[go: up one dir, main page]

JP2001048648A - Carbide formed body and its production - Google Patents

Carbide formed body and its production

Info

Publication number
JP2001048648A
JP2001048648A JP11218845A JP21884599A JP2001048648A JP 2001048648 A JP2001048648 A JP 2001048648A JP 11218845 A JP11218845 A JP 11218845A JP 21884599 A JP21884599 A JP 21884599A JP 2001048648 A JP2001048648 A JP 2001048648A
Authority
JP
Japan
Prior art keywords
carbide
heating
molded
bark
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11218845A
Other languages
Japanese (ja)
Inventor
Shuichi Doi
修一 土居
Yasushi Kurimoto
康司 栗本
Yasuo Tamura
靖夫 田村
Hidefumi Yamauchi
秀文 山内
Koshiya Kikuchi
興志也 菊地
Masakazu Aoyama
政和 青山
Katsuo Suzuki
勝男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKITA MINAMI KYODO BIRU KK
Original Assignee
AKITA MINAMI KYODO BIRU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKITA MINAMI KYODO BIRU KK filed Critical AKITA MINAMI KYODO BIRU KK
Priority to JP11218845A priority Critical patent/JP2001048648A/en
Publication of JP2001048648A publication Critical patent/JP2001048648A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Coke Industry (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbide formed body which is produced in a high carbon yield and has high adsorption capacity and is effective in prevention of pollution and cleaning of the environment by utilizing bark and/or stems of herbaceous plants, conventionally disposed as waste, as the main raw materials of the carbide formed body and also to provide a production process for the formed body. SOLUTION: This carbide formed body is produced by a production process which comprises: compressing a chip-like and/or fibrous lignocellulose material in such a way that the resulting compressed material has a specific gravity of 0.2-1.2 to obtain a formed body; and thereafter, subjecting the formed body to heating or heating under pressure to a temperature in the range of 500 to 1,200 deg.C in the absence of oxygen and maintaining the formed body at this temperature to carbonize the formed body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、任意の形状に成形
されて、建築材料、外構材料、ガ−デニング材料や環境
浄化材料として好適な成形炭化物およびその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded carbide which is formed into an arbitrary shape and is suitable as a building material, an exterior material, a gardening material or an environmental purification material, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、木質炭化物が環境浄化材料として
注目され、種々の成形した製品が開発されている。これ
らの製品の多くは、従来より炭といわれるように木材屑
をそのままあるいは小さく裁断して炭化したり、木材や
樹皮、草本植物茎の粉末を一旦ペレット状にしたのち炭
化するなどの方法が行われている。そのために、大きな
サイズの炭を利用する場合は、細かく砕いた炭を袋に詰
めて形状を持たせたり、または炭化したチップ、粉末や
ペレットなどに接着剤を塗付して大きなサイズに成形す
るなどの方法がとられていた。
2. Description of the Related Art In recent years, woody carbides have attracted attention as environmental purification materials, and various molded products have been developed. Many of these products are conventionally carbonized by cutting wood scraps as they are, or by cutting them into small pieces, or carbonizing wood, bark, and herbaceous plant powder once in pellet form. Have been done. Therefore, when using large-sized charcoal, finely crushed charcoal is packed in a bag to give it a shape, or an adhesive is applied to carbonized chips, powders, pellets, etc. to form it into a large size And so on.

【0003】あらかじめ炭化した細片や粉末を袋詰めす
る方法では、袋詰めの操作が必要となり、取扱い中に袋
が破損するなどの問題があり、また複雑な形状を付与す
ることが困難であるなどの問題点があった。
[0003] The method of bagging previously carbonized flakes or powder requires bagging operation, which causes problems such as breakage of the bag during handling, and it is difficult to give a complicated shape. There were problems such as.

【0004】一方、チップ状または粉体状にした炭化物
を接着剤を使用して成形する場合は、もともと接着が難
しく、使用する接着剤の選択が限定されている。また、
接着剤が炭化物の表面に存在する微細な空隙を被覆して
その炭化物の吸着能力を低下させるなどの問題点もあ
る。さらに、炭化したチップや粉末を接着するのに特別
な成形工程と設備を必要とし、成形炭化物の製造コスト
を大幅に向上させるなどの問題点もあった。
[0004] On the other hand, when a chip-shaped or powdery carbide is formed using an adhesive, it is inherently difficult to bond, and the selection of the adhesive to be used is limited. Also,
There is also a problem that the adhesive covers fine voids existing on the surface of the carbide and reduces the ability to adsorb the carbide. Furthermore, a special molding step and equipment are required to bond the carbonized chips and powders, and there is a problem that the production cost of the molded carbide is greatly improved.

【0005】[0005]

【発明が解決しようとする課題】したがって、上記問題
点を解決するために、ことを目的とする。本発明におい
ては、有害物質の吸着能力を損なわず、種々の用途に使
用して取扱いが容易な形状の成形炭化物を経済的に効率
よく得る方法を提供することを目的とする。特に、本発
明においては、通常廃棄されている樹皮や草本植物茎を
主要原料として利用することにより、高い炭素収率と優
れた吸着能力を有する特徴が得られるために、公害防止
と環境浄化に役立つ成形炭化物およびその製造方法を提
供するものである。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to solve the above problems. An object of the present invention is to provide a method for economically and efficiently obtaining a shaped carbide having a shape that is easy to handle by being used in various applications without impairing the ability to adsorb harmful substances. In particular, in the present invention, the use of bark and herbaceous plant stalks, which are normally discarded, as main raw materials provides characteristics having a high carbon yield and excellent adsorption capacity. A useful shaped carbide and a method for producing the same are provided.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の成形炭化物は、チップ状もしくは/および
繊維状のリグノセルロ−ス材料を比重0.2〜1.2と
なるように圧締して成形体にしたのち、酸素の遮断のも
とに500〜1200℃で加熱または加熱加圧して炭化
されたものである。
Means for Solving the Problems To solve the above problems, the molded carbide of the present invention is prepared by compressing a chip-shaped and / or fibrous lignocellulose material so as to have a specific gravity of 0.2 to 1.2. After being tightened to form a molded body, it is carbonized by heating or heating and pressurizing at 500 to 1200 ° C. while blocking oxygen.

【0007】また、本発明の成形炭化物は、チップ状も
しくは/および繊維状のリグノセルロ−ス材料が樹皮ま
たは/および草本植物茎を主体とするものである。さら
に、本発明の成形炭化物は、チップ状もしくは繊維状の
樹皮または/および草本植物茎を主原料として成形する
際に、100〜250℃で10〜50kgf/cm2の圧力を
加えて成形体とするものである。
[0007] Further, the molded carbide of the present invention is such that the chip-shaped and / or fibrous lignocellulosic material is mainly composed of bark or / and herbaceous plant stems. Further, when the molded carbide of the present invention is formed using chip-like or fibrous bark or / and herbaceous plant stem as a main raw material, a pressure of 10 to 50 kgf / cm 2 is applied at 100 to 250 ° C. to form a molded body. Things.

【0008】本発明の成形炭化物の製造方法は、チップ
状もしくは/および繊維状のリグノセルロ−ス材料を比
重0.2〜1.2となるように圧締して成形体にしたの
ち、酸素の遮断のもとに500〜1200℃で加熱また
は加熱加圧して炭化するものである。
In the method for producing a molded carbide according to the present invention, a chip-shaped and / or fibrous lignocellulose material is pressed to a specific gravity of 0.2 to 1.2 to form a molded body, and then oxygen-containing material is formed. It is carbonized by heating or heating and pressurizing at 500 to 1200 ° C under cutoff.

【0009】また、本発明の成形炭化物の製造方法は、
チップ状もしくは/および繊維状のリグノセルロ−ス材
料が樹皮または/および草本植物茎を主体とするもので
ある。また、本発明の成形炭化物の製造方法は、チップ
状もしくは繊維状の樹皮または/および草本植物茎を主
体とする材料を、100〜250℃で10〜50kgf/cm
2の圧力を加えて成形したものである。
Further, the method for producing a shaped carbide according to the present invention comprises:
The chip-shaped and / or fibrous lignocellulosic material is mainly composed of bark or / and herbaceous plant stems. In addition, the method for producing a shaped carbide according to the present invention comprises the steps of: cutting a material mainly composed of chip-shaped or fibrous bark and / or herbaceous plant stems at 100 to 250 ° C and 10 to 50 kgf / cm.
It was molded by applying pressure of 2.

【0010】さらに、本発明の成形炭化物の製造方法
は、チップ状もしくは繊維状のリグノセルロ−ス材料あ
るいは樹皮または/および草本植物茎を主体とする材料
を用いて成形体にする際に、蒸気を噴射させながら加熱
圧締して成形したものである。
[0010] Furthermore, the method of the present invention for producing a molded carbonized product is characterized in that when a molded product is formed using a chip-shaped or fibrous lignocellulose material or a material mainly composed of bark or / and herbaceous plant stem, steam is produced. It is molded by heating and pressing while spraying.

【0011】[0011]

【実施例】次に、本発明の成形炭化物およびその製造方
法についての詳細を以下に説明する。成形体およびその
製造方法に使用される材料は、あらかじめチップ状ある
いは繊維状にしたリグノセルロ−ス材料であり、なお圧
締して成形体にするときにチップおよび繊維の形状物を
任意の割合で混合して使用してもよい。また、一般に廃
棄されたり焼却処理されるだけで、あまり利用価値のな
い樹皮および草本植物茎のチップあるいはその繊維を原
料に用いることにより、加熱圧締するのみで自己接着す
るという木質材料にない効果が得られ、特に樹皮成形体
を酸素の供給を抑制しながら高温で加熱または加熱加圧
して炭化したときに木質材料よりも高い炭素収率が得ら
れるので、樹皮は成形炭化物の原料として一層好ましい
原料になる。また、樹皮または草本植物茎の一部に木質
チップや繊維が混入しても、その混入比率が樹皮や草本
植物茎の比率を越えなければ自己接着の効果は損なわれ
ず炭化歩留まりも木質材料のみを用いたときよりも向上
する。
Next, the molded carbide of the present invention and the method for producing the same will be described in detail below. The material used for the molded article and the method for producing the same is a lignocellulose material which has been made into a chip or a fiber in advance. You may mix and use. In addition, the use of bark and herbaceous plant stem chips or their fibers, which are generally of little value because they are generally discarded or incinerated, make them self-adhesive only by heating and pressing. The bark is more preferable as a raw material of the formed carbide, since a carbon yield higher than that of the woody material is obtained when the bark compact is heated or heated and pressurized at a high temperature while suppressing the supply of oxygen, and carbonized. Be a raw material. In addition, even if wood chips or fibers are mixed into the bark or a part of the herbaceous plant stem, the self-adhesion effect is not impaired and the carbonization yield is limited to the woody material unless the mixing ratio exceeds the ratio of the bark or the herbaceous plant stem. Better than when used.

【0012】チップ状あるいは繊維状にしたリグノセル
ロ−ス材料は、特に樹種や種類を問わず、木材工業で発
生する廃材でも、また建築廃材や故紙、林産廃棄物ある
いは農産廃棄物として処理される樹皮や草本植物茎でも
有効に利用できる。また、自己接着性により成形体とな
る樹皮や草本植物茎も、樹種に限定されることがなく、
スギ、ヒノキ、カラマツ、ベイマツ、ベイツガやラジア
タパインなどの針葉樹、あるいはラワン、メランティ−
などの南洋材やナラ、カバ、ポプラなどの広葉樹などの
製材、合板などの木材工業において大量に利用されてい
る樹種でも効果に変わりなく、またイネ、ムギ、トウモ
ロコシ、タケ、サトウキビやアシなどの茎を用いても成
形炭化物として使用することができる。もちろん、成形
体を得るときに接着剤を用いれば、樹皮、植物茎も木質
材料も同じように使用することができ、互いにそれらを
任意の割合で混入して使用しても支障がない。
The lignocellulosic material in the form of chips or fibers can be used as a waste material generated in the wood industry, irrespective of species and type of wood, or as a bark treated as construction waste material, waste paper, forestry waste or agricultural waste. And herbaceous plant stems can also be used effectively. In addition, bark and herbaceous plant stems that become a molded body due to self-adhesive properties are not limited to tree species,
Conifers such as Japanese cedar, cypress, larch, Japanese pine, hemlock and radiatapine, or Rawan, Meranti
The same effect is achieved for wood species such as southern lumber, hardwood such as oak, hippopotamus, and poplar, and wood species such as plywood that are used in large quantities, and also for rice, wheat, corn, bamboo, sugarcane, and reeds. Even if a stem is used, it can be used as a shaped carbide. Of course, if an adhesive is used when obtaining the molded product, the bark, the plant stem and the woody material can be used in the same manner, and there is no problem even if they are mixed and used in an arbitrary ratio.

【0013】成形体を得る際に用いられる接着剤の種類
は、特に限定されることがなく、フェノ−ル樹脂やレゾ
ルシノ−ル樹脂などのフェノ−ル系樹脂接着剤、ジフェ
ニルメタン・ジイソシアネ−トのプレポリマ−(ポリメ
リックMDI)などを含むイソシアネ−ト系接着剤、木
材液化液を主成分とする接着剤あるいはフルフラ−ル、
フルフリルアルコ−ルなどを使用したフラン系樹脂接着
剤などの熱硬化性樹脂接着剤はもとより、ポリ酢酸ビニ
ル樹脂エマルジョン接着剤などの熱可塑性樹脂接着剤
や、デンプン系接着剤などいずれの公知の接着剤を使用
することができる。
The type of adhesive used for obtaining the molded article is not particularly limited, and phenolic resin adhesives such as phenolic resin and resorcinol resin, and diphenylmethane diisocyanate. An isocyanate-based adhesive containing a prepolymer (polymeric MDI), an adhesive containing wood liquefied liquid as a main component or furfural,
In addition to thermosetting resin adhesives such as furan-based resin adhesives using furfuryl alcohol and the like, thermoplastic resin adhesives such as polyvinyl acetate resin emulsion adhesives, and any known adhesives such as starch-based adhesives An adhesive can be used.

【0014】リグノセルロ−スのチップや繊維を成形し
て成形体を得る際には、接着剤を噴霧したチップや繊維
を所定の厚さのマットにして平板プレスで圧締するかあ
るいは金型プレスに挿入して常温下で5〜40kgf/cm2 の
圧力を加えて接着剤が硬化するまで必要な時間加圧圧締
する。その際に50〜200 ℃の温度に加熱すると成形体の
厚さ1mmあたりおよそ0.3 〜1.0 分という短時間で成形
することができる。この成形体の比重を調節することに
より成形炭化物の多孔性や吸着性能をコントロ−ルする
ことができるので、成形体としての比重は0.2 〜1.2 の
範囲になるよう調整するのが望ましい。
When molding chips or fibers of lignocellulose to obtain a molded body, the chips or fibers sprayed with an adhesive are matted to a predetermined thickness and pressed with a flat plate press or a die press. Then, a pressure of 5 to 40 kgf / cm2 is applied at room temperature to press and clamp for a necessary time until the adhesive is cured. At that time, if the molded body is heated to a temperature of 50 to 200 ° C., molding can be performed in a short time of about 0.3 to 1.0 minute per 1 mm of the thickness of the molded body. By adjusting the specific gravity of the molded article, the porosity and adsorption performance of the molded carbide can be controlled. Therefore, it is desirable to adjust the specific gravity of the molded article to be in the range of 0.2 to 1.2.

【0015】また、樹皮や草本植物茎のチップや繊維を
原料に用いて自己接着性を利用した成形体を得る場合に
は、通常、100〜250 ℃で10 〜50kgf/cm2 の圧力を加
えて成形体の厚さ1mm当たり1〜10分間熱圧する。この
場合、通常の条件では成形体の比重が0.7 以上と高くな
るが、比重0.2 〜0.5 という低比重でも炭化により結合
が一体化することができる。
In order to obtain a molded product utilizing self-adhesiveness using chips or fibers of bark or herbaceous plant stem as a raw material, a pressure of 10 to 50 kgf / cm 2 is usually applied at 100 to 250 ° C. Heat-press for 1 to 10 minutes per mm of the thickness of the molded body. In this case, the specific gravity of the molded body is as high as 0.7 or more under ordinary conditions, but the bond can be integrated by carbonization even at a specific gravity as low as 0.2 to 0.5.

【0016】しかし、樹皮や草本植物茎の自己接着性を
利用して低比重の成形体を得るためには、加熱圧締する
ときに成形物に直接蒸気を噴射する蒸気噴射プレスを用
いることにより、樹皮の自己接着が促進されて、比重が
0.2 〜0.7 の低比重の成形体を容易に得ることができ
る。その際に用いられる蒸気は2〜15kgf/cm2 の蒸気圧
で、蒸気の噴射時間は熱圧時間の1/10〜1/1 に設定して
おくのが適当である。
However, in order to obtain a molded product having a low specific gravity by utilizing the self-adhesiveness of bark and the stem of a herbaceous plant, a steam injection press for directly injecting steam into the molded product when heating and pressing is used. , The self-adhesion of the bark is promoted, the specific gravity
A compact having a low specific gravity of 0.2 to 0.7 can be easily obtained. The steam used at that time has a steam pressure of 2 to 15 kgf / cm2, and the steam injection time is suitably set to 1/10 to 1/1 of the heat pressure time.

【0017】これらの方法により板状もしくは任意の形
状に成形された成形体は、引き続いて酸素の供給を抑制
しながら高温で加熱または加熱加圧して炭化処理を行っ
て成形炭化物とする。その際に加熱の方法は通常の加熱
炉で成形体を不燃性の箱に密封するか、窒素や炭酸ガス
を封入して酸素の供給を抑えて加熱して成形炭化物とす
る。
The molded body formed into a plate or an arbitrary shape by these methods is subsequently subjected to carbonization by heating or heating and pressurizing at a high temperature while suppressing the supply of oxygen to form a molded carbide. At this time, a heating method is to seal the molded body in a nonflammable box in a normal heating furnace, or to fill nitrogen or carbon dioxide gas to suppress the supply of oxygen and heat to form a molded carbide.

【0018】成形炭化物あるいはその製造方法に使用す
る炭化装置は、酸素の供給を抑えて高温度に加熱できる
ものであればいずれのものでもよく、加熱手段は電気加
熱、高周波加熱あるいはガスによる直火加熱式のものな
どが用いられる。さらに、オ−トクレ−ブなどを用いる
こともできる。
The formed carbide or the carbonizing apparatus used in the method for producing the same may be any apparatus capable of heating to a high temperature while suppressing the supply of oxygen, and the heating means may be electric heating, high-frequency heating or direct fire by gas. A heating type is used. Further, an autoclave or the like can be used.

【0019】成形体を加熱または加熱加圧して炭化する
際の温度は100〜1200℃がよく、特に環境浄化材料とし
て使用するときは500〜1200℃の温度で加熱処理するの
が望ましい。さらに、これらの加熱温度に到達するまで
の昇温速度は重要であり、成形炭化物の形状変化を小さ
く抑えるためには昇温速度を毎分15℃以下に抑える必要
がある。特に、成形体に用いるチップのサイズが大きく
なるほど昇温速度をさらに緩やかに調節せねばならな
い。炭化の際に加熱昇温速度がそれ以上に大きくなる
と、炭化の過程で成形体にひび割れや膨れを生じて変形
し、成形体の形状を保持するが困難になる。
The temperature at which the compact is heated or heated and pressurized to carbonize is preferably 100 to 1200 ° C., and particularly when it is used as an environmental purification material, it is desirable to perform the heat treatment at a temperature of 500 to 1200 ° C. Furthermore, the rate of temperature rise until reaching these heating temperatures is important, and it is necessary to suppress the rate of temperature rise to 15 ° C. or less per minute in order to keep the shape change of the formed carbide small. In particular, as the size of the chip used for the compact increases, the rate of temperature rise must be adjusted more slowly. If the heating temperature rise rate is higher than that during carbonization, the compact will crack and bulge during the carbonization process, deforming, and it will be difficult to maintain the shape of the compact.

【0020】また、炭化加熱処理する際の変形は、木質
材料や植物茎による成形体よりも樹皮を主体とする成形
体の方が少なく、さらに樹皮成形体では炭化加熱処理後
の炭素収率が他の成形体よりも5〜10%と高い値が得ら
れる特長がある。
Further, the deformation at the time of carbonization heat treatment is smaller in the molded product mainly composed of bark than in the molded product made of woody material or plant stem, and the bark molded product has a lower carbon yield after carbonization heat treatment. There is a feature that a value as high as 5 to 10% can be obtained as compared with other molded articles.

【0021】この成形炭化物は、その用途によって任意
の形状にすることが可能であり、あらかじめ目的の形状
に成形した成形体を高温で加熱または加熱加圧して炭化
するにより、形状寸法は元の寸法の30〜90%に収縮し、
炭素収率は25〜50%になる。したがって、あらかじめこ
の炭化収縮率を見込んだサイズの成形体にしておけば、
目的の用途に適したサイズの成形炭化物を得ることがで
きる。
The formed carbide can be formed into an arbitrary shape depending on its use. By heating or heating and pressing a formed body previously formed into a desired shape at a high temperature and carbonizing, the shape and dimensions are reduced to the original dimensions. Shrink to 30-90% of
The carbon yield will be 25-50%. Therefore, if a compact having a size that anticipates this carbonization shrinkage is made in advance,
A molded carbide having a size suitable for the intended use can be obtained.

【0022】次に、本発明による成形炭化物について、
以下に試験例を示して説明する。
Next, regarding the formed carbide according to the present invention,
The following describes test examples.

【0023】[試験例1〜4]チップ状のスギ廃材およ
びスギ樹皮廃材を用い、ハンマ−ミルを用いて粉砕した
のち、0.85mmと5.00mmとのフルイを用いて振い分けし、
0.85〜5.00mmの粒度のものを使用した。これらのチップ
のそれぞれに自己乳化型ポリウレタン系接着剤(日本ポ
リウレタン(株)製、WC−300 )を全乾重量の5%相
当量噴霧したのちフォ−ミングを行い、150 ℃の温度に
保持した蒸気噴射式ホットプレスに挿入して約 5kgf/cm
2 の圧力で5分間熱圧した。所定の熱圧圧力に到達した
ときに直ちに蒸気圧 6kgf/cm2 の蒸気を30秒間噴射させ
た。このような方法によりそれぞれ厚さ50mm、サイズ 3
00mm×300mm の試料ボ−ドを作製したのち、長さ 250m
m、幅 120mmの試験片を採り、半密閉式の電気炉により
炭化試験を行った。そのときの加熱条件は、5℃/分の
昇温速度で800 ℃まで加熱し、その温度に60分間保持し
て成形炭化物した場合と、20℃/分の昇温速度で800 ℃
まで加熱し、その温度にて360 分間保持した場合との比
較を行った。これらの方法によって得られた成形炭化物
について形状変化および寸法変化率などを測定した。
Test Examples 1 to 4 Using chip-shaped cedar waste material and cedar bark waste material, crushed using a hammer mill, and then sieved using 0.85 mm and 5.00 mm sieves,
Particles having a particle size of 0.85 to 5.00 mm were used. Each of these chips was sprayed with a self-emulsifying polyurethane-based adhesive (WC-300, manufactured by Nippon Polyurethane Co., Ltd.) in an amount equivalent to 5% of the total dry weight, followed by forming, and maintained at a temperature of 150 ° C. Approximately 5kgf / cm when inserted into a steam injection hot press
It was hot pressed at a pressure of 2 for 5 minutes. Immediately upon reaching the predetermined heat pressure, steam with a steam pressure of 6 kgf / cm2 was injected for 30 seconds. In this way, the thickness is 50 mm and the size is 3
After preparing a sample board of 00mm × 300mm, length 250m
A test specimen having a width of 120 mm and a width of 120 mm was taken, and a carbonization test was performed using a semi-closed electric furnace. The heating conditions at this time were as follows: heating to 800 ° C at a heating rate of 5 ° C / min and holding at that temperature for 60 minutes to form carbide; 800 ° C at a heating rate of 20 ° C / min.
And heated at that temperature for 360 minutes. The shape change, dimensional change rate, and the like of the molded carbide obtained by these methods were measured.

【0024】 (表1)成形炭化物の外形変化、寸法変化および重量減少率 ────────────────────────────────── 昇温 材料 成形体 寸法 体積 炭素 速度 の比重 変化率 収縮率 収率 ────────────────────────────────── 試験例1 5℃/分 木材 0.38 78.2〜81.0% 49.3% 30.2 % 試験例2 20℃/分 〃 ふくれ発生、測定不能 29.3 試験例3 5℃/分 樹皮 0.39 78.7〜82.8 47.6 38 .8 試験例4 20℃/分 〃 0.35 77.6〜82.3 46.6 39 .3 ────────────────────────────────── なお、いずれの条件でも作製した樹皮ボ−ドは加熱処理
して炭化する前の形状とあまり変化がみられなかった。
しかし、木材を使用したボ−ドで急速な昇温速度のもの
は、炭化前の形状に比べて長辺にやや反りが認められ
た。
(Table 1) Shape change, dimensional change and weight loss rate of molded carbide温 Heating material Molded product Dimensions Volume Carbon velocity specific gravity Change rate Shrinkage Yield ────────────────────────────── ──── Test Example 1 5 ° C / min Wood 0.38 78.2 to 81.0% 49.3% 30.2% Test Example 2 20 ° C / min 発 生 Blistering and measurement not possible 29.3 Test Example 3 5 ° C / min Bark 0.39 78.7 to 82.8 47.6 38. 8 Test example 4 20 ° C / min 〃 0.35 77.6 to 82.3 46.6 39.3 ───────────────────────────────── ─ The bark boards produced under any of the conditions did not change much from the shape before heat treatment and carbonization.
However, in the case of a board made of wood and having a rapid heating rate, warping was slightly observed on the long side as compared with the shape before carbonization.

【0025】[試験例5]チップ状のスギ樹皮廃材を用
い、ハンマ−ミルを用いて細かく粉砕したのち、0.85mm
と5.00mmとのフルイを用いて振い分けし、0.85〜5.00mm
の粒度のものを使用した。このチップの含水率を約50%
に調整し、フォ−ミングを行ったのち、190 ℃の温度に
保持した通常のホットプレスに挿入して約40kgf/cm2 の
圧力で5分間熱圧し、その後3分間で徐々に圧力を減少
させ、厚さ6mmで、比重 0.8、サイズ 300mm×300mm の
自己接着ボ−ドを作製した。室温に1週間養生させた
後、そのボ−ドから長さ 250mm、幅 120mmの試験片を採
り、密閉式の電気炉により炭化試験を行った。炭化のと
きの加熱条件は、1℃/分の昇温速度で800 ℃まで加熱
し、その温度に到達したのち直ちに冷却を行って薄いボ
−ド状の成形炭化物を得た。この方法によって得られた
成形炭化物について形状変化および寸法変化率などを測
定した結果、体積収縮率が32.6%、炭素収率は37.4%
で、成形炭化物の形状は加熱炭化処理前の形状がそのま
ま収縮したような状況であった。
[Test Example 5] Using chip-shaped cedar bark waste material and finely pulverizing with a hammer mill, 0.85 mm
0.85 to 5.00mm
The particle size was used. Water content of this chip is about 50%
And after forming, insert into a normal hot press maintained at 190 ° C and heat-press at a pressure of about 40 kgf / cm2 for 5 minutes, then gradually reduce the pressure in 3 minutes, A self-adhesive board having a thickness of 6 mm, a specific gravity of 0.8 and a size of 300 mm × 300 mm was prepared. After curing at room temperature for one week, a test piece having a length of 250 mm and a width of 120 mm was taken from the board and subjected to a carbonization test in a closed electric furnace. The heating conditions during carbonization were heating to 800 ° C. at a rate of 1 ° C./min, and cooling was performed immediately after reaching the temperature to obtain a thin board-shaped formed carbide. As a result of measuring the shape change and dimensional change rate of the formed carbide obtained by this method, the volume shrinkage was 32.6%, and the carbon yield was 37.4%.
Thus, the shape of the formed carbide was such that the shape before the heat carbonization treatment was contracted as it was.

【0026】[試験例6]チップ状のカラマツ樹皮廃材
85%、カラマツ廃材15%の混合チップを用い、ハンマ−
ミルを用いて細かく粉砕したのち、0.85mmと5.00mmとの
フルイを用いて振い分けし、0.85〜5.00mmの粒度のもの
を使用した。このチップの含水率を約10%に調整し、フ
ォ−ミングを行ったのち、180 ℃の温度に保持した蒸気
噴射式のホットプレスの熱板間に挿入して約5kgf/cm2
の圧力で5分間熱圧して、厚さ20mmで比重 0.4、サイズ
300mm×300mm の自己接着ボ−ドを作製した。熱圧する
とき、上側の熱板が圧締するボ−ドの表面に接触すると
同時に蒸気圧10kgf/cm2 の蒸気を熱板間に30秒間噴射し
た。このようにして得られた低比重のボ−ドを室温にて
1週間養生させたあと、そのボ−ドから長さ 250mm、幅
120mmの試験片を採り、半密閉式の電気炉により炭化試
験を行った。そのときの加熱条件は、1℃/分の昇温速
度で900 ℃まで加熱し、その温度に到達したのち直ちに
冷却を行ってボ−ド状の成形炭化物を得た。この方法に
よって得られた成形炭化物について形状変化および寸法
変化率などを測定した結果、体積収縮率が43.2%、炭素
収率は36.8%で、成形炭化物の形状は加熱炭化処理前の
形状がそのまま収縮したような状況であった。また、こ
の成形炭化物を50mm×50mmのサイズに裁断したものを試
料とし、それを蒸溜水にジクロロメタン、クロロホルム
およびトリクロロエタンなどの薬剤をそれぞれ500ppmず
つ添加して調製した溶液5リットルに入れ、約20℃の室
温下で24時間振とうさせたのち、その溶液の中に残存す
る薬剤の濃度をGC/MS分析装置を使用してヘッドス
ペ−ス法により測定した。その結果、いずれの薬剤もそ
の98%が試料に供した成形炭化物に吸着されていた。
Test Example 6 Chip Larch Bark Waste
A hammer using a mixed chip of 85% and larch waste material 15%
After finely pulverizing with a mill, the mixture was sieved using 0.85 mm and 5.00 mm sieves, and particles having a particle size of 0.85 to 5.00 mm were used. After adjusting the moisture content of the chips to about 10%, forming the chips, and inserting them between hot plates of a steam injection type hot press maintained at a temperature of 180 ° C., about 5 kgf / cm 2
Heat pressure for 5 minutes at a pressure of 20mm thickness, specific gravity 0.4, size
A 300 mm × 300 mm self-adhesive board was prepared. At the time of hot pressing, a steam having a vapor pressure of 10 kgf / cm2 was sprayed between the hot plates for 30 seconds while the upper hot plate was in contact with the surface of the board to be pressed. After the low specific gravity board thus obtained was cured at room temperature for one week, a length of 250 mm and a width of
A 120 mm test piece was taken, and a carbonization test was performed using a semi-closed electric furnace. The heating conditions at that time were heating to 900 ° C. at a temperature increasing rate of 1 ° C./min, and cooling was performed immediately after reaching the temperature to obtain a board-shaped formed carbide. As a result of measuring the shape change and dimensional change rate of the formed carbide obtained by this method, the volume shrinkage was 43.2%, the carbon yield was 36.8%, and the shape of the formed carbide shrank as it was before the heating carbonization treatment It was like that. A sample obtained by cutting this molded carbide into a size of 50 mm x 50 mm was used as a sample, and added to 5 liters of a solution prepared by adding 500 ppm each of a drug such as dichloromethane, chloroform and trichloroethane to distilled water, and then placed at about 20 ° C. After shaking at room temperature for 24 hours, the concentration of the drug remaining in the solution was measured by a head space method using a GC / MS analyzer. As a result, 98% of all the chemicals were adsorbed on the formed carbide provided for the sample.

【0027】[試験例7]繊維状に粉砕した含水率55%
のスギ樹皮にジフェニルメタン・シイソシアネ−ト系接
着剤(日本ポリウレタン(株)製、ミリオネ−トR−20
0 )を樹皮のドライベ−ス当たり5%となるよう噴霧
し、フォ−ミングを行ったのち、150 ℃の温度に保持し
た半径60mmの半球形金型を取り付けたホットプレスに挿
入して約5kgf/cm2 の圧力で5分間熱圧して、厚さ10mm
で比重 0.35、半径50mmの半球状の形状の成形体を作製
した。このようにして得られた低比重のボ−ドを室温に
て1週間養生させたあと、400 ℃の温度に保持した半密
閉式の電気炉により加熱して炭化処理を行った。そのと
きの加熱条件は、1℃/分の昇温速度で400 ℃まで加熱
し、その温度に到達したのち、さらに180 分加熱させた
のちに冷却を行って半球状の成形炭化物を得た。この半
球状の成形炭化物の半径は約37mmに収縮していた。この
成形炭化物をフィルタ−として0.5 %の植物油を懸濁さ
せた水道水300mlをろ過したのち植物油の残存量を調べ
たところ、99.5%相当量が除去されていた。
[Test Example 7] 55% moisture content pulverized into fibrous form
Diphenylmethane-siocyanate adhesive (manufactured by Nippon Polyurethane Co., Ltd., Millionate R-20)
0) was sprayed so as to be 5% of the dry base of the bark, subjected to foaming, inserted into a hot press equipped with a hemispherical mold having a radius of 60 mm and maintained at a temperature of 150 ° C., and inserted into a hot press of about 5 kgf. pressure for 5 minutes at a pressure of / cm2, thickness 10mm
Thus, a hemispherical shaped body having a specific gravity of 0.35 and a radius of 50 mm was produced. The thus-obtained low specific gravity board was cured at room temperature for one week, and then carbonized by heating in a semi-closed electric furnace maintained at a temperature of 400 ° C. The heating conditions at this time were heating to 400 ° C. at a rate of 1 ° C./min, reaching that temperature, and further heating for 180 minutes and then cooling to obtain a hemispherical shaped carbide. The radius of this hemispherical shaped carbide shrank to about 37 mm. Using the formed char as a filter, 300 ml of tap water in which 0.5% vegetable oil was suspended was filtered, and the remaining amount of vegetable oil was examined. As a result, 99.5% equivalent was removed.

【0028】[試験例8]チップ状のスギ樹皮廃材をハ
ンマ−ミルによって細かく粉砕したのち、0.85mmと5.00
mmとのフルイを用いて振い分けし、0.85〜5.00mmの粒度
のものを原料に使用した。このチップの含水率を約10%
に調整し、フォ−ミングを行ったのち、180 ℃の温度に
保持した蒸気噴射式のホットプレスの熱板間に挿入して
約5kgf/cm2 の圧力で5分間熱圧して、厚さ15mmで比重
0.4、サイズ 300mm×300mm の自己接着ボ−ドを作製し
た。熱圧するとき、上側の熱板が圧締するボ−ドの表面
に接触すると同時に蒸気圧10kgf/cm2 の蒸気を熱板間に
30秒間噴射した。このようにして得られた低比重のボ−
ドを室温にて1週間養生させたあとにそのボ−ドを半密
閉式の電気炉により炭化試験を行った。その際の加熱条
件は、1℃/分の昇温速度で800 ℃まで加熱し、その温
度に到達したのち直ちに冷却を行ってボ−ド状の成形炭
化物を得た。この方法によって得られた成形炭化物につ
いて形状変化および寸法変化率などを測定した結果、体
積収縮率が39.2%、炭素収率は41.3%で、成形炭化物の
形状は加熱炭化処理前の形状がそのまま収縮したような
状況であった。得られた成形炭化物より厚さ10mmで、10
0mm ×50mmのサイズの試験片10枚を切り出し、この試験
片についてJIS A 5908に記載するパ−ティクルボ
−ドから放散するホルムアルデヒド量の測定方法に準じ
て、デシケ−タ−法によるホルムアルデヒドの吸収効果
を次の方法によって測定した。すなわち、内容積約10l
のデシケ−タを用い、まず37%濃度のホルマリン 350μ
lを蒸溜水5mlに加えて希釈した水溶液を調製し、そ
の0.5mlを直径30mmのシャ−レに滴下してデシケ−タ
中に置き、20℃の温度に24時間放置したときのホルムア
ルデヒド放散量を確認したのち、同じホルムアルデヒド
水溶液と共に前記成形炭化物を10枚置き、同様な条件で
24時間放置したときのホルムアルデヒド放散量を測定し
た。その結果、ホルムアルデヒド放散量が6.52mg/lか
ら5.23mg/lに減少した。
[Test Example 8] Chipped cedar bark waste was finely pulverized by a hammer mill.
The mixture was filtered using a sieve having a particle size of 0.8 to 5.00 mm and used as a raw material. About 10% moisture content of this chip
After forming, it was inserted between the hot plates of a steam injection type hot press maintained at a temperature of 180 ° C. and hot-pressed at a pressure of about 5 kgf / cm 2 for 5 minutes to form a 15 mm thick sheet. specific gravity
A self-adhesive board having a size of 0.4 and a size of 300 mm × 300 mm was prepared. When applying heat, the upper hot plate contacts the surface of the board to be clamped, and at the same time, a steam of 10 kgf / cm2 is applied between the hot plates.
Injected for 30 seconds. The low specific gravity ball thus obtained
After curing the board at room temperature for one week, the board was subjected to a carbonization test using a semi-closed electric furnace. The heating conditions at that time were heating to 800 ° C. at a rate of temperature increase of 1 ° C./min, and cooling was performed immediately after reaching the temperature to obtain a board-shaped formed carbide. As a result of measuring the shape change and dimensional change ratio of the formed carbide obtained by this method, the volume shrinkage was 39.2%, the carbon yield was 41.3%, and the shape of the formed carbide contracted as it was before the heating carbonization treatment It was like that. 10mm thicker than the obtained molded carbide, 10
Ten test pieces having a size of 0 mm x 50 mm were cut out, and the formaldehyde absorption effect of the test pieces by a desiccator method was measured according to the method for measuring the amount of formaldehyde emitted from a particle board described in JIS A 5908. Was measured by the following method. That is, the internal volume is about 10 l
First, 37% formalin 350μ
was added to 5 ml of distilled water to prepare a diluted aqueous solution, and 0.5 ml of the diluted aqueous solution was dropped on a dish having a diameter of 30 mm, placed in a desiccator, and allowed to stand at a temperature of 20 ° C. for 24 hours. After confirming the above, put the 10 shaped carbides together with the same aqueous formaldehyde solution, and under the same conditions
The amount of formaldehyde emission when left for 24 hours was measured. As a result, the amount of formaldehyde emission decreased from 6.52 mg / l to 5.23 mg / l.

【0029】[試験例9]チップ状のバガスをさらにハ
ンマ−ミルによって細かく再粉砕したのち、篩目が1mm
のフルイで振い分けて、その篩下の微細チップを含水率
を約25%に調整したのち、コ−ルプレ−ト上にフォ−ミ
ングマットを形成した。それを190 ℃に保持したホット
プレスへ挿入し、約40kgf/cm2 の圧力で2分間、引き続
き3kgf/cm2 の圧力で3分間圧締して厚さが6mm、比重
0.65で半径150mm の円形の自己接着ボ−ドを作製した。
室温下で1週間養生したのちに窒素ガスを封入した密閉
式の電気炉に入れ、1.2 ℃/min の昇温速度で900 ℃ま
で加熱し、その温度に到達したのち直ちに冷却を行って
円形の成形炭化ボ−ドを得た。このボ−ドの形状変化を
測定したところ、厚さが4.3mm 、半径107mm の炭化ボ−
ドが得られた。重量は炭化直前の29.6%に減少してい
た。
Test Example 9 After chip-shaped bagasse was further finely pulverized by a hammer mill, the sieve mesh was 1 mm.
After the fine chips under the sieve were adjusted to a moisture content of about 25%, a forming mat was formed on the call plate. It is inserted into a hot press maintained at 190 ° C and pressed at a pressure of about 40 kgf / cm2 for 2 minutes and then at a pressure of 3 kgf / cm2 for 3 minutes to obtain a thickness of 6 mm and specific gravity.
A circular self-adhesive board with a radius of 150 mm and a diameter of 0.65 was produced.
After curing for 1 week at room temperature, the mixture was placed in a closed electric furnace filled with nitrogen gas, heated to 900 ° C at a rate of 1.2 ° C / min, cooled immediately after reaching that temperature, and cooled to a circular shape. A molded carbide board was obtained. When the shape change of this board was measured, a carbonized board having a thickness of 4.3 mm and a radius of 107 mm was obtained.
Was obtained. The weight was reduced to 29.6% just before carbonization.

【0030】以上の各試験例の結果から、チップ状ある
いは繊維状のリグノセルロ−ス材料を接着剤などを用い
てあらかじめ板状あるいは任意の形状に成形し、得られ
た成形体を高温で加熱または加熱加圧処理することによ
り形状を崩ずさずにそのまま収縮した状態で成形炭化物
が得られることを見出した。その際に通常は廃棄された
り、焼却されている樹皮または殆ど利用されない草本植
物茎をチップ状あるいは繊維状にして、それに接着剤を
加えて公知の方法により成形したのち、酸素の供給を抑
制しながら高温で加熱または加熱加圧処理を施すことに
より、炭素収率が高く、炭化後の収縮が小さい成形炭化
物が得られることも見出した。
From the results of the above test examples, the chip-shaped or fibrous lignocellulose material was preliminarily formed into a plate or an arbitrary shape using an adhesive or the like, and the obtained molded body was heated or heated at a high temperature. It has been found that a molded carbide can be obtained in a state of being contracted as it is by heating and pressurizing without losing its shape. At that time, the bark that is usually discarded or incinerated or the stalks of a rarely used herbaceous plant are formed into chips or fibers, and an adhesive is added thereto and molded by a known method. It has also been found that by performing heating or heating and pressurizing treatment at a high temperature, a molded carbide having a high carbon yield and a small shrinkage after carbonization can be obtained.

【0031】さらに、樹皮または草本植物茎のチップあ
るいは樹皮または草本植物茎の繊維は接着剤を使わず
に、金型に入れて加熱圧締するだけで自己接着により成
形できることが判明したので、この成形体を酸素の供給
を抑制しながら高温で加熱または加熱加圧して炭化する
ことにより極めて低コストで成形炭化物が得られること
がわかった。特に、その炭化の過程において酸素の供給
を抑制することにより、形崩れがなく、サイズが収縮し
ているものの高温処理を施す前の形状をそのまま保持し
た成形炭化物が容易に得られることが判明した。
Further, it has been found that the chips of the bark or herbaceous plant stem or the fibers of the bark or herbaceous plant stem can be formed by self-adhesion simply by placing them in a mold and heating and pressing without using an adhesive. It has been found that a formed carbide can be obtained at extremely low cost by heating or heating and pressurizing at high temperature and carbonizing the formed body while suppressing the supply of oxygen. In particular, it has been found that by suppressing the supply of oxygen during the carbonization process, it is possible to easily obtain a molded carbide that does not collapse and retains its shape before being subjected to the high-temperature treatment, although the shape is not reduced. .

【0032】自己接着により樹皮または草本植物茎チッ
プ同士あるいは繊維同士の接合が緩やかな成形体であっ
ても、炭化によりチップ間の固化が進み、強固な結合を
有する炭化成形物になる。また、樹皮や草本植物茎チッ
プや繊維を成形体になすときに、プレス熱板間あるいは
金型内部に直接蒸気を噴射させながら加熱圧締すること
によって、低比重で多孔性に富む成形体を容易に得るこ
とができるので、それを酸素の供給を抑制しながら高温
で加熱または加熱加圧して炭化処理することにより軽量
で微細な孔隙に富む成形炭化物が得られる。
Even if the bark or herbaceous plant stem chips or fibers are loosely joined to each other due to self-adhesion, solidification between the chips proceeds due to carbonization, resulting in a carbonized molded article having a strong bond. In addition, when bark, herbaceous plant stem chips and fibers are formed into compacts, they are heated and pressed while directly injecting steam between press hot plates or inside the mold to produce compacts with low specific gravity and high porosity. Since it can be easily obtained, the carbonized material is heated or heated and pressurized at a high temperature while suppressing the supply of oxygen, and carbonized, thereby obtaining a light-weight, fine-pored shaped carbide with a large amount of pores.

【0033】[0033]

【発明の効果】以上述べたように、本発明の成形炭化物
およびその製造方法は、木質廃材や樹皮などの産業廃棄
物あるいはイネワラなどの農産廃棄物を有効利用できる
のみならず、建築材料として内装材の一部に用いて室内
環境を改善することが可能になるほか、上下水道のろ過
材に使用した場合にも微量に混在するトリハロメタンの
ような有害物質を除去するなどの水質浄化にも効果があ
る。また、一旦成形体にしたのち加熱あるいは加熱加圧
処理して炭化成形物にするために、大きなサイズの成形
体を入手することができ、利用上取扱いが極めて容易な
炭化成形物となるばかりでなく、成形体を形成する際に
接着剤を全く用いずに炭化成形物にすることができるた
め、低コストの環境浄化材料を提供することができる。
As described above, the molded carbide and the method for producing the same according to the present invention can not only effectively utilize industrial wastes such as wood waste and bark or agricultural wastes such as rice straw, but also can be used as interior materials as building materials. It is possible to improve the indoor environment by using it as a part of the material, and it is also effective for water purification by removing trace amounts of harmful substances such as trihalomethane when used for water and sewage filter media. There is. In addition, a large-sized molded body can be obtained because it is once formed into a molded body and then heated or heated and pressurized to form a carbonized molded body. In addition, a carbonized molded article can be formed without using an adhesive at all when a molded article is formed, so that a low-cost environmental purification material can be provided.

【0034】そのうえ、本発明の成形炭化物やその製造
方法によって、樹皮や草本植物茎は現在のところ利用価
値が小さく、その大部分は焼却するか、あるいは産業廃
棄物や農産廃棄物として捨てられ、公害問題の原因にも
なっているが、樹皮や植物茎に新たな用途が生まれるこ
とによって、これまで対応に苦慮していた公害問題の解
決にも役立つことができる。
In addition, the bark and herbaceous plant stalks are currently of little utility due to the shaped carbides and methods of their manufacture of the present invention, most of which are incinerated or discarded as industrial or agricultural waste. Although it is a source of pollution problems, the new use of bark and plant stems can help solve pollution problems that have been difficult to deal with.

【0035】さらに、本発明の方法によって得られる成
形炭化物は、板状に成形したものではタイル状のものか
ら、通常建築材料として使用される合板やボ−ド並の大
きなサイズのものまでが得られ、そのままの状態で内装
用のアクセントパネルとして、また住宅の床下地、壁パ
ネルの心材や天井材などにも使用することができ、室内
の湿度や揮発性の有害ガスを吸着する室内環境の浄化効
果や電磁波遮蔽効果など機能性建築材料として使用する
ことができる。
Further, the shaped carbide obtained by the method of the present invention can be obtained in a form from a tile in the form of a plate to a plywood or a board having a size as large as a board usually used as a building material. As it is, it can be used as it is as an interior accent panel, and also as a flooring for homes, heartwood and ceiling materials for wall panels, etc. It can be used as a functional building material such as a purification effect and an electromagnetic wave shielding effect.

【0036】また、円筒形に成形した成形炭化物をパイ
プに内張りして、その中を上水や排水を流すことによ
り、上水に微量に含まれるトリハロメタンや排水中の廃
油などの有害成分の除去も可能になる。さらに、自己接
着した樹皮成形体を作ることにより、接着剤に要する費
用が不要になってコストの低減が可能なばかりでなく、
高温加熱時に接着剤の燃焼による有害ガスの発生を防ぐ
効果が得られることになる。
Further, by removing the formed carbide formed into a cylindrical shape into a pipe and flowing clean water or waste water through the pipe, harmful components such as trihalomethane contained in the clean water and waste oil in the waste water are removed. Also becomes possible. Furthermore, by making a self-adhesive bark molded body, the cost required for the adhesive is not required, and the cost can be reduced,
The effect of preventing the generation of harmful gas due to the burning of the adhesive during high-temperature heating can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B27N 7/00 B27N 7/00 Z C01B 31/02 101 C01B 31/02 101A // C10B 53/02 C10B 53/02 (72)発明者 菊地 興志也 秋田県能代市字鳥小屋59−20 (72)発明者 青山 政和 北海道旭川市花咲町4−4069 (72)発明者 鈴木 勝男 秋田県秋田市南通築地3−5 Fターム(参考) 2B250 AA01 AA06 AA19 AA40 BA09 FA21 FA37 HA01 2B260 AA20 BA03 BA05 BA07 BA18 BA19 CB03 CD02 CD04 CD30 EA05 EB02 EB06 EB12 EB21 EC18 4G032 AA12 AA57 BA00 GA01 GA06 GA12 4G046 CA00 CB03 CB08 CC02 CC03 4H012 JA02 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) B27N 7/00 B27N 7/00 Z C01B 31/02 101 C01B 31/02 101A // C10B 53/02 C10B 53 / 02 (72) Inventor Koushiya Kikuchi 59-20 Torigoya, Noshiro-shi, Akita Prefecture (72) Inventor Masakazu Aoyama 4-4069, Hanasaki-cho, Asahikawa-shi, Hokkaido (72) Inventor Katsuo Suzuki 3-, Tsutsuji, Minamidori, Akita-shi, Akita 5 F term (reference) 2B250 AA01 AA06 AA19 AA40 BA09 FA21 FA37 HA01 2B260 AA20 BA03 BA05 BA07 BA18 BA19 CB03 CD02 CD04 CD30 EA05 EB02 EB06 EB12 EB21 EC18 4G032 AA12 AA57 BA00 GA01 GA06 GA12 4G046 CC00

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 チップ状もしくは/および繊維状のリグ
ノセルロ−ス材料を比重0.2〜1.2となるように圧
締して成形体にしたのち、酸素の遮断のもとに500〜
1200℃で加熱または加熱加圧して炭化されたことを
特徴とする成形炭化物。
1. A chip-shaped and / or fibrous lignocellulose material is pressed to a specific gravity of 0.2 to 1.2 to form a molded body, and then the molded product is cut to 500 to 500 g under an oxygen cutoff.
A shaped carbide characterized by being carbonized by heating or heating and pressing at 1200 ° C.
【請求項2】 チップ状もしくは/および繊維状のリグ
ノセルロ−ス材料が樹皮または/および草本植物茎を主
体とすることを特徴とする請求項1に記載する成形炭化
物。
2. The shaped carbide according to claim 1, wherein the chip-shaped and / or fibrous lignocellulosic material is mainly composed of bark and / or herbaceous plant stem.
【請求項3】 チップ状もしくは繊維状の樹皮または/
および草本植物茎を主原料として成形する際に、100
〜250℃で10〜50kgf/cm2の圧力を加えて成形体
とすることを特徴とする請求項2に記載する成形炭化
物。
3. Chip-shaped or fibrous bark or / and
And when the herbaceous plant stem is molded as the main raw material,
The molded carbide according to claim 2, wherein the molded body is formed by applying a pressure of 10 to 50 kgf / cm2 at ~ 250C.
【請求項4】 チップ状もしくは/および繊維状のリグ
ノセルロ−ス材料を比重0.2〜1.2となるように圧
締して成形体にしたのち、酸素の遮断のもとに500〜
1200℃で加熱または加熱加圧して炭化することを特
徴とする成形炭化物の製造方法。
4. A chip-shaped or / and fibrous lignocellulose material is pressed to a specific gravity of 0.2 to 1.2 to form a molded body, and then cut to a thickness of 500 to 500% under the cutoff of oxygen.
A method for producing a formed carbide, wherein the carbonization is performed by heating or heating and pressing at 1200 ° C.
【請求項5】 チップ状もしくは/および繊維状のリグ
ノセルロ−ス材料が樹皮または/および草本植物茎を主
体とすることを特徴とする請求項4に記載する成形炭化
物の製造方法。
5. The method according to claim 4, wherein the chip-shaped and / or fibrous lignocellulose material is mainly composed of bark and / or herbaceous plant stems.
【請求項6】 チップ状もしくは繊維状の樹皮または/
および草本植物茎を主体とする材料を、100〜250
℃で10〜50kgf/cm2の圧力を加えて成形した成形体
であることを特徴とする請求項5に記載する成形炭化物
の製造方法。
6. Chip-like or fibrous bark and / or
And a material mainly composed of herbaceous plant stems,
The method for producing a molded carbide according to claim 5, wherein the molded article is a molded body formed by applying a pressure of 10 to 50 kgf / cm2 at a temperature of 10C.
【請求項7】 チップ状もしくは繊維状のリグノセルロ
−ス材料あるいは樹皮または/および草本植物茎を主体
とする材料を用いて成形体にする際に、蒸気を噴射させ
ながら加熱圧締して成形した成形体であることを特徴と
する請求項4又は5に記載する成形炭化物の製造方法。
7. When forming into a molded body using a chip-shaped or fibrous lignocellulose material or a material mainly composed of bark and / or herbaceous plant stem, the molded body is formed by heating and pressing while injecting steam. The method for producing a shaped carbide according to claim 4, wherein the method is a formed body.
JP11218845A 1999-08-02 1999-08-02 Carbide formed body and its production Pending JP2001048648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11218845A JP2001048648A (en) 1999-08-02 1999-08-02 Carbide formed body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11218845A JP2001048648A (en) 1999-08-02 1999-08-02 Carbide formed body and its production

Publications (1)

Publication Number Publication Date
JP2001048648A true JP2001048648A (en) 2001-02-20

Family

ID=16726253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11218845A Pending JP2001048648A (en) 1999-08-02 1999-08-02 Carbide formed body and its production

Country Status (1)

Country Link
JP (1) JP2001048648A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300496A (en) * 2000-04-27 2001-10-30 Fuji Electric Co Ltd Drying method for resin mold parts
JP2008050196A (en) * 2006-08-24 2008-03-06 Tadashi Miyamoto Method of manufacturing heat insulating material
US7682534B2 (en) 2001-12-12 2010-03-23 Schunk Kohlenstofftechnik Gmbh Method for the production of a carbon or ceramic component
EP2192096A2 (en) 2008-11-26 2010-06-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for making a ceramic component
WO2014185183A1 (en) * 2013-05-17 2014-11-20 Suzuki Ken Method for heating treatment of fuel material, and device for carbonizing artificial raw wood
JP2015160863A (en) * 2014-02-26 2015-09-07 鈴木 健 Artificial raw material carbonization equipment
JP2016000781A (en) * 2014-06-12 2016-01-07 鈴木 健 Wood fuel pellet carbonizer
CN105666932A (en) * 2016-03-18 2016-06-15 孙涛 Precision-shaping straw extruder and extruding production method of seedling substrate straw board
CN107090743A (en) * 2017-06-01 2017-08-25 齐鲁工业大学 A kind of preparation method of wood conversion Carbon fibe paper
JP2018064934A (en) * 2016-10-06 2018-04-26 アナスタシア コッシュチェーヴァ,ミス Laminate from birch bark, method for producing the laminate and objects made of the laminate
JP2018144341A (en) * 2017-03-06 2018-09-20 株式会社北川鉄工所 Pellet manufacturing equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300496A (en) * 2000-04-27 2001-10-30 Fuji Electric Co Ltd Drying method for resin mold parts
US7682534B2 (en) 2001-12-12 2010-03-23 Schunk Kohlenstofftechnik Gmbh Method for the production of a carbon or ceramic component
JP2008050196A (en) * 2006-08-24 2008-03-06 Tadashi Miyamoto Method of manufacturing heat insulating material
EP2192096A2 (en) 2008-11-26 2010-06-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for making a ceramic component
WO2014185183A1 (en) * 2013-05-17 2014-11-20 Suzuki Ken Method for heating treatment of fuel material, and device for carbonizing artificial raw wood
JP2015160863A (en) * 2014-02-26 2015-09-07 鈴木 健 Artificial raw material carbonization equipment
JP2016000781A (en) * 2014-06-12 2016-01-07 鈴木 健 Wood fuel pellet carbonizer
CN105666932A (en) * 2016-03-18 2016-06-15 孙涛 Precision-shaping straw extruder and extruding production method of seedling substrate straw board
JP2018064934A (en) * 2016-10-06 2018-04-26 アナスタシア コッシュチェーヴァ,ミス Laminate from birch bark, method for producing the laminate and objects made of the laminate
JP7154488B2 (en) 2016-10-06 2022-10-18 アナスタシア コッシュチェーヴァ,ミス Laminates derived from birch bark, methods of making said laminates, and objects made from said laminates
JP2018144341A (en) * 2017-03-06 2018-09-20 株式会社北川鉄工所 Pellet manufacturing equipment
CN107090743A (en) * 2017-06-01 2017-08-25 齐鲁工业大学 A kind of preparation method of wood conversion Carbon fibe paper

Similar Documents

Publication Publication Date Title
US9895824B2 (en) Process for production of wood based materials from lignocellulose
Ihnát et al. Waste agglomerated wood materials as a secondary raw material for chipboards and fibreboards Part I. Preparation and characterization of wood chips in terms of their reuse
JP6752926B2 (en) OSB (Oriented Strand Board) wood-based panel with improved properties and its manufacturing method
JP2001048648A (en) Carbide formed body and its production
CN101722552B (en) A kind of recycled shavings, particle board and preparation method thereof
EP3771538A1 (en) Fire-proof wooden pressure board and the production method thereof
US7404422B2 (en) Viscoelastic thermal compression of wood
Chew et al. Bambusa vulgaris for urea and cement-bonded particleboard manufacture
CA2235531C (en) Process for preparing cellulosic composites
CA2587355C (en) Multi-step preheating processes for manufacturing wood based composites
KR930007667B1 (en) Manufacturing Method of Particle Board
CA2294890C (en) Refractory liquid and method of manufacturing the same, and refractory material, refractory building material and refractory adhesive each manufactured from the refractory liquid
CN110281340A (en) A kind of preparation method of antibacterial and mouldproof particieboard
Indrayani et al. Influence of Activated Charcoal Addition on the Adhesion, Emission, Physical, Mechanical, and Biological Properties of Particleboard
AU670702B2 (en) A method of producing a wood-derived material
JPH09314524A (en) Fiber board and its manufacture
CN100566957C (en) Method for preparing poplar board with lignin-containing additive
AU2022237941A1 (en) Biomaterial from steam-cracked lignocellulosic biomass
KR100702622B1 (en) Fiber panels for building or furniture and manufacturing method thereof
KR100996654B1 (en) Furniture material made by low formaldehyde emission panel
RU2400358C1 (en) Wood-particle composite material and method for its manufacturing
JP4630607B2 (en) Manufacturing method of wood composite material
KR20200042929A (en) Method for producing lignocellulosic material in the presence of caprolactam and oligomers of caprolactam
Amini et al. Particleboard based on glutardialdehyde treated oil palm trunk particles made at different pressing temperatures
KR100587132B1 (en) Production of functional charcoal board with excellent workability from domestic wood waste