[go: up one dir, main page]

JP2000290028A - Production of synthetic quartz glass for ultraviolet ray and member obtained by using the same - Google Patents

Production of synthetic quartz glass for ultraviolet ray and member obtained by using the same

Info

Publication number
JP2000290028A
JP2000290028A JP11095982A JP9598299A JP2000290028A JP 2000290028 A JP2000290028 A JP 2000290028A JP 11095982 A JP11095982 A JP 11095982A JP 9598299 A JP9598299 A JP 9598299A JP 2000290028 A JP2000290028 A JP 2000290028A
Authority
JP
Japan
Prior art keywords
quartz glass
tube
synthetic quartz
amount
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11095982A
Other languages
Japanese (ja)
Inventor
Masashi Fujiwara
誠志 藤原
Tomohisa Yamaguchi
倫央 山口
Hiroki Jinbo
宏樹 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP11095982A priority Critical patent/JP2000290028A/en
Priority to US09/520,190 priority patent/US6649268B1/en
Priority to EP00104522A priority patent/EP1035078B1/en
Priority to DE60027942T priority patent/DE60027942T2/en
Publication of JP2000290028A publication Critical patent/JP2000290028A/en
Priority to US10/614,200 priority patent/US20040095566A1/en
Priority to US11/168,851 priority patent/US20050284177A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain glass having both of high transmissivity and high resistance to ultraviolet rays in the vacuum ultraviolet region by concentrically arranging plural pipes of hydrogen ejecting pipes and oxygen ejecting pipes around the pipe for ejecting an organic silicon compound being a raw material and specifying the ratio of the amount of gaseous oxygen to the amount of gaseous hydrogen. SOLUTION: A burner is constituted by concentrically arranging second pipes for ejecting gaseous hydrogen and third pipes for ejecting gaseous oxygen around a first pipe for ejecting an organic silicon compound being a raw material, further providing fourth pipes for ejecting gaseous hydrogen, providing fifth plural pipes for ejecting gaseous oxygen between the third and the fourth pipes, furthermore providing sixth pipes for ejecting gaseous hydrogen around the fourth pipes and providing seventh pipes for ejecting gaseous oxygen between the fourth and sixth pipes. The ratio (b/a) of the amount of gaseous oxygen (b) ejected from the third pipe to the amount of gaseous hydrogen (a) ejected from the second pipe is set to be not more than 0.5. The ratio (d/c) of the amount of gaseous oxygen (d) ejected from the fifth pipe to the amount of gaseous hydrogen (c) ejected from the fourth pipe is set to be not less than 0.55.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は石英ガラスの製造方
法に関するものであり、特に、紫外線レーザ全般に使用
される光学部材用の合成石英ガラスの製造方法及びそれ
により製造された石英ガラスに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing quartz glass, and more particularly to a method for producing a synthetic quartz glass for an optical member used in an ultraviolet laser in general, and a quartz glass produced thereby. is there.

【0002】[0002]

【従来の技術】従来、シリコン等のウエハ上に集積回路
の微細パターンを露光・転写する光リソグラフィー技術
においては、ステッパと呼ばれる露光装置が用いられて
いる。このステッパの光源は、近年のLSIの高集積化
にともなってg線(436nm)からi線(365n
m)、さらにはKrF(248nm)やArF(193
nm)エキシマレーザへと短波長化が進められている。
2. Description of the Related Art Conventionally, in an optical lithography technique for exposing and transferring a fine pattern of an integrated circuit onto a wafer such as silicon, an exposure apparatus called a stepper is used. The light source of this stepper has been changed from g-line (436 nm) to i-line (365n) with the recent high integration of LSI.
m), KrF (248 nm) and ArF (193 nm).
nm) Excimer lasers are being shortened in wavelength.

【0003】一般に、ステッパの照明系あるいは投影レ
ンズとして用いられる光学素材としては、i線よりも短
い波長領域での高透過率および耐紫外線性が要求される
ことから、合成石英ガラスが用いられる。しかしなが
ら、石英ガラスであっても、真空紫外域になると、様々
な要因による吸収が生じる。ステッパのような高精度の
光学系の場合、このような吸収が微少なものであって
も、吸収により生じる発熱や蛍光により光学性能の低下
が問題になる。
In general, synthetic quartz glass is used as an optical material used as an illumination system of a stepper or a projection lens, since high transmittance and ultraviolet resistance in a wavelength region shorter than i-line are required. However, even in the case of quartz glass, absorption is caused by various factors in the vacuum ultraviolet region. In the case of a high-precision optical system such as a stepper, even if such absorption is very small, there is a problem in that optical performance is degraded due to heat generated by absorption and fluorescence.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、上記従
来の石英ガラスには以下のような問題点があり、特に真
空紫外線に対する透過率及び耐紫外線に関して未だ十分
な特性を達成するには至っていないことを見いだした。
すなわち、真空紫外域における光リソグラフィ技術にお
いては、i線やKrFエキシマレーザと比較してエネル
ギーが高いため、レンズ等の材料に対する負担も極めて
大きい。このため、従来の合成石英ガラスを使用したレ
ンズ、光学系の寿命が短く、光学系の性能低下も著しか
った。
SUMMARY OF THE INVENTION The present inventors have found that the above-mentioned conventional quartz glass has the following problems. Particularly, it is difficult to achieve sufficient characteristics with respect to the transmittance to vacuum ultraviolet rays and the resistance to ultraviolet rays. I found that it was not reached.
That is, in the photolithography technology in the vacuum ultraviolet region, the energy is higher than that of the i-line or the KrF excimer laser, so that the burden on the material such as the lens is extremely large. For this reason, the life of the lens and the optical system using the conventional synthetic quartz glass was short, and the performance of the optical system was significantly reduced.

【0005】真空紫外線の一種であるArFエキシマレ
ーザに対する耐久性には、石英ガラス中に含有される塩
素が非常に大きく関与している。石英ガラスに紫外領域
の光が作用すると、E’センターと呼ばれる5.8eV
の吸収帯が現れ紫外領域の透過率が著しく低下する。部
材中に存在する塩素も5.8eV吸収帯の前駆体となり
うることから極力減少させねばならない。従来から石英
ガラスの合成に用いられてきた四塩化ケイ素は、得られ
た石英ガラス部材中に30〜150ppm程度の塩素が
含有されてしまうため、完全に塩素を排除した石英ガラ
スに比べると耐紫外線性という面では劣っている。その
ため、近年有機ケイ素化合物を用いた石英ガラスの合成
が行われている。しかしながらこれら従来の技術では、
有機ケイ素化合物に含まれる炭素のガラス中への残留に
ついて何等考慮していない。
[0005] The durability of ArF excimer laser, which is a kind of vacuum ultraviolet ray, is greatly influenced by chlorine contained in quartz glass. When light in the ultraviolet region acts on quartz glass, 5.8 eV called an E 'center is obtained.
And the transmittance in the ultraviolet region is significantly reduced. Chlorine present in the member must also be reduced as much as possible because it can be a precursor of the 5.8 eV absorption band. Conventionally, silicon tetrachloride, which has been used for the synthesis of quartz glass, contains about 30 to 150 ppm of chlorine in the obtained quartz glass member. Sex is inferior. Therefore, synthesis of quartz glass using an organosilicon compound has recently been performed. However, in these conventional technologies,
No consideration is given to the carbon remaining in the glass contained in the organosilicon compound.

【0006】また、有機ケイ素化合物は合成時に用いる
火炎中で、加水分解反応と同時に酸化反応を起こすた
め、合成時の雰囲気は酸素過剰雰囲気にする必要があ
る。しかしながら、このような雰囲気での合成では紫外
線耐久性を向上させるために必要な因子である含有水素
分子濃度が、低下するという現象が見られる。そこで本
発明は、真空紫外域で光リソグラフィのような高精度な
光学系に使用可能な、真空紫外域の高透過率と高度の耐
紫外線性を兼ね備えた合成石英ガラスを得ることを目的
とする。
Further, since the organosilicon compound undergoes an oxidation reaction simultaneously with the hydrolysis reaction in the flame used during the synthesis, the atmosphere during the synthesis must be an oxygen-excess atmosphere. However, in the synthesis in such an atmosphere, a phenomenon is seen in which the concentration of contained hydrogen molecules, which is a factor necessary for improving the durability to ultraviolet light, decreases. Accordingly, an object of the present invention is to obtain a synthetic quartz glass having both high transmittance in the vacuum ultraviolet region and high ultraviolet resistance, which can be used for a high-precision optical system such as optical lithography in the vacuum ultraviolet region. .

【0007】[0007]

【課題を解決するための手段】そこで本発明らは、有機
ケイ素化合物を原料に用いた場合に真空紫外域で高透過
率を有し、かつ耐紫外線性を有する石英ガラスを得るた
めの手法について、鋭意研究を行った。その結果、合成
によって得られた部材に含有する炭素不純物から派生す
るフォルミルラジカル量(X線を0.1kW,22sec照射したと
きに発生する量)を減少させることが真空紫外域透過率
を向上させるために必要な条件であることを見いだし
た。フォルミルラジカル量を減少させるためにはバーナ
から噴出する酸水素ガスの比率をより酸素過剰にするこ
とが効果的であることがものの、この合成条件にて合成
を行うと、酸化性雰囲気が強く、紫外線耐久性を付与す
る水素分子濃度が小さくなる可能性が大きいため、それ
を補うべく,それによって得られた石英ガラスに水素雰
囲気熱処理をする必要が出てくる。しかしながら、水素
雰囲気熱処理は不純物の混入等の二次的な要因により汚
染される可能性がある。また、水素分子濃度が少なくな
ると言うことは、逆相関を持つ水酸基濃度が多くなると
言うことにつながるため、エキシマレーザ照射により生
じる屈折率上昇や歪みの生成にあまり芳しくない影響を
もたらす。このため、合成のみで水酸基濃度が少なく、
かつX線照射により生成するフォルミルラジカル量が少
なく、含有水素分子濃度が大きい石英ガラスの合成法の
出現が望まれていた。これらのことについて、詳細に検
討した結果、本発明に用いたバーナ構造では、水酸基濃
度を支配している要因が第二の管と第三の管の酸水素ガ
ス比率であり、生成フォルミルラジカル量を支配してい
る要因が第二の管と第三の管の酸水素ガス比率及び第四
の管と第五の管の酸水素ガス比率であるという結論に至
った。すなわち、第二の管及び第三の管から流出する酸
水素ガスにより原料である有機ケイ素化合物を酸化・加
水分解しOH基濃度の少ないSiO2微粒子が生成し、さらに
第四の管及び第五の管から流出する酸水素ガスによりそ
の微粒子が酸化されて完全燃焼する。これを効率よく行
わせるためには第二の管から噴出する水素ガス量(a)と
第三の管から噴出する酸素ガス量(b)との比(b/a)が0.50
以下で、かつ第四の管から噴出する水素ガス量(c)と第
五の管から噴出する酸素ガス量(d)との比(d/c)が0.55以
上が必須となることが判明した。
Accordingly, the present invention relates to a method for obtaining quartz glass having a high transmittance in a vacuum ultraviolet region and an ultraviolet resistance when an organosilicon compound is used as a raw material. , Earnestly studied. As a result, reducing the amount of formyl radicals (the amount generated when X-rays are irradiated at 0.1 kW for 22 sec) derived from carbon impurities contained in the component obtained by synthesis improves the vacuum ultraviolet transmittance. Was found to be a necessary condition. In order to reduce the amount of formyl radicals, it is effective to make the ratio of oxyhydrogen gas ejected from the burner more oxygen-rich, but when the synthesis is performed under these synthesis conditions, the oxidizing atmosphere becomes stronger. In addition, since there is a great possibility that the concentration of hydrogen molecules imparting UV durability is reduced, it is necessary to perform a heat treatment in a hydrogen atmosphere on the quartz glass obtained in order to compensate for the decrease. However, the hydrogen atmosphere heat treatment may be contaminated by secondary factors such as mixing of impurities. Also, a decrease in the concentration of hydrogen molecules leads to an increase in the concentration of hydroxyl groups having an inverse correlation, which has a less favorable effect on the increase in the refractive index and the generation of distortion caused by excimer laser irradiation. For this reason, only the synthesis has a low hydroxyl group concentration,
In addition, it has been desired to develop a method for synthesizing quartz glass having a small amount of formyl radicals generated by X-ray irradiation and a high hydrogen molecule concentration. As a result of investigating these facts in detail, in the burner structure used in the present invention, the factor controlling the hydroxyl group concentration is the ratio of the oxyhydrogen gas in the second tube and the third tube, and the formed formyl radical It was concluded that the factors governing the amount were the oxyhydrogen gas ratio of the second and third tubes and the oxyhydrogen gas ratio of the fourth and fifth tubes. That is, the second tube and the organic silicon compound as a raw material is less SiO 2 particles oxidation and hydrolysis OH group concentration produced by oxyhydrogen gas flowing out from the third tube, and further a fourth tube and a fifth The fine particles are oxidized by the oxyhydrogen gas flowing out of the tube and completely burned. In order to perform this efficiently, the ratio (b / a) of the amount of hydrogen gas (a) ejected from the second tube to the amount of oxygen gas (b) ejected from the third tube is 0.50.
Below, it was found that the ratio (d / c) of the amount of hydrogen gas (c) ejected from the fourth tube to the amount of oxygen gas (d) ejected from the fifth tube (d / c) was required to be 0.55 or more. .

【0008】よって、本発明においては、有機ケイ素化
合物を原料に合成を行う際に用いる酸水素火炎のうち、
第二の管から噴出する水素ガス量(a)と第三の管から噴
出する酸素ガス量(b)との比(b/a)が0.50以下で、かつ第
四の管から噴出する水素ガス量(c)と第五の管から噴出
する酸素ガス量(d)との比(d/c)が0.55以上であることを
特徴とする。このようにすることにより、屈折率上昇量
等に大きな影響を及ぼす水酸基濃度を最適値に抑え、か
つ透過率に影響を及ぼすフォルミルラジカル量を低減さ
せ、さらにはエキシマレーザ照射により誘起される吸収
を低減させ得る量の水素分子濃度を含有させることがで
きる。
Therefore, in the present invention, among the oxyhydrogen flames used for synthesizing the organosilicon compound as a raw material,
The ratio (b / a) of the amount of hydrogen gas (a) ejected from the second tube to the amount of oxygen gas (b) ejected from the third tube is 0.50 or less, and the hydrogen gas ejected from the fourth tube The ratio (d / c) of the amount (c) to the amount (d) of oxygen gas ejected from the fifth pipe is 0.55 or more. By doing so, the hydroxyl group concentration, which greatly affects the amount of increase in the refractive index, is suppressed to the optimum value, the amount of formyl radicals, which affects the transmittance, is reduced, and the absorption induced by excimer laser irradiation is further reduced. Can be contained in an amount capable of reducing the hydrogen molecule concentration.

【0009】[0009]

【発明の実施の形態】本発明において、原料として用い
る有機ケイ素化合物としては、沸点が170℃以下の化合
物、例えばヘキサメチルジシロキサン,メチルトリメト
キシシラン,テトラメトキシシラン,オクタメチルシク
ロテトラシロキサン等が挙げられる。前述のように、真
空紫外域の透過率に対して、得られた石英ガラス中に含
有している炭素から派生するフォルミルラジカル量が影
響している。その全量を低減させるために、本発明では
酸化性火炎中で合成を行う。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as an organosilicon compound used as a raw material, a compound having a boiling point of 170 ° C. or lower, for example, hexamethyldisiloxane, methyltrimethoxysilane, tetramethoxysilane, octamethylcyclotetrasiloxane, etc. No. As described above, the amount of formyl radical derived from carbon contained in the obtained quartz glass affects the transmittance in the vacuum ultraviolet region. In order to reduce the total amount, in the present invention, the synthesis is performed in an oxidizing flame.

【0010】本発明に用いるバーナは、中心部に配置さ
れかつ原料を噴出するための第一の管と、該第一の管の
周囲に同心円状に配置されかつ水素ガスを噴出するため
の第二の管と、該第二の管の周囲に同心円状に配置され
かつ酸素ガスを噴出するための第三の管と、該第三の管
の周囲に同心円状に配置されかつ水素ガスを噴出するた
めの第四の管と、該第三の管の外周と該第四の管の内周
との間に配置されかつ酸素ガスを噴出するための複数の
第五の管と、該第四の管の周囲に同心円状に配置されか
つ水素ガスを噴出するための第六の管と、該第四の管の
外周と該第六の管の内周との間に配置されかつ酸素ガス
を噴出するための複数の第七の管と、を備えたバーナで
ある。このバーナは石英ガラス製で、各管から噴出され
るガスの流量、流速をそれぞれ独立して制御することが
可能である。このような制御は、例えばマスフローコン
トローラーを用いて行われる。
The burner used in the present invention is provided with a first pipe arranged at the center and for ejecting a raw material, and a second pipe arranged concentrically around the first pipe and ejecting hydrogen gas. A second tube, a third tube arranged concentrically around the second tube and for ejecting oxygen gas, and a concentrically arranged around the third tube and ejecting hydrogen gas And a plurality of fifth tubes arranged between the outer periphery of the third tube and the inner periphery of the fourth tube for ejecting oxygen gas; A sixth pipe arranged concentrically around the pipe and ejecting hydrogen gas, and disposed between the outer circumference of the fourth pipe and the inner circumference of the sixth pipe, and And a plurality of seventh tubes for spouting. This burner is made of quartz glass, and it is possible to independently control the flow rate and flow rate of the gas ejected from each tube. Such control is performed using, for example, a mass flow controller.

【0011】第一の管には、有機ケイ素化合物が導入さ
れる。有機ケイ素化合物自体が液体の場合、ベーパライ
ザにより原料を蒸気化した後、キャリアガスとともにマ
スフローコントローラーに送られる。キャリアガスとし
ては、窒素,ヘリウムなどの不活性ガスが用いられる。
本発明における実施例を以下に示す。
An organosilicon compound is introduced into the first tube. When the organic silicon compound itself is a liquid, the raw material is vaporized by a vaporizer and then sent to a mass flow controller together with a carrier gas. As a carrier gas, an inert gas such as nitrogen or helium is used.
Examples of the present invention will be described below.

【0012】実施例,比較例 高純度石英ガラスインゴットは、図に示すような石英ガ
ラス製バーナにて酸素ガス及び水素ガスを表1に示すよ
うな流量及び流速で燃焼させ、中心部から原料をキャリ
アガスで希釈して噴出させる、いわゆる酸水素火炎加水
分解法と呼ばれる方法により合成を行った。合成の際、
ガラスを積層させる不透明石英ガラス板からなるターゲ
ットを一定周期で回転及び揺動させ、さらに降下を同時
に行うことによりインゴットの上部の位置を常時バーナ
から一定に保った。
Examples and Comparative Examples A high-purity quartz glass ingot was prepared by burning oxygen gas and hydrogen gas at the flow rates and flow rates shown in Table 1 with a quartz glass burner as shown in the figure, and starting from the center. The synthesis was carried out by a method called a so-called oxyhydrogen flame hydrolysis method, which was diluted with a carrier gas and jetted out. During synthesis,
The target made of an opaque quartz glass plate on which the glass was laminated was rotated and rocked at a constant cycle, and simultaneously lowered, thereby keeping the position of the upper part of the ingot constant from the burner at all times.

【0013】[0013]

【表1】 [Table 1]

【0014】このようにして複数個のインゴットを合成
した。このインゴットから、テストピースを切り出し、
研磨をすることにより測定サンプルとした。表2にこの
測定の結果を示す。
Thus, a plurality of ingots were synthesized. From this ingot, cut out a test piece,
A measurement sample was obtained by polishing. Table 2 shows the results of this measurement.

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】上述のように、石英ガラスの合成に用い
るバーナ構造が中心部に配置されかつ有機ケイ素化合物
からなる原料を噴出するための第一の管と、該第一の管
の周囲に同心円状に配置されかつ水素ガスを噴出するた
めの第二の管と、該第二の管の周囲に同心円状に配置さ
れかつ酸素ガスを噴出するための第三の管と、該第三の
管の周囲に同心円状に配置されかつ水素ガスを噴出する
ための第四の管と、該第三の管の外周と該第四の管の内
周との間に配置されかつ酸素ガスを噴出するための複数
の第五の管と、該第四の管の周囲に同心円状に配置され
かつ水素ガスを噴出するための第六の管と、該第四の管
の外周と該第六の管の内周との間に配置されかつ酸素ガ
スを噴出するための複数の第七の管と、を備えたバーナ
であり、第二の管から噴出する水素ガス量(a)と第三の
管から噴出する酸素ガス量(b)との比(b/a)が0.50以下
で、かつ第四の管から噴出する水素ガス量(c)と第五の
管から噴出する酸素ガス量(d)との比(d/c)が0.55以上に
することで、真空紫外域の透過率が高く、紫外線耐久性
の高い塩素の含有していない石英ガラスを得ることがで
きた。
As described above, the burner structure used for the synthesis of quartz glass is disposed at the center and the first tube for ejecting the raw material composed of the organosilicon compound is provided around the first tube. A second tube arranged concentrically and for ejecting hydrogen gas; a third tube arranged concentrically around the second tube and ejecting oxygen gas; A fourth tube arranged concentrically around the tube and for ejecting hydrogen gas, and disposed between the outer periphery of the third tube and the inner periphery of the fourth tube and ejecting oxygen gas; A plurality of fifth tubes, a sixth tube arranged concentrically around the fourth tube and for ejecting hydrogen gas, an outer periphery of the fourth tube and the sixth tube. A plurality of seventh tubes disposed between the inner periphery of the tubes and for ejecting oxygen gas, and a second tube. The ratio (b / a) of the amount of hydrogen gas ejected from the pipe (a) to the quantity of oxygen gas ejected from the third pipe (b) is 0.50 or less, and the quantity of hydrogen gas ejected from the fourth pipe (c) By setting the ratio (d / c) of the oxygen gas amount (d) ejected from the fifth pipe to 0.55 or more, the transmittance in the vacuum ultraviolet region is high, and chlorine containing high ultraviolet durability is not contained. Quartz glass was obtained.

フロントページの続き Fターム(参考) 4G014 AH15 AH16 4G062 AA04 BB02 CC07 MM02 NN16 5H309 CC20 DD08 EE04 FF01 GG02 JJ06 Continued on the front page F term (reference) 4G014 AH15 AH16 4G062 AA04 BB02 CC07 MM02 NN16 5H309 CC20 DD08 EE04 FF01 GG02 JJ06

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】バーナから有機ケイ素化合物を噴出させ、
酸素及び水素を含む火炎中で加水分解あるいは酸化反応
させてガラス微粒子を得、該ガラス微粒子をバーナと相
対する耐熱性のターゲットに堆積させると同時に溶融し
て塩素が実質的に含有されていない石英ガラスを得る真
空紫外線用合成石英ガラスの製造方法であって、前記バ
ーナが中心部に配置されかつ有機ケイ素化合物からなる
原料を噴出するための第一の管と、該第一の管の周囲に
同心円状に配置されかつ水素ガスを噴出するための第二
の管と、該第二の管の周囲に同心円状に配置されかつ酸
素ガスを噴出するための第三の管と、該第三の管の周囲
に同心円状に配置されかつ水素ガスを噴出するための第
四の管と、該第三の管の外周と該第四の管の内周との間
に配置されかつ酸素ガスを噴出するための複数の第五の
管と、該第四の管の周囲に同心円状に配置されかつ水素
ガスを噴出するための第六の管と、該第四の管の外周と
該第六の管の内周との間に配置されかつ酸素ガスを噴出
するための複数の第七の管と、を備えたバーナであり、
第二の管から噴出する水素ガス量(a)と第三の管から噴
出する酸素ガス量(b)との比(b/a)が0.50以下で、かつ第
四の管から噴出する水素ガス量(c)と第五の管から噴出
する酸素ガス量(d)との比(d/c)が0.55以上であることを
特徴とする、紫外光用合成石英ガラスの製造方法。
1. An organic silicon compound is jetted from a burner,
Glass particles are obtained by hydrolysis or oxidation reaction in a flame containing oxygen and hydrogen, and the glass particles are deposited on a heat-resistant target opposed to a burner, and simultaneously fused to be substantially free of chlorine. A method for producing a synthetic quartz glass for vacuum ultraviolet rays for obtaining glass, wherein the burner is disposed at a central portion and a first tube for ejecting a raw material made of an organosilicon compound, and around the first tube. A second tube arranged concentrically and for ejecting hydrogen gas; a third tube arranged concentrically around the second tube and ejecting oxygen gas; A fourth tube arranged concentrically around the tube and for ejecting hydrogen gas, and disposed between the outer periphery of the third tube and the inner periphery of the fourth tube and ejecting oxygen gas; A plurality of fifth tubes and the fourth tube A sixth pipe arranged concentrically around and for ejecting hydrogen gas; and a sixth pipe arranged between the outer periphery of the fourth tube and the inner periphery of the sixth tube for ejecting oxygen gas. A burner comprising a plurality of seventh tubes;
The ratio (b / a) of the amount of hydrogen gas (a) ejected from the second tube to the amount of oxygen gas (b) ejected from the third tube is 0.50 or less, and the hydrogen gas ejected from the fourth tube A method for producing a synthetic quartz glass for ultraviolet light, wherein a ratio (d / c) of the amount (c) to the amount (d) of oxygen gas ejected from the fifth tube is 0.55 or more.
【請求項2】請求項1に記載の石英ガラスの製造方法に
おいて、前記有機ケイ素化合物が塩素を分子中に含有し
ていないアルコキシシラン類あるいはシロキサン類に含
まれる化合物であることを特徴とする、紫外光用合成石
英ガラスの製造方法。
2. The method for producing quartz glass according to claim 1, wherein the organosilicon compound is a compound contained in alkoxysilanes or siloxanes containing no chlorine in the molecule. A method for producing synthetic quartz glass for ultraviolet light.
【請求項3】請求項1に記載の石英ガラスの製造方法に
おいて、全体の酸素ガス量と全体の水素ガス量との比率
が0.53以上の火炎であることを特徴とする、紫外光用合
成石英ガラスの製造方法。
3. The synthetic quartz for ultraviolet light according to claim 1, wherein the ratio of the total amount of oxygen gas to the total amount of hydrogen gas is a flame of 0.53 or more. Glass manufacturing method.
【請求項4】請求項1に記載の石英ガラスの製造方法に
おいて、全体の酸素ガス量から第一の管から噴出する有
機ケイ素化合物の燃焼分を差し引いた酸素ガス量(e)と
全体の水素ガス量(f)との比率(e/f)が0.48以上であるこ
とを特徴とする、紫外光用合成石英ガラスの製造方法。
4. The method for producing quartz glass according to claim 1, wherein the amount of oxygen gas (e) obtained by subtracting the amount of combustion of the organosilicon compound ejected from the first tube from the total amount of oxygen gas and the total amount of hydrogen A method for producing a synthetic quartz glass for ultraviolet light, wherein a ratio (e / f) to a gas amount (f) is 0.48 or more.
【請求項5】請求項1に記載の製造方法により製造され
た合成石英ガラス光学部材であって、前記光学部材に含
まれる水素分子濃度が2x1017個/cm3以上であることを特
徴とする、合成石英ガラス部材。
5. A synthetic quartz glass optical member produced by the production method according to claim 1, wherein the concentration of hydrogen molecules contained in the optical member is 2 × 10 17 atoms / cm 3 or more. , Synthetic quartz glass members.
【請求項6】請求項1に記載の製造方法により製造され
た合成石英ガラス光学部材であって、前記光学部材に含
まれる水酸基濃度が1100ppm以下であることを特徴とす
る、合成石英ガラス部材。
6. A synthetic quartz glass optical member manufactured by the manufacturing method according to claim 1, wherein a concentration of a hydroxyl group contained in the optical member is 1100 ppm or less.
【請求項7】請求項1に記載の製造方法により製造され
た合成石英ガラス光学部材であって、前記光学部材に含
まれる炭素量が10ppm以下であることを特徴とする、合
成石英ガラス部材。
7. A synthetic quartz glass optical member manufactured by the manufacturing method according to claim 1, wherein the amount of carbon contained in the optical member is 10 ppm or less.
【請求項8】請求項1に記載の製造方法により製造され
た合成石英ガラス光学部材であって、前記光学部材にX
線を0.1kW,22sec照射したときに発生するフォルミルラ
ジカル量が2×1014/cm3以下であることを特徴とする、
合成石英ガラス部材。
8. A synthetic quartz glass optical member manufactured by the manufacturing method according to claim 1, wherein the optical member has X
0.1 kW, the amount of formyl radicals generated when irradiated for 22 sec is 2 × 10 14 / cm 3 or less,
Synthetic quartz glass member.
【請求項9】請求項1に記載の製造方法により製造され
た合成石英ガラス光学部材であって、前記光学部材のAr
Fエキシマレーザ波長での初期の内部透過率が99.5%以上
であることを特徴とする、合成石英ガラス部材。
9. A synthetic quartz glass optical member manufactured by the manufacturing method according to claim 1, wherein Ar of the optical member is
A synthetic quartz glass member having an initial internal transmittance of 99.5% or more at an F excimer laser wavelength.
【請求項10】請求項1に記載の製造方法により合成さ
れた合成石英ガラス光学部材であって、前記光学部材の
含有Na濃度が20ppb以下であることを特徴とする、合成
石英ガラス部材。
10. A synthetic quartz glass optical member synthesized by the manufacturing method according to claim 1, wherein the sodium concentration of the optical member is 20 ppb or less.
【請求項11】請求項1に記載の製造方法により合成さ
れた合成石英ガラス光学部材であって、前記光学部材に
ArFエキシマレーザを400mJ/cm2・p,1×106パルス照射
したときに誘起される吸収量が0.2/cm以下であることを
特徴とする、合成石英ガラス部材。
11. A synthetic quartz glass optical member synthesized by the manufacturing method according to claim 1, wherein the optical member is
A synthetic quartz glass member characterized in that the amount of absorption induced by irradiating an ArF excimer laser with 400 mJ / cm 2 · p, 1 × 10 6 pulses is 0.2 / cm or less.
【請求項12】請求項1に記載の製造方法により合成さ
れた合成石英ガラス光学部材であって、前記光学部材に
ArFエキシマレーザを400mJ/cm2・p,1×106パルス照射し
たときの屈折率上昇量が1.5×10-6以下であることを特
徴とする、合成石英ガラス部材。
12. A synthetic quartz glass optical member synthesized by the manufacturing method according to claim 1, wherein said optical member is
A synthetic quartz glass member characterized in that the amount of increase in the refractive index when irradiating an ArF excimer laser with 400 mJ / cm 2 · p, 1 × 10 6 pulses is 1.5 × 10 −6 or less.
【請求項13】請求項1に記載の製造方法により合成さ
れた合成石英ガラス光学部材であって、前記光学部材に
ArFエキシマレーザを400mJ/cm2・p,1x106パルス照射した
ときの最大歪量が2.5nm/cm以下であることを特徴とす
る、合成石英ガラス部材。
13. A synthetic quartz glass optical member synthesized by the manufacturing method according to claim 1, wherein the optical member is
A synthetic quartz glass member having a maximum strain of 2.5 nm / cm or less when irradiated with an ArF excimer laser at 400 mJ / cm 2 · p, 1 × 10 6 pulses.
JP11095982A 1999-03-10 1999-04-02 Production of synthetic quartz glass for ultraviolet ray and member obtained by using the same Pending JP2000290028A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11095982A JP2000290028A (en) 1999-04-02 1999-04-02 Production of synthetic quartz glass for ultraviolet ray and member obtained by using the same
US09/520,190 US6649268B1 (en) 1999-03-10 2000-03-07 Optical member made of silica glass, method for manufacturing silica glass, and reduction projection exposure apparatus using the optical member
EP00104522A EP1035078B1 (en) 1999-03-10 2000-03-10 Method for manufacturing silica glass
DE60027942T DE60027942T2 (en) 1999-03-10 2000-03-10 Method for producing quartz glass
US10/614,200 US20040095566A1 (en) 1999-03-10 2003-07-08 Optical member made of silica glass, method for manufacturing silica glass, and reduction projection exposure apparatus using the optical member
US11/168,851 US20050284177A1 (en) 1999-03-10 2005-06-29 Optical member made of silica glass, method for manufacturing silica glass, and reduction projection exposure apparatus using the optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11095982A JP2000290028A (en) 1999-04-02 1999-04-02 Production of synthetic quartz glass for ultraviolet ray and member obtained by using the same

Publications (1)

Publication Number Publication Date
JP2000290028A true JP2000290028A (en) 2000-10-17

Family

ID=14152370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11095982A Pending JP2000290028A (en) 1999-03-10 1999-04-02 Production of synthetic quartz glass for ultraviolet ray and member obtained by using the same

Country Status (1)

Country Link
JP (1) JP2000290028A (en)

Similar Documents

Publication Publication Date Title
US5679125A (en) Method for producing silica glass for use with light in a vacuum ultraviolet wavelength range
TW440548B (en) Synthetic silica glass optical member and method of manufacturing the same
JP4529340B2 (en) Synthetic quartz glass and manufacturing method thereof
EP1900694B1 (en) Method for making a synthetic quartz glass substrate for excimer lasers
US20080141717A1 (en) Burner for the Manufacture of Synthetic Quartz Glass
EP1035078B1 (en) Method for manufacturing silica glass
EP1067096B1 (en) Quartz glass members for excimer laser, and their method of manufacture
JPH09124337A (en) Method for manufacturing quartz glass optical member for ultraviolet laser
US6473226B1 (en) Silica glass member
JP2000143278A (en) Projection exposure device having enhanced durability and production of image forming optical system
EP0976687B1 (en) Synthetic fused silica member, method for producing the same and optical member for excimer laser
US6701752B2 (en) Synthesized silica glass optical member and method for manufacturing the same
JP3071362B2 (en) Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same
JP3705501B2 (en) Method for producing synthetic quartz glass member for excimer laser optical material
JP4496421B2 (en) Method for producing synthetic quartz glass
JPH11116248A (en) Synthetic quartz glass member
JP2000290028A (en) Production of synthetic quartz glass for ultraviolet ray and member obtained by using the same
WO2000048953A1 (en) Synthetic quartz glass optical member for ultraviolet light and reduction projection exposure system using the same
JP4320829B2 (en) Manufacturing method of synthetic quartz glass for ultraviolet and member obtained thereby
JPH1067521A (en) Fluorine containing quartz glass, production of the same, and projection recording system
JP3796653B2 (en) Fluorine-containing synthetic quartz glass and method for producing the same
JPH1129331A (en) Production of optical member of synthetic quartz glass, and optical member
JP3715163B2 (en) Synthetic quartz glass member for high-power ArF excimer laser and manufacturing method thereof
JP2566151B2 (en) Method for manufacturing laser optical system base material
JP4674972B2 (en) Synthetic quartz glass and manufacturing method thereof