[go: up one dir, main page]

JP2001026500A - Deposition of thin-film single crystal device - Google Patents

Deposition of thin-film single crystal device

Info

Publication number
JP2001026500A
JP2001026500A JP11200531A JP20053199A JP2001026500A JP 2001026500 A JP2001026500 A JP 2001026500A JP 11200531 A JP11200531 A JP 11200531A JP 20053199 A JP20053199 A JP 20053199A JP 2001026500 A JP2001026500 A JP 2001026500A
Authority
JP
Japan
Prior art keywords
single crystal
thin film
film single
thin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11200531A
Other languages
Japanese (ja)
Inventor
Katsumi Nakagawa
克己 中川
Masaaki Iwane
正晃 岩根
Yukiko Iwasaki
由希子 岩▲崎▼
Takao Yonehara
隆夫 米原
Kiyobumi Sakaguchi
清文 坂口
Noritaka Ukiyo
典孝 浮世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11200531A priority Critical patent/JP2001026500A/en
Priority to US09/614,548 priority patent/US6452091B1/en
Priority to EP00115248A priority patent/EP1069602A2/en
Priority to CNA2003101143451A priority patent/CN1516291A/en
Priority to AU48638/00A priority patent/AU768197B2/en
Priority to CNB001240986A priority patent/CN1156919C/en
Priority to CNA200310114344A priority patent/CN1505174A/en
Publication of JP2001026500A publication Critical patent/JP2001026500A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which prevents the degradation in quality of a single crystal layer and the degradation in yield when the single crystal layer for depositing a semiconductor device is peeled as a thin film. SOLUTION: A release layer 102, such as a porous layer, and a thin-film single crystal 103, such as an epitaxially grown silicon layer, are formed by on the surface of a substrate 1, such as a silicone wafer, the arrangement in this order. A sheet-like member 104 is stuck to the surface of the thin-film single crystal or a layer additively formed thereon. Force is applied to this sheet-like member so as to curve the member, by which the thin-film single crystal is peeled from the substrate. At this time, the peeling of the thin-film single crystal is so progressed that the direction of all the straight lines formed by the appearance of the most easily peelable faces, such as 111} faces, of this thin-film single crystal on the surface of the thin film and the direction of the foremost line at which the thin-film single crystal peels from the substrate forms an angle of >=5 deg.. A solar battery, image display element drive circuit part, etc., are produced by utilizing such thin-film single crystal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は薄膜単結晶デバイス
の製造法に関する。薄膜単結晶デバイスには太陽陽電池
や液晶表示素子の画像表示素子駆動回路用部材等があ
る。
The present invention relates to a method for manufacturing a thin film single crystal device. The thin film single crystal device includes a solar cell and a member for an image display element driving circuit of a liquid crystal display element.

【0002】[0002]

【従来の技術】各種電気機器を駆動するための独立電源
や、商用電力と系統連系させる電源として太陽電池が普
及しつつある。太陽電池を構成する半導体としては一般
にシリコンやガリウム砒素が用いられる。特に高い光電
変換効率(光エネルギーを電力に変換する効率)を得る
には、これらの半導体の単結晶を用いるのがよい。
2. Description of the Related Art Solar cells are becoming widespread as independent power supplies for driving various electric devices and as power supplies for system interconnection with commercial power. Generally, silicon or gallium arsenide is used as a semiconductor constituting a solar cell. In order to obtain particularly high photoelectric conversion efficiency (the efficiency of converting light energy into electric power), it is preferable to use single crystals of these semiconductors.

【0003】また最近、液晶画像表示素子等の大面積の
画像表示素子においては、微細化、高速化等の要請か
ら、素子内部に作り込まれる駆動回路の能力向上が求め
られている。その為には、従来用いられてきたアモルフ
ァスや多結晶のシリコンより、単結晶シリコンに駆動回
路を作り込む方が良い。
Recently, in a large-area image display device such as a liquid crystal image display device, the performance of a driving circuit built in the device has been required to be improved due to demands for miniaturization and high-speed operation. For that purpose, it is better to form the drive circuit in single-crystal silicon than in the amorphous or polycrystalline silicon conventionally used.

【0004】ところがこの様な目的に単結晶半導体を用
いるに当っては幾つかの問題がある。太陽電池にシリコ
ンを用いる場合、入射した太陽光の吸収に必要な膜厚は
30〜50μm程度であるのに対し、一般に用いられて
いる単結晶ウェハは厚さが300〜600μm程度もあ
る。特に最近の様に太陽電池に使用されるシリコン結晶
が全生産量の1割以上を占める様になると、材料の使用
量の節約が望まれる。また、画像表示デバイスにおいて
はその使用形態からして、駆動回路において素子同士の
間の領域では光が透過しなくてはならないが、一般の単
結晶ウェハではその様な構造を作ることは困難である。
しかも駆動素子そのものに必要な単結晶層の厚さは1μ
m以下で、その下のシリコンは単なる支持基板の役割を
果たしているに過ぎない。
However, there are some problems in using a single crystal semiconductor for such a purpose. When silicon is used for a solar cell, the thickness required for absorbing incident sunlight is about 30 to 50 μm, whereas a generally used single crystal wafer has a thickness of about 300 to 600 μm. In particular, when silicon crystals used for solar cells occupy 10% or more of the total production amount as in recent years, it is desired to reduce the amount of materials used. Further, in the image display device, light must be transmitted in a region between the elements in the drive circuit due to its use form, but it is difficult to form such a structure with a general single crystal wafer. is there.
Moreover, the thickness of the single crystal layer required for the driving element itself is 1 μm.
Below m, the underlying silicon only serves as a support substrate.

【0005】この様な問題を解決するには、目的に応じ
た厚さを持った薄膜単結晶を用いればよいが、従来の技
術では厚さ300μm以下の単結晶層を製造するのは困
難であった。すなわち、従来の単結晶基板の製造法は結
晶材料の融液から、インゴット状の単結晶を成長させ、
これを薄くスライス・研磨していたため、厚さを300
μm以下にするのは困難であった。また、特別の目的で
高品質な薄膜単結晶を得るために、厚さ数百μmの単結
晶基板を裏面からエッチングして、所望の厚さとするこ
とも行われていたが、製造上の困難が多かった。ところ
が最近、特開平7−302889号公報に記載された方
法を用いて単結晶基板の表面にエピタキシャル成長した
薄膜単結晶を基板から剥離したり、さらには特開平9−
331077号公報に記載された技術を用いて、単結晶
基板の表面から一定の範囲にある部分を薄膜として剥離
出来るようになった。しかしこれらの方法においても、
基板からの薄膜単結晶の剥離に伴って薄膜単結晶に欠陥
が入って品質が低下したり、甚だしい場合には薄膜単結
晶にヒビが入って生産の歩留まりを著しく低下させるこ
とがあり、効果的な解決法が望まれていた。
To solve such a problem, a thin film single crystal having a thickness suitable for the purpose may be used. However, it is difficult to produce a single crystal layer having a thickness of 300 μm or less by the conventional technology. there were. That is, the conventional method of manufacturing a single crystal substrate grows an ingot-like single crystal from a melt of the crystal material,
Because this was sliced and polished thinly, the thickness was 300
It was difficult to reduce the thickness to less than μm. Further, in order to obtain a high-quality thin-film single crystal for a special purpose, a single-crystal substrate having a thickness of several hundred μm is etched from the back surface to a desired thickness. There were many. However, recently, a thin film single crystal epitaxially grown on the surface of a single crystal substrate has been peeled off from the substrate by using the method described in Japanese Patent Application Laid-Open No. 7-302889.
By using the technology described in Japanese Patent No. 333077, a portion within a certain range from the surface of the single crystal substrate can be peeled as a thin film. However, even in these methods,
When the thin film single crystal is separated from the substrate, the quality of the thin film single crystal is reduced due to defects in the thin film single crystal, and in severe cases, the thin film single crystal is cracked and the production yield is significantly reduced, which is effective. A solution was desired.

【0006】[0006]

【発明が解決しようとしている課題】そこで、本発明
は、薄膜単結晶デバイスの製造において、欠陥やヒビな
どが発生すること無く薄膜単結晶を基板から剥離する方
法を提供し、高品質の薄膜単結晶デバイスを歩留まりよ
く製造することを可能にすることを課題としている。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a method of peeling a thin film single crystal from a substrate without generating defects or cracks in the production of a thin film single crystal device. It is an object to make it possible to manufacture a crystal device with a high yield.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記した
問題を解決するために鋭意検討を行い、遂に本発明を完
成させるに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and have finally completed the present invention.

【0008】すなわち、本発明においては、基板の表面
に剥離層と薄膜単結晶とをこの順序の配列にて形成し、
前記薄膜単結晶の表面または前記薄膜単結晶の表面に付
加的に形成した層の表面に可撓性のあるシート部材を貼
り付け、さらに前記シート部材を湾曲させるように力を
加えて前記シート部材とともに前記薄膜単結晶を前記基
板から剥離し、前記薄膜単結晶を利用して薄膜単結晶デ
バイスを製造する方法であって、前記薄膜単結晶を基板
から剥離するに際し、前記薄膜単結晶の最もへき開しや
すい面が薄膜の表面に現れてなすすべての直線の方向と
剥離の最前線とが一致しないように、前記薄膜単結晶の
剥離を進めることで、欠陥やヒビなどの発生を防止して
いる。
That is, in the present invention, a release layer and a thin film single crystal are formed on the surface of a substrate in this order,
A flexible sheet member is attached to the surface of the thin film single crystal or a layer additionally formed on the surface of the thin film single crystal, and a force is applied so as to bend the sheet member. A method of manufacturing a thin film single crystal device using the thin film single crystal by peeling the thin film single crystal from the substrate, wherein the thin film single crystal is most cleaved when the thin film single crystal is peeled from the substrate. The separation of the thin film single crystal is advanced so that the direction of all the straight lines formed on the surface of the thin film does not coincide with the forefront of the separation, thereby preventing the occurrence of defects and cracks. .

【0009】[0009]

【発明の実施の形態】以下において、主として剥離層と
して多孔質層を用いた薄膜単結晶シリコン太陽電池の製
造に本発明を適用した場合について説明を行うが、本発
明はその他の薄膜単結晶デバイスの製造方法にも適用可
能である。図3は剥離層として多孔質層を用いて、薄膜
単結晶シリコン太陽電池を製造する工程を示す工程図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the case where the present invention is applied to the production of a thin-film single-crystal silicon solar cell using a porous layer as a release layer will be described, but the present invention relates to other thin-film single-crystal devices. It is also applicable to the manufacturing method. FIG. 3 is a process diagram showing a process of manufacturing a thin-film single-crystal silicon solar cell using a porous layer as a release layer.

【0010】工程a)において、単結晶シリコンウェハを
基板301として使用し、この表面をふっ酸溶液中に漬
けてプラスの電位を加えると、表面から数μm〜数十μ
mの深さに亘って、相互に不規則に連結した多数の微細
孔が形成される。これを多孔質層302と呼ぶ。多孔質
層302は単結晶性を保っており、この上に、熱CVD
法や液相成長法によって、工程b)で第一単結晶層303
を、工程c)で第二単結晶層304をエピタキシャル成長
させることが出来る。ここでは303は弱いp型(p
-型)であり、304は強いn型(n+型)とする。303
と304はpn接合を形成し、この接合の作用によって
光起電力が生じる。また304は、工程c)において30
3の表面にn型のドーパントを含んだ層を形成し、この
層からn型のドーパントを熱拡散させ形成してもよい。
In step a), a single-crystal silicon wafer is used as a substrate 301, and the surface is immersed in a hydrofluoric acid solution and a positive potential is applied.
Over a depth of m, a large number of micropores interconnected irregularly are formed. This is called a porous layer 302. The porous layer 302 keeps a single crystal property, and a thermal CVD
In step b), the first single crystal layer 303
Then, the second single crystal layer 304 can be epitaxially grown in the step c). Here, 303 is a weak p-type (p
- a mold), 304 strong n-type (n + -type). 303
And 304 form a pn junction, and the action of this junction produces a photovoltaic. 304 represents 30 in step c).
Alternatively, a layer containing an n-type dopant may be formed on the surface of No. 3, and the n-type dopant may be thermally diffused from this layer.

【0011】この後、工程d)において反射防止層30
5、グリッド電極306を形成する。次いで、工程e)に
おいて単結晶層に力を作用させると、孔が形成されたこ
とによって脆くなっている多孔質層302の内部で切断
が起こり、第一単結晶層303から上の部分が基板30
1の主要部から剥離する。なお、図3においては、説明
のため基板301を、第一単結晶層303、第二単結晶
層304と同等の厚さに描いてあるが、基板は一般に6
00μm程度あり、多孔質層302や第一単結晶層30
3、第二単結晶層304よりはるかに厚い。剥離した第
一単結晶層303の裏面には多孔質層302の一部が残
留する場合もあるが、その除去は必ずしも必要ではな
い。この後、工程f)において光の反射率の高い導電性接
着剤を用いて、第一単結晶層303の裏面に裏面電極3
07を貼り付ける。これで薄膜単結晶シリコン太陽電池
が完成する。この方法で得られる薄膜単結晶シリコンは
良質の単結晶シリコン基板にエピタキシャル成長させて
作られているので極めて高品質である。また工程e)にお
いて、剥離後、基板表面の多孔質層の残留部を研磨・エ
ッチング等の手段によって除去して再生すると、再生さ
れた基板308は工程a)で再使用できる。この様にして
高価な基板を繰り返し使用できるので、製造コストを著
しく削減することが出来る。
Thereafter, in step d), the anti-reflection layer 30
5. A grid electrode 306 is formed. Next, when a force is applied to the single crystal layer in the step e), a cut occurs inside the porous layer 302 which has become brittle due to the formation of the holes, and the portion above the first single crystal layer 303 is the substrate. 30
Peel from the main part of No. 1. Note that, in FIG. 3, the substrate 301 is illustrated to have a thickness equivalent to that of the first single crystal layer 303 and the second single crystal layer 304 for the sake of explanation.
About 100 μm, and the porous layer 302 or the first single crystal layer 30
3. It is much thicker than the second single crystal layer 304. A part of the porous layer 302 may remain on the back surface of the peeled first single crystal layer 303, but the removal is not necessarily required. Thereafter, in step f), a back electrode 3 is formed on the back surface of the first single crystal layer 303 using a conductive adhesive having a high light reflectance.
07 is pasted. Thus, a thin-film single-crystal silicon solar cell is completed. Since the thin-film single-crystal silicon obtained by this method is made by epitaxial growth on a high-quality single-crystal silicon substrate, the quality is extremely high. Further, in the step e), after the separation, the remaining portion of the porous layer on the substrate surface is removed and regenerated by means such as polishing or etching, and the regenerated substrate 308 can be reused in the step a). Since an expensive substrate can be used repeatedly in this manner, the manufacturing cost can be significantly reduced.

【0012】全工程の中で剥離の工程は、薄膜単結晶の
品質や、製造のスループットや歩留まりに大きな影響を
及ぼすので、図2において詳しく説明する。この図にお
いては基板201の上に剥離層202が形成されてい
る。これは外部から適当な力を加えることによって切断
可能な層で、図3の工程での多孔質層302に相当す
る。この上に薄膜単結晶203が形成されている。効率
的に薄膜単結晶203を剥離するには、図2a)、b)に示
した方法を用いると良い。ここでは薄膜単結晶203の
表面に可撓性のあるシート部材(平面状部材)204を
貼り付ける。
The peeling step among all the steps greatly affects the quality of the thin film single crystal, the production throughput and the yield, and will be described in detail with reference to FIG. In this figure, a release layer 202 is formed on a substrate 201. This is a layer that can be cut by applying an appropriate force from the outside, and corresponds to the porous layer 302 in the step of FIG. A thin film single crystal 203 is formed thereon. In order to efficiently remove the thin film single crystal 203, it is preferable to use the method shown in FIGS. Here, a flexible sheet member (flat member) 204 is attached to the surface of the thin film single crystal 203.

【0013】なおここでは、シート部材204を薄膜単
結晶203に直接貼り付ける様に描いているが、図3に
示した工程の様に、薄膜単結晶203の上に反射防止層
や電極などの付加的な層が形成された上にシート部材2
04を貼り付けても良い。図3の工程のように、デバイ
スが太陽電池であって、表面から光が入射する場合に
は、シート部材204やシート部材204を貼り付ける
接着剤は透明であるか、または後で剥がせるものでなく
てはならない。また薄膜単結晶203の剥離層202側
から光を入射することもできる。その場合、シート部材
204は不透明で良いが、導電性であることが望まし
く、金属シートなどが好適に使用される。この状態でシ
ート部材204の端部を剥離ローラー205にくわえさ
せて剥離ローラー205に回転力を加えると剥離層20
2が切断され、薄膜単結晶203は基板201の端から
次第に剥がれてくる。この方法は薄膜単結晶203を効
率的に剥離できるので太陽電池の量産に好適である。
Although the sheet member 204 is drawn directly on the thin-film single crystal 203 here, an anti-reflection layer, an electrode, etc., are formed on the thin-film single crystal 203 as in the process shown in FIG. The sheet member 2 having the additional layer formed thereon
04 may be pasted. When the device is a solar cell and light enters from the surface as in the process of FIG. 3, the sheet member 204 or an adhesive for attaching the sheet member 204 is transparent or can be peeled off later. Must be. Light can also enter from the separation layer 202 side of the thin film single crystal 203. In this case, the sheet member 204 may be opaque, but is preferably conductive, and a metal sheet or the like is preferably used. In this state, the end portion of the sheet member 204 is held to the peeling roller 205 and a rotational force is applied to the peeling roller 205, so that the peeling layer 20
2 is cut, and the thin film single crystal 203 gradually peels off from the edge of the substrate 201. This method is suitable for mass production of solar cells because the thin film single crystal 203 can be efficiently separated.

【0014】ところが、このような方法で薄膜単結晶2
03を剥離した場合、しばしば薄膜単結晶203に微少
な欠陥や、甚だしい場合には図2a)、c)に示される様な
ヒビ209が入ることがあった。欠陥やヒビの発生を防
止する為には、剥離層202の強度を低下させる、剥離
ローラー205の半径を大きくする等の対策が可能であ
るが、前者の対策では薄膜単結晶203が剥離の工程に
入る前に剥がれてしまう恐れがあり、後者の対策では十
分な剥離の力が得られない恐れがある。本発明者等はこ
の問題を解決するため、まず各種のシリコンウェハを用
いて剥離した時、薄膜単結晶シリコンにヒビが入った場
合の状況を調べたところ表1の結果を得た。
However, the thin film single crystal 2
When the film 03 was peeled off, the thin film single crystal 203 often had minute defects or, in severe cases, cracks 209 as shown in FIGS. 2a) and 2c). In order to prevent the occurrence of defects and cracks, it is possible to take measures such as reducing the strength of the peeling layer 202 and increasing the radius of the peeling roller 205. However, in the former measure, the thin film single crystal 203 is subjected to a peeling process. There is a risk that the film will be peeled off before entering, and the latter measure may not provide a sufficient peeling force. In order to solve this problem, the present inventors have investigated the situation where the thin film single crystal silicon is cracked when peeling using various silicon wafers, and obtained the results shown in Table 1.

【0015】[0015]

【表1】 ─────────────────────────── 使用したウェハの面 ヒビの入る主な方向 ─────────────────────────── {100} <110> {110} <112>、<110> {111} <110> ─────────────────────────── ここで、結晶の方向は<100>の様に表し、これは
[100]に代表され、結晶構造の対称性により[100]
と等価となる方向を一般的に示し、面の方位は{10
0}の様に表し、これは(100)に代表され、結晶構
造の対象性により(100)と等価となる面方位を表す
ものとする。表1の結果から、薄膜単結晶シリコンにヒ
ビの入る方向は、基板として使用した各々のウェハの最
もへき開しやすいことが知られている面に対応する薄膜
表面内での方向と一致することがわかった。さらに場合
によって同じ基板から剥離を行う場合でも、ヒビが入り
やすい場合と殆ど入らない場合があったため、本発明者
等がさらに詳細に調べたところ、ヒビの入りやすさは剥
離を進める方向に依存していることが分かった。
[Table 1] 面 Surface of wafer used Main direction of cracking ──────── {{100} <110> {110} <112>, <110> {111───────── <110> ───────── ────────────────── Here, the direction of the crystal is expressed as <100>, which is
[100] represented by the symmetry of the crystal structure
In general, a direction equivalent to
It is represented as 0 °, which is represented by (100), and represents a plane orientation equivalent to (100) depending on the symmetry of the crystal structure. From the results in Table 1, it can be seen that the direction in which cracks enter the thin-film single-crystal silicon coincides with the direction in the thin-film surface corresponding to the surface of each wafer used as the substrate that is known to be most easily cleaved. all right. Further, even in the case of peeling from the same substrate in some cases, there were cases where cracks were easily formed and cases where cracks were hardly formed. I knew I was doing it.

【0016】すなわち図2において、剥離の進行してい
る最前線207がへき開の起こりやすい方向に一致して
いた場合に著しくヒビが入る傾向が見られる。この場
合、基板201は面方位{100}であり、オリエンテ
ーションフラット206は<110>に向いており、剥
離の最前線207がへき開の起こりやすい方向<110
>に平行なためヒビが入りやすかったものと思われる。
この点を改善したのが、図1に示した剥離法で、ここで
は剥離の最前線107が意図的に<110>からずらし
てあり、この場合はヒビが殆ど入らなかった。他の面方
位の基板を用いた場合についても同様な傾向が見られ、
剥離の最前線107と最もへき開の起こりやすい基板面
内での方位のなす角度を変えて実験したところ、角度が
5度以上あれば、ヒビの入りかたが明らかに減少し、1
0度以上あれば、殆どヒビが入らなくなった。
That is, in FIG. 2, when the forefront 207 where the peeling is progressing coincides with the direction in which the cleavage is likely to occur, there is a tendency that cracks are remarkably formed. In this case, the substrate 201 has a plane orientation of {100}, the orientation flat 206 faces <110>, and the forefront 207 of the peeling is in a direction <110> where cleavage is likely to occur.
It seems that cracks were easy to be formed because it was parallel to>.
An improvement in this point is the peeling method shown in FIG. 1, in which the forefront 107 of the peeling is intentionally shifted from <110>, and in this case, almost no cracks were formed. A similar tendency is seen when substrates with other plane orientations are used,
An experiment was conducted by changing the angle between the forefront 107 of peeling and the azimuth in the substrate surface where cleavage was most likely to occur. When the angle was 5 degrees or more, the cracking was clearly reduced.
Above 0 degrees, almost no cracks were formed.

【0017】この結果はさらに一般化することができ
る。すなわちシリコンの様な図4に示すダイヤモンド構
造を持つ結晶の場合、へき開は{111}面で起こりや
すい。従って、表面がいかなる方位を持つウェハの場合
でも{111}面がそのウェハの表面に現れる方向がヒ
ビの入りやすい方向であり、剥離の最前線107をその
方向からずらす様に剥離を行えばヒビの発生を抑制しう
ることになる。図4乃至図6を用いて、一般的な面方位
のウェハにおいてヒビの入りやすい方向の例を示す。図
4はダイヤモンド構造を持つ結晶の単位格子を示したも
のである。図4において407は{111}面を表し、
ダイヤモンド構造の結晶で最もへき開しやすい面であ
る。また405は{100}面を表す。この面で結晶を
カットした場合、{111}面407は408で示した
様な<110>方向に向いた直線として現れる。但し<1
10>には等価な複数の物があり、408では2種類の直
線を示しているがいずれも<110>として表される。
This result can be further generalized. That is, in the case of a crystal having a diamond structure shown in FIG. 4 such as silicon, cleavage tends to occur on the {111} plane. Therefore, even if the surface of the wafer has any orientation, the direction in which the {111} plane appears on the surface of the wafer is the direction in which the crack is likely to enter. Can be suppressed. 4 to 6 show examples of directions in which cracks easily occur in a wafer having a general plane orientation. FIG. 4 shows a unit cell of a crystal having a diamond structure. In FIG. 4, 407 represents a {111} plane,
This is the most easily cleaved surface of a diamond-structured crystal. Reference numeral 405 denotes a {100} plane. When the crystal is cut on this plane, the {111} plane 407 appears as a straight line oriented in the <110> direction as indicated by 408. However, <1
10> has a plurality of equivalent objects, and 408 shows two types of straight lines, all of which are represented as <110>.

【0018】図5a)は、{100}でカットしたウェハ
501を正面から見た図で、503は<110>の方向を
示す。本発明者等の知見によると、剥離の最前線の向き
をこの方向から5度以上、望ましくは10度以上傾けると
良い。但し、<110>には等価な二つの方向があるの
で、結局望ましい方向は504で示したようになる。図
4において406は、407と等価な{111}面を表
す。この面で結晶をカットした場合、{111}面40
6は409で示した様な<110>方向に向いた直線とし
て現れる。但し<110>には等価な複数の物があり、4
09では3種類の直線を示しているが、いずれも<11
0>として表される。
FIG. 5A is a front view of the wafer 501 cut at {100}, and 503 indicates the direction of <110>. According to the knowledge of the present inventors, the direction of the forefront of peeling should be inclined at least 5 degrees, preferably at least 10 degrees from this direction. However, since there are two equivalent directions in <110>, a desirable direction is finally indicated by 504. In FIG. 4, reference numeral 406 denotes a {111} plane equivalent to 407. When the crystal is cut on this plane, the {111} plane 40
6 appears as a straight line directed in the <110> direction as indicated by 409. However, <110> has a plurality of equivalent
09 shows three types of straight lines, all of which are <11.
0>.

【0019】図5b)は、{111}でカットしたウェハ
505を正面から見た図で、507は<110>の方向を
示す。この場合には、望ましい方向は508で示したよ
うになる。
FIG. 5B is a front view of the wafer 505 cut at {111}, and 507 indicates the <110> direction. In this case, the desired direction is as shown at 508.

【0020】さらに以上の考え方はダイヤモンド構造以
外の結晶構造を持つ薄膜単結晶を剥離する場合にも適用
可能である。例えばGaAs、InP等のIII−V族半導体、ZnS
e、InS等のII−VI族半導体のようなせん亜鉛鉱型構造を
持つ半導体の場合では[110]面が最もへき開しやすい
と言われており、同様の解析によりこの面が基板の表面
に現れた方向から、剥離の最前線の角度をずらせば良
い。
Further, the above concept can be applied to the case where a thin film single crystal having a crystal structure other than the diamond structure is peeled off. For example, III-V semiconductors such as GaAs and InP, ZnS
In the case of a semiconductor having a zinc-blende type structure such as II-VI semiconductors such as e and InS, it is said that the [110] plane is most easily cleaved. What is necessary is just to shift the angle of the forefront of peeling from the appearing direction.

【0021】図6は、{100}でカットしたせん亜鉛
鉱型構造半導体ウェハ601を正面から見た図で、60
3は<100>の方向を示す。この場合には、望ましい方
向は604で示したようになる。
FIG. 6 is a front view of a zinc-blende type semiconductor wafer 601 cut at {100}.
3 indicates the direction of <100>. In this case, the desired direction is as shown at 604.

【0022】[0022]

【実施例】以下の本発明の実施例を説明する。The following examples of the present invention will be described.

【0023】実施例1 本実施例は、図3に示した薄膜単結晶シリコン太陽電池
の製造に本発明を適用したものである。面方位 {11
1} のp+シリコンウェハ301をふっ酸とイソプロピ
ルアルコールの混合液(49重量%のふっ酸(残部は
水)と純度99.9%のイソプロピルアルコールの混合
液; 体積比 1:0.1)に浸漬し、このウェハ30
1を正極、白金板を負極として陽極化成を行った。電流
密度1A/cm2で5分通電したところ、表面から約5μ
mの深さまでに複雑にからみあった微細な孔が形成さ
れ、多孔質層302となった。この多孔質層302の表
面に、インジウムを溶媒とし、この中にp型シリコンを
溶解して作成したメルトを使用した液相成長装置にて、
厚さ約30μmのp型薄膜単結晶シリコン層303をエ
ピタキシャル成長させた。
Embodiment 1 In this embodiment, the present invention is applied to the manufacture of the thin-film single-crystal silicon solar cell shown in FIG. Plane orientation {11
A 1} p + silicon wafer 301 is mixed with a mixture of hydrofluoric acid and isopropyl alcohol (a mixture of 49% by weight of hydrofluoric acid (the remainder being water) and 99.9% of pure isopropyl alcohol; volume ratio 1: 0.1). Immersed in the wafer 30
Anodization was performed using No. 1 as a positive electrode and a platinum plate as a negative electrode. When a current was applied at a current density of 1 A / cm 2 for 5 minutes, about 5 μm from the surface
Fine pores intricately entangled up to a depth of m were formed, and the porous layer 302 was formed. On the surface of the porous layer 302, in a liquid phase growth apparatus using a melt prepared by dissolving p-type silicon in indium as a solvent,
A p-type thin film single crystal silicon layer 303 having a thickness of about 30 μm was epitaxially grown.

【0024】シリコン層303がエピタキシャル成長し
ていることは、電子線回折法により確認した。またこの
薄膜単結晶303がp型であることは、この状態で本発
明の方法により剥離した薄膜単結晶のホール効果測定に
より確認した。p型薄膜単結晶シリコン層303の表面
に、錫を溶媒とし、この中にn+型シリコンを溶解して
作成したメルトを使用した液相成長装置にて、厚さ約0.
2μmのn+型薄膜単結晶シリコン層304をエピタキシ
ャル成長させた。この表面にスパッタリング法により、
反射防止層305として厚さ約70nmの窒化シリコン
の層を堆積した。この表面にスルーホールを形成し、グ
リッド電極306を印刷により形成した。その上に、図
1に示すようなシート部材104として厚さ0.2mm
のPETフィルムを、EVAを接着層(不図示)として
貼り付けた。
The epitaxial growth of the silicon layer 303 was confirmed by an electron diffraction method. Further, the fact that the thin film single crystal 303 is p-type was confirmed by measuring the Hall effect of the thin film single crystal peeled by the method of the present invention in this state. On a surface of the p-type thin film single crystal silicon layer 303, a liquid phase growth apparatus using a melt prepared by dissolving n + -type silicon in tin using tin as a solvent was used to have a thickness of about 0.
A 2 μm n + type thin film single crystal silicon layer 304 was epitaxially grown. By sputtering on this surface,
A layer of silicon nitride having a thickness of about 70 nm was deposited as the anti-reflection layer 305. A through hole was formed on this surface, and a grid electrode 306 was formed by printing. On top of that, a sheet member 104 as shown in FIG.
Was adhered using EVA as an adhesive layer (not shown).

【0025】このシート部材の端を直径100mmの剥離
ローラー105にくわえさせて、周辺から巻き上げた。
この時シート部材をくわえる位置、剥離ローラー105
の軸の方向に注意し、この軸の向きがウェハのオリエン
テーションフラット(方位は<110>)106と常に4
5度の角度をなすよう巻き上げた。それと共に薄膜単結
晶シリコンが多孔質層302の部分から剥がれ始めた。
その時剥離がおこっている最前線107の方向は剥離ロ
ーラー105の軸の向きと平行であった。そのまま巻き
上げを続けたところ、薄膜単結晶シリコン全体が基板か
ら剥がれた。
The end of the sheet member was held by a peeling roller 105 having a diameter of 100 mm and wound up from the periphery.
At this time, the position where the sheet member is added, the peeling roller 105
Note that the direction of this axis is always 4 degrees with the wafer orientation flat (orientation is <110>) 106.
Winded up to make an angle of 5 degrees. At the same time, the thin film single crystal silicon began to peel off from the porous layer 302.
At that time, the direction of the front line 107 where the peeling occurred was parallel to the direction of the axis of the peeling roller 105. When the winding was continued as it was, the entire thin film single crystal silicon was peeled off from the substrate.

【0026】この裏面に銅を主成分とする導電性接着剤
を用いてステンレス板の裏面電極307を貼り付けた。
この状態でAM1.5に調整されたソーラーシミュレータ
により測定を行ったところ、変換効率15%が得られ
た。この太陽電池は温度45℃×湿度85%の環境に於
いて変換効率は14.0%になり、十分実用に耐える値で
あった。次に剥離が済んだ後のウェハをふっ硝酸系エッ
チング液に漬けたところ、ウェハの表面に残っていた多
孔質層の残留部分が溶け去り、再生された基板(ウェ
ハ)308の表面は鏡面となった。このウェハを用いて
前記の工程を繰り返して得られた太陽電池も変換効率1
4.8%を示し、ウェハが繰り返し使用可能であること
がわかった。
A back electrode 307 of a stainless steel plate was adhered to the back surface using a conductive adhesive containing copper as a main component.
In this state, when a measurement was performed using a solar simulator adjusted to AM1.5, a conversion efficiency of 15% was obtained. The conversion efficiency of this solar cell was 14.0% in an environment of a temperature of 45 ° C. and a humidity of 85%, which was a value enough for practical use. Next, when the peeled wafer is immersed in a nitric acid-based etching solution, the remaining portion of the porous layer remaining on the surface of the wafer is dissolved away, and the surface of the regenerated substrate (wafer) 308 has a mirror surface. became. The solar cell obtained by repeating the above process using this wafer also has a conversion efficiency of 1
4.8%, indicating that the wafer could be used repeatedly.

【0027】一方薄膜単結晶を剥離する際、剥離ローラ
ーの軸がオリエンテーションフラットと平行になるよう
に巻き上げたこと以外は前記と全く同様にして太陽電池
を試作したところ、剥離した薄膜単結晶にヒビが入って
おり、グリッド電極の断線も見られた。この太陽電池の
変換効率は4.5%であり、しかも温度45℃×湿度8
5%では出力が全く得られなくなった。さらに剥離後の
ウェハに、フレーク状に単結晶層が残り、エッチングで
はきれいな面を出すことができなかった。また、剥離ロ
ーラーの軸の向きとウェハのオリエンテーションフラッ
ト106の方向とが常に5度の角度をなす様に巻き上げ
たところ、一見ヒビが入っているようには見えず、また
変換効率も14.5%あり実用に耐える性能であった
が、温度45℃×湿度85%の環境では変換効率が5.
5%と著しく低下した。観察しにくい微少な欠陥が生じ
ているものと思われる。この様な高温高湿化での顕著な
性能低下は、剥離ローラーの軸の方向とオリエンテーシ
ョンフラット106の方向とが常に10度の角度をなす
様に巻き上げると見られなくなった。
On the other hand, when the thin film single crystal was peeled off, a solar cell was prototyped in exactly the same manner as described above except that the axis of the peeling roller was wound up parallel to the orientation flat. And the disconnection of the grid electrode was observed. The conversion efficiency of this solar cell is 4.5%, and the temperature is 45 ° C. and the humidity is 8
At 5%, no output was obtained. Further, a single crystal layer remained in a flake shape on the wafer after peeling, and a clean surface could not be obtained by etching. In addition, when the film was wound up so that the direction of the axis of the peeling roller and the direction of the orientation flat 106 of the wafer were always at an angle of 5 degrees, it did not seem that cracks appeared at first glance, and the conversion efficiency was 14.5. %, Which is a performance that can withstand practical use. However, in an environment where the temperature is 45 ° C and the humidity is 85%, the conversion efficiency is 5.
It was significantly reduced to 5%. It is considered that a minute defect that is difficult to observe has occurred. Such a remarkable decrease in performance due to high temperature and high humidity was not observed when the direction of the axis of the peeling roller and the direction of the orientation flat 106 were constantly wound so as to form an angle of 10 degrees.

【0028】実施例2 本実施例は、薄膜単結晶ガリウム砒素(GaAs)を用いた太
陽電池の製造に本発明を適用したものである。面方位
{100}のp型GaAsウェハを用意した。この基板の表
面にガリウムを溶媒とし、この中に砒素と微量のシリコ
ンを溶かしたメルトを使用した液相成長装置で、厚さ
0.1μmのn+型GaAsをエピタキシャル成長させた。こ
の後このウェハの表面に、水素イオンを加速電圧500
keVで5×1016/cm2打ち込んだ。その後この表面に
反射防止層として厚さ70nmの窒化シリコン層を形成
した。その際、基板温度を450℃とした。この表面に
スルーホールを形成してからグリッド電極を印刷により
形成した。その上に、図1に示すようなシート部材10
4として厚さ0.3mmのポリカーボネートフィルム
を、アクリル系接着剤を接着層(不図示)として貼り付
けた。
Embodiment 2 In this embodiment, the present invention is applied to the manufacture of a solar cell using thin-film single crystal gallium arsenide (GaAs). A p-type GaAs wafer having a plane orientation of {100} was prepared. An n + -type GaAs having a thickness of 0.1 μm was epitaxially grown on a surface of the substrate by a liquid phase growth apparatus using a melt in which gallium was used as a solvent and arsenic and a small amount of silicon were dissolved therein. Thereafter, hydrogen ions are applied to the surface of the wafer at an accelerating voltage of 500
5 × 10 16 / cm 2 was implanted at keV. Thereafter, a silicon nitride layer having a thickness of 70 nm was formed as an antireflection layer on this surface. At that time, the substrate temperature was set to 450 ° C. After forming a through hole on this surface, a grid electrode was formed by printing. A sheet member 10 as shown in FIG.
A polycarbonate film having a thickness of 0.3 mm as No. 4 was attached as an adhesive layer (not shown) using an acrylic adhesive.

【0029】このシート部材の端を直径100mmの剥
離ローラー105にくわえさせて、周辺から巻き上げ
た。この時シート部材をくわえる位置、剥離ローラー1
05の軸の方向に注意し、この軸の向きがウェハのオリ
エンテーションフラット(方位は<100>)106と常
に45度の角度をなすよう巻き上げた。それと共に単結
晶GaAsウェハの表面から5μmの部分で剥がれ始めた。
これは、表面から水素イオンを打込んだため、水素イオ
ンが表面から5μmの深さの部分に集中し、窒化シリコ
ンのスパッタリングの際に凝集して結晶構造に応力を加
えて剥離層を形成していたため、そこにさらに外力が加
わった際にこの部分から剥離したものと考えられる。な
お、剥離が起こっている最前線107の方向は剥離ロー
ラー105の軸の向きと平行であった。
The end of the sheet member was held by a peeling roller 105 having a diameter of 100 mm and wound up from the periphery. At this time, the position for holding the sheet member, the peeling roller 1
Paying attention to the direction of the axis 05, the film was rolled up so that the direction of this axis always forms an angle of 45 degrees with the wafer orientation flat (direction: <100>) 106. At the same time, peeling started at a portion of 5 μm from the surface of the single crystal GaAs wafer.
This is because hydrogen ions are implanted from the surface, and the hydrogen ions are concentrated at a depth of 5 μm from the surface and aggregate during the sputtering of silicon nitride to apply stress to the crystal structure and form a peeling layer. Therefore, it is considered that when an external force was further applied thereto, it was separated from this portion. The direction of the front line 107 where the peeling occurred was parallel to the direction of the axis of the peeling roller 105.

【0030】そのまま巻き上げを続けたところ、単結晶
GaAsウェハの表面から5μmの部分とGaAsエピタキシャ
ル成長層とが積層されている薄膜単結晶GaAsが基板から
剥がれた。この裏面に銅を主成分とする導電性接着剤を
用いてステンレス板の裏面電極を貼り付けた。この状態
でAM1.5に調整されたソーラーシミュレータにより測
定を行ったところ、変換効率18%が得られた。次に剥
離が済んだ後のウェハをふっ硝酸系エッチング液に漬け
たところ、ウェハの表面は鏡面となった。このウェハを
用いて前記の工程を繰り返して得られた太陽電池も変換
効率17.5%を示し、ウェハが繰り返し使用可能であ
ることがわかった。
When the winding was continued as it was, a single crystal
The thin-film single crystal GaAs in which a portion of 5 μm from the surface of the GaAs wafer and the GaAs epitaxial growth layer were laminated was peeled off from the substrate. A back electrode of a stainless steel plate was attached to the back surface using a conductive adhesive mainly containing copper. In this state, when a measurement was performed using a solar simulator adjusted to AM1.5, a conversion efficiency of 18% was obtained. Next, when the peeled wafer was immersed in a nitric acid-based etching solution, the surface of the wafer became a mirror surface. A solar cell obtained by repeating the above steps using this wafer also showed a conversion efficiency of 17.5%, indicating that the wafer could be used repeatedly.

【0031】一方薄膜単結晶を剥離する際、剥離ローラ
ーの軸がオリエンテーションフラットと平行になるよう
に巻き上げたこと以外は前記と全く同様にして太陽電池
を試作したところ、剥離した薄膜単結晶にヒビが入って
おり、グリッド電極の断線も見られた。その上剥離後の
ウェハに、フレーク状に単結晶層が残り、エッチングで
はきれいな面を出すことができなかった。
On the other hand, when the thin film single crystal was peeled off, a solar cell was prototyped in exactly the same manner as described above except that the axis of the peeling roller was wound up so as to be parallel to the orientation flat. And the disconnection of the grid electrode was observed. In addition, a single-crystal layer remained in a flake shape on the wafer after peeling, and a clean surface could not be obtained by etching.

【0032】実施例3本実施例は、光透過性の駆動回路
を作り込む為の薄膜単結晶を石英ガラスに張り付けた画
像表示素子用部材の製造に本発明を適用したものであ
る。
Embodiment 3 In this embodiment, the present invention is applied to the manufacture of a member for an image display element in which a thin film single crystal for forming a light-transmitting drive circuit is attached to quartz glass.

【0033】面方位{100}のp+シリコンウェハを
ふっ酸とイソプロピルアルコールの混合液(49重量%
のふっ酸(残部は水)と純度99.9%のイソプロピル
アルコールの混合液; 体積比 1:0.1)に浸漬
し、このウェハを正極、白金板を負極として陽極化成を
行った。電流密度1A/cm2で5分通電したところ、表
面から約5μmの深さまでが多孔質層となった。そこで
は複雑にからみあった微細な孔が形成されていた。この
多孔質層の表面に、トリクロルシラン(SiHCl3)を用い
て、基板温度を1000℃とし、熱CVD法によって厚
さ約0.5μmのp型薄膜単結晶シリコン層をエピタキシ
ャル成長させた。その後この薄膜単結晶の表面を十分洗
浄し、洗浄面に表面を親水性とした可撓性を有する石英
ガラス支持板(シート部材)を張り合わせ加熱したとこ
ろ、石英ガラス支持板は薄膜単結晶の表面に強く吸着し
た。
A p + silicon wafer having a plane orientation of {100} is mixed with a mixture of hydrofluoric acid and isopropyl alcohol (49% by weight).
The mixture was immersed in a mixed solution of hydrofluoric acid (the remainder being water) and isopropyl alcohol having a purity of 99.9%; volume ratio 1: 0.1), and the wafer was subjected to anodization using a positive electrode and a platinum plate as a negative electrode. When current was applied at a current density of 1 A / cm 2 for 5 minutes, a porous layer was formed from the surface to a depth of about 5 μm. There, fine holes that were complicatedly involved were formed. On the surface of the porous layer, a p-type thin film single crystal silicon layer having a thickness of about 0.5 μm was epitaxially grown by thermal CVD using trichlorosilane (SiHCl 3 ) at a substrate temperature of 1000 ° C. After that, the surface of the thin film single crystal was sufficiently washed, and a flexible quartz glass supporting plate (sheet member) having a hydrophilic surface was bonded to the washed surface and heated. Strongly adsorbed.

【0034】その後、図7に示す方法で、この薄膜単結
晶をシリコンウェハから剥離した。図7においてシリコ
ンウェハは基板701として示されている。このウェハ
の裏面は真空吸着や電磁吸着等の方法で強くテーブルに
吸着されている。この状態で左方向から分離用の楔70
4を挿し込んだ。挿し込むきっかけを作るため、薄膜単
結晶702の先端部を除去したり(705)、石英ガラ
ス支持板703の先端部にテーパー部706を形成して
おいてもよい。楔704が侵入すると、薄膜単結晶70
2とウェハ701はその界面の多孔質層(不図示)の部分
で剥離しはじめた。この際剥離の最前線707は、ウェ
ハの{110}方向とは45°をなすようにした。
Thereafter, the thin film single crystal was separated from the silicon wafer by the method shown in FIG. In FIG. 7, the silicon wafer is shown as a substrate 701. The back surface of the wafer is strongly attracted to the table by a method such as vacuum suction or electromagnetic suction. In this state, the separation wedge 70 is from the left.
4 was inserted. In order to create a trigger for insertion, the tip of the thin film single crystal 702 may be removed (705), or a tapered portion 706 may be formed at the tip of the quartz glass support plate 703. When the wedge 704 enters, the thin film single crystal 70
2 and the wafer 701 began to peel off at the porous layer (not shown) at the interface. At this time, the forefront 707 of the separation was set at 45 ° with respect to the {110} direction of the wafer.

【0035】こうして剥離した薄膜単結晶は、その表面
の多孔質層の残留部分をエッチングで除去した後、水素
雰囲気中で1050℃でアニールしたところ、表面はほ
ぼ完全な平面になった。この薄膜は殆ど完全な単結晶層
でありながら、厚さが0.5μmしかないため、回路を作
り込んだ後不要部を簡単に除去でき、光透過性にできる
ので、液晶表示素子用駆動回路を作り込むのに好適であ
る。しかもウェハは再生して繰り返し使えるので生産の
コストを下げることもできる。
The thin film single crystal thus peeled off was etched at 1050 ° C. in a hydrogen atmosphere after removing the remaining portion of the porous layer on the surface by etching. As a result, the surface became almost completely flat. This thin film is almost a perfect single crystal layer, but has a thickness of only 0.5μm. Therefore, unnecessary parts can be easily removed after the circuit is built, and light transmittance can be achieved. It is suitable for producing. In addition, since the wafer can be reclaimed and used repeatedly, the production cost can be reduced.

【0036】一方剥離の最前線707を{110}方向
に合わせたところ、剥離した薄膜単結晶の表面には{1
10}方向に伸びた筋状の凹凸が見られ、水素アニール
しても良好な表面は得られなかった。
On the other hand, when the forefront 707 of separation was aligned with the {110} direction, the surface of the separated thin film single crystal was {1}.
Streaky irregularities extending in the direction of 10 ° were observed, and a good surface could not be obtained even after hydrogen annealing.

【0037】[0037]

【発明の効果】以上述べてきたように、本発明の方法よ
ると、基板から高品質を保ったまま薄膜単結晶を繰り返
し剥離することができ、高性能な太陽電池や液晶表示素
子の駆動回路等を、低コストで歩留まり良く製造するこ
とができる。
As described above, according to the method of the present invention, a thin film single crystal can be repeatedly peeled from a substrate while maintaining high quality, and a driving circuit for a high-performance solar cell or liquid crystal display element can be obtained. Can be manufactured at low cost and with good yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】剥離工程の概念を示す図面FIG. 1 is a drawing showing the concept of a peeling process.

【図2】剥離工程の概念を示す図面FIG. 2 is a drawing showing the concept of a peeling step.

【図3】多孔質層を用いて、薄膜単結晶シリコン太陽電
池を製造する工程を示す工程図
FIG. 3 is a process diagram showing a process of manufacturing a thin-film single-crystal silicon solar cell using a porous layer.

【図4】ダイヤモンド構造を持つ結晶の単位格子を示す
図面
FIG. 4 is a drawing showing a unit cell of a crystal having a diamond structure.

【図5】ダイヤモンド構造を持つ結晶をカットしたウェ
ハの正面図a)は{100}にカットしたウェハの正面
図であり、b)は{111}にカットしたウェハの正面
図である。
FIG. 5 is a front view of a wafer obtained by cutting a crystal having a diamond structure, a) is a front view of a wafer cut to {100}, and b) is a front view of a wafer cut to {111}.

【図6】せん亜鉛鉱型構造を持つ結晶を{100}でカ
ットしたウェハの正面図
FIG. 6 is a front view of a wafer obtained by cutting a crystal having a sphalerite structure at {100}.

【図7】シリコンウェハから石英ガラス支持板付き薄膜
単結晶を剥離する工程の概念を示す図面
FIG. 7 is a view showing the concept of a step of separating a thin film single crystal with a quartz glass support plate from a silicon wafer.

【符号の説明】[Explanation of symbols]

101,201,301,701 基板 102,202 剥離層 103,203、702 薄膜単結晶 104,204 シート部材 105,205 剥離ローラー 107,207,707 剥離の最前線 209 ヒビ 302 多孔質層 303 第一単結晶層 304 第二単結晶層 305 反射防止層 703 石英ガラス支持板 704 分離用楔 705 先端除去部 706 テーパー部 101, 201, 301, 701 Substrate 102, 202 Release layer 103, 203, 702 Thin film single crystal 104, 204 Sheet member 105, 205 Release roller 107, 207, 707 Forefront of peeling 209 Crack 302 Porous layer 303 First single Crystal layer 304 Second single crystal layer 305 Antireflection layer 703 Quartz glass support plate 704 Separation wedge 705 Tip removal section 706 Taper section

フロントページの続き (72)発明者 岩▲崎▼ 由希子 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 米原 隆夫 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 坂口 清文 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 浮世 典孝 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 4G077 AA03 BA04 FJ03 5F051 AA02 BA05 BA15 BA17 GA04 GA05 GA06 GA20 Continuation of the front page (72) Inventor Iwa ▲ saki ▼ Yukiko 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Takao Yonehara 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon (72) Inventor Kiyofumi Sakaguchi 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Noritaka Uchiyo 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. F Terms (reference) 4G077 AA03 BA04 FJ03 5F051 AA02 BA05 BA15 BA17 GA04 GA05 GA06 GA20

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】基板の表面に剥離層と薄膜単結晶とをこの
順序の配列にて形成し、前記薄膜単結晶の表面または前
記薄膜単結晶の表面に付加的に形成した層の表面に可撓
性のあるシート部材を貼り付け、さらに前記シート部材
を湾曲させるように力を加えて前記シート部材とともに
前記薄膜単結晶を前記基板から剥離し、前記薄膜単結晶
を利用して薄膜単結晶デバイスを製造する方法であっ
て、 前記薄膜単結晶を基板から剥離するに際し、前記薄膜単
結晶の最もへき開しやすい面が薄膜の表面に現れてなす
すべての直線の方向と剥離の最前線の方向とが一致しな
いように、前記薄膜単結晶の剥離を進めることを特徴と
する薄膜単結晶デバイスの製造法。
An exfoliation layer and a thin film single crystal are formed in this order on a surface of a substrate, and are formed on the surface of the thin film single crystal or a layer additionally formed on the surface of the thin film single crystal. A thin sheet single crystal device is attached by attaching a flexible sheet member, further applying a force to bend the sheet member, separating the thin film single crystal from the substrate together with the sheet member, and using the thin film single crystal. In the method of manufacturing, when peeling the thin film single crystal from the substrate, the direction of all the straight lines and the direction of the forefront of peeling the most easily cleaved surface of the thin film single crystal appears on the surface of the thin film A method of manufacturing a thin-film single-crystal device, characterized in that the thin-film single-crystal is peeled off so that the two do not match.
【請求項2】前記剥離の最前線が前記直線と5度以上の
角度をなすことを特徴とする請求項1に記載の薄膜単結
晶デバイスの製造法。
2. The method for manufacturing a thin film single crystal device according to claim 1, wherein the forefront of the separation forms an angle of 5 degrees or more with the straight line.
【請求項3】前記剥離の最前線が前記直線と10度以上
の角度をなすことを特徴とする請求項1に記載の薄膜単
結晶デバイスの製造法。
3. The method for manufacturing a thin film single crystal device according to claim 1, wherein the forefront of the separation forms an angle of 10 degrees or more with the straight line.
【請求項4】前記薄膜単結晶の結晶構造がダイヤモンド
型である請求項1乃至3のいずれかに記載の薄膜単結晶
デバイスの製造法。
4. The method for manufacturing a thin film single crystal device according to claim 1, wherein the crystal structure of the thin film single crystal is a diamond type.
【請求項5】前記薄膜単結晶の結晶構造がせん亜鉛鉱型
である請求項1乃至3のいずれかに記載の薄膜単結晶デ
バイスの製造法。
5. The method for manufacturing a thin film single crystal device according to claim 1, wherein the crystal structure of the thin film single crystal is a zinc-blende type.
【請求項6】前記基板が単結晶ウェハであり、前記剥離
層が単結晶ウェハの表面に形成された多孔質層であり、
前記薄膜単結晶が多孔質層表面にエピタキシャル成長し
た薄膜である請求項1乃至5のいずれかに記載の薄膜単
結晶デバイスの製造法。
6. The substrate is a single crystal wafer, the release layer is a porous layer formed on a surface of the single crystal wafer,
The method for manufacturing a thin film single crystal device according to claim 1, wherein the thin film single crystal is a thin film epitaxially grown on a surface of a porous layer.
【請求項7】前記薄膜単結晶デバイスが太陽電池である
請求項1乃至6のいずれかに記載の薄膜単結晶デバイス
の製造法。
7. The method for manufacturing a thin film single crystal device according to claim 1, wherein said thin film single crystal device is a solar cell.
【請求項8】前記薄膜単結晶デバイスが画像表示素子駆
動回路部材である請求項1乃至6のいずれかに記載の薄
膜単結晶デバイスの製造法。
8. The method for manufacturing a thin film single crystal device according to claim 1, wherein said thin film single crystal device is an image display element driving circuit member.
JP11200531A 1999-07-14 1999-07-14 Deposition of thin-film single crystal device Withdrawn JP2001026500A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP11200531A JP2001026500A (en) 1999-07-14 1999-07-14 Deposition of thin-film single crystal device
US09/614,548 US6452091B1 (en) 1999-07-14 2000-07-12 Method of producing thin-film single-crystal device, solar cell module and method of producing the same
EP00115248A EP1069602A2 (en) 1999-07-14 2000-07-13 Method of producing thin-film single-crystal device, solar cell module and method of producing the same
CNA2003101143451A CN1516291A (en) 1999-07-14 2000-07-14 Solar cell assembly and producing method
AU48638/00A AU768197B2 (en) 1999-07-14 2000-07-14 Method of producing thin-film single-crystal device, solar cell module and method of producing the same
CNB001240986A CN1156919C (en) 1999-07-14 2000-07-14 Method for producing film monocrystal device, solar battery assembly and its prodn. method
CNA200310114344A CN1505174A (en) 1999-07-14 2000-07-14 Solar cell module and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11200531A JP2001026500A (en) 1999-07-14 1999-07-14 Deposition of thin-film single crystal device

Publications (1)

Publication Number Publication Date
JP2001026500A true JP2001026500A (en) 2001-01-30

Family

ID=16425864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11200531A Withdrawn JP2001026500A (en) 1999-07-14 1999-07-14 Deposition of thin-film single crystal device

Country Status (1)

Country Link
JP (1) JP2001026500A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149506A1 (en) * 2007-06-08 2008-12-11 Hoya Candeo Optronics Corporation Wafer supporting glass
JP2008306049A (en) * 2007-06-08 2008-12-18 Lintec Corp Processing method for brittle members
US8043936B2 (en) 2006-09-29 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8058083B2 (en) 2008-11-20 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing flexible semiconductor device
JP2012033671A (en) * 2010-07-30 2012-02-16 Toyota Motor Corp Protective tape peeling method
WO2012026357A1 (en) * 2010-08-26 2012-03-01 信越化学工業株式会社 Substrate for solar cell, and solar cell
JP2014060441A (en) * 2013-11-27 2014-04-03 Shin Etsu Chem Co Ltd Solar cell manufacturing method
JP2014204044A (en) * 2013-04-08 2014-10-27 株式会社ディスコ Method of processing wafer
JP2016106416A (en) * 2016-01-28 2016-06-16 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Bendable carrier base for removing carrier substrate, device, and method
CN113652744A (en) * 2021-08-11 2021-11-16 东南大学 A method for controlling atomic layer thickness of germanium selenide single crystal with atomic scale precision

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9054141B2 (en) 2006-09-29 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8043936B2 (en) 2006-09-29 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8048777B2 (en) 2006-09-29 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8048770B2 (en) 2006-09-29 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9472429B2 (en) 2006-09-29 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2008306049A (en) * 2007-06-08 2008-12-18 Lintec Corp Processing method for brittle members
WO2008149506A1 (en) * 2007-06-08 2008-12-11 Hoya Candeo Optronics Corporation Wafer supporting glass
US8058083B2 (en) 2008-11-20 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing flexible semiconductor device
JP2012033671A (en) * 2010-07-30 2012-02-16 Toyota Motor Corp Protective tape peeling method
JP2012049285A (en) * 2010-08-26 2012-03-08 Shin Etsu Chem Co Ltd Substrate for solar cell and the solar cell
WO2012026357A1 (en) * 2010-08-26 2012-03-01 信越化学工業株式会社 Substrate for solar cell, and solar cell
KR101877277B1 (en) * 2010-08-26 2018-07-11 신에쓰 가가꾸 고교 가부시끼가이샤 Substrate for solar cell, and solar cell
US10141466B2 (en) 2010-08-26 2018-11-27 Shin-Etsu Chemical Co., Ltd. Substrate for solar cell, and solar cell
JP2014204044A (en) * 2013-04-08 2014-10-27 株式会社ディスコ Method of processing wafer
JP2014060441A (en) * 2013-11-27 2014-04-03 Shin Etsu Chem Co Ltd Solar cell manufacturing method
JP2016106416A (en) * 2016-01-28 2016-06-16 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Bendable carrier base for removing carrier substrate, device, and method
CN113652744A (en) * 2021-08-11 2021-11-16 东南大学 A method for controlling atomic layer thickness of germanium selenide single crystal with atomic scale precision
CN113652744B (en) * 2021-08-11 2022-06-14 东南大学 A method for controlling atomic layer thickness of germanium selenide single crystal with atomic scale precision

Similar Documents

Publication Publication Date Title
US6664169B1 (en) Process for producing semiconductor member, process for producing solar cell, and anodizing apparatus
EP0867918B1 (en) Process for producing semiconductor substrate
US6100166A (en) Process for producing semiconductor article
US7128975B2 (en) Multicrystalline silicon substrate and process for roughening surface thereof
JP2584164B2 (en) Method of manufacturing a thin film of semiconductor material
US8822257B2 (en) Thin silicon solar cell and method of manufacture
US6602767B2 (en) Method for transferring porous layer, method for making semiconductor devices, and method for making solar battery
AU768197B2 (en) Method of producing thin-film single-crystal device, solar cell module and method of producing the same
JP2001007362A (en) Semiconductor substrate and manufacture of solar cell
JPH10233352A (en) Semiconductor member manufacturing method and semiconductor member
JP2000332270A (en) Method of manufacturing photoelectric conversion device and photoelectric conversion device manufactured by the method
JP2001094136A (en) Method for manufacturing semiconductor element module and method for manufacturing solar cell module
US8101451B1 (en) Method to form a device including an annealed lamina and having amorphous silicon on opposing faces
US8518724B2 (en) Method to form a device by constructing a support element on a thin semiconductor lamina
JPH11214720A (en) Manufacture of thin-film crystal solar cell
JP2001026500A (en) Deposition of thin-film single crystal device
JP3542521B2 (en) Method for producing semiconductor substrate and solar cell and anodizing apparatus
JP3927977B2 (en) Manufacturing method of semiconductor member
JP2001111081A (en) Solar cell module and manufacturing method therefor
JP2003142708A (en) Method for manufacturing single-crystal semiconductor thin film and method for manufacturing thin film semiconductor element
Weber et al. Silicon as a photovoltaic material
EP2659517A2 (en) A method to form a device by constructing a support element on a thin semiconductor lamina
Weber et al. Transfer of monocrystalline Si films for thin film solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060714