 to R 4 and A in the formula (1) were substituents as shown in Table 2 was used as the phosphate compound. In the same manner as in Example 1, a non-aqueous electrolyte battery was manufactured.

【0073】〈実施例11〉リン酸エステル化合物とし
て、一般式(1)のR1乃至R4及びAが表2に示される
ような置換基である化合物11を用いたこと以外は、実
施例1と同様にして非水電解液電池を作製した。
Example 11 The same procedures as in Example 11 were carried out except that compound 11 in which R 1 to R 4 and A in formula (1) were substituents as shown in Table 2 was used as the phosphate compound. In the same manner as in Example 1, a non-aqueous electrolyte battery was manufactured.

【0074】〈実施例12〉リン酸エステル化合物とし
て、一般式(1)のR1乃至R4及びAが表2に示される
ような置換基である化合物12を用いたこと以外は、実
施例1と同様にして非水電解液電池を作製した。
Example 12 Example 12 was repeated except that compound 12 in which R 1 to R 4 and A in the general formula (1) were substituents as shown in Table 2 was used as the phosphate compound. In the same manner as in Example 1, a non-aqueous electrolyte battery was manufactured.

【0075】〈実施例13〉リン酸エステル化合物とし
て、一般式(1)のR1乃至R4及びAが表3に示される
ような置換基である化合物13を用いたこと以外は、実
施例1と同様にして非水電解液電池を作製した。
Example 13 The procedure of Example 13 was repeated except that R 1 to R 4 in the general formula (1) and Compound 13 in which A was a substituent as shown in Table 3 were used as the phosphate compound. In the same manner as in Example 1, a non-aqueous electrolyte battery was manufactured.

【0076】〈実施例14〉リン酸エステル化合物とし
て、一般式(1)のR1乃至R4及びAが表3に示される
ような置換基である化合物14を用いたこと以外は、実
施例1と同様にして非水電解液電池を作製した。
Example 14 The same procedure as in Example 14 was carried out except that as the phosphoric ester compound, compound 14 in which R 1 to R 4 and A in the general formula (1) were substituents as shown in Table 3 was used. In the same manner as in Example 1, a non-aqueous electrolyte battery was manufactured.

【0077】〈実施例15〉ホスファゼン化合物の量を
15重量%とし、リン酸エステル化合物の量を5重量%
とし、リン酸エステル化合物として、一般式(1)のR
1乃至R4及びAが表1に示されるような置換基である化
合物1を用いたこと以外は、実施例1と同様にして非水
電解液電池を作製した。
Example 15 The amount of the phosphazene compound was 15% by weight and the amount of the phosphate compound was 5% by weight.
And a phosphoric ester compound represented by R of the general formula (1)
1 to R 4 and A, except that the compound 1 is a substituted group, as indicated in Table 1, it was used to fabricate a non-aqueous electrolyte battery in the same manner as in Example 1.

【0078】〈実施例16〉ホスファゼン化合物の量を
5重量%とし、リン酸エステル化合物の量を15重量%
とし、リン酸エステル化合物として、一般式(1)のR
1乃至R4及びAが表1に示されるような置換基である化
合物3を用いたこと以外は、実施例1と同様にして非水
電解液電池を作製した。
Example 16 The amount of the phosphazene compound was 5% by weight, and the amount of the phosphate compound was 15% by weight.
And a phosphoric ester compound represented by R of the general formula (1)
1 to R 4 and A, except that the compound 3 is a substituted group, as indicated in Table 1, it was used to fabricate a non-aqueous electrolyte battery in the same manner as in Example 1.

【0079】〈実施例17〉ホスファゼン化合物の量を
5重量%とし、リン酸エステル化合物として、一般式
(1)のR1乃至R4及びAが表1に示されるような置換
基である化合物1を5重量%と、一般式(1)のR1
至R4及びAが表1に示されるような置換基である化合
物3を10重量%とを用いたこと以外は、実施例1と同
様にして非水電解液電池を作製した。
Example 17 The amount of the phosphazene compound was 5% by weight, and as the phosphate compound, a compound in which R 1 to R 4 and A in the general formula (1) are substituents as shown in Table 1. 1 and 5% by weight, and 10% by weight of compound 3 in which R 1 to R 4 and A in the general formula (1) are substituents as shown in Table 1. Similarly, a non-aqueous electrolyte battery was manufactured.

【0080】〈実施例18〉ホスファゼン化合物の量を
5重量%とし、リン酸エステル化合物として、一般式
(1)のR1乃至R4及びAが表1に示されるような置換
基である化合物1を10重量%と、一般式(1)のR1
乃至R4及びAが表1に示されるような置換基である化
合物4を5重量%とを用いたこと以外は、実施例1と同
様にして非水電解液電池を作製した。
Example 18 The amount of the phosphazene compound was 5% by weight, and as the phosphate compound, a compound in which R 1 to R 4 and A in the general formula (1) are substituents as shown in Table 1. 1 and 10% by weight of R 1 in the general formula (1).
A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 except that 5 wt% of Compound 4 in which R 4 and A were substituents as shown in Table 1.

【0081】〈実施例19〉ホスファゼン化合物の量を
5重量%とし、リン酸エステル化合物として、一般式
(1)のR1乃至R4及びAが表1に示されるような置換
基である化合物1を10重量%と、一般式(1)のR1
乃至R4及びAが表1に示されるような置換基である化
合物5を5重量%とを用いたこと以外は、実施例1と同
様にして非水電解液電池を作製した。
EXAMPLE 19 The amount of the phosphazene compound was 5% by weight, and the phosphoric ester compound was a compound in which R 1 to R 4 and A in the general formula (1) are substituents as shown in Table 1. 1 and 10% by weight of R 1 in the general formula (1).
A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 except that 5 wt% of Compound 5 in which R 4 and A were substituents as shown in Table 1.

【0082】〈実施例20〉ホスファゼン化合物の量を
5重量%とし、リン酸エステル化合物として、一般式
(1)のR1乃至R4及びAが表1に示されるような置換
基である化合物3を5重量%と、一般式(1)のR1
至R4及びAが表1に示されるような置換基である化合
物5を10重量%とを用いたこと以外は、実施例1と同
様にして非水電解液電池を作製した。
Example 20 The amount of the phosphazene compound was 5% by weight, and as the phosphate compound, a compound in which R 1 to R 4 and A in the general formula (1) are substituents as shown in Table 1. 3 and 5% by weight, and 10% by weight of compound 5 in which R 1 to R 4 and A of the general formula (1) are substituents as shown in Table 1. Similarly, a non-aqueous electrolyte battery was manufactured.

【0083】〈比較例1〉ホスファゼン化合物の量を2
0重量%とし、リン酸エステル化合物を用いなかったこ
と以外は、実施例1と同様にして非水電解液電池を作製
した。
Comparative Example 1 The amount of the phosphazene compound was 2
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the content was 0% by weight and no phosphate compound was used.

【0084】〈比較例2〉プロピレンカーボネートの量
を50重量%とし、ジメチルカーボネートの量を50重
量%とし、ホスファゼン化合物及びリン酸エステル化合
物を用いなかったこと以外は、実施例1と同様にして非
水電解液電池を作製した。
Comparative Example 2 The procedure of Example 1 was repeated except that the amount of propylene carbonate was 50% by weight, the amount of dimethyl carbonate was 50% by weight, and the phosphazene compound and the phosphate compound were not used. A non-aqueous electrolyte battery was manufactured.

【0085】ここで、上述した各実施例で用いられた、
一般式(1)で表されるリン酸エステル化合物の置換基
1乃至R4及びAの具体的な例を表1〜表3に示す。
Here, in each of the above-described embodiments,
Tables 1 to 3 show specific examples of the substituents R 1 to R 4 and A of the phosphate compound represented by the general formula (1).

【0086】[0086]

【表1】 [Table 1]

【0087】[0087]

【表2】 [Table 2]

【0088】[0088]

【表3】 [Table 3]

【0089】以上のようにして作製された各非水電解液
電池について、初期放電容量、100サイクル後の放電
容量維持率及び温度依存性を評価した。
For each of the non-aqueous electrolyte batteries prepared as described above, the initial discharge capacity, the discharge capacity retention rate after 100 cycles, and the temperature dependency were evaluated.

【0090】初期放電容量は、23℃の条件下で、各非
水電解液電池に対して1Aの定電流定電圧充電を上限
4.2Vまで3時間行い、次に1000mAの定電流放
電を終止電圧2.5Vまで行うことにより決定した。
The initial discharge capacity was as follows: at 23 ° C., each non-aqueous electrolyte battery was charged at a constant current and a constant voltage of 1 A up to an upper limit of 4.2 V for 3 hours, and then terminated at a constant current of 1000 mA. It was determined by performing the voltage up to 2.5V.

【0091】放電容量維持率は、上述した充放電条件と
同じ条件で充放電を100サイクル行い、初期放電容量
に対する100サイクル目の放電容量の割合を求めた。
The discharge capacity retention ratio was obtained by performing charge / discharge 100 cycles under the same charge / discharge conditions as described above, and calculating the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity.

【0092】温度依存性は、まず、温度を−20℃とし
たこと以外は同様の充放電条件で、1Aの定電流定電圧
充電を上限4.2Vまで3時間行い、次に1000mA
の定電流放電を終止電圧2.5Vまで行い、−20℃に
おける初期放電容量を決定した。次に、23℃での初期
放電容量に対する、−20℃での初期放電容量の割合を
求めた。温度依存性の評価は、50%未満を△とし、5
0%以上を○とした。
The temperature dependence was as follows. First, under the same charge / discharge conditions except that the temperature was set to −20 ° C., 1 A constant current / constant voltage charging was performed for 3 hours up to an upper limit of 4.2 V, and then 1000 mA.
Was performed to a final voltage of 2.5 V, and the initial discharge capacity at -20 ° C was determined. Next, the ratio of the initial discharge capacity at -20 ° C to the initial discharge capacity at 23 ° C was determined. The evaluation of the temperature dependence was evaluated by setting less than 50% as Δ and 5
0% or more was evaluated as ○.

【0093】各非水電解液電池の初期容量、放電容量維
持率及び温度依存性の評価結果を表4に示す。
Table 4 shows the evaluation results of the initial capacity, the discharge capacity retention rate, and the temperature dependency of each nonaqueous electrolyte battery.

【0094】[0094]

【表4】 [Table 4]

【0095】表2から明らかなように、電解液にリン酸
エステル化合物と一般式(1)のホスファゼン化合物と
を含有する実施例1〜実施例20の非水電解液電池は、
比較例1及び比較例2の非水電解液電池と比較して、1
000mAという比較的大きい放電電流においても初期
放電容量は大きく、100サイクル後の放電容量維持率
も高いという結果が得られた。また、温度依存性にも優
れていることがわかった。
As is clear from Table 2, the non-aqueous electrolyte batteries of Examples 1 to 20 in which the electrolyte solution contains a phosphate compound and a phosphazene compound of the general formula (1) are as follows:
Compared to the non-aqueous electrolyte batteries of Comparative Examples 1 and 2, 1
Even at a relatively large discharge current of 000 mA, the results showed that the initial discharge capacity was large and the discharge capacity retention rate after 100 cycles was high. It was also found that the temperature dependency was excellent.

【0096】[0096]

【発明の効果】本発明の非水電解液電池は、非水電解液
の非水溶媒がリン酸エステル化合物を含有しているの
で、非水溶媒が難燃化され、安全性に優れた非水電解液
電池を実現することができる。また、本発明の非水電解
液電池は、非水電解液の非水溶媒がホスファゼン化合物
を含有しているので、サイクル特性に優れた非水電解液
電池を実現することができる。
According to the non-aqueous electrolyte battery of the present invention, since the non-aqueous solvent of the non-aqueous electrolyte contains a phosphate compound, the non-aqueous solvent is made flame-retardant and the non-aqueous solvent is excellent in safety. A water electrolyte battery can be realized. Further, the nonaqueous electrolyte battery of the present invention can realize a nonaqueous electrolyte battery having excellent cycle characteristics since the nonaqueous solvent of the nonaqueous electrolyte contains a phosphazene compound.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電解液電池の一構成例を示す断面
図である。
FIG. 1 is a cross-sectional view illustrating a configuration example of a nonaqueous electrolyte battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 非水電解液電池、 2 正極、 3 負極、 4
セパレータ、 5 電池缶、 10 電池蓋
1 Non-aqueous electrolyte battery, 2 Positive electrode, 3 Negative electrode, 4
Separator, 5 Battery can, 10 Battery lid

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質を有する正極と、 負極活物質を有する負極と、 非水溶媒中に電解質が溶解されてなる非水電解液とを備
え、 上記非水溶媒として、一般式(1)で表されるリン酸エ
ステル化合物と、一般式(2)で表されるホスファゼン
化合物とを含有することを特徴とする非水電解液電池。 【化1】 (式中、R1乃至R4は、置換又は非置換環状芳香族基を
表し、Aは非置換環状芳香族基又は複素環を示す。) 【化2】 (式中、R5、R6は、直鎖又は分岐のアルキル基、環状
飽和アルキル基、又はアルキレン基であり、nは1〜1
00の整数である。)
A non-aqueous electrolyte comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and an electrolyte dissolved in a non-aqueous solvent. A non-aqueous electrolyte battery comprising a phosphate compound represented by formula (1) and a phosphazene compound represented by formula (2). Embedded image (Wherein, R 1 to R 4 represent a substituted or unsubstituted cyclic aromatic group, and A represents an unsubstituted cyclic aromatic group or a heterocyclic ring.) (Wherein, R 5 and R 6 are a linear or branched alkyl group, a cyclic saturated alkyl group, or an alkylene group;
It is an integer of 00. )
【請求項2】 上記リン酸エステル化合物は、置換基R
1乃至R4が、フェニル基、ベンジル基、オルト,メタ又
はパラ位のトルオイル基又はキシリール基であり、置換
基Aが、オルト,メタ又はパラ位の置換フェニル基又は
置換ビフェニル基、非置換フェニル基、非置換ビフェニ
ル基、又はビスフェノールAであることを特徴とする請
求項1記載の非水電解液電池。
2. The phosphoric ester compound has a substituent R
1 to R 4 are a phenyl group, a benzyl group, a toluoyl group or an xylyl group at the ortho, meta or para position, and the substituent A is a substituted phenyl group or a substituted biphenyl group at the ortho, meta or para position, or an unsubstituted phenyl group; The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte is a group, an unsubstituted biphenyl group, or bisphenol A.
【請求項3】 上記ホスファゼン化合物は、置換基R5
及びR6が、炭素数n=1〜10の群から選択される直
鎖又は分岐のアルキル基であることを特徴とする請求項
1記載の非水電解液電池。
3. The method according to claim 1, wherein the phosphazene compound has a substituent R 5
And R 6, the non-aqueous electrolyte battery according to claim 1, wherein the linear or branched alkyl groups are selected from the group of carbon number n = 1 to 10.
【請求項4】 上記正極は、リチウムを含有することを
特徴とする請求項1記載の非水電解液電池。
4. The non-aqueous electrolyte battery according to claim 1, wherein the positive electrode contains lithium.
【請求項5】 上記正極は、リチウムと遷移金属との複
合酸化物を含有することを特徴とする請求項1記載の非
水電解液電池。
5. The non-aqueous electrolyte battery according to claim 1, wherein the positive electrode contains a composite oxide of lithium and a transition metal.
【請求項6】 上記負極は、リチウムをドープ及び/又
は脱ドープできる材料を含有することを特徴とする請求
項1記載の非水電解液電池。
6. The non-aqueous electrolyte battery according to claim 1, wherein the negative electrode contains a material capable of doping and / or undoping lithium.
【請求項7】 上記リチウムをドープ及び/又は脱ドー
プできる材料が、炭素材料であることを特徴とする請求
項6記載の非水電解液電池。
7. The non-aqueous electrolyte battery according to claim 6, wherein the material capable of doping and / or undoping lithium is a carbon material.
JP36106397A 1997-12-26 1997-12-26 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4092757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36106397A JP4092757B2 (en) 1997-12-26 1997-12-26 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36106397A JP4092757B2 (en) 1997-12-26 1997-12-26 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH11191431A true JPH11191431A (en) 1999-07-13
JP4092757B2 JP4092757B2 (en) 2008-05-28

Family

ID=18472044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36106397A Expired - Fee Related JP4092757B2 (en) 1997-12-26 1997-12-26 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4092757B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033410A1 (en) * 1998-11-30 2000-06-08 Nippon Chemical Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
WO2001009973A1 (en) * 1999-07-29 2001-02-08 Bridgestone Corporation Nonaqueous electrolyte secondary cell
JP2001102088A (en) * 1999-07-29 2001-04-13 Bridgestone Corp Non-aqueous electrolyte cell
WO2001039314A1 (en) * 1999-11-25 2001-05-31 Bridgestone Corporation Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
JP2001217007A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217003A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217006A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217005A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217002A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Deterioration preventive for non-aqueous electrolyte secondary battery
JP2001217001A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Additive for non-aqueous electrolyte secondary battery
JP2001217004A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001338682A (en) * 2000-05-26 2001-12-07 Sony Corp Non-aqueous electrolyte battery
WO2002021628A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021629A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
JP2002083628A (en) * 2000-09-07 2002-03-22 Bridgestone Corp Additive for nonaqueous electrolytic solution secondary battery and the nonaqueous electrolytic solution secondary battery
US6452782B1 (en) 1999-11-25 2002-09-17 Bridgestone Corporation Non-aqueous electrolyte electric double-layer capacitor, deterioration inhibitor for non-aqueous electrolyte electric double-layer capacitor and additive for non-aqueous electrolyte electric double-layer capacitor
US6469888B1 (en) 1999-11-25 2002-10-22 Bridgestone Corporation Non-aqueous electrolyte electric double-layer capacitor
EP1289044A1 (en) * 2000-05-08 2003-03-05 Bridgestone Corporation Nonaqueous electrolyte secondary battery
JP2005116424A (en) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2006038614A1 (en) * 2004-10-05 2006-04-13 Bridgestone Corporation Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same
JP2006107910A (en) * 2004-10-05 2006-04-20 Bridgestone Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery equipped therewith
US7067219B2 (en) 2000-09-07 2006-06-27 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
US7099142B2 (en) 2000-09-07 2006-08-29 Bridgestone Corporation Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor
JP2006286571A (en) * 2005-04-05 2006-10-19 Bridgestone Corp Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery having it
JP2007080651A (en) * 2005-09-14 2007-03-29 Bridgestone Corp Polymer gel electrolyte and polymer battery using it
US7560595B2 (en) 2001-07-05 2009-07-14 Bridgestone Corporation Non-aqueous electrolyte cell, electrolyte stabilizing agent, and phosphazene derivative and method for preparation thereof
JP2010040525A (en) * 2008-08-01 2010-02-18 Samsung Sdi Co Ltd Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2017027925A (en) * 2015-07-16 2017-02-02 現代自動車株式会社Hyundai Motor Company Fire-retardant electrolytic solution for lithium secondary battery and lithium secondary battery including the same
JP2017139118A (en) * 2016-02-03 2017-08-10 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery manufacturing method
JP2019003799A (en) * 2017-06-14 2019-01-10 三菱ケミカル株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
WO2021020121A1 (en) * 2019-07-26 2021-02-04 株式会社Adeka Thermal runaway inhibitor
WO2024043559A1 (en) * 2022-08-25 2024-02-29 에스케이온 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664503B2 (en) * 1998-11-30 2011-04-06 日本化学工業株式会社 Non-aqueous electrolyte secondary battery
US6475679B1 (en) 1998-11-30 2002-11-05 Nippon Chemical Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
WO2000033410A1 (en) * 1998-11-30 2000-06-08 Nippon Chemical Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
WO2001009973A1 (en) * 1999-07-29 2001-02-08 Bridgestone Corporation Nonaqueous electrolyte secondary cell
JP2001102088A (en) * 1999-07-29 2001-04-13 Bridgestone Corp Non-aqueous electrolyte cell
EP1205997A1 (en) * 1999-07-29 2002-05-15 Bridgestone Corporation Nonaqueous electrolyte secondary cell
EP1205997A4 (en) * 1999-07-29 2007-03-28 Bridgestone Corp Nonaqueous electrolyte secondary cell
JP2001217003A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
US6469888B1 (en) 1999-11-25 2002-10-22 Bridgestone Corporation Non-aqueous electrolyte electric double-layer capacitor
JP2001217001A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Additive for non-aqueous electrolyte secondary battery
JP2001217004A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
US6955867B1 (en) 1999-11-25 2005-10-18 Brigdestone Corporation Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
JP2001217005A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
EP1253662A4 (en) * 1999-11-25 2006-11-02 Bridgestone Corp Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
JP2001217006A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217007A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
US6452782B1 (en) 1999-11-25 2002-09-17 Bridgestone Corporation Non-aqueous electrolyte electric double-layer capacitor, deterioration inhibitor for non-aqueous electrolyte electric double-layer capacitor and additive for non-aqueous electrolyte electric double-layer capacitor
JP2001217002A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Deterioration preventive for non-aqueous electrolyte secondary battery
EP1253662A1 (en) * 1999-11-25 2002-10-30 Bridgestone Corporation Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
WO2001039314A1 (en) * 1999-11-25 2001-05-31 Bridgestone Corporation Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
EP1289044A1 (en) * 2000-05-08 2003-03-05 Bridgestone Corporation Nonaqueous electrolyte secondary battery
EP1289044A4 (en) * 2000-05-08 2008-07-16 Bridgestone Corp Nonaqueous electrolyte secondary battery
JP2001338682A (en) * 2000-05-26 2001-12-07 Sony Corp Non-aqueous electrolyte battery
JPWO2002021628A1 (en) * 2000-09-07 2004-02-12 株式会社ブリヂストン Non-aqueous electrolyte additive, non-aqueous electrolyte secondary battery and non-aqueous electrolyte electric double layer capacitor
JP2002083628A (en) * 2000-09-07 2002-03-22 Bridgestone Corp Additive for nonaqueous electrolytic solution secondary battery and the nonaqueous electrolytic solution secondary battery
EP1347530A1 (en) * 2000-09-07 2003-09-24 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
JP5001507B2 (en) * 2000-09-07 2012-08-15 株式会社ブリヂストン Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor
JP5001506B2 (en) * 2000-09-07 2012-08-15 株式会社ブリヂストン Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor
US7067219B2 (en) 2000-09-07 2006-06-27 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
US7099142B2 (en) 2000-09-07 2006-08-29 Bridgestone Corporation Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021629A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
EP1329974A1 (en) * 2000-09-07 2003-07-23 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
KR100695569B1 (en) * 2000-09-07 2007-03-14 가부시키가이샤 브리지스톤 Additives for nonaqueous electrolyte secondary batteries, Nonaqueous electrolyte secondary batteries, Nonaqueous electrolyte additives for electric double layer capacitors and Nonaqueous electrolyte electric double layer capacitors
KR100767741B1 (en) 2000-09-07 2007-10-17 가부시키가이샤 브리지스톤 Nonaqueous Electrolyte Additive, Nonaqueous Electrolyte Secondary Battery and Nonaqueous Electrolyte Double Layer Capacitor
WO2002021628A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
EP1329974A4 (en) * 2000-09-07 2007-08-08 Bridgestone Corp Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
EP1347530A4 (en) * 2000-09-07 2007-08-15 Bridgestone Corp Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
US7560595B2 (en) 2001-07-05 2009-07-14 Bridgestone Corporation Non-aqueous electrolyte cell, electrolyte stabilizing agent, and phosphazene derivative and method for preparation thereof
US8168831B2 (en) 2001-07-05 2012-05-01 Bridgestone Corporation Non-aqueous electrolyte cell, electrode stabilizing agent, phosphazene derivative and method of producing the same
JP4701599B2 (en) * 2003-10-10 2011-06-15 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2005116424A (en) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006107910A (en) * 2004-10-05 2006-04-20 Bridgestone Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery equipped therewith
WO2006038614A1 (en) * 2004-10-05 2006-04-13 Bridgestone Corporation Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same
JP2006286571A (en) * 2005-04-05 2006-10-19 Bridgestone Corp Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery having it
JP2007080651A (en) * 2005-09-14 2007-03-29 Bridgestone Corp Polymer gel electrolyte and polymer battery using it
JP2010040525A (en) * 2008-08-01 2010-02-18 Samsung Sdi Co Ltd Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2017027925A (en) * 2015-07-16 2017-02-02 現代自動車株式会社Hyundai Motor Company Fire-retardant electrolytic solution for lithium secondary battery and lithium secondary battery including the same
JP2017139118A (en) * 2016-02-03 2017-08-10 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery manufacturing method
JP2019003799A (en) * 2017-06-14 2019-01-10 三菱ケミカル株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
WO2021020121A1 (en) * 2019-07-26 2021-02-04 株式会社Adeka Thermal runaway inhibitor
WO2024043559A1 (en) * 2022-08-25 2024-02-29 에스케이온 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same

Also Published As

Publication number Publication date
JP4092757B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
JP4092757B2 (en) Non-aqueous electrolyte secondary battery
JP4780833B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
US9368834B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
JP2001023687A (en) Nonaqueous electrolyte battery
US7998623B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery including the same
JP2001015156A (en) Nonaqueous electrolyte battery
JP2001176545A (en) Secondary battery
JP4512233B2 (en) Non-aqueous electrolyte battery
JP2004172084A (en) Electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP2001023690A (en) Nonaqueous electrolyte for secondary battery
JPH1140193A (en) Nonaqueous electrolyte battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP3704589B2 (en) Non-aqueous electrolyte for secondary batteries
JP4085481B2 (en) battery
JP2000173651A (en) Nonaqueous electrolyte for secondary battery
JP4127890B2 (en) Non-aqueous electrolyte battery
JP2002075444A (en) Nonaqueous electrolyte cell
JP2002117903A (en) Nonaqueous electrolyte battery
JPH10270079A (en) Nonaqueous electrolyte battery
JP2002367672A (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2001283903A (en) Nonaqueous electrolyte secondary battery
JP4080110B2 (en) Non-aqueous electrolyte battery
EP1653548A1 (en) Electrolyte for lithium battery and lithium battery comprising same
JP4195122B2 (en) Non-aqueous electrolyte secondary battery
JP4706807B2 (en) Non-aqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees