JP2001026860A - Co-Pt-B BASE TARGET AND ITS PRODUCTION - Google Patents
Co-Pt-B BASE TARGET AND ITS PRODUCTIONInfo
- Publication number
- JP2001026860A JP2001026860A JP20040199A JP20040199A JP2001026860A JP 2001026860 A JP2001026860 A JP 2001026860A JP 20040199 A JP20040199 A JP 20040199A JP 20040199 A JP20040199 A JP 20040199A JP 2001026860 A JP2001026860 A JP 2001026860A
- Authority
- JP
- Japan
- Prior art keywords
- target
- grain size
- crystal grain
- hot rolling
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000013078 crystal Substances 0.000 claims abstract description 33
- 238000005098 hot rolling Methods 0.000 claims abstract description 25
- 239000011159 matrix material Substances 0.000 claims abstract description 12
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 5
- 230000005291 magnetic effect Effects 0.000 abstract description 33
- 239000010408 film Substances 0.000 description 31
- 238000007792 addition Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 12
- 238000005266 casting Methods 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 239000013077 target material Substances 0.000 description 5
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 229910020707 Co—Pt Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/007—Thin magnetic films, e.g. of one-domain structure ultrathin or granular films
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁気ディスク装置
用などの磁気記録媒体の磁性膜を形成するために用いら
れるCo−Pt−B系ターゲットおよびその製造方法に
関するものである。[0001] 1. Field of the Invention [0002] The present invention relates to a Co-Pt-B-based target used for forming a magnetic film of a magnetic recording medium for a magnetic disk drive and the like, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】従来Co系磁性膜は、高密度な磁気記録
が可能なように発展してきており、Co系磁性膜にTa
やPt添加が行われてきた。最近、Co系磁性膜にBを
添加することにより、磁気特性が著しく改善されること
がJ.Appl.Phys.84、6202(199
8).などに報告されている。2. Description of the Related Art Conventionally, Co-based magnetic films have been developed to enable high-density magnetic recording.
And Pt additions have been made. Recently, it has been reported that the addition of B to a Co-based magnetic film significantly improves the magnetic properties. Appl. Phys. 84, 6202 (199
8). And so on.
【0003】[0003]
【発明が解決しようとする課題】本発明者が上述のBを
添加したCo系磁性膜を検討したところ、Ptが添加さ
れているCo系磁性膜において、著しく磁気特性を改善
することを確認した。このCo−Pt−B系磁性膜を作
製する方法としては、上述した文献等に記載されるよう
にスパッタリング法などが使用できる。スパッタリング
法においては、膜組成の供給源となるターゲットが必要
となる。The present inventors have studied the Co-based magnetic film to which the above-described B is added, and have confirmed that the Co-based magnetic film to which Pt is added significantly improves the magnetic characteristics. . As a method for producing the Co—Pt—B-based magnetic film, a sputtering method or the like can be used as described in the above-mentioned literature. In the sputtering method, a target serving as a supply source of a film composition is required.
【0004】本発明者はCo−Pt−B系磁性膜を形成
するためのターゲットを作製することを検討した。そし
て、Co−Pt−B系の溶解・鋳造ターゲットを使用す
ると、作製した磁性膜の特性にバラツキが生じる問題が
発生した。溶解・鋳造ターゲットは、ある程度微細なチ
ル晶、粗大でかつ冷却方向に依存する柱状晶、そしてあ
る程度微細な等軸晶と形成されており、結晶粒径が大き
く、不均一であること確認し、さらに、その結晶粒径が
大きく、不均一であることが磁性膜の特性にバラツキが
生じることの原因であることを確認した。そこで、本発
明の目的は、Co−Pt−B系磁性膜を形成するための
ターゲットであって、結晶粒径の微細なターゲット素材
およびその製造方法を提供することである。[0004] The present inventors have studied the production of a target for forming a Co-Pt-B-based magnetic film. When a Co-Pt-B-based melting / casting target is used, there is a problem that the characteristics of the manufactured magnetic film vary. The melting / casting target was formed as a somewhat fine chill crystal, a coarse and columnar crystal depending on the cooling direction, and a somewhat fine equiaxed crystal, and confirmed that the crystal grain size was large and non-uniform. Further, it was confirmed that the large and non-uniform crystal grain size was the cause of the variation in the characteristics of the magnetic film. Therefore, an object of the present invention is to provide a target material for forming a Co—Pt—B-based magnetic film, which has a fine crystal grain size and a method of manufacturing the same.
【0005】[0005]
【課題を解決するための手段】本発明者は、検討の結果
Co−Pt−B系の溶解・鋳造ターゲットを使用した時
の磁性膜の特性にバラツキが生じる問題は、粗大な結晶
の存在に依存することを見いだした。そして、鋳造ター
ゲットで確認された粗大な結晶の発生を防止する手段を
検討し、鋳造時に、Bが1at%以上も含み多量のホウ
化物が存在するCo−Pt−B系素材であっても熱間圧
延を適用できることを見いだした。そして、熱間圧延に
より得られた組織は、結晶粒径の微細化と、ホウ化物の
分散が可能となり、保磁力等の膜特性のばらつき発生の
少ない薄膜を得ることができることを見いだし、本発明
に到達した。As a result of the study, the present inventors have found that the problem that the characteristics of the magnetic film vary when a Co-Pt-B-based melting / casting target is used is due to the existence of coarse crystals. I found that I depended. Then, a means for preventing the generation of coarse crystals confirmed in the casting target was examined, and even when a Co-Pt-B material having a large amount of boride including B at 1 at% or more was found to be hot during casting. It has been found that cold rolling can be applied. The structure obtained by hot rolling enables the crystal grain size to be reduced and the boride to be dispersed, and a thin film having less variation in film characteristics such as coercive force can be obtained. Reached.
【0006】すなわち本発明は、10≧B≧1at%、
30≧Pt≧5at%、残部Coを主体とするターゲッ
トであって、マトリックスの平均結晶粒径が50μm以
下であり、組織中に存在するホウ化物がターゲットの断
面で見た時に層状に分散していることを特徴とするCo
−Pt−B系ターゲットである。本発明は、好ましくは
30≧Cr≧10at%、7≧Ta>0at%、30≧
Ni≧5at%および5≧(Ti+Zr+Hf+V+N
b+Mo+W+Cu+Ag+Au)>0at%を、それ
ぞれもしくは複合で含むことが可能である。That is, the present invention relates to 10 ≧ B ≧ 1 at%,
A target mainly composed of 30 ≧ Pt ≧ 5 at%, with the balance being Co, wherein the average crystal grain size of the matrix is 50 μm or less, and the boride present in the structure is dispersed in a layered form when viewed in the cross section of the target. Co
-Pt-B type target. The present invention preferably provides 30 ≧ Cr ≧ 10 at%, 7 ≧ Ta> 0 at%, 30 ≧
Ni ≧ 5 at% and 5 ≧ (Ti + Zr + Hf + V + N
b + Mo + W + Cu + Ag + Au)> 0 at%, individually or in combination.
【0007】また、本発明の製造方法は、上述した組成
のターゲットの製造方法であり、10≧B≧1at%、
30≧Pt≧5at%、残部Coを主体とする素材を、
熱間圧延を施し、マトリックスの平均結晶粒径が50μ
m以下、組織中に存在するホウ化物をターゲットの断面
で見た時に層状に分散させる製造方法である。本発明の
製造方法において、好ましくは素材として30≧Cr≧
10at%、7≧Ta>0at%、30≧Ni≧5at
%および5≧(Ti+Zr+Hf+V+Nb+Mo+W
+Cu+Ag+Au)>0at%をそれぞれもしくは複
合で含むことが可能である。本発明の製造方法にあっ
て、特に好ましくは、熱間圧延時の温度を1100℃〜
800℃に制御する。さらに、場合によっては、熱間圧
延前に1100℃〜800℃で1時間以上の熱処理を行
うことも有効である。The manufacturing method of the present invention is a method for manufacturing a target having the above-described composition, wherein 10 ≧ B ≧ 1 at%;
30 ≥ Pt ≥ 5 at%, with the balance being mainly Co
Hot rolling, average matrix grain size of 50μ
m or less, wherein the boride existing in the structure is dispersed in a layered form when viewed from the cross section of the target. In the production method of the present invention, preferably, 30 ≧ Cr ≧
10 at%, 7 ≧ Ta> 0 at%, 30 ≧ Ni ≧ 5 at
% And 5 ≧ (Ti + Zr + Hf + V + Nb + Mo + W
+ Cu + Ag + Au)> 0 at% can be contained individually or in combination. In the production method of the present invention, particularly preferably, the temperature at the time of hot rolling is 1100 ° C or more.
Control at 800 ° C. Further, depending on the case, it is also effective to perform a heat treatment at 1100 ° C. to 800 ° C. for 1 hour or more before hot rolling.
【0008】[0008]
【発明の実施の形態】本発明の最大の特徴は、多量のホ
ウ化物を含有するCo−Pt−B系の溶解・鋳造ターゲ
ットのばらつきを、従来考えられなかった熱間圧延を適
用可能として、結晶粒径の微細化と、ホウ化物の分散を
可能としたことにある。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The most important feature of the present invention is that the variation of the melting / casting target of the Co-Pt-B system containing a large amount of boride can be applied to hot rolling which has not been considered conventionally. Another object of the present invention is to make it possible to reduce the crystal grain size and disperse the boride.
【0009】本発明者が検討したところによると、溶解
・鋳造ターゲットは、凝固時の組織がそのままターゲッ
トに残っており、柱状晶のように大きな領域において結
晶方位がそろった組織となっている。スパッタの際、ス
パッタ粒子の飛び方は、結晶方位にも依存しており、溶
解・鋳造ターゲットでは、結晶粒径が粗く不均一である
ため、磁性膜の特性にバラツキが生じることを確認し、
マトリックスの結晶粒径を微細にすることにより、磁性
膜の特性のバラツキが低減を試みた。According to the study by the present inventors, the structure of the molten / casting target has a structure at the time of solidification remaining on the target as it is, and has a structure in which crystal orientations are aligned in a large area such as a columnar crystal. At the time of sputtering, the manner in which the sputtered particles fly also depends on the crystal orientation.In the melting / casting target, the crystal grain size is coarse and non-uniform.
An attempt was made to reduce variations in the characteristics of the magnetic film by reducing the crystal grain size of the matrix.
【0010】本発明者は、熱間加工性の悪いCo−Pt
−B系合金に熱間圧延を行うことにより、結晶粒径を微
細化し、さらにホウ化物を分散させ、均一な素材を作製
することを検討した。その結果、CoにはBはほとんど
固溶せず、添加したBは、ほとんどホウ化物を形成し、
この形成されたホウ化物は極めて脆弱であり熱間加工性
を極めて低下させるため、あまり低温では、熱間圧延が
出来ない。また、Co系合金にBを添加することによ
り、1150℃前後に共晶が発現するため、熱間圧延時
の温度も共晶温度以上は上げられない。このような理由
により、Bが添加されたCo系合金、特に1at%以上
のBを添加したCo系合金の熱間加工条件は厳しく管理
されるべきものであることを見いだした。The present inventor has proposed Co-Pt having poor hot workability.
By conducting hot rolling on a -B type alloy, the crystal grain size was refined, and further, boride was dispersed, and it was studied to produce a uniform material. As a result, B hardly forms a solid solution in Co, and added B almost forms a boride,
Since the formed boride is extremely fragile and extremely deteriorates hot workability, hot rolling cannot be performed at a very low temperature. Further, when B is added to the Co-based alloy, a eutectic develops around 1150 ° C., so that the temperature during hot rolling cannot be increased to a temperature higher than the eutectic temperature. For these reasons, it has been found that the hot working conditions of a Co-based alloy to which B is added, particularly a Co-based alloy to which 1 at% or more of B is added, must be strictly controlled.
【0011】そして本発明者は、熱間圧延時の作業温度
を共晶の発現しない1100℃から熱間加工が可能な最
低温度である800℃の範囲で制御することにより、熱
間加工性の悪いCo−Pt−B系合金の圧延を可能にし
た。また、このような熱間圧延条件で熱間圧延を行うこ
とにより、上述したマトリックスの平均結晶粒径を50
μm以下に微細化可能となり、組織中に存在するホウ化
物がターゲットの断面で見た時に層状をなして分散した
本発明で規定する新しい組織になることを確認した。そ
して、このような組織とすることで、磁性膜の特性のバ
ラツキは、ほとんど無くなることを見出したものであ
る。The present inventor controls the working temperature during hot rolling from 1100 ° C. at which no eutectic occurs to 800 ° C., which is the minimum temperature at which hot working is possible, thereby improving hot workability. Rolling of a bad Co-Pt-B alloy was enabled. Further, by performing hot rolling under such hot rolling conditions, the average crystal grain size of the matrix described above is reduced to 50%.
It was confirmed that the microstructure could be reduced to μm or less, and that the boride existing in the structure became a new structure defined by the present invention, which was dispersed in a layered form when viewed in the cross section of the target. It has been found that such a structure almost eliminates variations in the characteristics of the magnetic film.
【0012】また、本発明において、高めのB量であっ
たり、Ta等が添加されることにより、さらに熱間加工
性は低下する。このような場合、熱間圧延前に1100
℃〜800℃で1時間以上の熱処理を付加することによ
り、ホウ化物が分断され、熱間加工性が向上するため、
熱間加工性の向上に有効である。熱処理時間は長時間、
熱処理温度は高温の方が有効的であるが、1100℃〜
800℃で1時間以上行うことで、鋳造ままより著しい
熱間加工性の向上が見られる。なお、本発明において、
熱間圧延時に熱間圧延方向を変えと、異方性の少ないタ
ーゲットとなるのでより好ましい。ターゲットの組成範
囲を10≧B≧1at%、30≧Pt≧5at%、残部
Coおよび30≧Cr≧10at%、7≧Ta>0at
%、30≧Ni≧5at%および5≧(Ti+Zr+H
f+V+Nb+Mo+W+Cu+Ag+Au)>0at
%を含んでいても良いとしたのは、それぞれの下限量は
加えないとそれぞれの効果は現れず、また、上限以上を
加えると添加効果より添加による悪影響が大きくなるた
めである。以下詳しく説明する。Further, in the present invention, the hot workability is further reduced by adding a high B content or adding Ta or the like. In such a case, 1100 before hot rolling.
By adding a heat treatment of 1 hour or more at a temperature of from 800C to 800C, the boride is divided and hot workability is improved.
It is effective for improving hot workability. The heat treatment time is long,
Higher heat treatment temperature is more effective, but 1100 ° C ~
By performing the treatment at 800 ° C. for 1 hour or more, a remarkable improvement in hot workability can be seen as cast. In the present invention,
Changing the hot rolling direction at the time of hot rolling is more preferable because the target has less anisotropy. The composition range of the target is 10 ≧ B ≧ 1 at%, 30 ≧ Pt ≧ 5 at%, the balance Co and 30 ≧ Cr ≧ 10 at%, 7 ≧ Ta> 0 at.
%, 30 ≧ Ni ≧ 5 at% and 5 ≧ (Ti + Zr + H
f + V + Nb + Mo + W + Cu + Ag + Au)> 0 at
% May be included because the respective effects do not appear unless the respective lower limit amounts are added, and the addition effect becomes larger than the addition effect when the upper limit or more is added. This will be described in detail below.
【0013】B添加は、膜中で粒界へ偏析し、Pt元素
を粒内へ偏析させる効果があり、さらにCr等の非磁性
元素も粒界へ偏析させる効果があり、これらの効果は1
at%以上の添加で顕著になる。また、Bは非晶質化を
促進させる元素であり10at%を越える添加を行う
と、膜の結晶性を損ない膜の磁気特性を劣化させるた
め、10≧B≧1at%とした。Pt添加は、Coに固
溶することにより磁気異方性を高め、膜の保磁力を上げ
る効果がある。保磁力増大には5at%以上の添加を行
うことにより顕著な効果が見られ、また、30at%を
越える添加は、Coの持つ本来の性質を著しく低下させ
るため、30≧Pt≧5at%とした。The addition of B has the effect of segregating at the grain boundaries in the film and of segregating the Pt element into the grains, and also has the effect of segregating non-magnetic elements such as Cr at the grain boundaries.
It becomes remarkable when added at at% or more. B is an element that promotes amorphization, and if added in excess of 10 at%, the crystallinity of the film is impaired and the magnetic properties of the film are deteriorated, so that 10 ≧ B ≧ 1 at%. The addition of Pt has the effect of increasing the magnetic anisotropy by forming a solid solution in Co and increasing the coercive force of the film. The addition of 5 at% or more has a remarkable effect on the increase in coercive force, and the addition of more than 30 at% significantly lowers the original properties of Co, so that 30 ≧ Pt ≧ 5 at%. .
【0014】Cr添加は、膜中で粒界へ偏析し、粒界を
非磁性にすることにより、強磁性Co粒を磁気的に分断
する効果があり、10at%未満の添加では、磁気的な
分断が十分では無く、また、30at%を越える添加は
膜そのものの磁化を低下させ過ぎるため、30≧Cr≧
10at%とした。Ta添加は、膜結晶粒径の微細化の
効果、さらにCr等の非磁性元素も粒界へ偏析させる効
果があり、少量の添加でも効果が認められる、逆に7a
t%を越える添加は、膜の磁化を低下させるため好まし
くないため、7≧Ta>0at%とした。The addition of Cr has the effect of segregating to the grain boundaries in the film and rendering the grain boundaries non-magnetic, thereby magnetically separating the ferromagnetic Co grains. The division is not sufficient, and the addition exceeding 30 at% lowers the magnetization of the film itself, so that 30 ≧ Cr ≧
It was set to 10 at%. The addition of Ta has the effect of reducing the crystal grain size of the film and the effect of segregating nonmagnetic elements such as Cr at the grain boundaries.
Since addition of more than t% is not preferable because it lowers the magnetization of the film, 7 ≧ Ta> 0 at% was set.
【0015】Ni添加は、Coに固溶することにより磁
気異方性を高め、膜の保磁力を上げる効果がある。保磁
力増大には5at%以上の添加を行うことにより顕著な
効果が見られ、また、30at%を越える添加は、Co
の持つ本来の性質を著しく低下させるため、30≧Ni
≧5at%とした。Ti、Zr、Hf、V、Nb、M
o、W、Cu、AgおよびAu添加は、磁気特性を改善
する添加元素として添加可能である。これらの元素は少
量の添加で効果が認められるが、総量で5at%を越え
ると膜の磁気特性および結晶性を著しく損なうため5≧
(Ti+Zr+Hf+V+Nb+Mo+W+Cu+Ag
+Au)>0at%とした。The addition of Ni has the effect of increasing the magnetic anisotropy by dissolving in Co and increasing the coercive force of the film. To increase the coercive force, a remarkable effect can be seen by adding 5 at% or more.
30 ≧ Ni to significantly lower the original properties of
≧ 5 at%. Ti, Zr, Hf, V, Nb, M
The addition of o, W, Cu, Ag and Au can be added as an additive element for improving the magnetic properties. These elements are effective when added in small amounts. However, if the total amount exceeds 5 at%, the magnetic properties and crystallinity of the film are significantly impaired.
(Ti + Zr + Hf + V + Nb + Mo + W + Cu + Ag
+ Au)> 0 at%.
【0016】[0016]
【実施例】(実施例1)Co−10Pt−5B(at
%)、Co−20Cr−10Pt−5B(at%)、C
o−20Cr−10Pt−5B−1Ta(at%)、C
o−20Cr−10Pt−10Ni−5B(at%)、
Co−20Cr−10Pt−5B−1Ti(at%)、
Co−20Cr−10Pt−5B−1Nb(at%)、
Co−20Cr−10Pt−5B−1Mo(at%)お
よびCo−20Cr−10Pt−5B−1Cu(at
%)のインゴットを作製し、それぞれのインゴットを表
1に示す条件で熱間圧延を行った。(Example 1) Co-10Pt-5B (at
%), Co-20Cr-10Pt-5B (at%), C
o-20Cr-10Pt-5B-1Ta (at%), C
o-20Cr-10Pt-10Ni-5B (at%),
Co-20Cr-10Pt-5B-1Ti (at%),
Co-20Cr-10Pt-5B-1Nb (at%),
Co-20Cr-10Pt-5B-1Mo (at%) and Co-20Cr-10Pt-5B-1Cu (at%)
%), And each of the ingots was hot-rolled under the conditions shown in Table 1.
【0017】[0017]
【表1】 [Table 1]
【0018】ただし、熱間圧延は、インゴット板厚40
mmtから、8mmtへの加工とし、表1に示す上限温
度で加熱後圧延を行い、表1に示す下限温度まで低下し
たら、再度上限温度で加熱を行なうものとした。また、
圧延1回の圧下率は10%以下とし、圧延方向を変えな
がら所定の板厚まで圧延した。また、表2〜表4は、熱
間圧延した結果の割れの状況(割れ未発生:○、割れ発
生:×)について示す。さらに、表5および6には熱間
圧延を行う前に、それぞれ900℃×1hおよび100
0℃×5hの熱処理を行ったCo−10Pt−5B(a
t%)、Co−20Cr−10Pt−5B(at%)お
よびCo−20Cr−10Pt−5B−1Ta(at
%)インゴットの熱間圧延した結果の割れの状況(割れ
未発生:○、割れ発生:×)について示す。表2〜表4
と表5および表6とを対比することにより、熱間前の熱
処理が熱間加工時の割れ発生を抑え、加工性を向上する
ことがわかる。However, in the hot rolling, the ingot thickness 40
From the mmt to the 8 mmt, rolling was performed after heating at the upper limit temperature shown in Table 1, and when the temperature was lowered to the lower limit temperature shown in Table 1, heating was performed again at the upper limit temperature. Also,
The rolling reduction per rolling was set to 10% or less, and rolling was performed to a predetermined thickness while changing the rolling direction. Tables 2 to 4 show the state of cracks as a result of hot rolling (cracks not generated: 、, cracks generated: x). Further, Tables 5 and 6 show that 900 ° C. × 1 h and 100
Co-10Pt-5B (a) heat-treated at 0 ° C. × 5 h
t%), Co-20Cr-10Pt-5B (at%) and Co-20Cr-10Pt-5B-1Ta (at
%) The state of cracking as a result of hot rolling of the ingot (no cracking: O, cracking: X) is shown. Table 2 to Table 4
By comparing Table 5 with Tables 5 and 6, it can be seen that the heat treatment before hot suppresses cracking during hot working and improves workability.
【0019】[0019]
【表2】 [Table 2]
【0020】[0020]
【表3】 [Table 3]
【0021】[0021]
【表4】 [Table 4]
【0022】[0022]
【表5】 [Table 5]
【0023】[0023]
【表6】 [Table 6]
【0024】表2〜表6で得られたターゲット材のマト
リックスの結晶粒径を切断法で測定した平均結晶粒径を
表7および表8に示す。なお、表7および表8において
は割れの発生の無かったものについて測定したものであ
る。また、本発明のターゲットの代表的な熱間圧延を適
用したミクロ組織として、Co−20Cr−10Pt−
5B(at%)の熱間圧延後および鋳造ままの素材のミ
クロ組織を図1および図2に、Co−20Cr−10P
t−5B−1Ta(at%)の熱間圧延後および鋳造ま
まの素材のミクロ組織を図3および図4に示す。ただ
し、それぞれ素材の断面方向から観察したものである。
図1〜4のミクロ組織より、熱間圧延を行った素材は、
マトリックスに再結晶がおこり結晶粒径が細かくなって
おり、組織中に存在するホウ化物がターゲットの断面で
見た時に層状をなして分散した組織になっていることが
わかる。Tables 7 and 8 show the average crystal grain size of the matrix of the target material obtained in Tables 2 to 6 as measured by a cutting method. Note that in Tables 7 and 8, measurements were made for those having no cracks. Further, as a microstructure to which a typical hot rolling of the target of the present invention is applied, Co-20Cr-10Pt-
The microstructure of the as-cast material after hot rolling of 5B (at%) and as-cast is shown in FIGS. 1 and 2 for Co-20Cr-10P.
The microstructure of the raw material after hot rolling of t-5B-1Ta (at%) and as cast is shown in FIGS. However, each was observed from the cross-sectional direction of the material.
From the microstructure of FIGS. 1-4, the material that has been hot rolled is
It can be seen that recrystallization occurs in the matrix and the crystal grain size is reduced, and the boride present in the structure has a layered and dispersed structure when viewed from the cross section of the target.
【0025】[0025]
【表7】 [Table 7]
【0026】[0026]
【表8】 [Table 8]
【0027】(実施例2)NiPメッキを施したAl基
板上にCr下地膜をスパッタ成膜した基板を用い、基板
上に、基板温度150℃、Ar圧0.66Pa、DC電
力500Wの条件で表9に示すマトリックスの平均結晶
粒径の異なるCo−20Cr−10Pt−5B(at
%)ターゲットで成膜を行った。磁性膜の特性バラツキ
を調査するため総成膜時間が1時間から1時間間隔で5
時間までの成膜基板を作製し、VSM(振動試料型磁力
計)で測定した保磁力Hcの計測結果を表10に示す。
ただし、表10は、試料1の1時間時の保磁力を100
とした相対値で表した。平均結晶粒径の異なるターゲッ
トは、鋳造ままの組織で加工製造したターゲット材、熱
間圧延ままのターゲット材と、熱間圧延後に加熱処理を
行うことにより結晶粒成長をさせで結晶粒径を大きくし
たものを用いた。Example 2 Using a substrate in which a Cr underlayer was formed by sputtering on an Al substrate on which NiP plating had been applied, a substrate temperature of 150 ° C., an Ar pressure of 0.66 Pa, and a DC power of 500 W were used. Co-20Cr-10Pt-5B (at
%) Film formation was performed with a target. In order to investigate the variation in the characteristics of the magnetic film, the total film formation time was 5 hours at intervals of 1 hour to 1 hour.
Table 10 shows the measurement results of the coercive force Hc measured by using a vibrating sample magnetometer (VSM) after preparing a film-forming substrate for up to a time.
However, Table 10 shows that the coercive force of Sample 1 at one hour was 100
And expressed as relative values. Targets with different average crystal grain sizes are target materials processed and manufactured with as-cast texture, target materials as hot rolled, and heat treatment after hot rolling to grow crystal grains to increase crystal grain size. What was done was used.
【0028】それぞれのターゲット材に対して、切断法
で測定した平均結晶粒径を測定した。ただし、鋳造まま
の素材は、デンドライト組織中のマトリックスに結晶粒
界は観察されないため、結晶粒径は測定不能であった。
さらに、表9中にはターゲット断面を観察した際のホウ
化物の分散状況について示す。分散状態の表記について
は、層状としたものは図1および3に準じた組織、ラン
ダムとしたものは図2および4に準じた組織である。表
10より、鋳造ままの組織のターゲットは成膜時のバラ
ツキが大きく、さらに、マトリックスの結晶粒径が微細
なターゲットが磁性膜の特性バラツキが小さいことがわ
かる。For each target material, the average crystal grain size measured by the cutting method was measured. However, in the as-cast material, no crystal grain boundary was observed in the matrix in the dendrite structure, so that the crystal grain size could not be measured.
Further, Table 9 shows the state of dispersion of the boride when the cross section of the target was observed. With respect to the notation of the dispersion state, a layered structure is a structure according to FIGS. 1 and 3, and a random structure is a structure according to FIGS. From Table 10, it can be seen that a target having an as-cast structure has a large variation at the time of film formation, and a target having a fine crystal grain size of a matrix has a small characteristic variation of a magnetic film.
【0029】[0029]
【表9】 [Table 9]
【0030】[0030]
【表10】 [Table 10]
【0031】[0031]
【発明の効果】本発明により、磁気ディスク装置用など
の磁気記録媒体のCo−Pt−B系磁性膜の磁気特性の
バラツキを抑えたCo−Pt−B系ターゲットを安定し
て供給することが可能となり、磁気記録媒体の製造に欠
かせない技術となった。According to the present invention, it is possible to stably supply a Co-Pt-B-based target in which the variation in the magnetic properties of the Co-Pt-B-based magnetic film of a magnetic recording medium such as a magnetic disk drive is suppressed. It became possible and became an indispensable technology for manufacturing magnetic recording media.
【図1】本発明のターゲットの代表的な組織を示すCo
−20Cr−10Pt−5B(at%)のミクロ組織顕
微鏡写真である。FIG. 1 shows Co representing a representative structure of a target of the present invention.
It is a microstructure micrograph of -20Cr-10Pt-5B (at%).
【図2】比較例のターゲットの代表的な組織を示すCo
−20Cr−10Pt−5B(at%)のミクロ組織顕
微鏡写真である。FIG. 2 shows Co representing a representative structure of a target of a comparative example.
It is a microstructure micrograph of -20Cr-10Pt-5B (at%).
【図3】本発明のターゲットの代表的な組織を示すCo
−20Cr−10Pt−5B−1Ta(at%)のミク
ロ組織顕微鏡写真である。FIG. 3 shows Co representing a representative structure of the target of the present invention.
It is a microstructure micrograph of -20Cr-10Pt-5B-1Ta (at%).
【図4】比較例のターゲットの代表的な組織を示すCo
−20Cr−10Pt−5B−1Ta(at%)のミク
ロ組織顕微鏡写真である。FIG. 4 shows Co representing a representative structure of a target of a comparative example.
It is a microstructure micrograph of -20Cr-10Pt-5B-1Ta (at%).
Claims (12)
t%、残部Coを主体とするターゲットであって、マト
リックスの平均結晶粒径が50μm以下であり、組織中
に存在するホウ化物がターゲットの断面で見た時に層状
に分散していることを特徴とするCo−Pt−B系ター
ゲット。1. At least 10 ≧ B ≧ 1 at%, 30 ≧ Pt ≧ 5a
a target mainly composed of t% and the balance Co, wherein the average crystal grain size of the matrix is 50 μm or less, and boride present in the structure is dispersed in a layered form when viewed in a cross section of the target. Co-Pt-B-based target.
とを特徴とする請求項1に記載のCo−Pt−B系ター
ゲット。2. The Co—Pt—B-based target according to claim 1, wherein the target contains 30 ≧ Cr ≧ 10 at%.
特徴とする請求項1または2に記載のCo−Pt−B系
ターゲット。3. The Co—Pt—B-based target according to claim 1, wherein 7 ≧ Ta> 0 at% is contained.
を特徴とする請求項1から3のいずれかに記載のCo−
Pt−B系ターゲット。4. The method according to claim 1, wherein the content of Co is 30 ≧ Ni ≧ 5 at%.
Pt-B target.
o+W+Cu+Ag+Au)>0at%含んでいること
を特徴とする請求項1から4のいずれかに記載のCo−
Pt−B系ターゲット。5. 5 ≧ (Ti + Zr + Hf + V + Nb + M
o + W + Cu + Ag + Au)> 0 at%.
Pt-B target.
t%、残部Coを主体とする素材を、熱間圧延を施し、
マトリックスの平均結晶粒径が50μm以下、組織中に
存在するホウ化物をターゲットの断面で見た時に層状に
分散させることを特徴とするCo−Pt−B系ターゲッ
トの製造方法。6. At least 10 ≧ B ≧ 1 at%, 30 ≧ Pt ≧ 5a
t%, the balance of the material mainly composed of Co is subjected to hot rolling,
A method for producing a Co-Pt-B-based target, wherein a boride present in a structure having an average crystal grain size of a matrix of 50 µm or less is dispersed in a layer when viewed in a cross section of the target.
at%を含んでいることを特徴とする請求項6に記載の
Co−Pt−B系ターゲットの製造方法。7. The manufacturing target is 30 ≧ Cr ≧ 10.
The method for producing a Co-Pt-B-based target according to claim 6, comprising at%.
%を含んでいることを特徴とする請求項6または7に記
載のCo−Pt−B系ターゲットの製造方法。8. The target to be manufactured is 7 ≧ Ta> 0 at.
8. The method for producing a Co—Pt—B-based target according to claim 6, wherein
t%を含んでいることを特徴とする請求項6から8のい
ずれかに記載のCo−Pt−B系ターゲットの製造方
法。9. The manufacturing target is 30 ≧ Ni ≧ 5a.
The method for producing a Co-Pt-B-based target according to any one of claims 6 to 8, comprising t%.
r+Hf+V+Nb+Mo+W+Cu+Ag+Au)>
0at%を含んでいることを特徴とする請求項6から9
のいずれかに記載のCo−Pt−B系ターゲットの製造
方法。10. The target to be manufactured is 5 ≧ (Ti + Z)
r + Hf + V + Nb + Mo + W + Cu + Ag + Au)>
10 to 9 at%.
The method for producing a Co-Pt-B-based target according to any one of the above.
の間で行うことを特徴とする請求項6から10のいずれ
かに記載のCo−Pt−B系ターゲットの製造方法。11. A hot rolling temperature of 1100 ° C. to 800 ° C.
The method for producing a Co-Pt-B-based target according to any one of claims 6 to 10, wherein
間で1時間以上の熱処理を行うことを特徴とする請求項
6から11のいずれかに記載のCo−Pt−B系ターゲ
ットの製造方法。12. The production of a Co—Pt—B-based target according to claim 6, wherein heat treatment is performed at 1100 ° C. to 800 ° C. for 1 hour or more before hot rolling. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20040199A JP2001026860A (en) | 1999-07-14 | 1999-07-14 | Co-Pt-B BASE TARGET AND ITS PRODUCTION |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20040199A JP2001026860A (en) | 1999-07-14 | 1999-07-14 | Co-Pt-B BASE TARGET AND ITS PRODUCTION |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001026860A true JP2001026860A (en) | 2001-01-30 |
Family
ID=16423714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20040199A Pending JP2001026860A (en) | 1999-07-14 | 1999-07-14 | Co-Pt-B BASE TARGET AND ITS PRODUCTION |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001026860A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001303242A (en) * | 2000-04-27 | 2001-10-31 | Mitsui Mining & Smelting Co Ltd | Manufacturing method of sputtering target |
JP2001303241A (en) * | 2000-04-27 | 2001-10-31 | Mitsui Mining & Smelting Co Ltd | Manufacturing method of sputtering target |
WO2005093124A1 (en) * | 2004-03-26 | 2005-10-06 | Nippon Mining & Metals Co., Ltd. | Co-Cr-Pt-B BASED ALLOY SPUTTERING TARGET |
EP1607940A3 (en) * | 2004-06-15 | 2006-02-15 | Heraeus, Inc. | Enhanced sputter target alloy compositions |
EP1746586A1 (en) * | 2005-07-19 | 2007-01-24 | Heraeus, Inc. | Enhanced sputter target alloy compositions |
EP1746173A3 (en) * | 2005-07-22 | 2007-05-09 | Heraeus, Inc. | Enhanced sputter target manufacturing method |
JP2008127591A (en) * | 2006-11-17 | 2008-06-05 | Sanyo Special Steel Co Ltd | Co-B-BASED TARGET MATERIAL AND MANUFACTURING METHOD THEREFOR |
JP2012251174A (en) * | 2011-04-15 | 2012-12-20 | Mitsui Mining & Smelting Co Ltd | Sputtering target for solar cell |
WO2013001943A1 (en) * | 2011-06-30 | 2013-01-03 | Jx日鉱日石金属株式会社 | Co-Cr-Pt-B ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING SAME |
WO2013133163A1 (en) * | 2012-03-09 | 2013-09-12 | Jx日鉱日石金属株式会社 | Sputtering target for magnetic recording medium, and process for producing same |
CN106319463A (en) * | 2016-09-22 | 2017-01-11 | 安泰天龙钨钼科技有限公司 | Preparation method for rolling processing of tungsten-titanium alloy target material |
WO2019058819A1 (en) * | 2017-09-21 | 2019-03-28 | Jx金属株式会社 | Sputtering target, method for producing laminated film, laminated film, and magnetic recording medium |
-
1999
- 1999-07-14 JP JP20040199A patent/JP2001026860A/en active Pending
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001303242A (en) * | 2000-04-27 | 2001-10-31 | Mitsui Mining & Smelting Co Ltd | Manufacturing method of sputtering target |
JP2001303241A (en) * | 2000-04-27 | 2001-10-31 | Mitsui Mining & Smelting Co Ltd | Manufacturing method of sputtering target |
WO2005093124A1 (en) * | 2004-03-26 | 2005-10-06 | Nippon Mining & Metals Co., Ltd. | Co-Cr-Pt-B BASED ALLOY SPUTTERING TARGET |
US7927434B2 (en) * | 2004-03-26 | 2011-04-19 | Jx Nippon Mining & Metals Corporation | Co-Cr-Pt-B alloy sputtering target |
EP1607940A3 (en) * | 2004-06-15 | 2006-02-15 | Heraeus, Inc. | Enhanced sputter target alloy compositions |
EP1746586A1 (en) * | 2005-07-19 | 2007-01-24 | Heraeus, Inc. | Enhanced sputter target alloy compositions |
KR100830619B1 (en) | 2005-07-19 | 2008-05-22 | 헤래우스 인코포레이티드 | Enhanced sputter target alloy compositions |
EP1746173A3 (en) * | 2005-07-22 | 2007-05-09 | Heraeus, Inc. | Enhanced sputter target manufacturing method |
JP2008127591A (en) * | 2006-11-17 | 2008-06-05 | Sanyo Special Steel Co Ltd | Co-B-BASED TARGET MATERIAL AND MANUFACTURING METHOD THEREFOR |
JP2012251174A (en) * | 2011-04-15 | 2012-12-20 | Mitsui Mining & Smelting Co Ltd | Sputtering target for solar cell |
JP5654126B2 (en) * | 2011-06-30 | 2015-01-14 | Jx日鉱日石金属株式会社 | Co-Cr-Pt-B alloy sputtering target and method for producing the same |
JP2013231236A (en) * | 2011-06-30 | 2013-11-14 | Jx Nippon Mining & Metals Corp | Co-Cr-Pt-B-BASED ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME |
CN103620083A (en) * | 2011-06-30 | 2014-03-05 | 吉坤日矿日石金属株式会社 | Co-cr-pt-b alloy sputtering target and method for producing same |
WO2013001943A1 (en) * | 2011-06-30 | 2013-01-03 | Jx日鉱日石金属株式会社 | Co-Cr-Pt-B ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING SAME |
JP2015061946A (en) * | 2011-06-30 | 2015-04-02 | Jx日鉱日石金属株式会社 | Co-Cr-Pt-B BASE ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF |
JP2015071827A (en) * | 2011-06-30 | 2015-04-16 | Jx日鉱日石金属株式会社 | Co-Cr-Pt-B-BASED ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD OF THE SAME |
US10266939B2 (en) * | 2012-03-09 | 2019-04-23 | Jx Nippon Mining & Metals Corporation | Sputtering target for magnetic recording medium, and process for producing same |
JPWO2013133163A1 (en) * | 2012-03-09 | 2015-07-30 | Jx日鉱日石金属株式会社 | Sputtering target for magnetic recording medium and manufacturing method thereof |
JP2015180775A (en) * | 2012-03-09 | 2015-10-15 | Jx日鉱日石金属株式会社 | Sputtering target for magnetic recording medium and manufacturing method thereof |
WO2013133163A1 (en) * | 2012-03-09 | 2013-09-12 | Jx日鉱日石金属株式会社 | Sputtering target for magnetic recording medium, and process for producing same |
US9970099B2 (en) | 2012-03-09 | 2018-05-15 | Jx Nippon Mining & Metals Corporation | Sputtering target for magnetic recording medium, and process for producing same |
CN106319463A (en) * | 2016-09-22 | 2017-01-11 | 安泰天龙钨钼科技有限公司 | Preparation method for rolling processing of tungsten-titanium alloy target material |
WO2019058819A1 (en) * | 2017-09-21 | 2019-03-28 | Jx金属株式会社 | Sputtering target, method for producing laminated film, laminated film, and magnetic recording medium |
CN109819661A (en) * | 2017-09-21 | 2019-05-28 | Jx金属株式会社 | Sputtering target, method for producing laminated film, laminated film, and magnetic recording medium |
TWI679291B (en) * | 2017-09-21 | 2019-12-11 | 日商Jx金屬股份有限公司 | Sputtering target, manufacturing method of laminated film, laminated film and magnetic recording medium |
JPWO2019058819A1 (en) * | 2017-09-21 | 2020-09-10 | Jx金属株式会社 | Sputtering target, manufacturing method of laminated film, laminated film and magnetic recording medium |
JP7153634B2 (en) | 2017-09-21 | 2022-10-14 | Jx金属株式会社 | Sputtering target, laminated film manufacturing method, laminated film, and magnetic recording medium |
JP2022159318A (en) * | 2017-09-21 | 2022-10-17 | Jx金属株式会社 | Sputtering target, method for producing laminated film, laminated film and magnetic recording medium |
JP7513667B2 (en) | 2017-09-21 | 2024-07-09 | Jx金属株式会社 | Sputtering target, method for manufacturing laminated film, and method for manufacturing magnetic recording medium |
US12312674B2 (en) | 2017-09-21 | 2025-05-27 | Jx Advanced Metals Corporation | Sputtering target |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4016399B2 (en) | Method for producing Fe-Co-B alloy target material | |
JP2777319B2 (en) | Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head | |
US20080083616A1 (en) | Co-Fe-Zr BASED ALLOY SPUTTERING TARGET MATERIAL AND PROCESS FOR PRODUCTION THEREOF | |
JP2007297679A (en) | Sputtering target of cobalt and manufacturing method therefor | |
JP2001026860A (en) | Co-Pt-B BASE TARGET AND ITS PRODUCTION | |
JPS6123848B2 (en) | ||
EP1811050A2 (en) | Magnetic sputter targets manufactured using directional solidification | |
EP1235946B1 (en) | Method for producing cobalt-based alloy sputter target | |
JP6231035B2 (en) | Manufacturing method of sputtering target for magnetic recording medium | |
CN1128804A (en) | Wear-resistant high premeability alloy and method of mfg. same and magnetic recording and reproducing head | |
JP2006513316A (en) | Thin film and method for forming a thin film using an ECAE target | |
JP2001098360A (en) | Co-Cr-Pt-C TARGET, ITS MANUFACTURE, AND MAGNETIC RECORDING MEDIUM | |
JP2002208125A (en) | Co-Cr-Pt BASED TARGET MATERIAL AND MAGNETIC RECORDING MEDIUM | |
JP2002069623A (en) | Co-Cr-Pt-B BASED TARGET AND MAGNETIC RECORDING MEDIUM | |
JP2001073125A (en) | Co-Ta ALLOY SPUTTERING TARGET AND ITS PRODUCTION | |
JP4006620B2 (en) | Manufacturing method of high purity nickel target and high purity nickel target | |
JP2001107226A (en) | Co SERIES TARGET AND ITS PRODUCTION METHOD | |
KR900007666B1 (en) | Amorphous Alloy for Magnetic Heads | |
JP3251899B2 (en) | Wear-resistant high permeability alloy and magnetic recording / reproducing head | |
JP4573381B2 (en) | Manufacturing method of sputtering target | |
US6398880B1 (en) | Magnetic data-storage targets and methods for preparation | |
JP2002226970A (en) | Co TARGET AND PRODUCTION METHOD THEREFOR | |
JPH06215941A (en) | Magnetic recording medium, target for forming magnetic recording film, and method for forming magnetic recording film | |
JP4750924B2 (en) | Manufacturing method of sputtering target | |
JPH11222671A (en) | Target for sputtering and its production |