[go: up one dir, main page]

JP2000356612A - Method and apparatus for measuring emissivity of fine single wire - Google Patents

Method and apparatus for measuring emissivity of fine single wire

Info

Publication number
JP2000356612A
JP2000356612A JP11166133A JP16613399A JP2000356612A JP 2000356612 A JP2000356612 A JP 2000356612A JP 11166133 A JP11166133 A JP 11166133A JP 16613399 A JP16613399 A JP 16613399A JP 2000356612 A JP2000356612 A JP 2000356612A
Authority
JP
Japan
Prior art keywords
wire
heat
sample
emissivity
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11166133A
Other languages
Japanese (ja)
Inventor
Motoo Fujii
丕夫 藤井
Ko Cho
興 張
Masayuki Fujiwara
誠之 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP11166133A priority Critical patent/JP2000356612A/en
Publication of JP2000356612A publication Critical patent/JP2000356612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

(57)【要約】 【課題】 簡便に極微細単線そのものの放射率を測定す
ることができる微細単線の放射率測定方法及びその装置
を提供する。 【解決手段】 一様な体積発熱をする2本の熱線1,2
を平行に配置するとともに、これらの2本の熱線1,2
間に試料細線3を接続し、2本の熱線1,2を直接通電
加熱し、一方の熱線1から試料細線3へ加えられる熱量
ともう一方の熱線2から試料細線3へ加えられる熱量を
等しくし、試料細線3に加えられた熱量をすべて放射に
より試料細線3から放熱させ、2本の熱線1,2の体積
平均温度に関する定常熱伝導の理論解と測定により得ら
れる熱線の体積平均温度上昇の定常値を比較することに
より、試料細線3の放射率を求める。
PROBLEM TO BE SOLVED: To provide a method and an apparatus for measuring the emissivity of a fine single line, which can easily measure the emissivity of an ultrafine single line itself. SOLUTION: Two heating wires 1 and 2 generating uniform volume heat
Are arranged in parallel, and these two heat wires 1, 2
A thin sample wire 3 is connected between them, and the two hot wires 1 and 2 are directly energized and heated, and the amount of heat applied from one hot wire 1 to the sample thin wire 3 is equal to the amount of heat applied from the other hot wire 2 to the sample thin wire 3. Then, all the heat applied to the thin sample wire 3 is radiated from the sample thin wire 3 by radiation, and the volume average temperature rise of the hot wire obtained by the theoretical solution of the steady-state heat conduction with respect to the volume average temperature of the two hot wires 1 and 2 and the measurement. The emissivity of the sample thin line 3 is obtained by comparing the steady values of

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微細単線の放射率
測定方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the emissivity of a fine single wire.

【0002】[0002]

【従来の技術】従来、このような分野の技術文献として
は、例えば、 (1)D.D.Edie,K.E.Robinson,
O.Fleurot,S.P.Jones and
C.C.Fain,Carbon,32,1045(1
994). (2)S.H.Yoon,Y.Korai and
I.Mochida,Carbon,31,849(1
993). (3)H.Masuda,M.Higano,Tran
s.ASME,J.Heat Transf.,11
0,1(1988). (4)張,藤原,藤井,九州大学機能物質科学研究所報
告,12,1(1998). があった。
2. Description of the Related Art Conventionally, technical documents in such a field include: D. Edie, K .; E. FIG. Robinson,
O. Fleurot, S.M. P. Jones and
C. C. Fain, Carbon, 32, 1045 (1
994). (2) S.I. H. Yoon, Y .; Korai and
I. Mochida, Carbon, 31, 849 (1
993). (3) H. Masuda, M .; Higano, Tran
s. ASME, J.A. Heat Transf. , 11
0, 1 (1988). (4) Zhang, Fujiwara, Fujii, Report of Institute for Functional Materials Science, Kyushu University, 12, 1 (1998). was there.

【0003】近年、炭素繊維素材などの超高熱伝導率
で、かつ極微細な機能性線材が開発されている。これら
の線材は、その特性ゆえにヒートシンク材等としての様
々な産業的用途が考えられる。しかし、このような線材
を、特に高温域、あるいは宇宙環境におけるヒートシン
ク材として適用する場合、放射による放熱が支配的とな
るため、その線材の放射率は重要な熱物性値である。
[0003] In recent years, ultrafine functional wires with ultra-high thermal conductivity, such as carbon fiber materials, have been developed. These wires are expected to have various industrial uses as heat sink materials and the like because of their properties. However, when such a wire is applied as a heat sink material, particularly in a high-temperature region or a space environment, heat radiation by radiation is dominant, and the emissivity of the wire is an important thermophysical property value.

【0004】[0004]

【発明が解決しようとする課題】放射率の測定法として
は、(1)試料自体が放射する放射輝度あるいは反射率
を測定して放射率を求める光学的手法と、(2)試料表
面から放射で失われる熱量を測定することによって半球
全放射率を測定する熱量測定法がある。
There are two methods for measuring the emissivity: (1) an optical method for measuring the radiance or reflectance emitted by the sample itself to obtain the emissivity; and (2) emissivity from the sample surface. There is a calorimetric method that measures the total emissivity of the hemisphere by measuring the amount of heat lost at

【0005】また、熱量測定法に関しては、定常法と非
定常法に分けられる。
[0005] The calorimetric method is divided into a stationary method and an unsteady method.

【0006】光学的手法を本発明の対象のように極微細
な線材(数μm〜数十μm)の放射率測定に適用する場
合、放射計の空間分解能の制限により、測定が困難とな
ってくる。
When the optical method is applied to emissivity measurement of an extremely fine wire (several μm to several tens μm) as in the present invention, the measurement becomes difficult due to the limitation of the spatial resolution of the radiometer. come.

【0007】一方、熱量測定法の場合、高精度な熱量お
よび温度の計測が必要となる。
On the other hand, in the case of the calorimetric method, it is necessary to measure the calorific value and the temperature with high accuracy.

【0008】過去の線材に対する放射率の測定に関する
研究としては、精巧な手法で測温用熱電対からの熱損失
低減を図った非定常熱量法によるものが見られる。
[0008] In the past, studies on emissivity measurement of wires have been performed by an unsteady calorimetric method in which heat loss from a thermocouple for temperature measurement is reduced by a sophisticated technique.

【0009】しかしながら、非定常法の場合、その測定
法の原理から測定試料の熱容量が必要となり、熱容量が
未知の試料に対しては適用することができない。
However, in the case of the unsteady method, the heat capacity of the measurement sample is required due to the principle of the measurement method, and it cannot be applied to a sample whose heat capacity is unknown.

【0010】また、上記の研究における熱損失低減の手
法は、直径1mm、長さ50mm程度の線材に対しては
定常法にも適用できると考えられるが、本発明で対象と
する極微細線(直径数μm〜数十μm)の測定への適用
は困難である。
The method of reducing heat loss in the above research is considered to be applicable to the stationary method for a wire rod having a diameter of about 1 mm and a length of about 50 mm. It is difficult to apply to measurement of several μm to several tens μm).

【0011】本発明は、上記状況に鑑みて、簡便に極微
細単線そのものの放射率を測定することができる微細単
線の放射率測定方法及びその装置を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a method and an apparatus for measuring the emissivity of a fine single line, which can easily measure the emissivity of an ultrafine single line itself.

【0012】[0012]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕微細単線の放射率測定方法において、(a)一様
な体積発熱をする2本の熱線を平行に配置するととも
に、この2本の熱線間に試料細線を接続し、(b)前記
2本の熱線を直接通電加熱し、一方の熱線から前記試料
細線へ加えられる熱量ともう一方の熱線から前記試料細
線へ加えられる熱量を等しくし、(c)前記試料細線に
加えられた熱量をすべて放射により該試料細線から放熱
させ、前記2本の熱線の体積平均温度に関する定常熱伝
導の理論解と測定により得られる熱線の体積平均温度上
昇の定常値を比較することにより、前記試料細線の放射
率を求めるようにしたものである。
According to the present invention, there is provided a method for measuring emissivity of a fine single wire, comprising the steps of: (a) arranging two heat wires having uniform volumetric heat generation in parallel; The sample thin wire is connected between the two heat wires, and (b) the two heat wires are directly energized and heated, and the amount of heat applied from one heat wire to the sample wire and the other heat wire to the sample Equalizing the amount of heat applied to the thin wire, (c) radiating all the heat applied to the sample thin wire from the sample thin wire by radiation, and calculating the theoretical solution and measurement of steady-state heat conduction with respect to the volume average temperature of the two hot wires. The emissivity of the thin sample wire is obtained by comparing the steady value of the volume average temperature rise of the obtained hot wire.

【0013】〔2〕上記〔1〕記載の微細単線の放射率
測定方法において、前記2本の熱線として、白金細線を
用いるようにしたものである。
[2] The method for measuring the emissivity of a fine single wire according to the above [1], wherein a fine platinum wire is used as the two heating wires.

【0014】〔3〕微細単線の放射率測定装置におい
て、(a)平行に配置された一様な体積発熱をする2本
の熱線と、(b)この2本の熱線間に接続される試料細
線と、(c)前記2本の熱線を直接通電加熱し、一方の
熱線から前記試料細線へ加えられる熱量ともう一方の熱
線から前記試料細線へ加えられる熱量を等しくする手段
とを具備するようにしたものである。
[3] In the emissivity measuring apparatus for a fine single wire, (a) two heating wires which are arranged in parallel and generate uniform volume heat, and (b) a sample connected between the two heating wires. A thin wire, and (c) means for directly energizing and heating the two hot wires to equalize the amount of heat applied from one of the hot wires to the sample thin wire and the amount of heat applied from the other hot wire to the sample thin wire. It was made.

【0015】〔4〕上記〔3〕記載の微細単線の放射率
測定装置において、前記2本の熱線は白金細線である。
[4] In the fine single-wire emissivity measuring apparatus according to the above [3], the two heating wires are platinum fine wires.

【0016】〔5〕上記〔3〕記載の微細単線の放射率
測定装置において、前記試料細線は前記2本の熱線の中
央部に接続するようにしたものである。
[5] In the fine single wire emissivity measuring apparatus according to the above [3], the sample fine wire is connected to a central portion of the two heating wires.

【0017】〔6〕上記〔3〕記載の微細単線の放射率
測定装置において、前記試料細線は1〜10μmオーダ
ーである。
[6] In the fine single-wire emissivity measuring apparatus according to the above [3], the sample fine line has an order of 1 to 10 μm.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を図を
参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1は本発明の実施例を示す極微細線の放
射率測定装置の測定部の構成を示す図である。
FIG. 1 is a view showing a configuration of a measuring section of an apparatus for measuring emissivity of an ultrafine wire according to an embodiment of the present invention.

【0020】この図に示すように、測定部は一様な体積
発熱をする熱線1,2と測定試料細線3から構成されて
いる。試料細線3は熱線1及び2の中央部に接続されて
おり、熱線1,2を直接通電加熱することにより、試料
細線3へ熱量が加えられる。ここで、熱線1と試料細線
3の接続点3Aの温度と熱線2と試料細線3の接続点3
Bの温度は等しいとする。この場合、熱線1から試料細
線3へ加えられる熱量と熱線2から試料細線3へ加えら
れる熱量は等しくなり、測定を真空チャンバの中で行え
ば、試料細線3に加えられた熱量はすべて放射により試
料細線3から放熱される。
As shown in this figure, the measuring section is composed of heating wires 1 and 2 which generate uniform volumetric heat and a thin wire 3 for a sample to be measured. The thin sample wire 3 is connected to the center of the hot wires 1 and 2, and heat is applied to the thin sample wire 3 by directly heating the hot wires 1 and 2. Here, the temperature of the connection point 3A between the hot wire 1 and the sample wire 3 and the connection point 3A between the heat wire 2 and the sample wire 3
Assume that the temperatures of B are equal. In this case, the amount of heat applied from the heating wire 1 to the sample wire 3 and the amount of heat applied from the heating wire 2 to the sample wire 3 are equal, and if the measurement is performed in a vacuum chamber, the amount of heat applied to the sample wire 3 is all radiated. Heat is radiated from the sample thin wire 3.

【0021】本発明の放射率測定法の原理は、図1の測
定装置において、熱線1,2を一様に発熱させた場合の
熱線の体積平均温度に関する定常熱伝導の理論解と測定
により得られる熱線の体積平均温度上昇の定常値を比較
することにより、測定試料である試料細線3の放射率を
求めるものである。試料細線3の熱伝導率の影響を小さ
くするために、試料細線3の両端に熱線1,2が設置さ
れている。
The principle of the emissivity measuring method of the present invention is obtained by a theoretical solution and measurement of the steady-state heat conduction with respect to the volume average temperature of the heating wires when the heating wires 1 and 2 are uniformly heated in the measuring apparatus of FIG. The emissivity of the sample thin wire 3 as the measurement sample is obtained by comparing the steady value of the volume average temperature rise of the heated wire. Heat wires 1 and 2 are provided at both ends of the sample wire 3 in order to reduce the influence of the thermal conductivity of the sample wire 3.

【0022】熱線1,2としては、白金細線が考えられ
る。白金細線を用いた場合、直接通電により一様な体積
発熱が得られ、しかも白金は温度に対する電気抵抗値の
依存性が非常に優れているため、高精度な温度計測(絶
対値としては、±0.01K以内)が可能である。白金
細線(熱線)1,2の体積平均温度Tv は、通電加熱時
の白金細線部の電気抵抗値Riを測定することにより、
次式で算出される。
As the heating wires 1 and 2, fine platinum wires can be used. When a platinum wire is used, uniform volumetric heat generation can be obtained by direct energization, and platinum has a very high dependence of the electrical resistance value on temperature. Therefore, highly accurate temperature measurement (absolute value ± 0.01K or less) is possible. The volume average temperature T v of the platinum thin wire (heat rays) 1, 2 by measuring the electrical resistance value Ri of the platinum thin line portion in energization heating,
It is calculated by the following equation.

【0023】[0023]

【数1】 (Equation 1)

【0024】ここで、Rt0 は0℃での白金細線1,2
の電気抵抗値、βは温度係数〔l/K〕であり、あらか
じめ検定して求めておく。
Here, Rt 0 is a platinum thin wire 1, 2 at 0 ° C.
Is a temperature coefficient [1 / K], which is previously determined by a test.

【0025】このように、本発明の極微細線の放射率測
定方法では、試料細線への加熱源、熱量及び温度センサ
として白金細線を用い、加熱量と温度計測を高精度に行
うことにより、極微細な線材の放射率の測定を試みる点
に特徴がある。しかも、測定試料の加熱、温度測定、支
持を同一の熱線で行うことにより、熱損失による誤差要
因の低減が可能となる。
As described above, in the method for measuring the emissivity of an ultrafine wire according to the present invention, a platinum thin wire is used as a heating source, a calorific value, and a temperature sensor for a sample fine wire, and the heating amount and the temperature are measured with high accuracy. It is characterized by trying to measure the emissivity of fine wires. In addition, by performing heating, temperature measurement, and support of the measurement sample with the same heating wire, it is possible to reduce an error factor due to heat loss.

【0026】次に、図1に示す極微細線の放射率測定装
置について熱伝導の理論解析を行う。
Next, a theoretical analysis of heat conduction is performed on the emissivity measuring apparatus for an ultrafine wire shown in FIG.

【0027】図1において、熱線1と試料細線3の接続
点3Aの温度と熱線2と試料細線3の接続点3Bの温度
は等しいことから、試料細線3の温度分布は中央(一点
鎖線)で上下対称となり、そこで断熱条件を与えること
ができる。したがって、ここでは一点鎖線より上側の試
料細線3と熱線1に関してのみ考える。
In FIG. 1, since the temperature at the connection point 3A between the heating wire 1 and the sample wire 3 and the temperature at the connection point 3B between the heating wire 2 and the sample wire 3 are equal, the temperature distribution of the sample wire 3 is at the center (dashed line). It becomes vertically symmetrical, so that adiabatic conditions can be given. Therefore, only the thin sample wire 3 and the hot wire 1 above the dashed line are considered here.

【0028】図1において、熱線1の試料細線3の接続
点3Aより左側を熱線部I、右側を熱線部IIと呼ぶこと
にする。
In FIG. 1, the left side of the connecting point 3A of the sample wire 3 of the hot wire 1 is called a hot wire portion I and the right side thereof is called a hot wire portion II.

【0029】また、熱線1を取り付けるフレームFh1
h2(リード端子)は、熱線1及び試料細線3と比して
熱容量が十分に大きいため、熱線1を加熱後もこの部分
の温度は初期温度Τ0 に保たれる。
Further, the frames F h1 ,
F h2 (lead terminal), because of sufficiently large thermal capacity as compared with the hot wire 1 and the sample thin line 3, after heating the hot wire 1 even if the temperature of this portion is maintained at the initial temperature T 0.

【0030】熱線1及び試料細線3の半径方向の温度分
布は一様とし、フレームFh1,Fh2への熱線取り付け位
置及び試料細線3の中央を原点として軸方向に座標をと
ると、熱線部I,IIおよび試料細線3に対する無次元の
熱伝導方程式は次式で与えられる。
The temperature distribution in the radial direction of the hot wire 1 and the thin sample wire 3 is made uniform, and the coordinates are taken in the axial direction with the origin at the position where the hot wire is attached to the frames F h1 and F h2 and the center of the thin sample wire 3. The dimensionless heat conduction equations for I, II and the sample wire 3 are given by the following equations.

【0031】熱線部Iに対してFor the hot wire part I

【0032】[0032]

【数2】 (Equation 2)

【0033】熱線部IIに対してFor the hot wire part II

【0034】[0034]

【数3】 (Equation 3)

【0035】試料細線3に対してFor the sample thin wire 3

【0036】[0036]

【数4】 (Equation 4)

【0037】ここで、パラメータRc は試料細線3に対
する熱線1の熱伝導率の比、Rd は試料細線3に対する
熱線1の半径比であり、次式で定義される。
Here, the parameter R c is the ratio of the thermal conductivity of the hot wire 1 to the thin sample wire 3, and R d is the radius ratio of the hot wire 1 to the thin sample wire 3 and is defined by the following equation.

【0038】[0038]

【数5】 (Equation 5)

【0039】また、無次元温度θ、ビオー数Biおよび
座標Xは、それぞれ次式で定義される。
The dimensionless temperature θ, Biot number Bi and coordinate X are defined by the following equations, respectively.

【0040】[0040]

【数6】 (Equation 6)

【0041】Biの中に含まれる熱伝達率は、放射によ
る等価な熱伝達率であり、試料細線3及び熱線1の表面
積は周囲(真空チャンバ壁)の面積と比較して十分に小
さいため、次式で近似できる。
The heat transfer coefficient contained in Bi is an equivalent heat transfer coefficient due to radiation, and the surface area of the thin sample wire 3 and the heat wire 1 is sufficiently smaller than the area of the surrounding (vacuum chamber wall). It can be approximated by the following equation.

【0042】熱線1に対してFor the hot wire 1

【0043】[0043]

【数7】 (Equation 7)

【0044】試料細線3に対してFor the sample thin line 3

【0045】[0045]

【数8】 (Equation 8)

【0046】ここで、σ〔=5.67×10-8(W/m
2 4 )〕はステファンボルツマン定数である。
Here, σ [= 5.67 × 10 −8 (W / m
2 K 4 )] is the Stefan-Boltzmann constant.

【0047】境界条件は以下の通りである。The boundary conditions are as follows.

【0048】[0048]

【数9】 (Equation 9)

【0049】次に、解析解について説明する。Next, an analytical solution will be described.

【0050】ここでは、上記式(2)〜(4)に示した
熱伝導方程式の定常解について示しておく。
Here, a steady solution of the heat conduction equations shown in the above equations (2) to (4) will be described.

【0051】[0051]

【数10】 (Equation 10)

【0052】とおき、上記式(2),(3),(4)に
上記式(9)の境界条件を適用すると、定常時の局所温
度は以下のように求められる。
When the boundary conditions of the above equation (9) are applied to the above equations (2), (3), and (4), the local temperature in a steady state is obtained as follows.

【0053】[0053]

【数11】 [Equation 11]

【0054】[0054]

【数12】 (Equation 12)

【0055】[0055]

【数13】 (Equation 13)

【0056】ここで、Here,

【0057】[0057]

【数14】 [Equation 14]

【0058】[0058]

【数15】 (Equation 15)

【0059】また、熱線1の体積平均温度θvhは、次式
により求まる。
The volume average temperature θ vh of the heating wire 1 is obtained by the following equation.

【0060】[0060]

【数16】 (Equation 16)

【0061】次に、本発明の測定方法によって実際に極
微細線の放射率を測定する際の手順について説明する。
Next, a procedure for actually measuring the emissivity of an ultrafine line by the measuring method of the present invention will be described.

【0062】まず、図1における熱線1と試料細線3の
接続点3Aの温度と熱線2と試料細線3の接続点3Bの
温度が等しくなるよう熱線1,2を通電加熱し、熱線温
度が定常になった後、熱線1の体積平均温度Τvhと体積
発熱量qv を測定する。
First, the heating wires 1 and 2 are energized and heated so that the temperature at the connection point 3A between the heating wire 1 and the sample wire 3 in FIG. 1 and the temperature at the connection point 3B between the heating wire 2 and the sample wire 3 become equal. After that, the volume average temperature Τ vh and the volume calorific value q v of the heating wire 1 are measured.

【0063】一方、上記式(2)〜(4)の基礎式を見
ると、熱線1,2に関するBih は測定結果Tvhと上記
式(7)により求まる(熱線は白金細線のため、εh
既知あるいは事前に校正で求めておく)が、Bif は、
上記式(8)より試料細線3の体積平均温度Τvfの関数
となっているため、試料細線3の放射率εf の値は陽に
は求まらない。
[0063] On the other hand, looking at the fundamental formula of the formula (2) to (4), since Bi h about hot wire 1 is determined by measurements T vh and the formula (7) (heat rays platinum thin wire, epsilon h is is previously obtained in the calibration to known or advance), the Bi f,
Since the value is a function of the volume average temperature Τ vf of the sample wire 3 from the above equation (8), the value of the emissivity ε f of the sample wire 3 cannot be explicitly obtained.

【0064】したがって、試料細線3の放射率εf は、
式(16)によるθvhと測定結果Τ vhより得られる無次
元体積平均温度が一致するまでニュートン法による繰り
返し計算を行って求める。ここで、そのεf の算出をす
る際、測定データに対しフィッティング等の手法を用い
ないため、測定データ(Τvh,qv )から得られる放射
率εf の値はニュートン法の収束精度以内の精度で求ま
る。
Therefore, the emissivity ε of the sample wire 3fIs
Θ according to equation (16)vhAnd measurement resultsΤ vhOrderless obtained from
Repetition by Newton method until the original volume average temperatures match
Perform a return calculation. Where εfCalculate
Use a method such as fitting to the measured data
Measurement data (Τvh, QvRadiation from
Rate εfIs determined with an accuracy within the convergence accuracy of the Newton method.
You.

【0065】次に、測定精度について説明する。Next, the measurement accuracy will be described.

【0066】これまで、極微細線3の放射率εf を求め
るための理論とそのεf の算出手法について述べてき
た。ここでは、理論で得た上記式(16)より本測定法
で放射率εf を測定する際の原理的な測定精度について
検討する。
So far, the theory for obtaining the emissivity ε f of the ultrafine wire 3 and the method of calculating the ε f have been described. Here, the fundamental measurement accuracy when measuring the emissivity ε f by the present measurement method from the above-mentioned formula (16) obtained by theory will be examined.

【0067】まず、上記式(11)〜(14)及び上記
式(16)の解析精度について述べる。
First, the analysis accuracy of the equations (11) to (14) and the equation (16) will be described.

【0068】上記式(16)は、上記式(2)〜(4)
において、Bi数(放射熱伝達率)を、上記式(7),
(8)に示すように、熱線1,2および試料細線3の体
積平均温度で近似することにより求めた解である。しか
し、厳密には、上記したように、基礎式(2)〜(4)
の中には熱線1,2及び試料細線3の局所的な放射によ
る伝熱の項εσ(Τ4 −Τ∞4 )が含まれている。厳密
な基礎式に対して解析解を求めるのは非常に困難である
ため、差分により数値解を求め、この数値解と上記式
(11)〜(14)及び式(16)による解を比較する
ことにより、上記式(7),(8)に示した近似による
解析解の妥当性について検討する。なお、解析対象とし
ては比較を簡略化するため、試料細線に関しては無視
し、真空中で一様な体積発熱する熱線(材質:白金,直
径:100μm,長さ:10mm)について解析した結
果について示す。
The above equation (16) is calculated by the above equations (2) to (4).
In the above equation, the Bi number (radiant heat transfer coefficient) is calculated using the above equation (7)
As shown in (8), this is a solution obtained by approximating the volume average temperatures of the heating wires 1 and 2 and the sample thin wire 3. However, strictly speaking, as described above, the basic expressions (2) to (4)
Include the term εσ (Τ 4 −Τ∞ 4 ) of heat transfer due to local radiation of the hot wires 1 and 2 and the sample thin wire 3. Since it is very difficult to find an analytic solution for a strict basic equation, a numerical solution is obtained from the difference, and this numerical solution is compared with the solutions obtained by the above equations (11) to (14) and equation (16). Thus, the validity of the analytical solution by the approximation shown in the above equations (7) and (8) will be examined. Note that, for simplicity of comparison, the thin wire of the sample was disregarded as an analysis object, and the result of analyzing a heat wire (material: platinum, diameter: 100 μm, length: 10 mm) that uniformly generates heat in vacuum is shown. .

【0069】図2は環境温度Τ∞に対する熱線の体積平
均温度の誤差、すなわち上記式(7),(8)の近似に
基づく解析解と厳密な基礎式の差分による数値解のとの
差を示す図である。計算における体積発熱量qv は、解
析解において体積平均温度上昇ΔΤv =10、50、1
00〔K〕となるqv を求め、このqv を用いて差分の
計算を行った。
FIG. 2 shows the error of the volume average temperature of the hot wire with respect to the environmental temperature Τ∞, that is, the difference between the analytical solution based on the approximation of the above equations (7) and (8) and the numerical solution based on the difference between the strict basic equations. FIG. Volume calorific value q v in the calculation, the volume in the analytical solution average temperature rise ΔΤ v = 10,50,1
00 seeking to become q v (K), was calculated difference using the q v.

【0070】解析誤差は、熱線の体積平均温度上昇が高
いほど大きく、また、環境温度が高くなるにつれて誤差
は増大し、環境温度600℃近辺で誤差の極値を持つ特
性となっている。しかし、解析誤差としては最大でも2
〔%〕以内に収まっており、本発明の測定方法の原理的
な測定精度を評価する上では、十分な精度と考えられ
る。
The analysis error increases as the volume average temperature rise of the heating wire increases, and the error increases as the environmental temperature increases. The analysis error has an extreme value near the environmental temperature of 600 ° C. However, the analysis error is at most 2
It is within [%], and is considered to be sufficient accuracy in evaluating the fundamental measurement accuracy of the measurement method of the present invention.

【0071】図3〜図5に上記式(16)により試料細
線の放射率と熱線の体積平均温度の関係を計算した結果
を示す。計算条件は、以下に示す通りである。 環境温度Τ∞=25〔℃〕 熱線:rh =5〔μm〕、εh =0.1、λh =71.
4〔W/mK〕(白金) 試料細線:rf =5〔μm〕、lf =50〔mm〕、λ
f =500〔W/mK〕 熱線1,2の体積発熱量qv は、εf =0.1のとき熱
線の体積平均温度上昇ΔΤvhが10〔K〕(図3)、5
0〔K〕(図4)、100〔K〕(図5)となるよう設
定し、qv を一定としてεf を変化させて計算を行っ
た。つまり、同一発熱量において、εf がΔΤvhに与え
る影響を調べたものである。
FIGS. 3 to 5 show the results of calculating the relationship between the emissivity of the thin sample wire and the volume average temperature of the hot wire by the above equation (16). The calculation conditions are as shown below. Environmental temperature Τ∞ = 25 [℃] hot wire: r h = 5 [μm], ε h = 0.1, λ h = 71.
4 [W / mK] (platinum) Sample wire: r f = 5 [μm], l f = 50 [mm], λ
f = 500 [W / mK] volume calorific value q v of the heat ray 1,2, volume average temperature increase .DELTA..tau vh heat rays when epsilon f = 0.1 is 10 [K] (Fig. 3), 5
The calculation was performed by setting 0 [K] (FIG. 4) and 100 [K] (FIG. 5) and changing ε f while keeping q v constant. That is, the effect of ε f on ΔΤ vh at the same heating value was examined.

【0072】いずれの図においても、εf が大きくなる
につれ試料細線からの放射による放熱が増大し、ΔΤvh
が低下している。つまり、加熱量と熱線1,2の体積平
均温度を測定すれば、試料細線3の放射率が求まる。図
3〜図5を比較すると、熱線1,2の温度上昇量(熱線
加熱量)が高いほどεf の変化によるΔΤvhの変化が大
きくなっている。測定精度は、εf の変化によるΔΤvh
の変化の割合(感度)が大きいほど高いため、温度上昇
量を高くすることにより測定精度の向上を図ることがで
きることが分かる。
In any of the figures, as ε f increases, the heat radiation due to the radiation from the sample thin wire increases, and ΔΤ vh
Is declining. That is, by measuring the heating amount and the volume average temperature of the heating wires 1 and 2, the emissivity of the sample thin wire 3 can be obtained. 3 to 5, the change in Δ5 vh due to the change in ε f increases as the temperature rise of the hot wires 1 and 2 (heat wire heating amount) increases. Measurement accuracy, .DELTA..tau vh due to a change in the epsilon f
It can be seen that the higher the rate of change (sensitivity), the higher the rate of change, the higher the amount of temperature rise can improve measurement accuracy.

【0073】また、熱線の長さlh の影響について見て
みると、熱線1,2の温度上昇量が、10〔K〕(図3
参照)のときはεf が0.4以下において、lh =50
mmの感度が大きくなっているが、温度上昇量が100
〔K〕(図5参照)のときは、いずれの試料細線3の放
射率においても、lh =10mmのとき感度が大きくな
っている。
Looking at the effect of the length l h of the heating wire, the amount of temperature rise of the heating wires 1 and 2 is 10 [K] (FIG. 3).
), When ε f is 0.4 or less, l h = 50
mm, but the temperature rise is 100
In the case of [K] (see FIG. 5), the sensitivity is high when l h = 10 mm in any of the emissivities of the sample thin wires 3.

【0074】これは、熱線の長さにより熱線端部からの
熱損失、熱線1,2からの放射による放熱、試料細線3
からの放射による放熱の割合がそれぞれ変化するためで
あり、精度の高い測定を行うには測定条件に合わせて熱
線1,2の長さを設定する必要がある。
This is because heat loss from the end of the heating wire, heat radiation due to radiation from the heating wires 1 and 2 and the fine wire 3
This is because the ratio of heat radiation due to radiation from each element changes, and it is necessary to set the lengths of the heating wires 1 and 2 according to the measurement conditions in order to perform highly accurate measurement.

【0075】図6、図7に熱線の体積平均温度の上昇量
を10〔K〕および100〔K〕に設定した場合の、熱
線温度測定の不確かさによるεf の測定誤差を示す。こ
れは、本発明の測定方法によって試料細線3の放射率を
測定する場合の原理的な測定分解能である。温度上昇量
が10〔K〕(図6参照)のときは、温度測定の不確か
さが0.01〔K〕以内の時、いずれの放射率において
も測定精度は1〔%〕以内を確保することができる。ま
た、温度上昇量が100〔K〕(図7)のときは、温度
測定の不確かさが0.1〔K〕のとき、測定精度は1
〔%〕以内となっている。
FIGS. 6 and 7 show the measurement error of ε f due to the uncertainty of the hot wire temperature measurement when the amount of increase in the volume average temperature of the hot wire is set to 10 [K] and 100 [K]. This is a fundamental measurement resolution when measuring the emissivity of the sample thin line 3 by the measurement method of the present invention. When the temperature rise is 10 [K] (see FIG. 6), when the uncertainty of the temperature measurement is within 0.01 [K], the measurement accuracy is maintained within 1 [%] at any emissivity. be able to. When the temperature rise amount is 100 [K] (FIG. 7), the measurement accuracy is 1 when the uncertainty of the temperature measurement is 0.1 [K].
It is within [%].

【0076】常温域で測定精度0.01〔K〕以内の白
金細線の校正は十分に可能であるが、高温域において測
定を行う場合、白金細線を0.01〔K〕以内で校正を
行うのは困難である。しかし、図6、図7より、熱線温
度上昇を大きくすることにより、温度測定の不確かさを
補えることが分かる。
Calibration of fine platinum wires with a measurement accuracy within 0.01 [K] in the normal temperature range is sufficiently possible, but when performing measurements in a high temperature range, calibration of the fine platinum wires is performed within 0.01 [K]. It is difficult. However, it can be seen from FIGS. 6 and 7 that the uncertainty of the temperature measurement can be compensated by increasing the hot wire temperature rise.

【0077】このように、熱線1,2の温度測定精度
が、±0.1〔K〕以内であれば、本発明の測定方法に
より、半径5μmの試料細線の放射率を±1%以内の精
度で測定できることが明らかとなった。なお、図2にお
いて、上記式(7),(8)により放射熱伝達係数を近
似して求めた解〔上記式(16)参照〕には、高温域で
約2%の誤差が生じることを示した。これは、熱線を1
00〔K〕温度上昇させた場合の誤差は2〔K〕とな
り、放射率の測定精度として十分な精度を確保すること
ができないことを示している。したがって、高温域の測
定においては、放射熱伝達係数の近似を用いない厳密な
基礎式について数値解析による解を求め、この解と測定
データとを比較することにより放射率を求める必要があ
る。
As described above, if the temperature measurement accuracy of the heating wires 1 and 2 is within ± 0.1 [K], the emissivity of the sample fine wire having a radius of 5 μm is within ± 1% by the measuring method of the present invention. It became clear that the measurement could be performed with accuracy. In FIG. 2, the solution obtained by approximating the radiant heat transfer coefficient by the above equations (7) and (8) [see the above equation (16)] has an error of about 2% in a high temperature region. Indicated. This means that the heat
The error when the temperature is increased by 00 [K] is 2 [K], indicating that sufficient accuracy cannot be secured as the emissivity measurement accuracy. Therefore, in the measurement in the high-temperature region, it is necessary to obtain a solution by a numerical analysis for a strict basic equation that does not use the approximation of the radiant heat transfer coefficient, and to obtain the emissivity by comparing this solution with the measured data.

【0078】図8に試料細線の熱伝導率λf が放射率測
定に及ぼす影響を示す。このλf が小さくなるにつれ、
εf によるΔTvhの低下する割合(感度)が低下してい
る。しかし、λf =10〜1000〔W/mK〕でλf
の±10%の不確かさがεfの測定に与える影響は、す
べての放射率の試料に対して±1%以内であり、熱伝導
率の不確かさが、εf の測定誤差に与える影響は小さい
ことが明らかとなった。これは、2本の熱線1,2を用
いることにより、試料細線3の中央で断熱条件となり、
熱線1,2から試料細線3へ伝わる熱量は試料細線3の
放射による放熱伝熱に依存しているためである。
FIG. 8 shows the effect of the thermal conductivity λ f of the thin sample wire on the emissivity measurement. As this λ f becomes smaller,
The rate (sensitivity) at which ΔT vh decreases due to ε f decreases. However, when λ f = 10 to 1000 [W / mK], λ f
The effect of ± 10% uncertainty on the measurement of ε f is within ± 1% for all emissivity samples, and the effect of thermal conductivity uncertainty on the measurement error of ε f It turned out to be small. This means that by using the two heating wires 1 and 2, the heat insulation condition is established at the center of the sample thin wire 3,
This is because the amount of heat transmitted from the hot wires 1 and 2 to the thin sample wire 3 depends on the heat transfer by radiation of the thin sample wire 3.

【0079】図9に試料細線の半径rf が放射率測定に
及ぼす影響を示す。
[0079] shows the effect of radius r f of the sample thin line on the measurement emissivity in FIG.

【0080】この図から明らかなように、試料細線の半
径rf が大きくなるにつれ、熱線から試料細線へ流れる
熱量が増すため感度が増加している。
[0080] As is apparent from this figure, as the radius r f of the sample thin line increases, the sensitivity to increase the amount of heat flowing from the heat rays to the sample thin lines is increased.

【0081】図10に試料細線の長さlf が放射率測定
に及ぼす影響を示す。
FIG. 10 shows the effect of the length l f of the sample thin line on the emissivity measurement.

【0082】この図から明らかなように、試料細線の長
さlf が30mmまではlf が増すにつれて感度が増加
しているが、30mm以上では感度の向上は見られな
い。これは、通常の熱交換器等における温度効率と同じ
ように、lf =30mmで試料細線の温度効率がほぼ1
に達しているためである。したがって、試料細線を長く
することの利点には限界があることに注意する必要があ
る。
[0082] As is apparent from this figure, the sensitivity as the length l f of the sample thin line until 30mm l f increases is increased, improvement in sensitivity is not observed in 30mm or more. This is because the temperature efficiency of the thin sample wire is almost 1 at l f = 30 mm, similar to the temperature efficiency of a normal heat exchanger or the like.
Because it has reached Therefore, it should be noted that the advantage of elongating the sample wire is limited.

【0083】なお、上記実施例では、熱線としては白金
細線が望ましいが、タングステン等を用いることも可能
である。
In the above embodiment, a platinum wire is preferable as the heating wire, but tungsten or the like can be used.

【0084】また、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、それらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above-described embodiments, but various modifications are possible based on the spirit of the present invention, and they are not excluded from the scope of the present invention.

【0085】[0085]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下の効果を奏する。
As described above, according to the present invention, the following effects can be obtained.

【0086】(1)簡便に極微細単線そのものの放射率
を測定することができる。つまり、一様に発熱する熱線
部の体積平均温度上昇量の定常値から試料細線の半球全
放射率を求めることができる。
(1) The emissivity of an ultrafine single line itself can be easily measured. That is, the hemispherical total emissivity of the thin sample wire can be obtained from the steady value of the volume average temperature rise amount of the heat wire portion that generates heat uniformly.

【0087】(2)測定試料の加熱、温度測定、支持を
同一の熱線で行うことにより、熱損失による誤差要因の
低減を図ることができる。
(2) The heating, temperature measurement, and support of the measurement sample are performed by the same heating wire, so that an error factor due to heat loss can be reduced.

【0088】(3)具体的には、直径10μmの試料細
線を例にとって、本発明の微細単線の放射率測定の精度
について検討を行った結果、直径10μm、長さ10m
mの短細線プローブ(熱線)を用いて、直径10μm、
長さ30mm程度の試料細線の放射率を±1%程度の精
度で測定できることがわかった。
(3) Specifically, taking a sample fine wire having a diameter of 10 μm as an example, the accuracy of emissivity measurement of a fine single wire of the present invention was examined. As a result, the diameter was 10 μm and the length was 10 m.
m using a short wire probe (heat wire) with a diameter of 10 μm,
It has been found that the emissivity of a sample thin wire having a length of about 30 mm can be measured with an accuracy of about ± 1%.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す極微細線の放射率測定装
置の測定部の構成を示す図である。
FIG. 1 is a diagram illustrating a configuration of a measuring unit of an ultrafine wire emissivity measuring apparatus according to an embodiment of the present invention.

【図2】本発明の実施例を示す極微細線の放射率測定に
おける環境温度Τ∞に対する熱線の体積平均温度の解析
解と差分による数値解の差を示す図である。
FIG. 2 is a diagram illustrating a difference between an analytical solution of a volume average temperature of a hot wire with respect to an environmental temperature に お け る and a numerical solution based on a difference in an emissivity measurement of an ultrafine wire according to an embodiment of the present invention.

【図3】本発明の実施例を示す式(16)により試料細
線の放射率と熱線体積平均温度の関係を計算した結果を
示す図(その1:ΔTvh=10K)である。
FIG. 3 is a diagram showing the result of calculating the relationship between the emissivity of a thin sample wire and the hot-wire volume average temperature by equation (16) showing the embodiment of the present invention (part 1: ΔT vh = 10K).

【図4】本発明の実施例を示す式(16)により試料細
線の放射率と熱線体積平均温度の関係を計算した結果を
示す図(その2:ΔTvh=50K)である。
FIG. 4 is a diagram showing the result of calculating the relationship between the emissivity of a thin sample wire and the hot-wire volume average temperature by equation (16) showing the embodiment of the present invention (part 2: ΔT vh = 50K).

【図5】本発明の実施例を示す式(16)により試料細
線の放射率と熱線体積平均温度の関係を計算した結果を
示す図(その3:ΔTvh=100K)である。
FIG. 5 is a diagram showing the result of calculating the relationship between the emissivity of a thin sample wire and the hot-wire volume average temperature by equation (16) showing the embodiment of the present invention (part 3: ΔT vh = 100 K).

【図6】本発明の実施例を示す熱線の体積平均温度の上
昇量を10〔K〕に設定した場合の、熱線温度測定の不
確かさによるεf の測定誤差を示す図である。
FIG. 6 is a diagram showing an error in measurement of ε f due to uncertainty in hot wire temperature measurement when the amount of increase in the volume average temperature of the hot wire is set to 10 [K] according to the embodiment of the present invention.

【図7】本発明の実施例を示す熱線の体積平均温度の上
昇量を100〔K〕に設定した場合の、熱線温度測定の
不確かさによるεf の測定誤差を示す図である。
FIG. 7 is a diagram showing an error in measurement of ε f due to uncertainty in hot wire temperature measurement when the amount of increase in the volume average temperature of the hot wire is set to 100 [K], showing the embodiment of the present invention.

【図8】試料細線の熱伝導率λf が放射率測定に及ぼす
影響を示す図である。
FIG. 8 is a diagram showing the effect of the thermal conductivity λ f of a sample thin wire on emissivity measurement.

【図9】試料細線の半径rf が放射率測定に及ぼす影響
を示す図である。
[9] the radius r f of the sample thin line shows the effect on the measurement emissivity.

【図10】試料細線の長さlf が放射率測定に及ぼす影
響を示す図である。
[10] of the sample thin line length l f is a diagram showing the effect on the measurement emissivity.

【符号の説明】[Explanation of symbols]

1,2 熱線 3 試料細線 3A,3B 接続点 Bi ビオー数 l 熱線および試料線材の長さ qv 単位体積あたりの発熱量(体積発熱量) Rc 熱伝導率比 Rd 半径比 Ri 温度測定時の熱線部の電気抵抗値 Rt0 0℃における熱線部の電気抵抗値 r 半径方向座標 S 測定部の感度(=dΤv /dλf ) Τ 温度 Τv 体積平均温度 X 無次元長さ方向座標 β 抵抗の温度係数 λ 熱伝導率 σ ステファンボルツマン定数 θ 無次元温度 θv 無次元体積平均温度 ε 放射率 〔添字〕 f 試料細線 h 熱線 h1 熱線部I h2 熱線部II1,2 hot wire 3 samples thin line 3A, the length q v calorific value per unit volume of 3B connection point Bi Biot number l hot wire and sample wire (volume calorific value) R c thermal conductivity ratio R d radius ratio Ri during temperature measurement heat ray unit resistance value r radial coordinate S measurement of the sensitivity of the heat ray unit in the electrical resistance value Rt 0 0 ° C. of (= dΤ v / dλ f) Τ temperature T v volume average temperature X dimensionless longitudinal coordinate β Temperature coefficient of resistance λ Thermal conductivity σ Stephan Boltzmann constant θ Dimensionless temperature θ v Dimensionless volume average temperature ε Emissivity [subscript] f Sample wire h Heat wire h1 Heat wire I h2 Heat wire II

フロントページの続き Fターム(参考) 2G040 AB08 AB10 AB12 BA02 BA21 CA13 CB09 DA02 DA12 EA02 EA11 EB02 EC03 FA10 HA07 HA16 ZA05 2G066 AC20 BC11 CA11 Continued on the front page F term (reference) 2G040 AB08 AB10 AB12 BA02 BA21 CA13 CB09 DA02 DA12 EA02 EA11 EB02 EC03 FA10 HA07 HA16 ZA05 2G066 AC20 BC11 CA11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 微細単線の放射率測定方法において、
(a)一様な体積発熱をする2本の熱線を平行に配置す
るとともに、該2本の熱線間に試料細線を接続し、
(b)前記2本の熱線を直接通電加熱し、一方の熱線か
ら前記試料細線へ加えられる熱量ともう一方の熱線から
前記試料細線へ加えられる熱量を等しくし、(c)前記
試料細線に加えられた熱量をすべて放射により該試料細
線から放熱させ、前記2本の熱線の体積平均温度に関す
る定常熱伝導の理論解と測定により得られる熱線の体積
平均温度上昇の定常値を比較することにより、前記試料
細線の放射率を求めることを特徴とする微細単線の放射
率測定方法。
1. A method for measuring the emissivity of a fine single wire, comprising:
(A) two heat wires that generate uniform volume heat are arranged in parallel, and a thin sample wire is connected between the two heat wires;
(B) heating the two heat wires directly by applying current to equalize the amount of heat applied from one heat wire to the sample wire and the amount of heat applied from the other heat wire to the sample wire; (c) adding the heat wire to the sample wire; By radiating all of the obtained heat from the sample fine wire by radiation, by comparing the theoretical solution of steady heat conduction with respect to the volume average temperature of the two heat wires and the steady value of the volume average temperature rise of the heat wire obtained by measurement, A method for measuring the emissivity of a fine single line, wherein the emissivity of the fine sample line is obtained.
【請求項2】 請求項1記載の微細単線の放射率測定方
法において、前記2本の熱線として、白金細線を用いる
ことを特徴とする微細単線の放射率測定方法。
2. The emissivity measuring method for a fine single wire according to claim 1, wherein a platinum fine wire is used as said two heating wires.
【請求項3】 微細単線の放射率測定装置において、
(a)平行に配置された一様な体積発熱をする2本の熱
線と、(b)該2本の熱線間に接続される試料細線と、
(c)前記2本の熱線を直接通電加熱し、一方の熱線か
ら前記試料細線へ加えられる熱量ともう一方の熱線から
前記試料細線へ加えられる熱量を等しくする手段とを具
備することを特徴とする微細単線の放射率測定装置。
3. An emissivity measuring apparatus for a fine single wire,
(A) two heating wires arranged in parallel to generate uniform volume heat, and (b) a thin sample wire connected between the two heating wires;
(C) a means for directly energizing and heating the two heat wires to equalize the amount of heat applied from one heat wire to the sample wire and the amount of heat applied from the other heat wire to the sample wire. Emissivity measuring device for fine single wires.
【請求項4】 請求項3記載の微細単線の放射率測定装
置において、前記2本の熱線は白金細線であることを特
徴とする微細単線の放射率測定装置。
4. The fine single-wire emissivity measuring apparatus according to claim 3, wherein said two heating wires are platinum fine wires.
【請求項5】 請求項3記載の微細単線の放射率測定装
置において、前記試料細線は前記2本の熱線の中央部に
接続することを特徴とする微細単線の放射率測定装置。
5. An emissivity measuring apparatus for a fine single wire according to claim 3, wherein said sample fine wire is connected to a center portion of said two heating wires.
【請求項6】 請求項3記載の微細単線の放射率測定装
置において、前記試料細線は1〜10μmオーダーであ
ることを特徴とする微細単線の放射率測定装置。
6. An emissivity measuring apparatus for a fine single line according to claim 3, wherein the fine line of the sample has an order of 1 to 10 μm.
JP11166133A 1999-06-14 1999-06-14 Method and apparatus for measuring emissivity of fine single wire Pending JP2000356612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11166133A JP2000356612A (en) 1999-06-14 1999-06-14 Method and apparatus for measuring emissivity of fine single wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11166133A JP2000356612A (en) 1999-06-14 1999-06-14 Method and apparatus for measuring emissivity of fine single wire

Publications (1)

Publication Number Publication Date
JP2000356612A true JP2000356612A (en) 2000-12-26

Family

ID=15825656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11166133A Pending JP2000356612A (en) 1999-06-14 1999-06-14 Method and apparatus for measuring emissivity of fine single wire

Country Status (1)

Country Link
JP (1) JP2000356612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245692A (en) * 2013-04-24 2013-08-14 清华大学 Steady-state analysis-based method for measuring hemispherical total emissivity and heat conduction coefficient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245692A (en) * 2013-04-24 2013-08-14 清华大学 Steady-state analysis-based method for measuring hemispherical total emissivity and heat conduction coefficient

Similar Documents

Publication Publication Date Title
Zhang et al. An improved algorithm for spectral emissivity measurements at low temperatures based on the multi-temperature calibration method
US20160334284A1 (en) System and method for calibrating and characterising instruments for temperature measurement by telemetry
CN102042993A (en) System for measuring normal spectral emissivity of high-temperature material
Lundström et al. Radiation influence on indoor air temperature sensors: Experimental evaluation of measurement errors and improvement methods
Michalski et al. Comparison of two surface temperature measurement using thermocouples and infrared camera
Monte et al. The measurement of directional spectral emissivity in the temperature range from 80° C to 500° C at the Physikalisch-Technische Bundesanstalt.
Höser et al. Uncertainty analysis for emissivity measurement at elevated temperatures with an infrared camera
CN109613054A (en) A method for measuring the longitudinal thermal conductivity of direct energization
RU2510491C2 (en) Method of measuring emissivity factor
JP2000356612A (en) Method and apparatus for measuring emissivity of fine single wire
Flynn et al. Design of a subminiature guarded hot plate apparatus
JP4203893B2 (en) Method of measuring principal axis thermophysical property value of two-dimensional anisotropic material by heat flow meter type multi-point temperature measurement method and measuring device
De Lucas et al. Measurement and analysis of the temperature gradient of blackbody cavities, for use in radiation thermometry
RU2732341C1 (en) Method for test of thermocouple and its thermoelectric capacity value without dismantling
CN108918580A (en) A kind of lossless steady heat conduction rate measurement method
CN103364434B (en) The hemisphere of large difference sample is to the measuring method of total emissivity
Fujiwara et al. Short-hot-wire method for the measurement of total hemispherical emissivity of a fine fibre
CN103267772B (en) Transient analysis-based hemispherical total emittance measurement method for large-temperature difference sample
CN113654689A (en) Contact measurement method for high-temperature gas temperature based on steady-state energy flow balance relation
John et al. Emissivity Measurement Using Heat Flux Method at Cryogenic Temperatures
JP4371804B2 (en) Absolute temperature measuring device and method
Favreau et al. Quantifying the effect of thermal heat radiation emitted by the walls of a climatic chamber on temperature measurements
RU123519U1 (en) DEVICE FOR MEASURING BLACK DEGREE
Yuan et al. -30∘ C to 960∘ C Variable Temperature Blackbody (VTBB) Radiance Temperature Calibration Facility
Mykytiuk Factors of influence on the accuracy of thermal converters

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329