JP2000300525A - Manometer - Google Patents
ManometerInfo
- Publication number
- JP2000300525A JP2000300525A JP11117162A JP11716299A JP2000300525A JP 2000300525 A JP2000300525 A JP 2000300525A JP 11117162 A JP11117162 A JP 11117162A JP 11716299 A JP11716299 A JP 11716299A JP 2000300525 A JP2000300525 A JP 2000300525A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- pulse wave
- cuff
- arterial pulse
- stratification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013517 stratification Methods 0.000 claims abstract description 90
- 230000036772 blood pressure Effects 0.000 claims abstract description 89
- 238000006243 chemical reaction Methods 0.000 claims description 75
- 238000000034 method Methods 0.000 claims description 31
- 239000008280 blood Substances 0.000 claims description 16
- 210000004369 blood Anatomy 0.000 claims description 16
- 238000005070 sampling Methods 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 10
- 230000005484 gravity Effects 0.000 claims description 10
- 210000001367 artery Anatomy 0.000 claims description 9
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 238000012935 Averaging Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 15
- 239000004615 ingredient Substances 0.000 abstract 2
- 230000000694 effects Effects 0.000 description 63
- 238000010586 diagram Methods 0.000 description 32
- 101100135790 Caenorhabditis elegans pcn-1 gene Proteins 0.000 description 21
- 238000012545 processing Methods 0.000 description 21
- 230000035488 systolic blood pressure Effects 0.000 description 19
- 230000035487 diastolic blood pressure Effects 0.000 description 18
- 238000000605 extraction Methods 0.000 description 17
- 230000007812 deficiency Effects 0.000 description 13
- 239000000284 extract Substances 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 4
- 238000009530 blood pressure measurement Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000035485 pulse pressure Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000004872 arterial blood pressure Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、血圧計に関するも
のである。TECHNICAL FIELD The present invention relates to a sphygmomanometer.
【0002】[0002]
【従来の技術】従来より、カフ圧に重畳される心拍毎の
動脈脈波成分を抽出し、動脈脈波成分の変化に基づい
て、最高血圧値及び最低血圧値を示す時点を判定するオ
シロメトリック法を採用した血圧計が知られている。図
37は従来の血圧計を示すブロック図であり、人体の要
部に装着するカフ1に加圧ポンプ3、急速排気部4、徐
徐排気部5をそれぞれ接続して、カフ圧力を制御演算部
7で制御する。そのカフ圧力を圧力センサ2で電圧に変
換し、A/D変換部6によってデジタル信号に変換して
制御演算部7に入力する。そして、制御演算部7にてデ
ジタル信号に変換された圧力値(圧力データ)から被測
定者の最高血圧値並びに最低血圧値等を決定し、表示器
8に表示したり、ブザー等の報知手段9を鳴動させる。
なお、10は制御演算部7に対して血圧測定開始のトリ
ガ信号等を入力するための操作入力器、11は各部に電
源を供給する電源部である。2. Description of the Related Art Conventionally, an oscillometric extraction of an arterial pulse wave component for each heartbeat superimposed on a cuff pressure and judging a time point indicating a systolic blood pressure value and a diastolic blood pressure value based on a change in the arterial pulse wave component. Sphygmomanometers employing the method are known. FIG. 37 is a block diagram showing a conventional sphygmomanometer, in which a pressure pump 3, a rapid exhaust unit 4, and a gradual exhaust unit 5 are respectively connected to a cuff 1 attached to a main part of a human body to control a cuff pressure. 7 is controlled. The cuff pressure is converted to a voltage by the pressure sensor 2, converted to a digital signal by the A / D converter 6, and input to the control calculator 7. Then, the systolic blood pressure value and the diastolic blood pressure value of the subject are determined from the pressure value (pressure data) converted into a digital signal by the control arithmetic unit 7 and displayed on the display 8 or a notification means such as a buzzer Ring 9
Reference numeral 10 denotes an operation input unit for inputting a trigger signal for starting blood pressure measurement and the like to the control calculation unit 7, and reference numeral 11 denotes a power supply unit for supplying power to each unit.
【0003】図38は制御演算部7の具体構成を示すブ
ロック図である。A/D変換部6から入力されるデジタ
ル信号は動脈脈波抽出手段12及びカフ圧抽出手段13
に入力され、カフ圧に重畳されている動脈脈波成分(動
脈反圧)とカフ圧とが分離され、動脈脈波抽出手段12
から出力される動脈反圧と、カフ圧抽出手段13から出
力されるカフ圧とがデータとして記憶手段14に順次格
納される。記憶手段14に格納された動脈反圧とカフ圧
とを用いて演算手段15では後述する比較演算を行う。
また、演算手段15による演算結果に基づいて血圧判定
手段16では最高血圧値及び最低血圧値を求め、決定さ
れた最高血圧値及び最低血圧値を表示器8に表示する。
さらに、演算手段15の演算結果に基づいて、排気速度
・脈拍数モニタ17により排気速度や脈拍数が求められ
て表示器8に表示され、カフ圧モニタ18によりカフ圧
が求められて表示器8に表示される。また、カフ圧モニ
タ18により検出されるカフ圧に基づいて、カフ圧制御
手段19により加圧ポンプ3、急速排気部4並びに徐徐
排気部5が制御される。なお、動脈脈波抽出手段12、
カフ圧抽出手段13、記憶手段14、演算手段15、血
圧判定手段16、排気速度・脈拍数モニタ18、カフ圧
モニタ18並びにカフ圧制御手段19は、CPU、RO
M、RAM等を備えるマイクロコンピュータ(以下、
「マイコン」と略す)7を所要のプログラムに従って動
作させることで構成されている。FIG. 38 is a block diagram showing a specific configuration of the control operation unit 7. As shown in FIG. The digital signal input from the A / D converter 6 is converted into arterial pulse wave extracting means 12 and cuff pressure extracting means 13
The arterial pulse wave component (arterial counter pressure) superimposed on the cuff pressure is separated from the cuff pressure, and the arterial pulse wave extraction means 12
And the cuff pressure output from the cuff pressure extracting means 13 are sequentially stored in the storage means 14 as data. Using the arterial reaction pressure and the cuff pressure stored in the storage means 14, the calculation means 15 performs a comparison calculation described later.
The blood pressure determining means 16 obtains a systolic blood pressure value and a diastolic blood pressure value based on the calculation result by the calculating means 15 and displays the determined systolic and diastolic blood pressure values on the display 8.
Further, based on the calculation result of the calculation means 15, the exhaust speed and pulse rate are obtained by the exhaust speed / pulse rate monitor 17 and displayed on the display 8, and the cuff pressure is obtained by the cuff pressure monitor 18 and the display 8 is displayed. Will be displayed. Further, based on the cuff pressure detected by the cuff pressure monitor 18, the cuff pressure control means 19 controls the pressurizing pump 3, the quick exhaust unit 4, and the gradual exhaust unit 5. The arterial pulse wave extraction means 12,
The cuff pressure extracting means 13, the storing means 14, the calculating means 15, the blood pressure judging means 16, the exhaust speed / pulse rate monitor 18, the cuff pressure monitor 18, and the cuff pressure controlling means 19 are a CPU, a RO
A microcomputer having M, RAM, etc.
7 is operated according to a required program.
【0004】次に上記従来例の動作を説明する。まず、
血圧測定が開始されると、カフ圧制御手段19が加圧ポ
ンプ3を制御して被測定者の上腕部に巻回されたカフ1
の中に空気を送って加圧して阻血する。その後、カフ圧
制御手段19は加圧ポンプ3を停止するとともに徐徐排
気部5を制御してカフ1の内部の空気を徐々に排気して
カフ圧を徐々に降下させる。この排気期間において、圧
力センサ2により動脈反圧とカフ圧とが重畳された圧力
を検出する(図39(a)参照)。圧力センサ2のアナ
ログ出力はA/D変換部6によってデジタル信号に変換
され、マイコン7に入力される。ここで、A/D変換部
6の出力は、略直線的に低下するカフ圧に図39(b)
に示すような動脈反圧が重畳された圧力に対応している
ので、これらを分離することで動脈脈波抽出手段12と
カフ圧抽出手段13によりそれぞれ図(c)に示すよう
な動脈反圧の脈波値と、同図(d)に示すようなカフ圧
の圧力値とが求められる。そして、脈波値の最大値Ma
xを求め、その最大値Maxに所定の比率S〔%〕,D
〔%〕を乗じた値と一致する動脈反圧に対応するカフ圧
力値が、それぞれ最大血圧値及び最低血圧値とされる。Next, the operation of the above conventional example will be described. First,
When the blood pressure measurement is started, the cuff pressure control unit 19 controls the pressurizing pump 3 to control the cuff 1 wound around the upper arm of the subject.
The air is sent to the inside to pressurize the blood. Thereafter, the cuff pressure control means 19 stops the pressurizing pump 3 and controls the gradual exhaust unit 5 to gradually exhaust the air inside the cuff 1 to gradually reduce the cuff pressure. During this exhaust period, the pressure sensor 2 detects a pressure at which the arterial reaction pressure and the cuff pressure are superimposed (see FIG. 39A). The analog output of the pressure sensor 2 is converted into a digital signal by the A / D converter 6 and input to the microcomputer 7. Here, the output of the A / D converter 6 is changed to the cuff pressure that decreases substantially linearly as shown in FIG.
(C) corresponds to the superimposed pressure, and by separating these, the arterial pulse wave extracting means 12 and the cuff pressure extracting means 13 separate the arterial reactive pressure as shown in FIG. And the pressure value of the cuff pressure as shown in FIG. And the maximum value Ma of the pulse wave value
x, and a predetermined ratio S [%], D is added to the maximum value Max.
The cuff pressure value corresponding to the arterial reaction pressure corresponding to the value multiplied by [%] is set as the maximum blood pressure value and the minimum blood pressure value, respectively.
【0005】[0005]
【発明が解決しようとする課題】ところで、各1拍の動
脈脈波の波高値は、上述のように阻血部の血流に応じて
変化するが、その変化の程度には個人差があり、人によ
っては最高血圧時期や最低血圧時期の近辺で波高値の変
化が少なく(すなわち、動脈脈波の波形形状が異なる)
なったり、また同一人であっても時間によって動脈脈波
の波形形状が異なる場合がある。このように動脈脈波の
波形形状が異なる場合には、上述のように動脈反圧の脈
波値に所定の比率を乗算しても最高血圧時期や最低血圧
時期を正確に判定することができず、誤差の原因になる
という問題がある。The peak value of each arterial pulse wave changes according to the blood flow in the blood-absorbing part as described above, but the degree of the change varies among individuals. Some people have little change in peak value near systolic or diastolic blood pressure (ie, the waveform shape of arterial pulse wave is different)
In some cases, even in the same person, the waveform of the arterial pulse wave may differ depending on the time. When the waveform shapes of the arterial pulse waves are different as described above, the systolic blood pressure timing and the diastolic blood pressure timing can be accurately determined even if the pulse wave value of the arterial reaction pressure is multiplied by a predetermined ratio as described above. However, there is a problem that it causes an error.
【0006】本発明は上記問題点の解決を目的とするも
のであり、個人差や時間差等による誤差の発生を小さく
し、正確な測定結果が得られる血圧計を提供しようとす
るものである。SUMMARY OF THE INVENTION An object of the present invention is to provide a sphygmomanometer capable of reducing the occurrence of errors due to individual differences and time differences and obtaining accurate measurement results.
【0007】[0007]
【課題を解決するための手段】請求項1の発明は、上記
目的を達成するために、生体情報を含む物理値を検出す
る検出手段と、検出手段の検出値をアナログ値からデジ
タル値に変換するA/D変換手段と、A/D変換手段の
出力から生体情報に対応する成分を抽出する生体情報抽
出手段と、生体情報抽出手段で抽出された生体情報デー
タを記憶する記憶手段と、記憶手段に記憶された生体情
報データを変数とする1乃至複数の主成分を演算により
求める主成分演算手段と、この主成分により生体情報デ
ータを層別する層別手段と、層別された各層毎に生体情
報データから血圧値を判定するための判定規範を複数の
候補の中から選択する選択手段と、選択手段により選択
された判定規範に従って生体情報データに基づく血圧値
の判定を行う血圧判定手段とを備えたことを特徴とし、
生体情報データから抽出した主成分により生体情報デー
タを層別し、その層別結果に応じた判定規範に従って血
圧値を判定しているから、個人差や時間差等による誤差
の発生を小さくし、正確な測定結果が得られる。According to a first aspect of the present invention, there is provided a detecting means for detecting a physical value including biological information, and converting a detected value of the detecting means from an analog value to a digital value. A / D conversion means for performing processing, biological information extraction means for extracting a component corresponding to biological information from an output of the A / D conversion means, storage means for storing biological information data extracted by the biological information extraction means, and storage Principal component calculating means for calculating one or a plurality of principal components using the biological information data stored in the means as a variable, stratifying means for stratifying the biological information data by the principal components, Selecting means for selecting a determination criterion for determining a blood pressure value from biological information data from a plurality of candidates; and a blood pressure for determining a blood pressure value based on the biological information data according to the determination criterion selected by the selection means. Characterized in that a constant means,
Biological information data is stratified based on the principal components extracted from the biometric information data, and blood pressure values are determined according to criteria determined according to the stratified result. Measurement results are obtained.
【0008】請求項2の発明は、請求項1の発明におい
て、検出手段が、生体情報として被測定者の動脈脈波を
検出して成ることを特徴とし、請求項1の発明と同様の
作用を奏する。A second aspect of the present invention is the same as the first aspect of the invention, wherein the detecting means detects the arterial pulse wave of the subject as the biological information. To play.
【0009】請求項3の発明は、請求項1又は2の発明
において、層別手段が、主成分と生体の特性を関連づけ
る計算式を有し、この計算式によって得られる生体特性
に基づく層別を行うことを特徴とし、請求項1又は2の
発明と同様の作用を奏する。According to a third aspect of the present invention, in the first or second aspect of the present invention, the stratification means has a calculation formula for associating the main component with the characteristics of the living body, and the stratification based on the biological characteristics obtained by the calculation formula. And has the same effect as the first or second aspect of the invention.
【0010】請求項4の発明は、請求項1又は2の発明
において、層別手段が、主成分を予め登録されている複
数のパターンと比較して各パターンと略等価であるか否
かにより層別を行うことを特徴とし、請求項1又は2の
発明と同様の作用を奏する。According to a fourth aspect of the present invention, in the first or second aspect of the present invention, the stratification means compares a main component with a plurality of patterns registered in advance and determines whether or not each component is substantially equivalent to each pattern. The present invention is characterized in that stratification is performed, and has the same effect as the first or second aspect of the invention.
【0011】請求項5の発明は、請求項1〜4の何れか
の発明において、層別手段が、複数の主成分のうちで第
1主成分のみを利用して層別を行うことを特徴とし、請
求項1〜4の何れかの発明と同様の作用を奏する。According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, the stratifying means performs stratification by using only the first principal component among a plurality of principal components. Accordingly, the same operation as that of any one of the first to fourth aspects of the invention is achieved.
【0012】請求項6の発明は、請求項1〜4の何れか
の発明において、層別手段が、複数の主成分のうちで第
1主成分以外の主成分を利用して層別を行うことを特徴
とし、請求項1〜4の何れかの発明と同様の作用を奏す
る。According to a sixth aspect of the present invention, in any one of the first to fourth aspects of the invention, the stratifying means performs stratification by using a principal component other than the first principal component among the plurality of principal components. It has the same effect as the invention of any one of claims 1 to 4.
【0013】請求項7の発明は、請求項1〜4の何れか
の発明において、層別手段が、複数の主成分を利用して
層別を行うことを特徴とし、請求項1〜4の何れかの発
明と同様の作用を奏する。According to a seventh aspect of the present invention, in any one of the first to fourth aspects, the stratifying means performs stratification by using a plurality of main components. It has the same effect as any of the inventions.
【0014】請求項8の発明は、請求項2の発明におい
て、時系列で抽出される各心拍に対応した動脈脈波のデ
ータを平均化処理する手段を備えたことを特徴とし、請
求項2の発明と同様の作用を奏するとともに、動脈脈波
のデータのS/N比を向上させることができる。According to an eighth aspect of the present invention, in the second aspect of the present invention, there is provided means for averaging arterial pulse wave data corresponding to each heartbeat extracted in a time series. In addition to the effect similar to that of the invention, the S / N ratio of the arterial pulse wave data can be improved.
【0015】請求項9の発明は、請求項2の発明におい
て、時系列で抽出される各心拍に対応した動脈脈波のデ
ータを複数の微少区画における変化率として求める手段
を備えたことを特徴とし、請求項2の発明と同様の作用
を奏するとともに、動脈脈波のデータのS/N比を向上
させることができる。A ninth aspect of the present invention is characterized in that, in the second aspect of the present invention, there is provided means for obtaining data of arterial pulse waves corresponding to each heartbeat extracted in a time series as a change rate in a plurality of minute sections. Accordingly, the same effect as that of the invention of claim 2 can be obtained, and the S / N ratio of the arterial pulse wave data can be improved.
【0016】請求項10の発明は、請求項1の発明にお
いて、主成分演算手段が、生体情報データの中から標本
化された複数個のデータから主成分を求めることを特徴
とし、請求項1の発明の作用に加えて、主成分演算手段
における演算処理の負荷を軽減することができる。According to a tenth aspect of the present invention, in the first aspect of the present invention, the principal component calculating means obtains a principal component from a plurality of data sampled from the biological information data. In addition to the effect of the invention, the load of the calculation processing in the principal component calculation means can be reduced.
【0017】請求項11の発明は、請求項1の発明にお
いて、A/D変換手段におけるサンプリング周期を可変
して成ることを特徴とし、請求項1の発明の作用に加え
て、主成分演算手段における演算処理の負荷を軽減する
ことができる。An eleventh aspect of the present invention is characterized in that, in the first aspect of the present invention, the sampling period in the A / D conversion means is variable, and in addition to the operation of the first aspect of the invention, the principal component arithmetic means Can reduce the load of the arithmetic processing.
【0018】請求項12の発明は、請求項11の発明に
おいて、生体情報の重要度に応じてA/D変換手段にお
けるサンプリング周期を可変して成ることを特徴とし、
請求項11の発明の作用に加えて、必要な生体情報を確
実に得ることができる。According to a twelfth aspect of the present invention, in accordance with the eleventh aspect of the present invention, the sampling period in the A / D conversion means is varied according to the importance of the biological information.
In addition to the function of the eleventh aspect, necessary biological information can be reliably obtained.
【0019】請求項13の発明は、請求項1の発明にお
いて、記憶手段に記憶された生体情報データに基づいて
被測定者の仮の血圧値を判定する仮血圧判定手段を備
え、主成分演算手段は、仮血圧判定手段で判定した仮血
圧値の近傍の生体情報データから主成分を求めることを
特徴とし、請求項1の発明の作用に加えて、主成分演算
手段における演算処理の負荷を軽減することができる。According to a thirteenth aspect of the present invention, in the first aspect of the present invention, there is provided a temporary blood pressure determining means for determining a temporary blood pressure value of the subject based on the biological information data stored in the storage means. The means obtains a principal component from the biological information data in the vicinity of the provisional blood pressure value determined by the provisional blood pressure determination means. In addition to the operation of the invention according to claim 1, the processing load of the principal component calculation means is reduced. Can be reduced.
【0020】請求項14の発明は、請求項2の発明にお
いて、主成分演算手段が、動脈脈波が最大値を示す近傍
の生体情報データから主成分を求めることを特徴とし、
請求項2の発明の作用に加えて、主成分演算手段におけ
る演算処理の負荷を軽減することができる。According to a fourteenth aspect of the present invention, in the second aspect of the present invention, the principal component calculating means obtains a principal component from the biological information data in the vicinity where the arterial pulse wave shows the maximum value.
In addition to the effect of the invention of claim 2, it is possible to reduce the load of the calculation processing in the principal component calculation means.
【0021】請求項15の発明は、請求項2の発明にお
いて、主成分演算手段が、各1拍の動脈脈波の間隔を略
一定値に統一して成ることを特徴とし、請求項2の発明
の作用に加えて、必要な動脈脈波成分を過不足無く抽出
することができる。According to a fifteenth aspect of the present invention, in the second aspect of the present invention, the principal component calculating means is configured to unify the intervals of the arterial pulse wave of each one pulse to a substantially constant value. In addition to the effects of the invention, necessary arterial pulse wave components can be extracted without excess or deficiency.
【0022】請求項16の発明は、請求項15の発明に
おいて、略一定値を0.375〜2.0秒としたことを
特徴とし、請求項15の発明と同様の作用を奏する。A sixteenth aspect of the present invention is characterized in that the substantially constant value is set to 0.375 to 2.0 seconds in the invention of the fifteenth aspect, and has the same effect as the invention of the fifteenth aspect.
【0023】請求項17の発明は、請求項2の発明にお
いて、被測定者の要部に装着して阻血するカフと、カフ
内の圧力を上昇させる加圧手段と、カフ内の圧力を徐々
に降下させる排気手段とを備え、圧力センサから成る検
出手段によりカフ内の圧力を電気信号に変換するととも
にカフ内の圧力を徐々に降下させる排気期間に圧力セン
サの出力からカフ圧に重畳された動脈脈波成分を分離し
てカフ圧と動脈脈波成分とをそれぞれ抽出するカフ圧抽
出手段及び動脈脈波抽出手段で生体情報抽出手段を構成
し、動脈脈波抽出手段は、連続する任意の心拍の動脈脈
波の変曲点を結ぶ直線とカフ圧の変化を示す曲線との交
点を動脈脈波の始点とすることを特徴とし、請求項2の
発明の作用に加えて、必要な動脈脈波成分を過不足無く
抽出することができる。According to a seventeenth aspect of the present invention, in the second aspect of the present invention, a cuff to be attached to a main part of a subject to block blood, a pressure means for increasing a pressure in the cuff, and a pressure in the cuff gradually. The pressure in the cuff is superimposed on the cuff pressure from the output of the pressure sensor during the evacuation period in which the pressure in the cuff is converted into an electric signal by the detection means comprising a pressure sensor and the pressure in the cuff is gradually lowered. Biological information extracting means is constituted by a cuff pressure extracting means and an arterial pulse wave extracting means for separating an arterial pulse wave component and extracting a cuff pressure and an arterial pulse wave component, respectively. The intersection of a straight line connecting the inflection points of the arterial pulse wave of the heartbeat and the curve indicating the change of the cuff pressure is set as the starting point of the arterial pulse wave. Pulse wave components can be extracted without excess or deficiency. That.
【0024】請求項18の発明は、請求項2の発明にお
いて、被測定者の要部に装着して阻血するカフと、カフ
内の圧力を上昇させる加圧手段と、カフ内の圧力を徐々
に降下させる排気手段とを備え、圧力センサから成る検
出手段によりカフ内の圧力を電気信号に変換するととも
にカフ内の圧力を徐々に降下させる排気期間に圧力セン
サの出力からカフ圧に重畳された動脈脈波成分を分離し
てカフ圧と動脈脈波成分とをそれぞれ抽出するカフ圧抽
出手段及び動脈脈波抽出手段で生体情報抽出手段を構成
し、動脈脈波抽出手段は、動脈脈波の始点間を結ぶ直線
と、カフ圧の変化を示す曲線とで囲まれた部分の面積を
動脈脈波成分として抽出して成ることを特徴とし、請求
項2の発明の作用に加えて、必要な動脈脈波成分を過不
足無く抽出することができる。According to an eighteenth aspect of the present invention, in the second aspect of the present invention, a cuff to be attached to a main part of the subject to block blood, a pressure means for increasing the pressure in the cuff, and a pressure in the cuff gradually. The pressure in the cuff is superimposed on the cuff pressure from the output of the pressure sensor during the evacuation period in which the pressure in the cuff is converted into an electric signal by the detection means comprising a pressure sensor and the pressure in the cuff is gradually lowered. Biological information extracting means is constituted by a cuff pressure extracting means and an arterial pulse wave extracting means for separating an arterial pulse wave component and extracting a cuff pressure and an arterial pulse wave component, respectively. The area of a portion surrounded by a straight line connecting the starting points and a curve indicating a change in the cuff pressure is extracted as an arterial pulse wave component. Extract arterial pulse wave components without excess or deficiency Can.
【0025】請求項19の発明は、請求項2の発明にお
いて、被測定者の要部に装着して阻血するカフと、カフ
内の圧力を上昇させる加圧手段と、カフ内の圧力を徐々
に降下させる排気手段とを備え、圧力センサから成る検
出手段によりカフ内の圧力を電気信号に変換するととも
にカフ内の圧力を徐々に降下させる排気期間に圧力セン
サの出力からカフ圧に重畳された動脈脈波成分を分離し
てカフ圧と動脈脈波成分とをそれぞれ抽出するカフ圧抽
出手段及び動脈脈波抽出手段で生体情報抽出手段を構成
し、動脈脈波抽出手段は、動脈脈波の最大点間を結ぶ直
線と、カフ圧の変化を示す曲線とで囲まれた部分の面積
を動脈脈波成分として抽出して成ることを特徴とし、請
求項2の発明の作用に加えて、必要な動脈脈波成分を過
不足無く抽出することができる。According to a nineteenth aspect of the present invention, in the second aspect of the present invention, a cuff to be attached to a main part of the subject to block blood, a pressure means for increasing the pressure in the cuff, and a pressure in the cuff gradually. The pressure in the cuff is superimposed on the cuff pressure from the output of the pressure sensor during the evacuation period in which the pressure in the cuff is converted into an electric signal by the detection means comprising a pressure sensor and the pressure in the cuff is gradually lowered. Biological information extracting means is constituted by a cuff pressure extracting means and an arterial pulse wave extracting means for separating an arterial pulse wave component and extracting a cuff pressure and an arterial pulse wave component, respectively. The area of a portion surrounded by a straight line connecting the maximum points and a curve indicating a change in cuff pressure is extracted as an arterial pulse wave component. Extraction of various arterial pulse wave components Door can be.
【0026】請求項20の発明は、請求項18又は19
の発明において、動脈脈波抽出手段は、カフ圧の変化を
示す曲線を補正して動脈脈波成分の始点間を結ぶ直線又
は最大点間を結ぶ直線が圧力軸と直交するように変換し
て成ることを特徴とし、請求項18又は19の発明と同
様の作用を奏する。The invention of claim 20 is the invention of claim 18 or 19
In the invention of the above, the arterial pulse wave extracting means corrects the curve indicating the change of the cuff pressure and converts the straight line connecting the starting points of the arterial pulse wave components or the straight line connecting the maximum points to be orthogonal to the pressure axis. It has the same function as the invention of claim 18 or 19.
【0027】請求項21の発明は、請求項2の発明にお
いて、被測定者の要部に装着して阻血するカフと、カフ
内の圧力を上昇させる加圧手段と、カフ内の圧力を徐々
に降下させる排気手段とを備え、圧力センサから成る検
出手段によりカフ内の圧力を電気信号に変換するととも
にカフ内の圧力を徐々に降下させる排気期間に圧力セン
サの出力からカフ圧に重畳された動脈脈波成分を分離し
てカフ圧と動脈脈波成分とをそれぞれ抽出するカフ圧抽
出手段及び動脈脈波抽出手段で生体情報抽出手段を構成
し、動脈脈波抽出手段は、動脈脈波の始点を通り一定の
傾きを有する基準線とカフ圧の変化を示す曲線とで囲ま
れた部分の面積を動脈脈波成分として抽出して成ること
を特徴とし、請求項2の発明の作用に加えて、必要な動
脈脈波成分を過不足無く抽出することができる。According to a twenty-first aspect of the present invention, in the second aspect of the present invention, a cuff to be attached to a main part of a subject to block blood, a pressure means for increasing the pressure in the cuff, and a pressure in the cuff gradually. The pressure in the cuff is superimposed on the cuff pressure from the output of the pressure sensor during the evacuation period in which the pressure in the cuff is converted into an electric signal by the detection means comprising a pressure sensor and the pressure in the cuff is gradually lowered. Biological information extracting means is constituted by a cuff pressure extracting means and an arterial pulse wave extracting means for separating an arterial pulse wave component and extracting a cuff pressure and an arterial pulse wave component, respectively. The area of a portion surrounded by a reference line passing through the starting point and having a constant slope and a curve indicating a change in cuff pressure is extracted as an arterial pulse wave component. The necessary arterial pulse wave component It can be without extraction.
【0028】請求項22の発明は、請求項2の発明にお
いて、動脈脈波抽出手段が、隣り合う2つの動脈脈波の
始点間を結ぶ直線を次の動脈脈波に対する基準線として
成ることを特徴とし、請求項2の発明の作用に加えて、
必要な動脈脈波成分を過不足無く抽出することができ
る。According to a twenty-second aspect of the present invention, in the second aspect of the present invention, the arterial pulse wave extracting means uses a straight line connecting the starting points of two adjacent arterial pulse waves as a reference line for the next arterial pulse wave. As a feature, in addition to the effect of the invention of claim 2,
Necessary arterial pulse wave components can be extracted without excess or deficiency.
【0029】請求項23の発明は、請求項21の発明に
おいて、動脈脈波抽出手段が、動脈脈波の始点近傍にお
けるカフ圧を示す複数個の点を結ぶ直線の傾きを次の動
脈脈波に対する基準線の傾きとして成ることを特徴と
し、請求項21の発明と同様の作用を奏する。According to a twenty-third aspect of the present invention, in the twenty-first aspect, the arterial pulse wave extracting means determines the inclination of a straight line connecting a plurality of points indicating the cuff pressure near the start point of the arterial pulse wave to the next arterial pulse wave. And has the same function as the invention of claim 21.
【0030】請求項24の発明は、請求項2の発明にお
いて、被測定者の要部に装着して阻血するカフと、カフ
内の圧力を上昇させる加圧手段と、カフ内の圧力を徐々
に降下させる排気手段とを備え、圧力センサから成る検
出手段によりカフ内の圧力を電気信号に変換するととも
にカフ内の圧力を徐々に降下させる排気期間に圧力セン
サの出力からカフ圧に重畳された動脈脈波成分を分離し
てカフ圧と動脈脈波成分とをそれぞれ抽出するカフ圧抽
出手段及び動脈脈波抽出手段で生体情報抽出手段を構成
し、動脈脈波抽出手段は、A/D変換部の出力から動脈
脈波成分に対応する周波数成分を取り出すフィルタ機能
を有することを特徴とし、請求項2の発明の作用に加え
て、必要な動脈脈波成分を過不足無く抽出することがで
きる。According to a twenty-fourth aspect of the present invention, in the second aspect of the present invention, a cuff to be attached to a main part of a subject to block blood, a pressure means for increasing the pressure in the cuff, and a pressure in the cuff gradually. The pressure in the cuff is superimposed on the cuff pressure from the output of the pressure sensor during the evacuation period in which the pressure in the cuff is converted into an electric signal by the detection means comprising a pressure sensor and the pressure in the cuff is gradually lowered. Biological information extracting means is constituted by cuff pressure extracting means and arterial pulse wave extracting means for extracting an arterial pulse wave component and extracting a cuff pressure and an arterial pulse wave component, respectively. And a filter function for extracting a frequency component corresponding to the arterial pulse wave component from the output of the section. In addition to the function of the invention of claim 2, necessary arterial pulse wave components can be extracted without excess or deficiency. .
【0031】請求項25の発明は、請求項24の発明に
おいて、動脈脈波抽出手段が、フィルタ処理後の圧力デ
ータのうちで所定の基準レベルから上昇傾向にある圧力
データを始点として動脈脈波成分を抽出して成ることを
特徴とし、請求項24の発明と同様の作用を奏する。According to a twenty-fifth aspect of the present invention, in accordance with the twenty-fourth aspect, the arterial pulse wave extracting means sets the arterial pulse wave as a starting point based on the pressure data, which has a tendency to increase from a predetermined reference level, of the filtered pressure data. It is characterized by extracting components and has the same effect as the invention of claim 24.
【0032】請求項26の発明は、請求項4の発明にお
いて、層別手段が、主成分の変曲点の数に応じたパター
ンと比較して層別を行うことを特徴とし、請求項4の発
明と同様の作用を奏する。According to a twenty-sixth aspect of the present invention, in the fourth aspect, the stratification means performs stratification by comparing with a pattern corresponding to the number of inflection points of the main component. The same effect as that of the invention is achieved.
【0033】請求項27の発明は、請求項4の発明にお
いて、層別手段が、主成分の始点、終点並びに最大変曲
点を求め、これら3点を頂点とする三角形部分の面積と
主成分の面積との差分に応じたパターンと比較して層別
を行うことを特徴とし、請求項4の発明と同様の作用を
奏する。According to a twenty-seventh aspect of the present invention, in the fourth aspect of the present invention, the stratifying means finds a starting point, an ending point, and a maximum inflection point of the main component, and calculates the area of the triangular portion having these three vertices and the principal component. The present invention is characterized in that stratification is performed by comparing the pattern with a pattern corresponding to the difference between the areas and the same effect as the invention of claim 4.
【0034】請求項28の発明は、請求項4の発明にお
いて、層別手段が、主成分の始点、終点並びに最大変曲
点を求め、最大変曲点から始点と終点を結ぶ直線上にお
ろした垂線により分割される主成分の面積比に応じたパ
ターンと比較して層別を行うことを特徴とし、請求項4
の発明と同様の作用を奏する。According to a twenty-eighth aspect of the present invention, in the fourth aspect of the present invention, the stratifying means finds the starting point, the ending point, and the maximum inflection point of the main component, and puts them on a straight line connecting the starting point and the ending point from the maximum inflection point. 5. The method according to claim 4, wherein the stratification is performed by comparing with a pattern corresponding to an area ratio of a main component divided by a perpendicular line.
The same effect as that of the invention is achieved.
【0035】請求項29の発明は、請求項4の発明にお
いて、層別手段が、主成分の重畳点の有無に応じたパタ
ーンと比較して層別を行うことを特徴とし、請求項4の
発明と同様の作用を奏する。The invention of claim 29 is characterized in that, in the invention of claim 4, the stratification means performs stratification by comparing with a pattern according to the presence or absence of a superposition point of the main component. It has the same effect as the invention.
【0036】請求項30の発明は、請求項29の発明に
おいて、層別手段が、主成分の最大変曲点並びに終点を
求め、これら2点を結ぶ直線と主成分との乖離度合いに
よって重畳点の有無を決定して成ることを特徴とし、請
求項29の発明と同様の作用を奏する。According to a thirtieth aspect of the present invention, in the thirty-ninth aspect of the present invention, the stratification means finds the maximum inflection point and the end point of the main component, and determines a superposition point based on a degree of divergence between the straight line connecting these two points and the main component. It is characterized by determining the presence or absence of the above, and has the same effect as the invention of claim 29.
【0037】請求項31の発明は、請求項29の発明に
おいて、層別手段が、主成分の始点、終点並びに最大変
曲点を求め、最大変曲点から始点と終点を結ぶ直線上に
おろした垂線により分割される主成分の面積比によって
重畳点の有無を決定して成ることを特徴とし、請求項2
9の発明と同様の作用を奏する。According to a thirty-first aspect of the present invention, in the thirty-ninth aspect of the present invention, the stratification means finds a starting point, an ending point, and a maximum inflection point of the main component, and puts the starting point and the end point on the straight line connecting the maximum inflection point. 3. The method according to claim 2, wherein the presence or absence of a superimposition point is determined by an area ratio of a main component divided by a perpendicular line.
The same effect as that of the ninth invention is exerted.
【0038】請求項32の発明は、請求項29の発明に
おいて、層別手段が、主成分の始点、終点並びに最大変
曲点を求め、これら3点を頂点とする三角形部分の重心
を求めるとともにこの重心を通って始点及び終点を結ぶ
直線に略平行な直線によって分離される主成分の面積比
によって重畳点の有無を決定して成ることを特徴とし、
請求項29の発明と同様の作用を奏する。According to a thirty-second aspect of the present invention, in the thirty-ninth aspect of the present invention, the stratification means obtains a starting point, an ending point, and a maximum inflection point of the main component, and obtains a center of gravity of a triangular portion having these three points as vertices. Characterized in that the presence or absence of a superimposition point is determined by the area ratio of the main component separated by a straight line substantially parallel to the start point and the end point through the center of gravity,
The same operation as that of the twenty-ninth aspect is achieved.
【0039】請求項33の発明は、請求項1の発明にお
いて、選択手段が、判定規範として複数の判定基準値を
候補として有し、血圧判定手段は、選択手段によって選
択された判定基準値と生体情報データとを比較して血圧
値の判定を行うことを特徴とし、請求項1の発明と同様
の作用を奏する。According to a thirty-third aspect, in the first aspect, the selection means has a plurality of determination reference values as candidates as determination criteria, and the blood pressure determination means includes a determination reference value selected by the selection means. The blood pressure value is determined by comparing with the biological information data, and the same operation as the invention of claim 1 is achieved.
【0040】請求項34の発明は、請求項1の発明にお
いて、選択手段が、層別された生体情報データが複数の
層に同時に層別可能な場合に各層に属する割合に応じた
重み付けを候補として有し、血圧判定手段は、選択手段
によって選択された重み付けを行った生体情報データか
ら血圧値の判定を行うことを特徴とし、請求項1の発明
と同様の作用を奏する。According to a thirty-fourth aspect of the present invention, in the first aspect, when the stratified biometric information data can be stratified into a plurality of layers at the same time, the selection means can select a weight according to a ratio belonging to each layer. Wherein the blood pressure determination means determines the blood pressure value from the weighted biological information data selected by the selection means, and has the same effect as the first aspect of the present invention.
【0041】請求項35の発明は、請求項1の発明にお
いて、血圧判定手段が、生体情報データから血圧値の判
定を行う際に、層別結果に応じて生体情報データの面積
値とピーク値とを択一的に切り換えて血圧値の判定を行
うことを特徴とし、請求項1の発明と同様の作用を奏す
る。According to a thirty-fifth aspect of the present invention, in the first aspect, when the blood pressure determining means determines the blood pressure value from the biological information data, the area value and the peak value of the biological information data are determined according to the stratified result. The blood pressure value is determined by alternately switching between the two methods, and the same operation as the invention of claim 1 is achieved.
【0042】[0042]
【発明の実施の形態】以下、図面を参照して本発明を実
施形態により詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.
【0043】(実施形態1)図1は本発明の実施形態1
における制御演算部7を示すブロック図である。なお、
制御演算部7を含む基本的な構成は従来例と共通するの
で、共通する構成には同一の符号を付して図示並びに説
明を省略する。(Embodiment 1) FIG. 1 shows Embodiment 1 of the present invention.
FIG. 3 is a block diagram showing a control calculation unit 7 in FIG. In addition,
Since the basic configuration including the control calculation unit 7 is common to the conventional example, the common configuration is denoted by the same reference numeral and illustration and description are omitted.
【0044】動脈脈波抽出手段12及びカフ圧抽出手段
13では、A/D変換部6から入力されるカフ圧を示す
デジタル信号からカフ圧に重畳されている動脈脈波成分
(動脈反圧)とカフ圧とが分離され、動脈脈波抽出手段
12から出力される動脈反圧のデータMnmと、カフ圧
抽出手段13から出力されるカフ圧のデータとが記憶手
段14に順次格納される。そして、図2(a)に示すよ
うに排気期間における所定数の心拍H1〜Hmに対応す
る動脈反圧データMnmの抽出が完了した時点で、主成
分演算手段20が記憶手段14に記憶されている動脈反
圧データMnmからその変化の傾向を示す主成分を求め
る。ここで、図2(b)に示すようなおおよそ心拍H1
…の周期に一致したサンプリング時間t1〜tnにおけ
るn×m個の動脈反圧データMnmをそれぞれ要素とす
るn行m列の行列Xを作り、この行列Xに対して下式を
満たすような固有値λ1〜λxとして第1主成分PC
1、第2主成分PC2、…第x主成分PCxが求められ
る。また、各主成分PC1…の主成分全体に占める割合
(寄与率)W1〜Wxが求められる。In the arterial pulse wave extracting means 12 and the cuff pressure extracting means 13, the arterial pulse wave component (arterial counter pressure) superimposed on the cuff pressure from the digital signal indicating the cuff pressure input from the A / D converter 6 The cuff pressure is separated from the cuff pressure, and the arterial pulse pressure data Mnm output from the arterial pulse wave extraction means 12 and the cuff pressure data output from the cuff pressure extraction means 13 are sequentially stored in the storage means 14. Then, as shown in FIG. 2A, when the extraction of the arterial reaction pressure data Mnm corresponding to a predetermined number of heartbeats H1 to Hm during the exhaust period is completed, the principal component calculating means 20 is stored in the storage means 14. The main component showing the tendency of the change is obtained from the present artery reaction pressure data Mnm. Here, the approximate heartbeat H1 as shown in FIG.
The matrix X of n rows and m columns each having n × m pieces of arterial reaction pressure data Mnm at the sampling times t1 to tn corresponding to the cycle of... The first main component PC as λ1 to λx
1, the second principal component PC2,..., The xth principal component PCx is obtained. In addition, the ratios (contribution ratios) W1 to Wx of the main components PC1 to all the main components are obtained.
【0045】[0045]
【式1】 そして、主成分演算手段20では寄与率が50%以上の
主成分(例えば、第1主成分PC1)に着目し、この第
1主成分PC1について主成分負荷量PC11〜PCn
1を求める。主成分負荷量PC11〜PCn1は、(X
T−λI)・t→を満たすベクトルt→として示される
(図2(c)参照)。また、サンプリング時間t1〜t
nに対応する各主成分負荷量PC11〜PCn1を、サ
ンプリング時間t1〜tnを横軸にとってプロットすれ
ば、図2(d)及び図3に示すような負荷線が得られ
る。(Equation 1) Then, the principal component calculating means 20 pays attention to the principal components having a contribution ratio of 50% or more (for example, the first principal component PC1), and loads the principal component loads PC11 to PCn on the first principal component PC1.
Find 1 The principal component loads PC11 to PCn1 are (X
T− λI) · t → is shown as a vector t → (see FIG. 2C). Also, sampling times t1 to t
By plotting the principal component loads PC11 to PCn1 corresponding to n with the sampling times t1 to tn plotted on the horizontal axis, load lines as shown in FIGS. 2D and 3 are obtained.
【0046】次に層別手段21では、主成分演算手段2
0で求めた第1主成分PC1の負荷線の形状に基づい
て、予め記憶手段14に格納されている負荷線のパター
ンと比較することにより、動脈反圧データMnmの層別
を行う。ここで層別手段21における動脈反圧データM
nmの具体的な層別の手順について、図4に示すフロー
チャートを参照して説明する。Next, in the stratification means 21, the principal component calculation means 2
Based on the shape of the load line of the first principal component PC1 obtained at 0, the pattern of the arterial reaction pressure data Mnm is classified by comparing the load line pattern stored in the storage unit 14 in advance. Here, the arterial reaction pressure data M in the stratification means 21
The specific procedure for each layer of nm will be described with reference to the flowchart shown in FIG.
【0047】主成分演算手段20において生体情報とし
ての動脈反圧データMnmから主成分PC1〜PCxを
抽出し、寄与率が50%以上の主成分(例えば、第1主
成分PC1)について主成分負荷量PC11〜PCn1
を求めた後、層別手段21では、図5に示すように第1
主成分PC1の負荷線の変曲点の個数を計数し、その変
曲点の個数を動脈脈波の特徴として捉え、変曲点の個数
に応じて記憶手段14に格納されている複数のパターン
の何れか(変曲点の個数が同じもの)に分類(層別)す
るとともに、その層別結果を選択手段22に与える。こ
こで、記憶手段14に格納されている主成分のパターン
は、血圧に影響を与えると考えられる因子、例えば年齢
や性別等に対して予め実験により求められるものであ
る。なお、変曲点の求め方は従来周知であって、主成分
負荷量PC11…の微分値がゼロとなる点(主成分負荷
量)を変曲点とすればよい。The principal component computing means 20 extracts the principal components PC1 to PCx from the arterial reaction pressure data Mnm as the biological information, and loads the principal components having a contribution ratio of 50% or more (for example, the first principal component PC1). Quantity PC11-PCn1
, The stratification means 21 divides the first as shown in FIG.
The number of inflection points of the load line of the main component PC1 is counted, and the number of inflection points is taken as a feature of the arterial pulse wave, and a plurality of patterns stored in the storage means 14 according to the number of inflection points. (The number of inflection points is the same) (classification), and the classification result is given to the selection means 22. Here, the pattern of the main components stored in the storage means 14 is obtained by an experiment in advance for factors considered to affect blood pressure, for example, age, gender, and the like. The method of finding the inflection point is conventionally known, and the point at which the differential value of the principal component load amounts PC11... Becomes zero (the principal component load amount) may be set as the inflection point.
【0048】一方、選択手段22では与えられた層別結
果に応じて動脈反圧データMnmから血圧値を判定する
ための判定規範を複数の候補の中から選択する。例え
ば、従来例の判定規範では動脈反圧データの最大値に所
定の比率S〔%〕,D〔%〕を乗じた値(しきい値)と
一致する動脈反圧データをそれぞれ最大血圧値及び最低
血圧値と判定しているが、年齢や性別等の因子に応じて
しきい値(判定基準値)の候補を複数種類用意して記憶
手段14に格納しておく。選択手段22では、図6のフ
ローチャートに示すように層別結果に応じて最適なしき
い値を選択し、その選択されたしきい値を血圧判定手段
16に与える。そして、血圧判定手段16が与えられた
しきい値により動脈反圧データMnmから最高血圧値及
び最低血圧値を求める(図7参照)。On the other hand, the selection means 22 selects a determination criterion for determining a blood pressure value from the arterial reaction pressure data Mnm from a plurality of candidates according to the given stratified result. For example, in the conventional determination criteria, arterial reaction pressure data that matches a value (threshold) obtained by multiplying the maximum value of the arterial reaction pressure data by a predetermined ratio S [%], D [%] is used as the maximum blood pressure value and the maximum blood pressure value, respectively. Although it is determined as the diastolic blood pressure value, a plurality of types of threshold (determination reference value) candidates are prepared in accordance with factors such as age and gender, and stored in the storage unit 14. The selection unit 22 selects an optimal threshold value according to the stratification result as shown in the flowchart of FIG. 6 and provides the selected threshold value to the blood pressure determination unit 16. Then, the blood pressure determining means 16 obtains a systolic blood pressure value and a diastolic blood pressure value from the arterial reaction pressure data Mnm based on the given threshold value (see FIG. 7).
【0049】このように生体情報としての動脈反圧デー
タMnmから抽出した主成分により動脈反圧データMn
mを層別し、その層別結果に応じて動脈反圧データMn
mから血圧値を判定するための判定規範を選択すること
によって、被測定者の年齢や性別等の個人差又は時間差
に基づく動脈脈波の波形形状の相違等に起因する血圧値
の測定誤差を小さくすることが可能となり、血圧値の判
定が正確に行える。なお、生体情報としては動脈脈波に
限定する趣旨ではなく、例えばコロトフ音等の他のもの
であってもよい。また、本実施形態のように第1主成分
PC1のみで層別を行ってもよいが、第2主成分PC2
のみ、あるいは第1主成分PC1と第2主成分PC2に
よって層別を行ってもよい。As described above, the arterial reaction pressure data Mn is obtained from the main components extracted from the artery reaction pressure data Mnm as the biological information.
m, and arterial reaction pressure data Mn according to the stratification result.
By selecting a determination criterion for determining the blood pressure value from m, the measurement error of the blood pressure value due to the difference in the waveform shape of the arterial pulse wave based on individual differences or time differences such as the age and gender of the subject is measured. The blood pressure value can be reduced, and the blood pressure value can be accurately determined. The biological information is not limited to the arterial pulse wave, but may be other information such as a Korotov sound. Further, the layering may be performed only by the first main component PC1 as in the present embodiment, but the second main component PC2 may be used.
Layering may be performed only by the first main component PC1 and the second main component PC2.
【0050】(実施形態2)本実施形態は層別手段21
における動脈反圧データMnmの層別方法に特徴があ
り、その他の構成及び動作は実施形態1と共通するの
で、共通する構成については図示並びに説明を省略す
る。(Embodiment 2) In this embodiment, the stratifying means 21
Is characterized in the method of stratifying the arterial reaction pressure data Mnm in the above, and the other configurations and operations are common to the first embodiment. Therefore, illustration and description of the common configurations will be omitted.
【0051】本実施形態の層別手段21は、主成分の負
荷線の始点、終点並びに最大変曲点を求め、これら3点
を頂点とする三角形部分の面積と主成分の面積との差分
に応じて記憶手段14に格納されている複数のパターン
の何れかに層別する点に特徴がある。The stratifying means 21 of this embodiment calculates the starting point, the ending point, and the maximum inflection point of the load line of the main component, and calculates the difference between the area of the triangular portion having these three vertices and the area of the main component. It is characterized in that it is stratified into any one of a plurality of patterns stored in the storage means 14 accordingly.
【0052】層別手段21における動脈反圧データMn
mの具体的な層別の手順について、図8に示すフローチ
ャートを参照して説明する。主成分演算手段20におい
て生体情報としての動脈反圧データMnmから主成分P
C1〜PCxを抽出し、寄与率が50%以上の主成分
(例えば、第1主成分PC1)について主成分負荷量P
C11〜PCn1を求めた後、層別手段21では、図9
に示すように第1主成分PC1の負荷線の始点(時間t
0に対応する主成分負荷量PC11)、終点(時間tn
に対応する主成分負荷量PCn1)並びに最大変曲点
(例えば、PCk1)を求め、これら3点PC11,P
Cn1,PCk1を頂点とする三角形部分の面積と、主
成分PC1の面積(始点PC11と終点PCn1を結ぶ
直線と負荷線とで囲まれる面積)との差分(以下、「乖
離度」という)を求める。この乖離度は、例えば図9
(b)における斜線部分で表される。そして、求めた乖
離度を動脈脈波の特徴として捉え、乖離度に応じて記憶
手段14に格納されている複数のパターンの何れか(乖
離度が等しいもの)に層別するとともに、その層別結果
を選択手段22に与える。ここで、記憶手段14に格納
されている主成分のパターンは、実施形態1と同様に予
め実験により求められるものである。さらに実施形態1
と同様にして、層別手段21から与えられる層別結果に
応じて選択手段22において最適なしきい値が選択さ
れ、その選択されたしきい値により血圧判定手段16に
て最高血圧値及び最低血圧値が求められる。The arterial reaction pressure data Mn in the stratification means 21
The specific layer-by-layer procedure of m will be described with reference to the flowchart shown in FIG. Principal component P from the arterial reaction pressure data Mnm as biological information in the principal component calculating means 20
C1 to PCx are extracted, and the principal component load amount P is determined for the principal component (for example, the first principal component PC1) having a contribution ratio of 50% or more.
After calculating C11 to PCn1, the stratification unit 21 determines whether or not FIG.
As shown in the figure, the starting point of the load line of the first main component PC1 (time t
0, the end point (time tn)
And the maximum inflection point (for example, PCk1) corresponding to the three principal points PC11 and Pk.
The difference between the area of the triangular portion having the vertices of Cn1 and PCk1 and the area of the main component PC1 (the area enclosed by the straight line connecting the start point PC11 and the end point PCn1 and the load line) (hereinafter, referred to as “deviation degree”) is obtained. . This divergence is, for example, as shown in FIG.
This is indicated by the hatched portion in (b). Then, the obtained degree of divergence is taken as a characteristic of the arterial pulse wave, and stratified into any of a plurality of patterns (equal in degree of divergence) stored in the storage means 14 according to the degree of divergence. The result is given to the selection means 22. Here, the pattern of the main component stored in the storage unit 14 is obtained in advance by an experiment, as in the first embodiment. Further Embodiment 1
In the same manner as described above, the optimum threshold value is selected by the selection means 22 according to the stratification result given from the stratification means 21, and the systolic blood pressure value and the diastolic blood pressure value are determined by the blood pressure determination means 16 based on the selected threshold value. A value is required.
【0053】(実施形態3)本実施形態は層別手段21
における動脈反圧データMnmの層別方法に特徴があ
り、その他の構成及び動作は実施形態1と共通するの
で、共通する構成については図示並びに説明を省略す
る。(Embodiment 3) In this embodiment, the stratifying means 21 is used.
Is characterized in the method of stratifying the arterial reaction pressure data Mnm in the above, and the other configurations and operations are common to the first embodiment. Therefore, illustration and description of the common configurations will be omitted.
【0054】本実施形態の層別手段21は、主成分の負
荷線の始点、終点並びに最大変曲点を求め、最大変曲点
から始点と終点を結ぶ直線上におろした垂線により分割
される主成分の面積比に応じて記憶手段14に格納され
ている複数のパターンの何れかに層別する点に特徴があ
る。The stratifying means 21 of this embodiment finds the starting point, the ending point and the maximum inflection point of the load line of the main component, and is divided by a perpendicular drawn on a straight line connecting the starting point and the ending point from the maximum inflection point. It is characterized in that it is stratified into one of a plurality of patterns stored in the storage means 14 according to the area ratio of the main component.
【0055】層別手段21における動脈反圧データMn
mの具体的な層別の手順について、図10に示すフロー
チャートを参照して説明する。主成分演算手段20にお
いて生体情報としての動脈反圧データMnmから主成分
PC1〜PCxを抽出し、寄与率が50%以上の主成分
(例えば、第1主成分PC1)について主成分負荷量P
C11〜PCn1を求めた後、層別手段21では、図1
1に示すように第1主成分PC1の負荷線の始点(時間
t0に対応する主成分負荷量PC11)、終点(時間t
nに対応する主成分負荷量PCn1)並びに最大変曲点
(例えば、PCk1)を求め、最大変曲点PCk1から
始点PC11と終点PCn1を結ぶ直線上におろした垂
線により分割される部分の面積S1,S1の比S1/S
2と、各部分に対応する時間幅T1(=tk−t0),
T2(=tn−tk)とを求める(図11(b)参
照)。そして、求めた面積比S1/S2と時間幅T1,
T2のパラメータを動脈脈波の特徴として捉え、両者に
応じて記憶手段14に格納されている複数のパターンの
何れか(面積比S1/S2と時間幅T1,T2が等しい
もの)に層別するとともに、その層別結果を選択手段2
2に与える。ここで、記憶手段14に格納されている主
成分のパターンは、実施形態1と同様に予め実験により
求められるものである。さらに実施形態1と同様にし
て、層別手段21から与えられる層別結果に応じて選択
手段22において最適なしきい値が選択され、その選択
されたしきい値により血圧判定手段16にて最高血圧値
及び最低血圧値が求められる。The arterial reaction pressure data Mn in the stratification means 21
A specific procedure for each layer of m will be described with reference to a flowchart shown in FIG. The principal component calculating means 20 extracts the principal components PC1 to PCx from the arterial reaction pressure data Mnm as the biological information, and calculates the principal component load P for the principal component (for example, the first principal component PC1) having a contribution ratio of 50% or more.
After obtaining C11 to PCn1, the stratifying means 21 performs the processing shown in FIG.
As shown in FIG. 1, the start point of the load line of the first principal component PC1 (the principal component load amount PC11 corresponding to the time t0) and the end point (the time t
n, and the maximum inflection point (for example, PCk1) is obtained, and the area S1 of a portion divided by a perpendicular drawn from the maximum inflection point PCk1 to a straight line connecting the start point PC11 and the end point PCn1 , S1 ratio S1 / S
2, and a time width T1 (= tk−t0) corresponding to each part,
T2 (= tn-tk) is obtained (see FIG. 11B). Then, the obtained area ratio S1 / S2 and time width T1,
The parameter of T2 is grasped as a feature of the arterial pulse wave, and stratified into any one of a plurality of patterns (the area ratio S1 / S2 and the time widths T1 and T2 are equal) stored in the storage means 14 according to both. And the stratification result is selected by means 2
Give to 2. Here, the pattern of the main component stored in the storage unit 14 is obtained in advance by an experiment, as in the first embodiment. Further, in the same manner as in the first embodiment, the optimum threshold value is selected by the selection unit 22 according to the stratification result given from the stratification unit 21, and the systolic blood pressure is determined by the blood pressure determination unit 16 based on the selected threshold value. A value and a diastolic blood pressure value are determined.
【0056】(実施形態4)本実施形態は層別手段21
における動脈反圧データMnmの層別方法に特徴があ
り、その他の構成及び動作は実施形態1と共通するの
で、共通する構成については図示並びに説明を省略す
る。(Embodiment 4) In this embodiment, the stratifying means 21 is used.
Is characterized in the method of stratifying the arterial reaction pressure data Mnm in the above, and the other configurations and operations are common to the first embodiment. Therefore, illustration and description of the common configurations will be omitted.
【0057】本実施形態の層別手段21は、主成分の負
荷線における重畳点の有無に応じて記憶手段14に格納
されている複数のパターンの何れかに層別する点に特徴
がある。The stratification means 21 of this embodiment is characterized in that stratification is performed into one of a plurality of patterns stored in the storage means 14 in accordance with the presence or absence of a superimposition point on the load line of the main component.
【0058】層別手段21における動脈反圧データMn
mの具体的な層別の手順について、図12に示すフロー
チャートを参照して説明する。主成分演算手段20にお
いて生体情報としての動脈反圧データMnmから主成分
PC1〜PCxを抽出し、寄与率が50%以上の主成分
(例えば、第1主成分PC1)について主成分負荷量P
C11〜PCn1を求めた後、層別手段21では、図1
3に示すように第1主成分PC1の負荷線における重畳
点Kの有無を判別する。ここで、重畳点Kとは極大点の
内で最大変曲点以外の変曲点を意味する。そして、重畳
点Kの有無を動脈脈波の特徴として捉え、重畳点Kの有
無に応じて記憶手段14に格納されている複数のパター
ンの何れか(重畳点Kの有るものと無いもの)に層別す
るとともに、その層別結果を選択手段22に与える。こ
こで、記憶手段14に格納されている主成分のパターン
は、実施形態1と同様に予め実験により求められるもの
である。さらに実施形態1と同様にして、層別手段21
から与えられる層別結果に応じて選択手段22において
最適なしきい値が選択され、その選択されたしきい値に
より血圧判定手段16にて最高血圧値及び最低血圧値が
求められる。The arterial reaction pressure data Mn in the stratification means 21
A specific procedure for each layer of m will be described with reference to a flowchart shown in FIG. The principal component calculating means 20 extracts the principal components PC1 to PCx from the arterial reaction pressure data Mnm as the biological information, and calculates the principal component load P for the principal component (for example, the first principal component PC1) having a contribution ratio of 50% or more.
After obtaining C11 to PCn1, the stratifying means 21 performs the processing shown in FIG.
As shown in FIG. 3, the presence / absence of a superimposition point K on the load line of the first principal component PC1 is determined. Here, the superposition point K means an inflection point other than the maximum inflection point among the maximum points. Then, the presence / absence of the superposition point K is grasped as a feature of the arterial pulse wave, and any one of the plurality of patterns (with or without the superposition point K) stored in the storage unit 14 is determined according to the presence / absence of the superposition point K. In addition to stratification, the stratification result is provided to the selection means 22. Here, the pattern of the main component stored in the storage unit 14 is obtained in advance by an experiment, as in the first embodiment. Further, in the same manner as in the first embodiment, the stratifying means 21
The optimum threshold value is selected by the selecting means 22 according to the stratification result given from the above, and the systolic blood pressure value and the diastolic blood pressure value are obtained by the blood pressure determining means 16 based on the selected threshold value.
【0059】(実施形態5)本実施形態は層別手段21
において主成分の負荷線における重畳点の有無を判断す
る方法に特徴があり、その他の構成及び動作は実施形態
1及び実施形態4と共通するので、共通する構成につい
ては図示並びに説明を省略する。(Embodiment 5) In this embodiment, the stratifying means 21 is used.
Is characterized by a method of determining the presence or absence of a superimposition point in a load line of a main component, and other configurations and operations are common to the first and fourth embodiments. Therefore, illustration and description of common configurations are omitted.
【0060】本実施形態の層別手段21は、主成分の負
荷線における最大変曲点並びに終点を求め、これら2点
を結ぶ直線と主成分との乖離度合いによって重畳点の有
無を決定する点に特徴がある。The stratifying means 21 of this embodiment finds the maximum inflection point and the end point in the load line of the main component, and determines the presence or absence of a superposition point based on the degree of deviation between the straight line connecting these two points and the main component. There is a feature.
【0061】層別手段21による重畳点有無の判別手順
について、図14に示すフローチャートを参照して説明
する。主成分演算手段20において生体情報としての動
脈反圧データMnmから主成分PC1〜PCxを抽出
し、寄与率が50%以上の主成分(例えば、第1主成分
PC1)について主成分負荷量PC11〜PCn1を求
めた後、層別手段21では、図15に示すように第1主
成分PC1の負荷線における最大変曲点(例えば、PC
k1)並びに終点PCn1を求め、これら2点PCk
1,PCn1を結ぶ直線と負荷線との乖離度合いによっ
て重畳点の有無を判別する。ここで上記乖離度合いと
は、2点PCk1,PCn1を結ぶ直線よりも大きな値
を示す主成分負荷量の個数で表され、図15(b)に示
すように直線よりも大きな値を示す主成分負荷量が連続
して複数個存在する場合には、それが重畳点K1,K
2,K3と判別される。そして、重畳点Kの有無に応じ
て記憶手段14に格納されている複数のパターンの何れ
か(重畳点Kの有るものと無いもの)に層別するととも
に、その層別結果を選択手段22に与える。The procedure for determining the presence / absence of a superimposition point by the stratification means 21 will be described with reference to the flowchart shown in FIG. The principal component calculating means 20 extracts the principal components PC1 to PCx from the arterial reaction pressure data Mnm as the biological information, and loads the principal component loads PC11 to PC11 on the principal components (for example, the first principal component PC1) having a contribution ratio of 50% or more. After determining PCn1, the stratification unit 21 determines the maximum inflection point (for example, PCn) in the load line of the first main component PC1 as shown in FIG.
k1) and the end point PCn1 are obtained, and these two points PCk
The presence or absence of a superimposition point is determined based on the degree of deviation between the load line and the straight line connecting PCn1 and PCn1. Here, the above-mentioned divergence degree is represented by the number of principal component loads showing a value larger than the straight line connecting the two points PCk1 and PCn1, and the principal component showing a value larger than the straight line as shown in FIG. When there are a plurality of load amounts in succession, the load amounts are superimposed points K1, K
2 and K3. Then, according to the presence / absence of the superimposition point K, it is stratified into any one of a plurality of patterns stored in the storage means 14 (with or without the superimposition point K), and the stratification result is sent to the selection means 22. give.
【0062】(実施形態6)本実施形態は層別手段21
において主成分の負荷線における重畳点の有無を判断す
る方法に特徴があり、その他の構成及び動作は実施形態
1及び実施形態4と共通するので、共通する構成につい
ては図示並びに説明を省略する。(Embodiment 6) In this embodiment, the stratifying means 21
Is characterized by a method of determining the presence or absence of a superimposition point in a load line of a main component, and other configurations and operations are common to the first and fourth embodiments. Therefore, illustration and description of common configurations are omitted.
【0063】本実施形態の層別手段21は、主成分の負
荷線における始点、終点並びに最大変曲点を求め、最大
変曲点から始点と終点を結ぶ直線上におろした垂線によ
り分割される主成分の面積比によって重畳点の有無を決
定する点に特徴がある。The stratifying means 21 of this embodiment finds the starting point, the ending point, and the maximum inflection point in the load line of the main component, and is divided by a perpendicular drawn on a straight line connecting the starting point and the ending point from the maximum inflection point. The feature is that the presence or absence of a superimposition point is determined based on the area ratio of the main components.
【0064】層別手段21による重畳点有無の判別手順
について、図16に示すフローチャートを参照して説明
する。主成分演算手段20において生体情報としての動
脈反圧データMnmから主成分PC1〜PCxを抽出
し、寄与率が50%以上の主成分(例えば、第1主成分
PC1)について主成分負荷量PC11〜PCn1を求
めた後、層別手段21では、図17に示すように第1主
成分PC1の負荷線の始点(時間t0に対応する主成分
負荷量PC11)、終点(時間tnに対応する主成分負
荷量PCn1)並びに最大変曲点(例えば、PCk1)
を求め、最大変曲点PCk1から始点PC11と終点P
Cn1を結ぶ直線上におろした垂線により分割される2
つの部分の面積S1,S2の比S1/S2から重畳点の
有無を判別する。すなわち、一般には重畳点が存在する
場合の方が面積S2が大きくなるために面積比S1/S
2が小さくなるので、面積比S1/S2が所定値よりも
小さいときに重畳点有りと判別するようにする。そし
て、重畳点Kの有無に応じて記憶手段14に格納されて
いる複数のパターンの何れか(重畳点Kの有るものと無
いもの)に層別するとともに、その層別結果を選択手段
22に与える。The procedure for determining the presence or absence of a superimposition point by the stratification means 21 will be described with reference to the flowchart shown in FIG. The principal component calculating means 20 extracts the principal components PC1 to PCx from the arterial reaction pressure data Mnm as the biological information, and loads the principal component loads PC11 to PC11 on the principal components (for example, the first principal component PC1) having a contribution ratio of 50% or more. After determining PCn1, the stratification means 21 starts the load line of the first main component PC1 (the main component load PC11 corresponding to the time t0) and the end point (the main component corresponding to the time tn) as shown in FIG. Load amount PCn1) and maximum inflection point (for example, PCk1)
From the maximum inflection point PCk1 to the start point PC11 and end point P
2 divided by a perpendicular drawn on a straight line connecting Cn1
The presence or absence of a superimposition point is determined from the ratio S1 / S2 of the areas S1 and S2 of the two parts. That is, in general, the area ratio S1 / S is larger because the area S2 is larger when there is a superimposition point.
2 is reduced, so that when the area ratio S1 / S2 is smaller than a predetermined value, it is determined that there is a superimposition point. Then, according to the presence / absence of the superimposition point K, it is stratified into any one of a plurality of patterns stored in the storage means 14 (with or without the superimposition point K), and the stratification result is sent to the selection means 22. give.
【0065】(実施形態7)本実施形態は層別手段21
において主成分の負荷線における重畳点の有無を判断す
る方法に特徴があり、その他の構成及び動作は実施形態
1及び実施形態4と共通するので、共通する構成につい
ては図示並びに説明を省略する。(Embodiment 7) In this embodiment, the stratifying means 21
Is characterized by a method of determining the presence or absence of a superimposition point in a load line of a main component, and other configurations and operations are common to the first and fourth embodiments. Therefore, illustration and description of common configurations are omitted.
【0066】本実施形態の層別手段21は、主成分の負
荷線における始点、終点並びに最大変曲点を求め、これ
ら3点を頂点とする三角形部分の重心を求めるとともに
この重心を通って始点及び終点を結ぶ直線に略平行な直
線によって分離される三角形部分の面積比によって重畳
点の有無を決定する点に特徴がある。The stratifying means 21 of this embodiment finds the starting point, the ending point, and the maximum inflection point in the load line of the main component, finds the center of gravity of a triangular portion having these three points as vertices, and passes the starting point through this center of gravity. And the presence or absence of a superimposition point is determined by the area ratio of the triangular portions separated by a straight line substantially parallel to the end point.
【0067】層別手段21による重畳点有無の判別手順
について、図18に示すフローチャートを参照して説明
する。主成分演算手段20において生体情報としての動
脈反圧データMnmから主成分PC1〜PCxを抽出
し、寄与率が50%以上の主成分(例えば、第1主成分
PC1)について主成分負荷量PC11〜PCn1を求
めた後、層別手段21では、図19に示すように第1主
成分PC1の負荷線の始点(時間t0に対応する主成分
負荷量PC11)、終点(時間tnに対応する主成分負
荷量PCn1)並びに最大変曲点(例えば、PCk1)
を求め、これら3点PC11,PCn1,PCk1を頂
点とする三角形部分の重心Gを求める。さらに、始点P
C11と終点PCn1を結ぶ直線と負荷線とで囲まれる
部分が重心Gを通って始点PC11及び終点PCn1を
結ぶ直線に略平行な直線(図19(b)における点線)
で分離される2つの部分の面積S1,S2の比S1/S
2によって重畳点の有無を判別する。すなわち、一般に
は重畳点が存在する場合の方が面積S1が大きくなるた
めに面積比S1/S2も大きくなるので、面積比S1/
S2が所定値よりも大きいときに重畳点有りと判別する
ようにする。そして、重畳点Kの有無に応じて記憶手段
14に格納されている複数のパターンの何れか(重畳点
Kの有るものと無いもの)に層別するとともに、その層
別結果を選択手段22に与える。The procedure for determining the presence / absence of a superimposition point by the stratifying means 21 will be described with reference to the flowchart shown in FIG. The principal component calculating means 20 extracts the principal components PC1 to PCx from the arterial reaction pressure data Mnm as the biological information, and loads the principal component loads PC11 to PC11 on the principal components (for example, the first principal component PC1) having a contribution ratio of 50% or more. After obtaining PCn1, the stratifying means 21 starts the load line of the first main component PC1 (the main component load PC11 corresponding to the time t0) and the end point (the main component corresponding to the time tn) as shown in FIG. Load amount PCn1) and maximum inflection point (for example, PCk1)
, And the center of gravity G of the triangular portion having these three points PC11, PCn1, and PCk1 as vertices is obtained. Furthermore, the starting point P
A portion surrounded by a straight line connecting C11 and the end point PCn1 and a load line passes through the center of gravity G and is substantially parallel to a straight line connecting the start point PC11 and the end point PCn1 (dotted line in FIG. 19B).
The ratio S1 / S of the areas S1 and S2 of the two parts separated by
2, the presence or absence of a superimposition point is determined. That is, in general, the area ratio S1 / S2 increases when the superimposition point exists because the area S1 increases, so that the area ratio S1 /
When S2 is larger than a predetermined value, it is determined that there is a superimposition point. Then, according to the presence / absence of the superimposition point K, it is stratified into any one of a plurality of patterns stored in the storage means 14 (with or without the superimposition point K), and the stratification result is sent to the selection means 22. give.
【0068】ところで、層別手段21における層別方法
として、主成分演算手段20により求められた主成分P
C1〜PCxを説明変数とし、動脈反圧データMnmの
特徴を反映する属性値(年齢や性別など)を目的変数Y
とする回帰式Y=aPC1+bPC2+…+xPCxを
作成し、この目的変数Yによって層別を行うようにして
もよい。ここで、回帰式における係数a,b,…,xは
予め求めておき、記憶手段14に格納しておく。そし
て、主成分演算手段20で求められた主成分PC1〜P
Cxを上記回帰式に代入することで目的変数Y(例え
ば、被測定者の年齢や性別等)を求め、目的変数Yに応
じた判定規範を選択手段22で選択することにより、血
圧判定手段16において属性値に応じた正確な血圧値を
求めることができる。なお、回帰式における係数a,
b,…,xの求め方は従来周知であるから説明を省略す
る。As a stratification method in the stratification means 21, the principal component P obtained by the principal component calculation means 20 is used.
C1 to PCx are used as explanatory variables, and attribute values (age, gender, etc.) that reflect the characteristics of the arterial reaction pressure data Mnm are used as objective variables Y.
.. + XPCx, and stratification may be performed based on the objective variable Y. Here, the coefficients a, b,..., X in the regression equation are obtained in advance and stored in the storage unit 14. Then, the principal components PC1 to P
By substituting Cx into the regression equation, an objective variable Y (for example, the age or gender of the subject) is obtained, and a selection criterion corresponding to the objective variable Y is selected by the selection unit 22 to obtain the blood pressure determination unit 16. In, an accurate blood pressure value corresponding to the attribute value can be obtained. Note that the coefficients a,
Since the method of obtaining b,..., x is well known in the art, the description is omitted.
【0069】(実施形態8)本実施形態は選択手段22
における判定規範の選択方法に特徴があり、その他の構
成及び動作は実施形態1と共通するので、共通する構成
については図示並びに説明を省略する。(Embodiment 8) In this embodiment, the selecting means 22
Is characterized in the method of selecting the determination standard in the first embodiment, and the other configurations and operations are the same as those in the first embodiment. Therefore, illustration and description of the common configurations will be omitted.
【0070】本実施形態の選択手段22は、層別された
生体情報データが複数の層に同時に層別可能な場合に各
層に属する割合に応じた重み付けを候補として有し、層
別手段21による層別結果に応じて複数の候補の中から
適当な重み付けを選択する点に特徴がある。When the stratified biometric information data can be stratified into a plurality of layers at the same time, the selecting means 22 of the present embodiment has a weight corresponding to the ratio belonging to each layer as a candidate. The feature is that an appropriate weight is selected from a plurality of candidates according to the stratification result.
【0071】而して、一般には動脈反圧データMnmか
ら抽出された主成分を予め記憶手段14に格納されてい
る複数のパターンの何れかに層別する際に、何れか1つ
のパターンに層別することが困難である場合が多いの
で、例えば、動脈反圧データMnmの主成分がある確率
で2つのパターン(層)に同時に属するとすれば、その
属する割合(確率)で動脈反圧データMnmを重み付け
することでさらに正確な血圧値の判定が可能となる。In general, when the main component extracted from the arterial reaction pressure data Mnm is stratified into any of a plurality of patterns stored in the storage means 14 in advance, the stratified pattern is divided into any one of the patterns. Since it is often difficult to distinguish the arterial reaction pressure data Mnm, if the main component of the artery reaction pressure data Mnm belongs to two patterns (layers) with a certain probability at the same time, the arterial reaction pressure data By weighting Mnm, a more accurate blood pressure value can be determined.
【0072】選択手段22による重み付けの手順につい
て、図20に示すフローチャートを参照して説明する。
主成分演算手段20において生体情報としての動脈反圧
データMnmから主成分PC1〜PCxを抽出し、寄与
率が50%以上の主成分(例えば、第1主成分PC1)
について主成分負荷量PC11〜PCn1を求めた後、
層別手段21にて実施形態1〜7の何れかの方法で主成
分による動脈反圧データMnmの層別が行われる。そし
て、層別結果が与えられた選択手段22は、層別された
主成分のパターンに基づいて適当な重み付けの候補を選
択し、図21(b)(c)に示すように選択した候補に
よって動脈反圧データMnmを重み付けする。そして、
血圧判定手段16にて重み付けされた動脈反圧データM
nmから従来例と同様にして最高血圧値及び最低血圧値
を求める。The procedure of weighting by the selection means 22 will be described with reference to the flowchart shown in FIG.
The principal component calculating means 20 extracts the principal components PC1 to PCx from the arterial reaction pressure data Mnm as the biological information, and the principal component having a contribution ratio of 50% or more (for example, the first principal component PC1).
After calculating the principal component loads PC11 to PCn1 for
The stratification means 21 stratifies the arterial reaction pressure data Mnm by the main component by any of the methods of the first to seventh embodiments. Then, the selection means 22 given the stratification result selects appropriate weighting candidates based on the stratified main component pattern, and selects the appropriate weighting candidates as shown in FIGS. 21 (b) and (c). The arterial reaction pressure data Mnm is weighted. And
Arterial reaction pressure data M weighted by the blood pressure determination means 16
The systolic blood pressure value and the diastolic blood pressure value are obtained from nm in the same manner as in the conventional example.
【0073】このように層別の結果に応じて動脈反圧デ
ータMnmに重み付けすることにより、冗長性を持った
血圧判定を行うことができるという利点がある。By weighting the arterial reaction pressure data Mnm according to the stratified result as described above, there is an advantage that the blood pressure with redundancy can be determined.
【0074】(実施形態9)本実施形態の基本構成及び
動作は実施形態1と共通するので、共通する構成につい
ては図示並びに説明を省略する。(Embodiment 9) The basic configuration and operation of this embodiment are the same as those of Embodiment 1, and illustration and description of the common configuration will be omitted.
【0075】本実施形態は、血圧判定手段が動脈反圧デ
ータMnmから血圧値の判定を行う際に、動脈反圧デー
タの面積値とピーク値とを択一的に切り換えて血圧値の
判定を行う点に特徴がある。In this embodiment, when the blood pressure determining means determines the blood pressure value from the arterial reaction pressure data Mnm, the area value and the peak value of the arterial reaction pressure data are selectively switched to determine the blood pressure value. There is a characteristic in that it is performed.
【0076】血圧判定手段16による血圧判定の手順に
ついて、図22に示すフローチャートを参照して説明す
る。主成分演算手段20において生体情報としての動脈
反圧データMnmから主成分PC1〜PCxを抽出し、
寄与率が50%以上の主成分(例えば、第1主成分PC
1)について主成分負荷量PC11〜PCn1を求めた
後、層別手段21にて実施形態1〜7の何れかの方法で
主成分による動脈反圧データMnmの層別が行われる。
ここで、動脈反圧データMnmの面積値の方がピーク値
よりも情報量が大きいために通常は血圧判定の際には面
積値を用いるのであるが、データによっては面積値で判
定すると不具合が生じるものが存在する。そこで、この
ように面積値で判定した場合に不具合が生じる可能性が
高いか否かが動脈反圧データMnmの主成分から判断で
きるので、血圧判定手段16では層別結果に応じて動脈
反圧データMnmの面積値とピーク値とを択一的に切り
換えて血圧値の判定を行う。The procedure for determining blood pressure by the blood pressure determining means 16 will be described with reference to the flowchart shown in FIG. The main component calculating means 20 extracts the main components PC1 to PCx from the arterial reaction pressure data Mnm as the biological information,
A main component having a contribution ratio of 50% or more (for example, the first main component PC
After obtaining the principal component loads PC11 to PCn1 for 1), the stratification means 21 classifies the arterial reaction pressure data Mnm by the main component by any of the methods of Embodiments 1 to 7.
Here, since the area value of the arterial reaction pressure data Mnm has a larger amount of information than the peak value, the area value is normally used when determining the blood pressure. There are things that happen. Thus, it is possible to determine from the main component of the arterial reaction pressure data Mnm whether or not there is a high possibility of occurrence of a problem when the determination is made based on the area value. The blood pressure value is determined by selectively switching between the area value and the peak value of the data Mnm.
【0077】これにより、動脈反圧データMnmによら
ず常に正確な血圧判定が行える。Thus, accurate blood pressure determination can always be performed regardless of the arterial reaction pressure data Mnm.
【0078】(実施形態10)ところで、動脈脈波抽出
手段12で抽出される動脈反圧データMnmには、図2
3(a)に示すようにノイズが含まれている場合があ
り、このようなノイズが血圧判定時の誤差要因となるの
で、そのようなノイズ分を減少させてS/N比を向上さ
せることが正確な血圧値を判定するために必要となる。(Embodiment 10) By the way, the arterial reaction pressure data Mnm extracted by the arterial pulse wave extracting means 12 includes FIG.
As shown in FIG. 3A, noise may be included, and such noise becomes an error factor in blood pressure determination. Therefore, it is necessary to reduce such noise to improve the S / N ratio. Is needed to determine an accurate blood pressure value.
【0079】そこで本実施形態では、動脈脈波抽出手段
12にて動脈反圧データMnmを抽出する際に、時系列
に入力される各心拍に対応した動脈反圧データMnmに
対して移動平均処理を行う点に特徴がある。このように
動脈反圧データMnmに対して移動平均処理を行うこと
で動脈反圧データMnmからノイズ分を除去することが
でき、動脈反圧データMnmの包絡線は図23(b)に
示すように滑らかな本来の動脈脈波に近い波形となる。
なお、移動平均処理については従来周知であるから詳し
い説明は省略する。Therefore, in the present embodiment, when the arterial pulse pressure data Mnm is extracted by the arterial pulse wave extracting means 12, the moving average processing is performed on the arterial pressure data Mnm corresponding to each heartbeat input in time series. Is characterized by performing By performing the moving average process on the arterial reaction pressure data Mnm in this manner, noise can be removed from the arterial reaction pressure data Mnm, and the envelope of the arterial reaction pressure data Mnm is as shown in FIG. It becomes a smooth waveform close to the original arterial pulse wave.
Since the moving average processing is conventionally known, a detailed description thereof will be omitted.
【0080】このように本実施形態では、時系列に入力
される各心拍に対応した動脈反圧データMnmに対して
移動平均処理を行っているので、動脈反圧データMnm
のS/N比を向上させることができる。また、動脈脈波
抽出手段12にて動脈脈波を抽出する際に、A/D変換
部6から入力されるデジタル値の微分値を求め、その微
分値を動脈反圧データMnmとするようにしてもノイズ
分を除去してS/N比を向上させることが可能である。As described above, in the present embodiment, the moving average process is performed on the arterial reaction pressure data Mnm corresponding to each heartbeat input in a time series.
Can be improved. When the arterial pulse wave is extracted by the arterial pulse wave extracting means 12, the differential value of the digital value input from the A / D converter 6 is obtained, and the differential value is used as the arterial reaction pressure data Mnm. However, it is possible to improve the S / N ratio by removing noise.
【0081】(実施形態11)本実施形態は、主成分演
算手段20における演算負荷を低減することを目的とす
るものである。(Embodiment 11) The present embodiment aims at reducing the calculation load on the principal component calculation means 20.
【0082】具体的には、主成分演算手段20にて記憶
手段14に格納されている動脈反圧データから主成分を
求める際に、図24に示すように排気期間におけるカフ
圧の降下開始直後の動脈反圧データと、排気期間終了間
際の動脈反圧データとを無視し、それ以外のカフ圧がほ
ぼ直線的に降下しているみなせる区間(図24(a)に
おける斜線部)の動脈反圧データMnmのみから主成分
を求めるものである。More specifically, when the main component calculating means 20 obtains the main component from the arterial reaction pressure data stored in the storage means 14, as shown in FIG. The arterial reaction pressure data in the section where the cuff pressure falls almost linearly (the hatched area in FIG. 24 (a)), ignoring the artery reaction pressure data of FIG. The main component is obtained only from the pressure data Mnm.
【0083】このように主成分演算手段20では、カフ
圧がほぼ直線的に降下しているみなせる区間の動脈反圧
データMnmのみから主成分を求めるようにしているた
め、排気期間における全ての動脈反圧データから主成分
を求める場合に比較して計算負荷を低減することがで
き、その結果、最終的に血圧値を求めるまでの測定時間
を短縮することが可能となる。As described above, the principal component calculating means 20 determines the principal component only from the arterial reaction pressure data Mnm in the section where the cuff pressure can be regarded as falling substantially linearly. The calculation load can be reduced as compared with the case where the main component is obtained from the reaction pressure data, and as a result, the measurement time until finally obtaining the blood pressure value can be reduced.
【0084】(実施形態12)本実施形態は、主成分演
算手段20における演算負荷を低減することを目的とす
るものである。(Embodiment 12) The present embodiment aims at reducing the calculation load on the principal component calculation means 20.
【0085】すなわち、図25(b)に示すようにA/
D変換部6におけるサンプリング周期を長くすることに
より、同図(a)に示すようなサンプリング周期が短い
場合に比較して動脈反圧データMnmの個数を減らし、
これによって主成分演算手段20における計算負荷を低
減することができる。その結果、最終的に血圧値を求め
るまでの測定時間を短縮することが可能となる。That is, as shown in FIG.
By increasing the sampling period in the D conversion unit 6, the number of arterial reaction pressure data Mnm is reduced as compared with the case where the sampling period is short as shown in FIG.
As a result, the calculation load on the principal component calculation means 20 can be reduced. As a result, it is possible to reduce the measurement time until finally obtaining the blood pressure value.
【0086】また、動脈脈波の重要度に応じてA/D変
換部6のサンプリング周期を可変するようにしてもよ
い。例えば、図25(c)に示すように動脈脈波の中で
最高血圧値及び最低血圧値近傍に対応する部分以外のサ
ンプリング周期を長くすれば、上述のように全体のサン
プリング周期を長くする場合よりも血圧値の測定に必要
なデータ数が減少することなく、計算負荷を低減するこ
とが可能となる。なお、動脈脈波の中で最高血圧値及び
最低血圧値近傍に対応する部分を知るには、例えば予備
測定として予め従来通りの手順で血圧値の測定を行えば
よい。The sampling cycle of the A / D converter 6 may be varied according to the importance of the arterial pulse wave. For example, as shown in FIG. 25C, if the sampling period other than the portion corresponding to the vicinity of the systolic blood pressure value and the diastolic blood pressure value in the arterial pulse wave is increased, the entire sampling period is increased as described above. The calculation load can be reduced without reducing the number of data required for measuring the blood pressure value. In order to know a portion corresponding to the vicinity of the systolic blood pressure value and the diastolic blood pressure value in the arterial pulse wave, the blood pressure value may be measured in advance by a conventional procedure as a preliminary measurement, for example.
【0087】(実施形態13)本実施形態は、主成分演
算手段20における演算負荷を低減することを目的とす
るものである。(Embodiment 13) The present embodiment aims at reducing the calculation load on the principal component calculation means 20.
【0088】具体的には、実際の測定を開始する前に予
備測定として予め従来通りの手順で被測定者の最高血圧
値及び最低血圧値(以下、これらを「仮最高血圧値」及
び「仮最低血圧値」と呼ぶ)を測定しておき、実際の測
定時には、図26(a)〜(c)に示すように仮最高血
圧値及び仮最低血圧値近傍の時間帯TS1,TS2にお
けるカフ圧に対してのみ動脈脈波抽出手段12及びカフ
圧抽出手段13による動脈脈波及びカフ圧の抽出を行う
のである。Specifically, before the actual measurement is started, the systolic blood pressure value and the diastolic blood pressure value (hereinafter referred to as “temporary systolic blood pressure value” and “temporary systolic blood pressure value” In the actual measurement, the cuff pressure in the time periods TS1 and TS2 near the provisional systolic blood pressure value and the provisional diastolic blood pressure value is measured as shown in FIGS. 26 (a) to (c). The arterial pulse wave and cuff pressure are extracted by the arterial pulse wave extracting means 12 and the cuff pressure extracting means 13 only for.
【0089】而して、主成分演算手段20では被測定者
の仮最高血圧値及び仮最低血圧値近傍の動脈反圧データ
Mnmから主成分を求めることができるため、計算負荷
が低減できるだけでなく、被測定者の個人的な特徴をよ
り強く反映した主成分を求めることができ、血圧値の測
定精度を向上させることができる。なお、従来周知のコ
ロトコフ音による血圧値の測定手段を設け、この測定手
段にて仮最高血圧値及び仮最低血圧値を求めるようにし
てもよい。Since the principal component calculating means 20 can determine the principal component from the arterial reaction pressure data Mnm near the tentative systolic blood pressure value and the tentative diastolic blood pressure value of the subject, the calculation load can be reduced. In addition, it is possible to obtain a principal component that more strongly reflects the individual characteristics of the subject, and improve the measurement accuracy of the blood pressure value. Note that a conventionally known means for measuring a blood pressure value based on Korotkoff sound may be provided, and the provisional systolic blood pressure value and the provisional diastolic blood pressure value may be obtained by this measuring means.
【0090】(実施形態14)本実施形態は、主成分演
算手段20における演算負荷を低減することを目的とす
るものである。(Embodiment 14) The present embodiment aims at reducing the calculation load on the principal component calculation means 20.
【0091】具体的には、実施形態13と同様に実際の
測定を開始する前に予備測定を行い、面積が最大且つピ
ーク値が最大となる動脈脈波(最大動脈脈波)を決定
し、実際の測定時に、図27(a)(b)に示すように
最大動脈脈波近傍の期間TS3における動脈反圧データ
から主成分演算手段20にて主成分を求めるのである。More specifically, as in the thirteenth embodiment, preliminary measurement is performed before actual measurement is started, and an arterial pulse wave (maximal arterial pulse wave) having the largest area and the largest peak value is determined. At the time of actual measurement, as shown in FIGS. 27A and 27B, the principal component is calculated by the principal component calculation means 20 from the arterial reaction pressure data in the period TS3 near the maximum arterial pulse wave.
【0092】而して、主成分演算手段20では被測定者
の最大動脈脈波近傍の動脈反圧データMnmから主成分
を求めるため、計算負荷が低減できるだけでなく、被測
定者の個人的な特徴をより強く反映した主成分を求める
ことができ、血圧値の測定精度を向上させることができ
る。なお、従来周知のコロトコフ音による血圧値の測定
手段を設け、この測定手段にて最大動脈脈波を決定する
ようにしてもよい。Since the principal component calculating means 20 obtains the principal component from the arterial reaction pressure data Mnm near the maximum arterial pulse wave of the subject, not only the calculation load can be reduced, but also the subject's personal It is possible to obtain a principal component that more strongly reflects the feature, and improve the measurement accuracy of the blood pressure value. A conventionally known means for measuring a blood pressure value based on Korotkoff sound may be provided, and the maximum arterial pulse wave may be determined by this measuring means.
【0093】(実施形態15)ところで、人間の心拍は
一定ではないから、図28(a)に示すように複数の心
拍H1…に対応する各動脈脈波の間隔は必ずしも一致せ
ず、各心拍H1…に対応する動脈反圧データMnmの個
数が揃わない。このように動脈脈波の間隔が異なる状態
で動脈反圧データから主成分を求めても、的確な主成分
を抽出することができない。(Embodiment 15) Since the human heartbeat is not constant, the intervals between the arterial pulse waves corresponding to the plurality of heartbeats H1... Do not always match as shown in FIG. The number of the arterial reaction pressure data Mnm corresponding to H1... Thus, even if the main components are obtained from the arterial reaction pressure data in a state where the intervals between the arterial pulse waves are different, it is not possible to extract the proper main components.
【0094】そこで本実施形態では、図28(b)に示
すように主成分演算手段20において各動脈脈波の間隔
を所定の一定値(プリセット値)に統一して動脈反圧デ
ータMnmの個数を揃えるようにしている。例えば、健
常者の心拍数は通常30〜160/分であり、1心拍当
たりの動脈脈波の間隔は0.375〜2.0秒となるか
ら、プリセット値として0.375〜2.0秒の値を選
べばよい(図29参照)。Therefore, in the present embodiment, as shown in FIG. 28B, the interval between the arterial pulse waves is unified to a predetermined constant value (preset value) in the principal component calculating means 20, and the number of the arterial reaction pressure data Mnm is increased. Are aligned. For example, the heart rate of a healthy person is usually 30 to 160 / min, and the interval between arterial pulse waves per heart beat is 0.375 to 2.0 seconds. Therefore, the preset value is 0.375 to 2.0 seconds. May be selected (see FIG. 29).
【0095】而して、主成分演算手段20は各動脈脈波
の間隔を所定の一定値(プリセット値)に統一して動脈
反圧データMnmの個数を揃えて主成分を求めるように
しているので、被測定者の特徴をより正確に反映した主
成分を求めることができる。Thus, the principal component calculating means 20 obtains the principal component by unifying the intervals between the arterial pulse waves to a predetermined constant value (preset value) and making the number of the arterial reaction pressure data Mnm uniform. Therefore, it is possible to obtain a principal component that more accurately reflects the characteristics of the subject.
【0096】(実施形態16)本実施形態における動脈
脈波抽出手段12は、図30に示すようにカフ圧の変化
を示す曲線(以下、「カフ圧曲線」と略す)Vに対し
て、連続する2つの心拍H1,H2に対応する動脈脈波
の変曲点C1,C2の圧力値Pv1,Pv2を求め、さ
らに2つの変曲点C1,C2を結ぶ直線とカフ圧曲線V
との交点C0を、心拍H1,H2に続く心拍H0に対応
した動脈脈波の始点とし、交点(始点)C0の圧力値P
v0を求める。これにより各心拍H1…に対応する動脈
脈波の始点を容易に決定することができる。(Embodiment 16) The arterial pulse wave extracting means 12 in this embodiment is adapted to continuously generate a curve (hereinafter, abbreviated as "cuff pressure curve") V indicating a change in cuff pressure as shown in FIG. Pressure values Pv1 and Pv2 at the inflection points C1 and C2 of the arterial pulse waves corresponding to the two heartbeats H1 and H2, and a straight line connecting the two inflection points C1 and C2 and the cuff pressure curve V
Is the starting point of the arterial pulse wave corresponding to the heartbeat H0 following the heartbeats H1 and H2, and the pressure value P at the intersection (starting point) C0
Find v0. Thereby, the starting point of the arterial pulse wave corresponding to each heartbeat H1... Can be easily determined.
【0097】また、動脈脈波抽出手段12は、動脈脈波
の始点C1,C2間を結ぶ直線と、カフ圧曲線Vとで囲
まれた部分の面積Sc1を動脈脈波成分として抽出して
いる(図30参照)。これにより従来のように始点C
1,C2から時間軸に水平な直線とカフ圧曲線Vとで囲
まれた部分の面積を動脈脈波成分とする場合に比較し
て、必要なデータが除去されることが無くなり、より正
確に血圧値を測定することができる。The arterial pulse wave extracting means 12 extracts, as an arterial pulse wave component, an area Sc1 of a portion surrounded by a straight line connecting the starting points C1 and C2 of the arterial pulse wave and the cuff pressure curve V. (See FIG. 30). As a result, the starting point C
Necessary data is not removed as compared with the case where the area of a portion surrounded by a straight line horizontal to the time axis and the cuff pressure curve V from C1 and C2 is used as an arterial pulse wave component, and more accurate Blood pressure values can be measured.
【0098】あるいは、動脈脈波の最大点(ピーク点)
D1,D2を求め、このピーク点D1,D2間を結ぶ直
線と、カフ圧の変化を示す曲線とで囲まれた部分の面積
Sd1を動脈脈波成分として抽出するようにしても同様
の効果を奏する。Alternatively, the maximum point (peak point) of the arterial pulse wave
The same effect can be obtained by obtaining D1 and D2 and extracting the area Sd1 of a portion surrounded by a straight line connecting the peak points D1 and D2 and a curve indicating a change in cuff pressure as an arterial pulse wave component. Play.
【0099】なお、これ以外の構成及び動作については
実施形態1と共通するので図示並びに説明は省略する。The other configurations and operations are the same as those of the first embodiment, so that illustration and description are omitted.
【0100】(実施形態17)本実施形態は、動脈脈波
抽出手段12における動脈脈波成分の抽出方法に特徴を
有するものである。従って、これ以外の構成及び動作に
ついては実施形態1と共通するので図示並びに説明は省
略する。(Embodiment 17) This embodiment is characterized in that the arterial pulse wave extracting means 12 extracts an arterial pulse wave component. Therefore, the other configurations and operations are the same as those of the first embodiment, and thus illustration and description are omitted.
【0101】以下、動脈脈波抽出手段12の動脈脈波抽
出処理を具体的に説明する。まず、図31に示すよう
に、カフ圧曲線V上の変曲点C1,C2を結ぶ直線とカ
フ圧曲線Vとで囲まれる部分の面積をSc2とする。こ
こで、変曲点C1,C2間を結ぶ直線の傾きは排気速度
を示す負の傾きになるので、動脈脈波をゼロレベルで抽
出するために以下のような処理を行う。すなわち、変曲
点C1を圧力軸のプラス方向(図31における垂直上
方)へ変曲点C2と平行(図31における時間軸と平
行)な位置まで移動した点をC1’とし、線分C1C2
を線分C1’C2に投影するとともに線分C1C2とカ
フ圧曲線Vで囲まれる部分が投影される部分の面積SA
を動脈脈波成分として抽出する。Hereinafter, the arterial pulse wave extraction processing of the arterial pulse wave extracting means 12 will be specifically described. First, as shown in FIG. 31, the area of a portion surrounded by a straight line connecting the inflection points C1 and C2 on the cuff pressure curve V and the cuff pressure curve V is defined as Sc2. Here, since the slope of the straight line connecting the inflection points C1 and C2 has a negative slope indicating the exhaust speed, the following processing is performed to extract the arterial pulse wave at zero level. That is, the point at which the inflection point C1 is moved in the plus direction of the pressure axis (vertically upward in FIG. 31) to a position parallel to the inflection point C2 (parallel to the time axis in FIG. 31) is defined as C1 ', and the line segment C1C2
Is projected onto a line segment C1′C2, and the area SA of a portion where a portion surrounded by the line segment C1C2 and the cuff pressure curve V is projected.
Is extracted as an arterial pulse wave component.
【0102】あるいは実施形態16で説明したように動
脈脈波のピーク点D1,D2に対して同様の処理を行っ
てもよい。さらに、線分C1C2とカフ圧曲線Vで囲ま
れた部分を変曲点C2を中心にして変曲点C1がC2と
平行になる位置C1”まで回転させて得られる面積を動
脈脈波成分として抽出してもよい。Alternatively, similar processing may be performed on the peak points D1 and D2 of the arterial pulse wave as described in the sixteenth embodiment. Further, an area obtained by rotating a portion surrounded by the line segment C1C2 and the cuff pressure curve V around the inflection point C2 to a position C1 "where the inflection point C1 becomes parallel to C2 is defined as an arterial pulse wave component. May be extracted.
【0103】(実施形態18)本実施形態は、動脈脈波
抽出手段12における動脈脈波成分の抽出方法に特徴を
有するものである。従って、これ以外の構成及び動作に
ついては実施形態1と共通するので図示並びに説明は省
略する。(Embodiment 18) This embodiment is characterized in that the arterial pulse wave extracting means 12 extracts an arterial pulse wave component. Therefore, the other configurations and operations are the same as those of the first embodiment, and thus illustration and description are omitted.
【0104】以下、動脈脈波抽出手段12の動脈脈波抽
出処理を具体的に説明する。図32に示すように、排気
速度に対応した一定の負の傾き(例えば、3mmHg/秒)
を有する直線(基準線)Lsを想定し、この基準線Ls
とカフ圧曲線Vとで囲まれる領域の面積を動脈脈波成分
として抽出する。Hereinafter, the arterial pulse wave extraction processing of the arterial pulse wave extracting means 12 will be specifically described. As shown in FIG. 32, a constant negative slope corresponding to the pumping speed (for example, 3 mmHg / sec)
Is assumed as a straight line (reference line) Ls having
And the area of the region surrounded by the cuff pressure curve V is extracted as the arterial pulse wave component.
【0105】(実施形態19)ところで、実施形態18
で説明したように基準線Lsとカフ圧曲線Vとで囲まれ
る領域の面積を動脈脈波成分として抽出する場合、排気
期間の終了時点に近いところでは排気速度の傾きが大き
くなって動脈脈波成分を充分に抽出できないことがあ
る。(Embodiment 19) Embodiment 18
As described above, when the area of the region surrounded by the reference line Ls and the cuff pressure curve V is extracted as the arterial pulse wave component, the gradient of the exhaust velocity becomes large near the end of the exhaust period, and the arterial pulse wave is increased. The components may not be fully extracted.
【0106】そこで本実施形態の動脈脈波抽出手段12
では、任意の心拍Hnに対応する動脈脈波成分を抽出す
る際に、その1つ前の心拍Hn−1に対応する動脈脈波
成分の情報、例えば、図33に示すように変曲点C1,
C2を結ぶ線分C1C2の傾きやこの線分C1C2とカ
フ圧曲線Vとで囲まれた部分の面積Sc1を利用してい
る。Accordingly, the arterial pulse wave extracting means 12 of the present embodiment
In extracting the arterial pulse wave component corresponding to an arbitrary heartbeat Hn, information on the arterial pulse wave component corresponding to the immediately preceding heartbeat Hn−1, for example, as shown in FIG. ,
The inclination of a line segment C1C2 connecting C2 and the area Sc1 of a portion surrounded by the line segment C1C2 and the cuff pressure curve V are used.
【0107】以下、本実施形態における動脈脈波抽出手
段12の動脈脈波抽出処理を具体的に説明する。図34
に示すように、カフ圧曲線V上にあって変曲点C1近傍
の点C1−1(t1,Pv1-1)、C2(t2,Pv1-
2)の傾き(一次微分)k=(Pv1-2−Pv1-1)/
(t2−t1)を求め、次の変曲点C0を通って傾きk
を有する直線とカフ圧曲線Vとで囲まれる部分の面積を
動脈脈波成分として抽出する。このように任意の心拍に
対応する動脈脈波成分を抽出する際に、その前の心拍に
対応する動脈脈波成分の情報を利用すれば、動脈脈波成
分を過不足無く抽出することができる。Hereinafter, the arterial pulse wave extraction processing of the arterial pulse wave extraction means 12 in the present embodiment will be described in detail. FIG.
As shown in the figure, points C1-1 (t1, Pv1-1) and C2 (t2, Pv1-) on the cuff pressure curve V near the inflection point C1.
2) slope (first derivative) k = (Pv1-2−Pv1-1) /
(T2−t1) is obtained, and the slope k is passed through the next inflection point C0.
Is extracted as an arterial pulse wave component. Thus, when extracting the arterial pulse wave component corresponding to an arbitrary heartbeat, if the information of the arterial pulse wave component corresponding to the previous heartbeat is used, the arterial pulse wave component can be extracted without excess or deficiency. .
【0108】(実施形態20)図35に示すように、圧
力センサ2から出力される圧力値は、排気速度に応じて
徐々に低下するカフ圧に動脈脈波成分が重畳した曲線
(カフ圧曲線)Vとなる。このカフ圧曲線Vには血圧測
定時のカフ1の内圧や排気速度に応じた変化分も含まれ
ているから、動脈脈波成分を正確に抽出することができ
ない可能性がある。(Embodiment 20) As shown in FIG. 35, the pressure value output from the pressure sensor 2 is a curve (cuff pressure curve) in which the arterial pulse wave component is superimposed on the cuff pressure that gradually decreases according to the pumping speed. ) V. Since the cuff pressure curve V includes a change according to the internal pressure of the cuff 1 and the exhaust speed at the time of measuring the blood pressure, there is a possibility that the arterial pulse wave component cannot be accurately extracted.
【0109】そこで本実施形態の動脈脈波抽出手段12
では、A/D変換部6から出力されるデジタルの圧力デ
ータから低周波成分(血圧測定時のカフ1の内圧や排気
速度に応じた変化分等)を除去するハイパスフィルタ機
能を備え、図36に示すように上記低周波成分を除去し
た圧力データを得ている。さらに、動脈脈波抽出手段1
2は、図36に示すように圧力データの包絡線V’と基
準線(例えば、ゼロレベル)Laとの交点を求め、この
交点近傍であって圧力データが上昇傾向にある点a0,
a1,a2,…を動脈脈波の始点として動脈脈波成分の
抽出処理を行う。なお、各点a0,a1,a2,…の時
間間隔Tsは各動脈脈波の1周期を表している。Therefore, the arterial pulse wave extracting means 12 of this embodiment
36 includes a high-pass filter function for removing low-frequency components (changes according to the internal pressure of the cuff 1 and the exhaust speed during blood pressure measurement) from the digital pressure data output from the A / D converter 6, and FIG. As shown in (1), pressure data from which the low-frequency component has been removed is obtained. Furthermore, arterial pulse wave extraction means 1
2 finds an intersection between the envelope V 'of the pressure data and a reference line (for example, zero level) La as shown in FIG. 36, and points a0, a0,
The processing of extracting the arterial pulse wave component is performed using a1, a2,... as the starting point of the arterial pulse wave. The time interval Ts between the points a0, a1, a2,... Represents one cycle of each arterial pulse wave.
【0110】このような処理により動脈脈波成分を抽出
することによって、動脈脈波成分を過不足無く有効に抽
出することができる。By extracting the arterial pulse wave component by such processing, the arterial pulse wave component can be effectively extracted without excess or deficiency.
【0111】[0111]
【発明の効果】請求項1の発明は、生体情報を含む物理
値を検出する検出手段と、検出手段の検出値をアナログ
値からデジタル値に変換するA/D変換手段と、A/D
変換手段の出力から生体情報に対応する成分を抽出する
生体情報抽出手段と、生体情報抽出手段で抽出された生
体情報データを記憶する記憶手段と、記憶手段に記憶さ
れた生体情報データを変数とする1乃至複数の主成分を
演算により求める主成分演算手段と、この主成分により
生体情報データを層別する層別手段と、層別された各層
毎に生体情報データから血圧値を判定するための判定規
範を複数の候補の中から選択する選択手段と、選択手段
により選択された判定規範に従って生体情報データに基
づく血圧値の判定を行う血圧判定手段とを備えたので、
生体情報データから抽出した主成分により生体情報デー
タを層別し、その層別結果に応じた判定規範に従って血
圧値を判定しているから、個人差や時間差等による誤差
の発生を小さくし、正確な測定結果が得られるという効
果がある。According to the first aspect of the present invention, there is provided a detecting means for detecting a physical value including biological information, an A / D converting means for converting a detected value of the detecting means from an analog value to a digital value, and an A / D converter.
Biological information extracting means for extracting a component corresponding to biological information from the output of the converting means, storage means for storing the biological information data extracted by the biological information extracting means, and biological information data stored in the storage means as variables. A main component calculating means for calculating one or a plurality of main components, a stratifying means for stratifying biological information data by the main components, and a blood pressure value judging from the biometric data for each stratified layer. Since there is provided a selection unit that selects a determination criterion from among a plurality of candidates, and a blood pressure determination unit that determines a blood pressure value based on biological information data according to the determination criterion selected by the selection unit,
Biological information data is stratified based on the principal components extracted from the biometric information data, and blood pressure values are determined according to criteria determined according to the stratified result. There is an effect that an accurate measurement result can be obtained.
【0112】請求項2の発明は、検出手段が、生体情報
として被測定者の動脈脈波を検出して成るので、請求項
1の発明と同様の効果を奏する。According to the second aspect of the present invention, since the detecting means detects the arterial pulse wave of the subject as the biological information, the same effect as the first aspect of the invention can be obtained.
【0113】請求項3の発明は、層別手段が、主成分と
生体の特性を関連づける計算式を有し、この計算式によ
って得られる生体特性に基づく層別を行うので、請求項
1又は2の発明と同様の効果を奏する。According to a third aspect of the present invention, the stratification means has a calculation formula for associating the main component with the characteristics of the living body, and performs stratification based on the biological characteristics obtained by the calculation formula. The same effect as that of the invention is achieved.
【0114】請求項4の発明は、層別手段が、主成分を
予め登録されている複数のパターンと比較して各パター
ンと略等価であるか否かにより層別を行うので、請求項
1又は2の発明と同様の効果を奏する。According to a fourth aspect of the present invention, the stratification means performs stratification by comparing a main component with a plurality of patterns registered in advance and determining whether or not each pattern is substantially equivalent to each pattern. Or, the same effect as that of the second invention can be obtained.
【0115】請求項5の発明は、層別手段が、複数の主
成分のうちで第1主成分のみを利用して層別を行うの
で、請求項1〜4の何れかの発明と同様の効果を奏す
る。According to a fifth aspect of the present invention, the stratification means performs stratification by using only the first principal component among a plurality of principal components. It works.
【0116】請求項6の発明は、層別手段が、複数の主
成分のうちで第1主成分以外の主成分を利用して層別を
行うので、請求項1〜4の何れかの発明と同様の効果を
奏する。According to a sixth aspect of the present invention, the stratifying means performs stratification by using a principal component other than the first principal component among a plurality of principal components. It has the same effect as.
【0117】請求項7の発明は、層別手段が、複数の主
成分を利用して層別を行うので、請求項1〜4の何れか
の発明と同様の効果を奏する。According to the invention of claim 7, since the stratifying means performs stratification by using a plurality of main components, the same effect as any of the inventions of claims 1 to 4 can be obtained.
【0118】請求項8の発明は、時系列で抽出される各
心拍に対応した動脈脈波のデータを平均化処理する手段
を備えたので、請求項2の発明と同様の効果を奏すると
ともに、動脈脈波のデータのS/N比を向上させること
ができるという効果がある。According to the eighth aspect of the present invention, since means for averaging the arterial pulse wave data corresponding to each heartbeat extracted in time series is provided, the same effect as that of the second aspect of the invention can be obtained. There is an effect that the S / N ratio of the arterial pulse wave data can be improved.
【0119】請求項9の発明は、時系列で抽出される各
心拍に対応した動脈脈波のデータを複数の微少区画にお
ける変化率として求める手段を備えたので、請求項2の
発明と同様の効果を奏するとともに、動脈脈波のデータ
のS/N比を向上させることができるという効果があ
る。According to the ninth aspect of the present invention, there is provided means for obtaining the data of the arterial pulse wave corresponding to each heartbeat extracted in time series as a change rate in a plurality of minute sections. In addition to the effect, the S / N ratio of the arterial pulse wave data can be improved.
【0120】請求項10の発明は、主成分演算手段が、
生体情報データの中から標本化された複数個のデータか
ら主成分を求めるので、請求項1の発明の効果に加え
て、主成分演算手段における演算処理の負荷を軽減する
ことができるという効果がある。According to a tenth aspect of the present invention, the principal component calculating means includes:
Since the principal component is obtained from a plurality of data sampled from the biological information data, in addition to the effect of the first aspect of the present invention, the effect that the load of the computation processing in the principal component computing means can be reduced. is there.
【0121】請求項11の発明は、A/D変換手段にお
けるサンプリング周期を可変して成るので、請求項1の
発明の効果に加えて、主成分演算手段における演算処理
の負荷を軽減することができる。According to the eleventh aspect of the present invention, since the sampling period in the A / D conversion means is made variable, the load of the arithmetic processing in the principal component arithmetic means can be reduced in addition to the effect of the first aspect. it can.
【0122】請求項12の発明は、生体情報の重要度に
応じてA/D変換手段におけるサンプリング周期を可変
して成るので、請求項11の発明の効果に加えて、必要
な生体情報を確実に得ることができるという効果があ
る。According to the twelfth aspect of the present invention, the sampling period in the A / D conversion means is varied in accordance with the importance of the biological information. There is an effect that can be obtained.
【0123】請求項13の発明は、記憶手段に記憶され
た生体情報データに基づいて被測定者の仮の血圧値を判
定する仮血圧判定手段を備え、主成分演算手段は、仮血
圧判定手段で判定した仮血圧値の近傍の生体情報データ
から主成分を求めるので、請求項1の発明の効果に加え
て、主成分演算手段における演算処理の負荷を軽減する
ことができるという効果がある。A thirteenth aspect of the present invention provides a temporary blood pressure determining means for determining a temporary blood pressure value of a subject based on the biological information data stored in the storage means. Since the main component is obtained from the biological information data in the vicinity of the provisional blood pressure value determined in step (1), in addition to the effect of the first aspect of the present invention, there is an effect that the load of the calculation processing in the main component calculating means can be reduced.
【0124】請求項14の発明は、主成分演算手段が、
動脈脈波が最大値を示す近傍の生体情報データから主成
分を求めるので、請求項2の発明の効果に加えて、主成
分演算手段における演算処理の負荷を軽減することがで
きるという効果がある。According to a fourteenth aspect of the present invention, the principal component calculating means includes:
Since the main component is obtained from the biological information data in the vicinity where the arterial pulse wave shows the maximum value, in addition to the effect of the invention of claim 2, there is an effect that the load of the calculation processing in the main component calculation means can be reduced. .
【0125】請求項15の発明は、主成分演算手段が、
各1拍の動脈脈波の間隔を略一定値に統一して成るの
で、請求項2の発明の効果に加えて、必要な動脈脈波成
分を過不足無く抽出することができるという効果があ
る。According to a fifteenth aspect of the present invention, the principal component calculating means includes:
Since the intervals between the arterial pulse waves of each one beat are made substantially constant, there is an effect that necessary arterial pulse wave components can be extracted without excess or deficiency in addition to the effect of the invention of claim 2. .
【0126】請求項16の発明は、略一定値を0.37
5〜2.0秒としたので、請求項15の発明と同様の効
果を奏する。According to a sixteenth aspect of the present invention, the substantially constant value is set to 0.37
Since the time is set to 5 to 2.0 seconds, the same effect as the invention of claim 15 is obtained.
【0127】請求項17の発明は、被測定者の要部に装
着して阻血するカフと、カフ内の圧力を上昇させる加圧
手段と、カフ内の圧力を徐々に降下させる排気手段とを
備え、圧力センサから成る検出手段によりカフ内の圧力
を電気信号に変換するとともにカフ内の圧力を徐々に降
下させる排気期間に圧力センサの出力からカフ圧に重畳
された動脈脈波成分を分離してカフ圧と動脈脈波成分と
をそれぞれ抽出するカフ圧抽出手段及び動脈脈波抽出手
段で生体情報抽出手段を構成し、動脈脈波抽出手段は、
連続する任意の心拍の動脈脈波の変曲点を結ぶ直線とカ
フ圧の変化を示す曲線との交点を動脈脈波の始点とする
ので、請求項2の発明の効果に加えて、必要な動脈脈波
成分を過不足無く抽出することができるという効果があ
る。According to the seventeenth aspect of the present invention, there is provided a cuff which is attached to a main part of a subject to block blood, a pressure means for increasing the pressure in the cuff, and an exhaust means for gradually decreasing the pressure in the cuff. The pressure sensor converts the arterial pulse wave component superimposed on the cuff pressure from the output of the pressure sensor during an evacuation period in which the pressure in the cuff is converted into an electric signal and the pressure in the cuff is gradually decreased by detecting means including a pressure sensor. The biological information extracting means is constituted by a cuff pressure extracting means and an arterial pulse wave extracting means for extracting a cuff pressure and an arterial pulse wave component, respectively.
Since the intersection of the straight line connecting the inflection points of the arterial pulse waves of the continuous arbitrary heartbeats and the curve showing the change of the cuff pressure is set as the start point of the arterial pulse wave, in addition to the effect of the invention of claim 2, necessary There is an effect that the arterial pulse wave component can be extracted without excess or deficiency.
【0128】請求項18の発明は、被測定者の要部に装
着して阻血するカフと、カフ内の圧力を上昇させる加圧
手段と、カフ内の圧力を徐々に降下させる排気手段とを
備え、圧力センサから成る検出手段によりカフ内の圧力
を電気信号に変換するとともにカフ内の圧力を徐々に降
下させる排気期間に圧力センサの出力からカフ圧に重畳
された動脈脈波成分を分離してカフ圧と動脈脈波成分と
をそれぞれ抽出するカフ圧抽出手段及び動脈脈波抽出手
段で生体情報抽出手段を構成し、動脈脈波抽出手段は、
動脈脈波の始点間を結ぶ直線と、カフ圧の変化を示す曲
線とで囲まれた部分の面積を動脈脈波成分として抽出し
て成るので、請求項2の発明の効果に加えて、必要な動
脈脈波成分を過不足無く抽出することができるという効
果がある。The invention according to claim 18 is characterized in that a cuff to be attached to a main part of a subject to block blood, a pressurizing means for increasing the pressure in the cuff, and an exhaust means for gradually lowering the pressure in the cuff. The pressure sensor converts the arterial pulse wave component superimposed on the cuff pressure from the output of the pressure sensor during an evacuation period in which the pressure in the cuff is converted into an electric signal and the pressure in the cuff is gradually decreased by detecting means including a pressure sensor. The biological information extracting means is constituted by a cuff pressure extracting means and an arterial pulse wave extracting means for extracting a cuff pressure and an arterial pulse wave component, respectively.
Since the area of the part surrounded by the straight line connecting the starting points of the arterial pulse wave and the curve indicating the change of the cuff pressure is extracted as the arterial pulse wave component, it is necessary in addition to the effect of the second aspect of the present invention. There is an effect that a proper arterial pulse wave component can be extracted without excess or deficiency.
【0129】請求項19の発明は、被測定者の要部に装
着して阻血するカフと、カフ内の圧力を上昇させる加圧
手段と、カフ内の圧力を徐々に降下させる排気手段とを
備え、圧力センサから成る検出手段によりカフ内の圧力
を電気信号に変換するとともにカフ内の圧力を徐々に降
下させる排気期間に圧力センサの出力からカフ圧に重畳
された動脈脈波成分を分離してカフ圧と動脈脈波成分と
をそれぞれ抽出するカフ圧抽出手段及び動脈脈波抽出手
段で生体情報抽出手段を構成し、動脈脈波抽出手段は、
動脈脈波の最大点間を結ぶ直線と、カフ圧の変化を示す
曲線とで囲まれた部分の面積を動脈脈波成分として抽出
して成るので、請求項2の発明の効果に加えて、必要な
動脈脈波成分を過不足無く抽出することができるという
効果がある。According to the nineteenth aspect of the present invention, there is provided a cuff which is attached to a main part of a subject to block blood, a pressure means for increasing the pressure in the cuff, and an exhaust means for gradually lowering the pressure in the cuff. The pressure sensor converts the arterial pulse wave component superimposed on the cuff pressure from the output of the pressure sensor during an evacuation period in which the pressure in the cuff is converted into an electric signal and the pressure in the cuff is gradually reduced by detecting means including a pressure sensor. The biological information extracting means is constituted by a cuff pressure extracting means and an arterial pulse wave extracting means for extracting a cuff pressure and an arterial pulse wave component, respectively.
Since the area of the part surrounded by the straight line connecting the maximum points of the arterial pulse wave and the curve indicating the change in the cuff pressure is extracted as the arterial pulse wave component, in addition to the effect of the invention of claim 2, There is an effect that necessary arterial pulse wave components can be extracted without excess or deficiency.
【0130】請求項20の発明は、動脈脈波抽出手段
は、カフ圧の変化を示す曲線を補正して動脈脈波成分の
始点間を結ぶ直線又は最大点間を結ぶ直線が圧力軸と直
交するように変換して成るので、請求項18又は19の
発明と同様の効果を奏する。According to a twentieth aspect of the present invention, the arterial pulse wave extracting means corrects a curve indicating a change in cuff pressure so that a straight line connecting the starting points of arterial pulse wave components or a straight line connecting the maximum points is orthogonal to the pressure axis. Therefore, the same effect as the invention of claim 18 or 19 can be obtained.
【0131】請求項21の発明は、被測定者の要部に装
着して阻血するカフと、カフ内の圧力を上昇させる加圧
手段と、カフ内の圧力を徐々に降下させる排気手段とを
備え、圧力センサから成る検出手段によりカフ内の圧力
を電気信号に変換するとともにカフ内の圧力を徐々に降
下させる排気期間に圧力センサの出力からカフ圧に重畳
された動脈脈波成分を分離してカフ圧と動脈脈波成分と
をそれぞれ抽出するカフ圧抽出手段及び動脈脈波抽出手
段で生体情報抽出手段を構成し、動脈脈波抽出手段は、
動脈脈波の始点を通り一定の傾きを有する基準線とカフ
圧の変化を示す曲線とで囲まれた部分の面積を動脈脈波
成分として抽出して成るので、請求項2の発明の効果に
加えて、必要な動脈脈波成分を過不足無く抽出すること
ができるという効果がある。According to a twenty-first aspect of the present invention, a cuff which is attached to a main part of a subject to block blood, a pressurizing means for increasing the pressure in the cuff, and an exhaust means for gradually lowering the pressure in the cuff are provided. The pressure sensor converts the arterial pulse wave component superimposed on the cuff pressure from the output of the pressure sensor during an evacuation period in which the pressure in the cuff is converted into an electric signal and the pressure in the cuff is gradually decreased by detecting means including a pressure sensor. The biological information extracting means is constituted by a cuff pressure extracting means and an arterial pulse wave extracting means for extracting a cuff pressure and an arterial pulse wave component, respectively.
The area of a portion surrounded by a reference line passing through the start point of the arterial pulse wave and having a constant slope and a curve indicating a change in cuff pressure is extracted as an arterial pulse wave component. In addition, there is an effect that necessary arterial pulse wave components can be extracted without excess or deficiency.
【0132】請求項22の発明は、動脈脈波抽出手段
が、隣り合う2つの動脈脈波の始点間を結ぶ直線を次の
動脈脈波に対する基準線として成るので、請求項2の発
明の効果に加えて、必要な動脈脈波成分を過不足無く抽
出することができるという効果がある。According to a twenty-second aspect of the present invention, the arterial pulse wave extracting means uses a straight line connecting the starting points of two adjacent arterial pulse waves as a reference line for the next arterial pulse wave. In addition to the above, there is an effect that necessary arterial pulse wave components can be extracted without excess or deficiency.
【0133】請求項23の発明は、動脈脈波抽出手段
が、動脈脈波の始点近傍におけるカフ圧を示す複数個の
点を結ぶ直線の傾きを次の動脈脈波に対する基準線の傾
きとして成るので、請求項21の発明と同様の効果を奏
する。According to a twenty-third aspect of the present invention, the arterial pulse wave extracting means uses the inclination of a straight line connecting a plurality of points indicating the cuff pressure near the starting point of the arterial pulse wave as the inclination of a reference line with respect to the next arterial pulse wave. Therefore, an effect similar to that of the twenty-first aspect is obtained.
【0134】請求項24の発明は、被測定者の要部に装
着して阻血するカフと、カフ内の圧力を上昇させる加圧
手段と、カフ内の圧力を徐々に降下させる排気手段とを
備え、圧力センサから成る検出手段によりカフ内の圧力
を電気信号に変換するとともにカフ内の圧力を徐々に降
下させる排気期間に圧力センサの出力からカフ圧に重畳
された動脈脈波成分を分離してカフ圧と動脈脈波成分と
をそれぞれ抽出するカフ圧抽出手段及び動脈脈波抽出手
段で生体情報抽出手段を構成し、動脈脈波抽出手段は、
A/D変換部の出力から動脈脈波成分に対応する周波数
成分を取り出すフィルタ機能を有するので、請求項2の
発明の効果に加えて、必要な動脈脈波成分を過不足無く
抽出することができるという効果がある。According to a twenty-fourth aspect of the present invention, there is provided a cuff which is attached to a main part of a subject to block blood, a pressure means for increasing the pressure in the cuff, and an exhaust means for gradually lowering the pressure in the cuff. The pressure sensor converts the arterial pulse wave component superimposed on the cuff pressure from the output of the pressure sensor during an evacuation period in which the pressure in the cuff is converted into an electric signal and the pressure in the cuff is gradually decreased by detecting means including a pressure sensor. The biological information extracting means is constituted by a cuff pressure extracting means and an arterial pulse wave extracting means for extracting a cuff pressure and an arterial pulse wave component, respectively.
Since it has a filter function for extracting a frequency component corresponding to an arterial pulse wave component from the output of the A / D converter, in addition to the effect of the invention of claim 2, it is possible to extract necessary and sufficient arterial pulse wave components. There is an effect that can be.
【0135】請求項25の発明は、動脈脈波抽出手段
が、フィルタ処理後の圧力データのうちで所定の基準レ
ベルから上昇傾向にある圧力データを始点として動脈脈
波成分を抽出して成るので、請求項24の発明と同様の
効果を奏する。According to a twenty-fifth aspect of the present invention, the arterial pulse wave extracting means extracts an arterial pulse wave component starting from the pressure data which has a tendency to increase from a predetermined reference level among the pressure data after the filter processing. The same effect as that of the twenty-fourth aspect is obtained.
【0136】請求項26の発明は、層別手段が、主成分
の変曲点の数に応じたパターンと比較して層別を行うの
で、請求項4の発明と同様の効果を奏する。According to the twenty-sixth aspect, the stratification means performs stratification by comparing with a pattern corresponding to the number of inflection points of the main component, so that the same effect as the fourth aspect of the invention is exerted.
【0137】請求項27の発明は、層別手段が、主成分
の始点、終点並びに最大変曲点を求め、これら3点を頂
点とする三角形部分の面積と主成分の面積との差分に応
じたパターンと比較して層別を行うので、請求項4の発
明と同様の効果を奏する。According to a twenty-seventh aspect of the present invention, the stratifying means obtains the starting point, the ending point, and the maximum inflection point of the principal component, and calculates the difference between the area of the triangular portion having these three vertices and the area of the principal component. Since the stratification is performed in comparison with the formed pattern, the same effect as the invention of claim 4 can be obtained.
【0138】請求項28の発明は、層別手段が、主成分
の始点、終点並びに最大変曲点を求め、最大変曲点から
始点と終点を結ぶ直線上におろした垂線により分割され
る主成分の面積比に応じたパターンと比較して層別を行
うので、請求項4の発明と同様の効果を奏する。[0138] According to a twenty-eighth aspect of the present invention, the stratification means obtains a starting point, an ending point, and a maximum inflection point of the main component, and is divided by a perpendicular drawn on a straight line connecting the starting point and the ending point from the maximum inflection point. Since the stratification is performed in comparison with the pattern according to the area ratio of the components, the same effect as the invention of claim 4 is exerted.
【0139】請求項29の発明は、層別手段が、主成分
の重畳点の有無に応じたパターンと比較して層別を行う
ので、請求項4の発明と同様の効果を奏する。According to the twenty-ninth aspect of the present invention, since the stratification means performs stratification in comparison with a pattern corresponding to the presence or absence of a superposition point of the main component, the same effect as the fourth aspect of the invention is obtained.
【0140】請求項30の発明は、層別手段が、主成分
の最大変曲点並びに終点を求め、これら2点を結ぶ直線
と主成分との乖離度合いによって重畳点の有無を決定し
て成るので、請求項29の発明と同様の効果を奏する。A thirty-third aspect of the present invention is characterized in that the stratifying means obtains the maximum inflection point and the end point of the main component, and determines the presence or absence of a superposition point based on the degree of deviation between a straight line connecting these two points and the main component. Therefore, an effect similar to that of the twenty-ninth aspect is obtained.
【0141】請求項31の発明は、層別手段が、主成分
の始点、終点並びに最大変曲点を求め、最大変曲点から
始点と終点を結ぶ直線上におろした垂線により分割され
る主成分の面積比によって重畳点の有無を決定して成る
ので、請求項29の発明と同様の効果を奏する。According to a thirty-first aspect of the present invention, the stratification means finds a starting point, an ending point, and a maximum inflection point of a main component, and is divided by a perpendicular drawn on a straight line connecting the starting point and the ending point from the maximum inflection point. Since the presence or absence of the superimposition point is determined by the area ratio of the components, the same effect as that of the twenty-ninth aspect is obtained.
【0142】請求項32の発明は、層別手段が、主成分
の始点、終点並びに最大変曲点を求め、これら3点を頂
点とする三角形部分の重心を求めるとともにこの重心を
通って始点及び終点を結ぶ直線に略平行な直線によって
分離される主成分の面積比によって重畳点の有無を決定
して成るので、請求項29の発明と同様の効果を奏す
る。According to a thirty-second aspect of the present invention, the stratifying means finds the starting point, the ending point, and the maximum inflection point of the principal component, finds the center of gravity of a triangular portion having these three points as vertices, and passes the starting point and the center through the center of gravity. Since the presence / absence of the superimposition point is determined by the area ratio of the main component separated by a straight line substantially parallel to the end point, the same effect as that of the twenty-ninth aspect is obtained.
【0143】請求項33の発明は、選択手段が、判定規
範として複数の判定基準値を候補として有し、血圧判定
手段は、選択手段によって選択された判定基準値と生体
情報データとを比較して血圧値の判定を行うので、請求
項1の発明と同様の効果を奏する。According to a thirty-third aspect of the present invention, the selection means has a plurality of determination reference values as candidates as determination criteria, and the blood pressure determination means compares the determination reference value selected by the selection means with the biological information data. Since the blood pressure value is determined by the above method, the same effect as that of the first aspect of the invention can be obtained.
【0144】請求項34の発明は、選択手段が、層別さ
れた生体情報データが複数の層に同時に層別可能な場合
に各層に属する割合に応じた重み付けを候補として有
し、血圧判定手段は、選択手段によって選択された重み
付けを行った生体情報データから血圧値の判定を行うの
で、請求項1の発明と同様の効果を奏する。According to a thirty-fourth aspect of the present invention, when the stratified biological information data can be stratified into a plurality of layers at the same time, the selecting means has as a candidate a weight corresponding to the ratio belonging to each layer. Performs the determination of the blood pressure value from the weighted biological information data selected by the selection means, and thus has the same effect as the first aspect of the present invention.
【0145】請求項35の発明は、血圧判定手段が、生
体情報データから血圧値の判定を行う際に、層別結果に
応じて生体情報データの面積値とピーク値とを択一的に
切り換えて血圧値の判定を行うので、請求項1の発明と
同様の効果を奏する。According to a thirty-fifth aspect of the present invention, when the blood pressure determining means determines a blood pressure value from the biological information data, it selectively switches between the area value and the peak value of the biological information data according to the stratified result. Since the blood pressure value is determined by the above method, the same effect as that of the first aspect of the invention can be obtained.
【図1】実施形態1の要部を示すブロック図である。FIG. 1 is a block diagram showing a main part of a first embodiment.
【図2】(a)〜(d)は同上の動作を説明するための
説明図である。FIGS. 2A to 2D are explanatory diagrams for explaining the operation of the above.
【図3】(a)〜(d)は同上の動作を説明するための
説明図である。FIGS. 3A to 3D are explanatory diagrams for explaining the operation of the above.
【図4】同上の動作説明用のフローチャートである。FIG. 4 is a flowchart for explaining the operation of the above.
【図5】(a)(b)は同上の動作を説明するための説
明図である。FIGS. 5A and 5B are explanatory diagrams for explaining the operation of the above.
【図6】同上の動作説明用のフローチャートである。FIG. 6 is a flowchart for explaining the operation of the above.
【図7】(a)(b)は同上の動作を説明するための説
明図である。FIGS. 7A and 7B are explanatory diagrams for explaining the operation of the above.
【図8】実施形態2の動作説明用のフローチャートであ
る。FIG. 8 is a flowchart for explaining the operation of the second embodiment.
【図9】(a)(b)は同上の動作を説明するための説
明図である。FIGS. 9A and 9B are explanatory diagrams for explaining the operation of the above.
【図10】実施形態3の動作説明用のフローチャートで
ある。FIG. 10 is a flowchart for explaining the operation of the third embodiment.
【図11】(a)(b)は同上の動作を説明するための
説明図である。FIGS. 11A and 11B are explanatory diagrams for explaining the operation of the above.
【図12】実施形態4の動作説明用のフローチャートで
ある。FIG. 12 is a flowchart for explaining the operation of the fourth embodiment.
【図13】(a)(b)は同上の動作を説明するための
説明図である。FIGS. 13A and 13B are explanatory diagrams for explaining the operation of the above.
【図14】実施形態5の動作説明用のフローチャートで
ある。FIG. 14 is a flowchart for explaining the operation of the fifth embodiment.
【図15】(a)(b)は同上の動作を説明するための
説明図である。FIGS. 15A and 15B are explanatory diagrams for explaining the operation of the above.
【図16】実施形態6の動作説明用のフローチャートで
ある。FIG. 16 is a flowchart for explaining the operation of the sixth embodiment.
【図17】(a)(b)は同上の動作を説明するための
説明図である。FIGS. 17 (a) and (b) are explanatory diagrams for explaining the operation of the above.
【図18】実施形態7の動作説明用のフローチャートで
ある。FIG. 18 is a flowchart for explaining the operation of the seventh embodiment.
【図19】(a)(b)は同上の動作を説明するための
説明図である。FIGS. 19 (a) and (b) are explanatory diagrams for explaining the operation of the above.
【図20】実施形態8の動作説明用のフローチャートで
ある。FIG. 20 is a flowchart for explaining the operation of the eighth embodiment.
【図21】(a)(b)は同上の動作を説明するための
説明図である。FIGS. 21 (a) and (b) are explanatory diagrams for explaining the operation of the above.
【図22】実施形態9の動作説明用のフローチャートで
ある。FIG. 22 is a flowchart for explaining the operation of the ninth embodiment.
【図23】(a)(b)は実施形態10の動作を説明す
るための説明図である。FIGS. 23 (a) and (b) are explanatory diagrams for explaining the operation of the tenth embodiment.
【図24】(a)(b)は実施形態11の動作を説明す
るための説明図である。FIGS. 24A and 24B are explanatory diagrams for explaining the operation of the eleventh embodiment.
【図25】(a)〜(c)は実施形態12の動作を説明
するための説明図である。FIGS. 25A to 25C are explanatory diagrams for explaining the operation of the twelfth embodiment.
【図26】(a)(b)は実施形態13の動作を説明す
るための説明図である。FIGS. 26A and 26B are explanatory diagrams for explaining the operation of the thirteenth embodiment.
【図27】(a)(b)は実施形態14の動作を説明す
るための説明図である。FIGS. 27A and 27B are explanatory diagrams for explaining the operation of the fourteenth embodiment.
【図28】(a)(b)は実施形態15の動作を説明す
るための説明図である。FIGS. 28A and 28B are explanatory diagrams for explaining the operation of the fifteenth embodiment; FIGS.
【図29】同上の動作を説明するための説明図である。FIG. 29 is an explanatory diagram for explaining the above operation.
【図30】実施形態16の動作を説明するための説明図
である。FIG. 30 is an explanatory diagram for explaining the operation of the sixteenth embodiment.
【図31】実施形態17の動作を説明するための説明図
である。FIG. 31 is an explanatory diagram for explaining the operation of the seventeenth embodiment.
【図32】実施形態18の動作を説明するための説明図
である。FIG. 32 is an explanatory diagram for explaining the operation of the eighteenth embodiment.
【図33】実施形態19の動作を説明するための説明図
である。FIG. 33 is an explanatory diagram for explaining the operation of the nineteenth embodiment.
【図34】同上の動作を説明するための説明図である。FIG. 34 is an explanatory diagram for explaining the above operation.
【図35】実施形態20の動作を説明するための説明図
である。FIG. 35 is an explanatory diagram for explaining the operation of the twentieth embodiment.
【図36】同上の動作を説明するための説明図である。FIG. 36 is an explanatory diagram for explaining the above operation.
【図37】従来例を示すブロック図である。FIG. 37 is a block diagram showing a conventional example.
【図38】同上の要部を示すブロック図である。FIG. 38 is a block diagram showing a main part of the above.
【図39】(a)〜(d)は同上の動作を説明するため
の説明図である。39 (a) to (d) are explanatory diagrams for explaining the operation of the above.
6 A/D変換部 7 制御演算部 12 動脈脈波抽出手段 13 カフ圧抽出手段 14 記憶手段 16 血圧判定手段 20 主成分演算手段 21 層別手段 22 選択手段 Reference Signs List 6 A / D conversion section 7 Control calculation section 12 Arterial pulse wave extraction means 13 Cuff pressure extraction means 14 Storage means 16 Blood pressure determination means 20 Principal component calculation means 21 Stratification means 22 Selection means
───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸尾 勝彦 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 岡 雅美 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 平松 賢 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 文室 晋一 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 泉 智博 大阪府門真市大字門真1048番地松下電工株 式会社内 Fターム(参考) 4C017 AA02 AA08 AA09 AC01 BC11 BD01 FF05 FF08 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Katsuhiko Maruo 1048 Kadoma, Kazuma, Osaka Prefecture Matsushita Electric Works, Ltd. (72) Inventor Masami Oka 1048 Kadoma, Kazuma, Kadoma, Osaka Prefecture Matsushita Electric Works, Ltd. 72) Inventor Ken Hiramatsu 1048 Kadoma Kadoma, Kadoma City, Osaka Prefecture (72) Inventor Shinichi Shinmuro 1048 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works Co., Ltd. (72) Tomohiro Izumi Osaka 1048 Kadoma, Kadoma, Fumonma-shi F-term (reference) in Matsushita Electric Works, Ltd. 4C017 AA02 AA08 AA09 AC01 BC11 BD01 FF05 FF08
Claims (35)
段と、検出手段の検出値をアナログ値からデジタル値に
変換するA/D変換手段と、A/D変換手段の出力から
生体情報に対応する成分を抽出する生体情報抽出手段
と、生体情報抽出手段で抽出された生体情報データを記
憶する記憶手段と、記憶手段に記憶された生体情報デー
タを変数とする1乃至複数の主成分を演算により求める
主成分演算手段と、この主成分により生体情報データを
層別する層別手段と、層別された各層毎に生体情報デー
タから血圧値を判定するための判定規範を複数の候補の
中から選択する選択手段と、選択手段により選択された
判定規範に従って生体情報データに基づく血圧値の判定
を行う血圧判定手段とを備えたことを特徴とする血圧
計。1. A detecting means for detecting a physical value including biological information, an A / D converting means for converting a detected value of the detecting means from an analog value to a digital value, and a biological information from an output of the A / D converting means. A biological information extracting unit for extracting a corresponding component, a storing unit for storing the biological information data extracted by the biological information extracting unit, and one or more principal components having the biological information data stored in the storing unit as a variable. A main component calculating means for calculating, a stratifying means for stratifying the biological information data by the main component, and a judgment criterion for judging a blood pressure value from the biometric information data for each stratified layer for a plurality of candidates. A sphygmomanometer, comprising: a selection unit that selects from among them; and a blood pressure determination unit that determines a blood pressure value based on biological information data according to a determination criterion selected by the selection unit.
動脈脈波を検出して成ることを特徴とする請求項1記載
の血圧計。2. The sphygmomanometer according to claim 1, wherein the detecting means detects an arterial pulse wave of the subject as biological information.
づける計算式を有し、この計算式によって得られる生体
特性に基づく層別を行うことを特徴とする請求項1又は
2記載の血圧計。3. The stratification means according to claim 1, wherein the stratification means has a calculation formula for associating the main component with the characteristics of the living body, and performs stratification based on the biological characteristics obtained by the calculation formula. Sphygmomanometer.
る複数のパターンと比較して各パターンと略等価である
か否かにより層別を行うことを特徴とする請求項1又は
2記載の血圧計。4. The stratification means according to claim 1 or 2, wherein said stratification means performs stratification by comparing a main component with a plurality of patterns registered in advance and determining whether or not each pattern is substantially equivalent to each pattern. Sphygmomanometer as described.
主成分のみを利用して層別を行うことを特徴とする請求
項1〜4の何れかに記載の血圧計。5. The stratifying means, wherein the first one of the plurality of main components is
The sphygmomanometer according to any one of claims 1 to 4, wherein stratification is performed using only the main component.
主成分以外の主成分を利用して層別を行うことを特徴と
する請求項1〜4の何れかに記載の血圧計。6. The stratifying means includes a first one of a plurality of main components.
The sphygmomanometer according to any one of claims 1 to 4, wherein stratification is performed using a main component other than the main component.
別を行うことを特徴とする請求項1〜4の何れかに記載
の血圧計。7. The sphygmomanometer according to claim 1, wherein the stratification unit performs stratification using a plurality of main components.
脈脈波のデータを平均化処理する手段を備えたことを特
徴とする請求項2記載の血圧計。8. The sphygmomanometer according to claim 2, further comprising means for averaging arterial pulse wave data corresponding to each heartbeat extracted in time series.
脈脈波のデータを複数の微少区画における変化率として
求める手段を備えたことを特徴とする請求項2記載の血
圧計。9. The sphygmomanometer according to claim 2, further comprising: means for obtaining arterial pulse wave data corresponding to each heartbeat extracted in a time series as a rate of change in a plurality of minute sections.
中から標本化された複数個のデータから主成分を求める
ことを特徴とする請求項1記載の血圧計。10. The sphygmomanometer according to claim 1, wherein the principal component calculating means obtains a principal component from a plurality of data sampled from the biological information data.
周期を可変して成ることを特徴とする請求項1記載の血
圧計。11. The sphygmomanometer according to claim 1, wherein a sampling cycle in the A / D conversion means is variable.
手段におけるサンプリング周期を可変して成ることを特
徴とする請求項11記載の血圧計。12. The sphygmomanometer according to claim 11, wherein the sampling period in the A / D conversion means is varied according to the importance of the biological information.
に基づいて被測定者の仮の血圧値を判定する仮血圧判定
手段を備え、主成分演算手段は、仮血圧判定手段で判定
した仮血圧値の近傍の生体情報データから主成分を求め
ることを特徴とする請求項1記載の血圧計。13. A temporary blood pressure determining means for determining a temporary blood pressure value of a subject based on biological information data stored in a storage means, wherein the principal component calculating means includes a temporary blood pressure determined by the temporary blood pressure determining means. 2. The sphygmomanometer according to claim 1, wherein a main component is obtained from biological information data near the value.
を示す近傍の生体情報データから主成分を求めることを
特徴とする請求項2記載の血圧計。14. The sphygmomanometer according to claim 2, wherein the principal component calculating means obtains the principal component from the biological information data in the vicinity where the arterial pulse wave shows the maximum value.
の間隔を略一定値に統一して成ることを特徴とする請求
項2記載の血圧計。15. The sphygmomanometer according to claim 2, wherein the principal component calculation means unifies the intervals of the arterial pulse wave of each one beat to a substantially constant value.
たことを特徴とする請求項15記載の血圧計。16. The sphygmomanometer according to claim 15, wherein the substantially constant value is 0.375 to 2.0 seconds.
フと、カフ内の圧力を上昇させる加圧手段と、カフ内の
圧力を徐々に降下させる排気手段とを備え、圧力センサ
から成る検出手段によりカフ内の圧力を電気信号に変換
するとともにカフ内の圧力を徐々に降下させる排気期間
に圧力センサの出力からカフ圧に重畳された動脈脈波成
分を分離してカフ圧と動脈脈波成分とをそれぞれ抽出す
るカフ圧抽出手段及び動脈脈波抽出手段で生体情報抽出
手段を構成し、動脈脈波抽出手段は、連続する任意の心
拍の動脈脈波の変曲点を結ぶ直線とカフ圧の変化を示す
曲線との交点を動脈脈波の始点とすることを特徴とする
請求項2記載の血圧計。17. A cuff to be attached to a main part of a subject to block blood, pressurizing means for increasing the pressure in the cuff, and exhaust means for gradually lowering the pressure in the cuff. The detection means converts the pressure in the cuff into an electric signal and separates the arterial pulse wave component superimposed on the cuff pressure from the output of the pressure sensor during the evacuation period in which the pressure in the cuff is gradually reduced, thereby separating the cuff pressure and the artery. Biological information extracting means is constituted by cuff pressure extracting means and arterial pulse wave extracting means for extracting pulse wave components, respectively, and the arterial pulse wave extracting means comprises a straight line connecting inflection points of arterial pulse waves of any continuous heartbeat. 3. The sphygmomanometer according to claim 2, wherein an intersection of the curve indicating the change in the cuff pressure is set as a starting point of the arterial pulse wave.
フと、カフ内の圧力を上昇させる加圧手段と、カフ内の
圧力を徐々に降下させる排気手段とを備え、圧力センサ
から成る検出手段によりカフ内の圧力を電気信号に変換
するとともにカフ内の圧力を徐々に降下させる排気期間
に圧力センサの出力からカフ圧に重畳された動脈脈波成
分を分離してカフ圧と動脈脈波成分とをそれぞれ抽出す
るカフ圧抽出手段及び動脈脈波抽出手段で生体情報抽出
手段を構成し、動脈脈波抽出手段は、動脈脈波の始点間
を結ぶ直線と、カフ圧の変化を示す曲線とで囲まれた部
分の面積を動脈脈波成分として抽出して成ることを特徴
とする請求項2記載の血圧計。18. A cuff which is attached to a main part of a subject to block blood, pressurizing means for increasing the pressure in the cuff, and exhaust means for gradually decreasing the pressure in the cuff. The detection means converts the pressure in the cuff into an electric signal and separates the arterial pulse wave component superimposed on the cuff pressure from the output of the pressure sensor during the evacuation period in which the pressure in the cuff is gradually reduced, thereby separating the cuff pressure and the artery. A biological information extracting means is constituted by a cuff pressure extracting means for extracting a pulse wave component and an arterial pulse wave extracting means, and the arterial pulse wave extracting means defines a straight line connecting the starting points of the arterial pulse waves and a change in the cuff pressure. 3. The sphygmomanometer according to claim 2, wherein an area of a portion surrounded by the curved line is extracted as an arterial pulse wave component.
フと、カフ内の圧力を上昇させる加圧手段と、カフ内の
圧力を徐々に降下させる排気手段とを備え、圧力センサ
から成る検出手段によりカフ内の圧力を電気信号に変換
するとともにカフ内の圧力を徐々に降下させる排気期間
に圧力センサの出力からカフ圧に重畳された動脈脈波成
分を分離してカフ圧と動脈脈波成分とをそれぞれ抽出す
るカフ圧抽出手段及び動脈脈波抽出手段で生体情報抽出
手段を構成し、動脈脈波抽出手段は、動脈脈波の最大点
間を結ぶ直線と、カフ圧の変化を示す曲線とで囲まれた
部分の面積を動脈脈波成分として抽出して成ることを特
徴とする請求項2記載の血圧計。19. A cuff which is attached to a main part of a subject to block blood, pressurizing means for increasing the pressure in the cuff, and exhaust means for gradually lowering the pressure in the cuff. The detection means converts the pressure in the cuff into an electric signal and separates the arterial pulse wave component superimposed on the cuff pressure from the output of the pressure sensor during the evacuation period in which the pressure in the cuff is gradually reduced, thereby separating the cuff pressure and the artery. A biological information extracting means is constituted by a cuff pressure extracting means for extracting a pulse wave component and an arterial pulse wave extracting means, and the arterial pulse wave extracting means comprises a straight line connecting the maximum points of the arterial pulse wave and a change in the cuff pressure. 3. The sphygmomanometer according to claim 2, wherein an area of a portion surrounded by a curve indicating the following is extracted as an arterial pulse wave component.
示す曲線を補正して動脈脈波成分の始点間を結ぶ直線又
は最大点間を結ぶ直線が圧力軸と直交するように変換し
て成ることを特徴とする請求項18又は19の血圧計。20. The arterial pulse wave extracting means corrects a curve indicating a change in cuff pressure and converts the curve so that a straight line connecting the starting points of arterial pulse wave components or a straight line connecting the maximum points is orthogonal to the pressure axis. 20. The sphygmomanometer according to claim 18 or 19, comprising:
フと、カフ内の圧力を上昇させる加圧手段と、カフ内の
圧力を徐々に降下させる排気手段とを備え、圧力センサ
から成る検出手段によりカフ内の圧力を電気信号に変換
するとともにカフ内の圧力を徐々に降下させる排気期間
に圧力センサの出力からカフ圧に重畳された動脈脈波成
分を分離してカフ圧と動脈脈波成分とをそれぞれ抽出す
るカフ圧抽出手段及び動脈脈波抽出手段で生体情報抽出
手段を構成し、動脈脈波抽出手段は、動脈脈波の始点を
通り一定の傾きを有する基準線とカフ圧の変化を示す曲
線とで囲まれた部分の面積を動脈脈波成分として抽出し
て成ることを特徴とする請求項2記載の血圧計。21. A cuff to be attached to a main part of a subject to block blood, pressure means for increasing the pressure in the cuff, and exhaust means for gradually lowering the pressure in the cuff. The detection means converts the pressure in the cuff into an electric signal and separates the arterial pulse wave component superimposed on the cuff pressure from the output of the pressure sensor during the evacuation period in which the pressure in the cuff is gradually reduced, thereby separating the cuff pressure and the artery. Biological information extracting means is constituted by a cuff pressure extracting means for extracting a pulse wave component and an arterial pulse wave extracting means, and the arterial pulse wave extracting means comprises a reference line having a constant slope passing through the starting point of the arterial pulse wave. 3. The sphygmomanometer according to claim 2, wherein an area of a portion surrounded by a curve indicating a change in pressure is extracted as an arterial pulse wave component.
動脈脈波の始点間を結ぶ直線を次の動脈脈波に対する基
準線として成ることを特徴とする請求項21記載の血圧
計。22. The sphygmomanometer according to claim 21, wherein the arterial pulse wave extracting means comprises a straight line connecting the starting points of two adjacent arterial pulse waves as a reference line for the next arterial pulse wave.
近傍におけるカフ圧を示す複数個の点を結ぶ直線の傾き
を次の動脈脈波に対する基準線の傾きとして成ることを
特徴とする請求項21記載の血圧計。23. The arterial pulse wave extracting means, wherein the inclination of a straight line connecting a plurality of points indicating the cuff pressure near the starting point of the arterial pulse wave is defined as the inclination of a reference line for the next arterial pulse wave. A blood pressure monitor according to claim 21.
フと、カフ内の圧力を上昇させる加圧手段と、カフ内の
圧力を徐々に降下させる排気手段とを備え、圧力センサ
から成る検出手段によりカフ内の圧力を電気信号に変換
するとともにカフ内の圧力を徐々に降下させる排気期間
に圧力センサの出力からカフ圧に重畳された動脈脈波成
分を分離してカフ圧と動脈脈波成分とをそれぞれ抽出す
るカフ圧抽出手段及び動脈脈波抽出手段で生体情報抽出
手段を構成し、動脈脈波抽出手段は、A/D変換部の出
力から動脈脈波成分に対応する周波数成分を取り出すフ
ィルタ機能を有することを特徴とする請求項2記載の血
圧計。24. A pressure sensor comprising: a cuff to be attached to a main part of a subject to block blood; pressurizing means for increasing the pressure in the cuff; and exhaust means for gradually lowering the pressure in the cuff. The detection means converts the pressure in the cuff into an electric signal and separates the arterial pulse wave component superimposed on the cuff pressure from the output of the pressure sensor during the evacuation period in which the pressure in the cuff is gradually reduced, thereby separating the cuff pressure and the artery. Biological information extracting means is constituted by cuff pressure extracting means and arterial pulse wave extracting means for extracting pulse wave components, respectively, and the arterial pulse wave extracting means obtains a frequency corresponding to the arterial pulse wave component from the output of the A / D converter. 3. The sphygmomanometer according to claim 2, wherein the sphygmomanometer has a filter function for extracting components.
の圧力データのうちで所定の基準レベルから上昇傾向に
ある圧力データを始点として動脈脈波成分を抽出して成
ることを特徴とする請求項24記載の血圧計。25. The arterial pulse wave extracting means, wherein the arterial pulse wave component is extracted by using, as a starting point, pressure data having a tendency to increase from a predetermined reference level in the pressure data after the filtering process. Item 24. The blood pressure monitor according to Item 24.
じたパターンと比較して層別を行うことを特徴とする請
求項4記載の血圧計。26. The sphygmomanometer according to claim 4, wherein the stratification means performs stratification by comparing with a pattern corresponding to the number of inflection points of the main component.
に最大変曲点を求め、これら3点を頂点とする三角形部
分の面積と主成分の面積との差分に応じたパターンと比
較して層別を行うことを特徴とする請求項4記載の血圧
計。27. The stratification means finds a starting point, an ending point, and a maximum inflection point of the main component, and compares the starting point, the ending point, and the maximum inflection point with a pattern corresponding to the difference between the area of the triangular portion having these three vertices and the area of the main component. 5. The sphygmomanometer according to claim 4, wherein stratification is performed.
に最大変曲点を求め、最大変曲点から始点と終点を結ぶ
直線上におろした垂線により分割される主成分の面積比
に応じたパターンと比較して層別を行うことを特徴とす
る請求項4記載の血圧計。28. The stratification means finds a starting point, an ending point, and a maximum inflection point of the main component, and calculates an area ratio of the main component divided by a perpendicular drawn on a straight line connecting the starting point and the ending point from the maximum inflection point. 5. The sphygmomanometer according to claim 4, wherein stratification is performed by comparing with a corresponding pattern.
応じたパターンと比較して層別を行うことを特徴とする
請求項4記載の血圧計。29. The sphygmomanometer according to claim 4, wherein the stratification means performs stratification by comparing with a pattern according to the presence or absence of a superposition point of the main component.
に終点を求め、これら2点を結ぶ直線と主成分との乖離
度合いによって重畳点の有無を決定して成ることを特徴
とする請求項29記載の血圧計。30. The stratification means, wherein a maximum inflection point and an end point of the main component are obtained, and the presence or absence of a superposition point is determined based on the degree of deviation between a straight line connecting these two points and the main component. A sphygmomanometer according to claim 29.
に最大変曲点を求め、最大変曲点から始点と終点を結ぶ
直線上におろした垂線により分割される主成分の面積比
によって重畳点の有無を決定して成ることを特徴とする
請求項29記載の血圧計。31. The stratification means obtains a starting point, an ending point, and a maximum inflection point of the main component, and calculates an area ratio of the main component divided by a perpendicular drawn on a straight line connecting the starting point and the ending point from the maximum inflection point. 30. The sphygmomanometer according to claim 29, wherein the presence or absence of a superimposition point is determined.
に最大変曲点を求め、これら3点を頂点とする三角形部
分の重心を求めるとともにこの重心を通って始点及び終
点を結ぶ直線に略平行な直線によって分離される主成分
の面積比によって重畳点の有無を決定して成ることを特
徴とする請求項29記載の血圧計。32. The stratification means obtains a starting point, an ending point, and a maximum inflection point of the principal component, obtains a center of gravity of a triangular portion having these three points as vertices, and forms a straight line connecting the starting point and the ending point through the center of gravity. 30. The sphygmomanometer according to claim 29, wherein the presence / absence of a superimposition point is determined by an area ratio of a main component separated by a substantially parallel straight line.
定基準値を候補として有し、血圧判定手段は、選択手段
によって選択された判定基準値と生体情報データとを比
較して血圧値の判定を行うことを特徴とする請求項1記
載の血圧計。33. The selection means has a plurality of determination reference values as candidates as determination criteria, and the blood pressure determination means compares the determination reference value selected by the selection means with the biological information data to determine the blood pressure value. The sphygmomanometer according to claim 1, wherein
タが複数の層に同時に層別可能な場合に各層に属する割
合に応じた重み付けを候補として有し、血圧判定手段
は、選択手段によって選択された重み付けを行った生体
情報データから血圧値の判定を行うことを特徴とする請
求項1記載の血圧計。34. When the biometric information data stratified can be stratified into a plurality of layers at the same time, the selecting means has as a candidate a weight corresponding to a ratio belonging to each layer. The sphygmomanometer according to claim 1, wherein a blood pressure value is determined from the selected weighted biological information data.
血圧値の判定を行う際に、層別結果に応じて生体情報デ
ータの面積値とピーク値とを択一的に切り換えて血圧値
の判定を行うことを特徴とする請求項1記載の血圧計。35. The blood pressure determination means, when determining a blood pressure value from the biological information data, selectively switches between the area value and the peak value of the biological information data according to the stratified result, and determines the blood pressure value. The sphygmomanometer according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11117162A JP2000300525A (en) | 1999-04-23 | 1999-04-23 | Manometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11117162A JP2000300525A (en) | 1999-04-23 | 1999-04-23 | Manometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000300525A true JP2000300525A (en) | 2000-10-31 |
Family
ID=14704996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11117162A Pending JP2000300525A (en) | 1999-04-23 | 1999-04-23 | Manometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000300525A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009136656A (en) * | 2007-12-10 | 2009-06-25 | National Yang Ming Univ | Improved calculation of distal arterial blood pressure using analysis technique of cuff pressure vibration waveform |
JP2013172835A (en) * | 2012-02-24 | 2013-09-05 | Omron Healthcare Co Ltd | Blood pressure measuring device, blood pressure measuring method, and blood pressure measuring program |
CN109288507A (en) * | 2017-07-25 | 2019-02-01 | 三星电子株式会社 | Apparatus and method for measuring biometric information |
-
1999
- 1999-04-23 JP JP11117162A patent/JP2000300525A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009136656A (en) * | 2007-12-10 | 2009-06-25 | National Yang Ming Univ | Improved calculation of distal arterial blood pressure using analysis technique of cuff pressure vibration waveform |
JP2013172835A (en) * | 2012-02-24 | 2013-09-05 | Omron Healthcare Co Ltd | Blood pressure measuring device, blood pressure measuring method, and blood pressure measuring program |
CN109288507A (en) * | 2017-07-25 | 2019-02-01 | 三星电子株式会社 | Apparatus and method for measuring biometric information |
CN109288507B (en) * | 2017-07-25 | 2023-06-20 | 三星电子株式会社 | Device and method for measuring biometric information |
US12318223B2 (en) | 2017-07-25 | 2025-06-03 | Samsung Electronics Co., Ltd. | Apparatus and method for measuring biometric information |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6929610B2 (en) | Non-invasive measurement of blood pressure | |
JP3641830B2 (en) | Biological condition measuring device | |
US8348851B2 (en) | Blood pressure measurement device and control method of the same | |
EP3295868A1 (en) | Blood pressure calculation method based on pulse reflected wave transit time, and blood pressure meter | |
US8506496B2 (en) | Method and apparatus to determine the end of the systolic part of a pressure curve | |
JP2005087753A (en) | Beat onset detector | |
CN109890276B (en) | Blood pressure monitoring method, device and device | |
JP2003305012A (en) | Amplitude augmentation index measuring apparatus | |
JP3530891B2 (en) | Blood pressure determination device | |
CN114652351B (en) | Ultrasound Doppler-based continuous blood pressure measurement method, device and electronic device | |
JP2003204945A (en) | Amplitude increase index-calculating device and arterial sclerosis-examining device | |
JP2004121616A (en) | Automatic diagnostic apparatus | |
CN103505191A (en) | A method and device for estimating central aortic pulse pressure using pressure pulse wave oscillation signal of cuff | |
CN102258364A (en) | Pulse wave identification method, system and artery function detection instrument | |
CN115281639A (en) | Blood pressure measuring method and device for air inflation prediction, electronic equipment and storage medium | |
US20030199776A1 (en) | Blood-pressure measuring apparatus having waveform analyzing function | |
JP2004195071A (en) | Arteriosclerosis assessment apparatus | |
JP2003305013A (en) | Blood pressure measuring apparatus with amplitude augmentation index measuring function | |
JP2008061824A (en) | Medical measuring instrument, biosignal waveform extraction method and biosignal waveform extraction program | |
CN114767084B (en) | Blood pressure detection method and related device | |
JPH09220207A (en) | Blood pressure calculation device | |
JP2000300525A (en) | Manometer | |
JPH119564A (en) | Cardiac function diagnostic device | |
JP2004105548A (en) | Blood pressure measuring apparatus with pulse wave detection function | |
CN114305359B (en) | Blood pressure data acquisition equipment and chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050405 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050802 |