JP2566151B2 - Method for manufacturing laser optical system base material - Google Patents
Method for manufacturing laser optical system base materialInfo
- Publication number
- JP2566151B2 JP2566151B2 JP63021362A JP2136288A JP2566151B2 JP 2566151 B2 JP2566151 B2 JP 2566151B2 JP 63021362 A JP63021362 A JP 63021362A JP 2136288 A JP2136288 A JP 2136288A JP 2566151 B2 JP2566151 B2 JP 2566151B2
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- optical system
- base material
- laser optical
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 61
- 239000000463 material Substances 0.000 description 29
- 230000003287 optical effect Effects 0.000 description 29
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 22
- 230000007547 defect Effects 0.000 description 22
- 239000001301 oxygen Substances 0.000 description 22
- 229910052760 oxygen Inorganic materials 0.000 description 22
- 238000000034 method Methods 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 14
- 239000004071 soot Substances 0.000 description 12
- 239000011521 glass Substances 0.000 description 10
- 230000001590 oxidative effect Effects 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 7
- 239000012535 impurity Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- 238000001308 synthesis method Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 3
- 206010021143 Hypoxia Diseases 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 150000003377 silicon compounds Chemical class 0.000 description 3
- 239000005049 silicon tetrachloride Substances 0.000 description 3
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000010436 fluorite Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000005304 optical glass Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
- H01S3/0305—Selection of materials for the tube or the coatings thereon
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1453—Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B32/00—Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/20—Doped silica-based glasses doped with non-metals other than boron or fluorine
- C03B2201/21—Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Glass Melting And Manufacturing (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Lasers (AREA)
Description
【発明の詳細な説明】 「産業上の利用分野」 本発明は、レーザステッパ装置、レーザ発振装置、レ
ーザー核融合装置等に用いるレンズ、窓部材、ミラー、
プリズム、フィルター等のレーザ光学系母材の製造方法
に係り、特に高出力の且つ短波長域のレーザ光に対し耐
久性と高品質性を保証し得るレーザ光学系母材の製造方
法に関する。DETAILED DESCRIPTION OF THE INVENTION “Industrial Application Field” The present invention relates to a lens, a window member, a mirror, which is used in a laser stepper device, a laser oscillator, a laser fusion device, and the like.
The present invention relates to a method for manufacturing a laser optical system base material such as a prism and a filter, and particularly to a method for manufacturing a laser optical system base material capable of ensuring durability and high quality with respect to laser light having a high output and a short wavelength range.
「従来の技術」 近年、ウエハ上に集積回路パターンをする描画するリ
ソグラフィ技術においてもその開発が急速に進み、例え
ば1MビットDRAMに対応するパターン線巾1μm,更には4M
ビットDRAMに対応するパターン線巾0.8μmと、より微
細な線幅が描画可能な技術が開発されつつあり、これら
の微細な線幅描画技術は、比較的高輝度の光源、高感度
レジスト、安定した光学材料がそろっている等超微細な
線幅描画を行う上で必要な種々の条件を備えている為に
一般に光リソグラフィーにより行われているが、該光リ
ソグラフィーは露光波長が大きいため、回折により解像
力が制限されるという問題がある。"Prior art" In recent years, development has rapidly progressed also in lithography technology for drawing an integrated circuit pattern on a wafer. For example, a pattern line width corresponding to 1 Mbit DRAM is 1 μm, and further 4 M
Pattern widths corresponding to bit DRAMs of 0.8 μm and technologies capable of drawing finer line widths are being developed. These fine line width drawing technologies are used for relatively high-intensity light sources, high-sensitivity resists, and stable It is generally performed by optical lithography because it has various conditions necessary for performing ultra-fine line width drawing such as complete optical materials. Therefore, there is a problem that the resolution is limited.
かかる問題の解決には、前記光リソグラフィーに用い
るレンズその他の光学系の高NA(開口数)化と光の短波
長化が考えられる。In order to solve such a problem, it is conceivable to increase the NA (numerical aperture) of the lens and other optical systems used for the photolithography and shorten the wavelength of light.
光学系の高NA化は、NA(開口数)0.4を超える時代に
入っており、又試作品としてNA0.6のレンズも開発され
ているが、高NA化に伴い焦点深度が浅くなる為にその解
像度の向上を図る為の高NA化には限界に来ている。The high NA of the optical system has entered the era of exceeding NA (numerical aperture) 0.4, and a lens with NA 0.6 has been developed as a prototype. However, as the NA increases, the depth of focus becomes shallower. There is a limit to increasing the NA to improve the resolution.
そこで、次に光の短波長化が検討されることになる。 Therefore, the shortening of the wavelength of light will be considered next.
しかしながら光の短波長化を図る為に、例えば略400
μm以下の紫外線を用いた場合は、従来の光学ガラスを
用いたレンズでは使用波長が365nm(i線)付近より光
透過率が急激に低下して、言い変えれば光吸収と該光吸
収による発熱が生じ、該レンズの焦点位置やその他の特
性を狂わせることになる。However, in order to shorten the wavelength of light, for example, approximately 400
When ultraviolet rays of μm or less are used, the light transmittance of the lens using the conventional optical glass decreases sharply from around the wavelength of 365 nm (i-line). In other words, light absorption and heat generation due to the light absorption. Occurs, and the focal position and other characteristics of the lens are disturbed.
かかる欠点を解消する為に前記レンズ材料を石英ガラ
スや蛍石に代える事が提示されているが、該石英ガラス
等を用いた場合通常の紫外線光では光スペクトル巾が広
いため色収差補正は大変困難である。It has been proposed to replace the lens material with quartz glass or fluorite in order to eliminate such drawbacks. However, when quartz glass or the like is used, it is very difficult to correct chromatic aberration due to the wide optical spectrum width of ordinary ultraviolet light. Is.
この為前記石英ガラス等に組み合わせてスペクトル巾
の狭いレーザー光、特に主として紫外域で発振する高出
力パルスレーザーでるエキシマレーザを使うことが考え
られ、かかるエキシマレーザーは発振効率とガス寿命の
点から、KrF(248nm),XeCl(308nm),ArF(193nm)が
有利である。For this reason, it is considered to use a laser beam having a narrow spectrum width in combination with the quartz glass or the like, particularly an excimer laser which is a high-power pulse laser that oscillates mainly in the ultraviolet region, and such an excimer laser is advantageous in terms of oscillation efficiency and gas life. KrF (248 nm), XeCl (308 nm), ArF (193 nm) are preferred.
しかしながら前記エキシマレーザはいずれも波長が35
0nm以下の短波長であるが故にこれら光学材料の屈折率
の均一性は従来の水銀灯の紫外線使用波長であるg線
(436nm)或いはi線(365nm)の場合に比較して1桁以
上高い(△n≒1×10-7〜1×10-6、△n:屈折率変動
幅)ものが要求されているが、前記レンズ材料の内、蛍
石については屈折率の均一性と最大寸法、加工時の吸湿
性と機械的強度に問題が多く残されており、この為短波
長域のレーザ光に対し耐久性と高品質性を保証し得るレ
ーザ光学系母材としては石英ガラス以外には見出せな
い。However, all the excimer lasers have a wavelength of 35
Because of the short wavelength of 0 nm or less, the uniformity of the refractive index of these optical materials is higher by one digit or more than that in the case of the g-line (436 nm) or i-line (365 nm), which is the wavelength of ultraviolet rays used in conventional mercury lamps. Δn≈1 × 10 −7 to 1 × 10 −6 , Δn: Refractive index fluctuation range) are required. Among the lens materials, for fluorite, the uniformity of the refractive index and the maximum dimension, There are still many problems in hygroscopicity and mechanical strength during processing.Therefore, as a laser optical system base material that can guarantee durability and high quality for laser light in the short wavelength range, other than quartz glass I can't find it.
「発明が解決しようとする課題」 しかしながら、前記のような短波長域のレーザー光源
を用いた場合、例えば石英ガラスを用いてレーザ光学系
を製作したとしても、エキシマレーザのような高出力パ
ルス光が長時間照射されると時間経過とともに、石英ガ
ラスレンズがダメージを受け、歪が入り複屈折が起こる
のみならず、前記レーザー光の長時間照射により、透過
率の低下、絶対屈折率の上昇、屈折率分布の変動が起こ
り、最終的にクラックが発生するという問題が派生す
る。特に、エキシマレーザーを用いたリソグラフィー用
の石英ガラスレンズに対しては、屈折率分布の△nが1
×10-6以下が好ましいとされており、前記のような石英
ガラスの光学的物性変化が起こると、レンズの光軸、焦
点位置が変動し、微細かつ鮮明パターンの形成が極めて
困難となる。[Problems to be Solved by the Invention] However, when a laser light source in the short wavelength range as described above is used, even if a laser optical system is manufactured using, for example, quartz glass, a high output pulsed light such as an excimer laser is used. Is irradiated for a long time, the quartz glass lens is damaged with time, distortion occurs and not only birefringence occurs, but also long-term irradiation with the laser beam causes a decrease in transmittance and an increase in absolute refractive index, This causes a problem that the refractive index distribution fluctuates and finally cracks occur. Particularly, for a quartz glass lens for lithography using an excimer laser, Δn of the refractive index distribution is 1
It is said that x10 -6 or less is preferable, and when the optical properties of the quartz glass are changed as described above, the optical axis and the focus position of the lens are changed, and it becomes extremely difficult to form a fine and clear pattern.
又、特に300nm以下の短波長レーザー光が照射される
と従来の光学ガラスより光学的安定性の高い石英ガラス
においても蛍光を発生し、特にエキシマレーザーステッ
パのように投影露光型の装置においては、レンズその他
の光学系から蛍光がレーザー光とともにウエハ上のフォ
トレジストに感応してしまい、鮮明パターンの形成が困
難となる。Further, particularly when irradiated with short-wavelength laser light of 300 nm or less, fluorescence is generated even in silica glass having higher optical stability than conventional optical glass, and particularly in a projection exposure type apparatus such as an excimer laser stepper, Fluorescence from the lens and other optical systems reacts with the laser light on the photoresist on the wafer, making it difficult to form a clear pattern.
一方、前記のようなレーザー光の照射により発生する
透過率の低下等の光学的物性の変化や蛍光の発生は一般
に、前記石英ガラス組織中に存在するLi,Na,Mg,Al,K,C
a,Ti,Cr,Mn,Fe,Co,Ni,Cu,Zn,Ge等の不純物金属元素に起
因するとされ、この為前記光リソグラフィーの開発にお
いて、高純度化されたSiCl4等のけい素化合物を用い
て、スート法あるいはプラズマ法等により金属元素の混
入を極力排除しながら極めて高純度の合成石英ガラスを
形成し、該石英ガラス材を母材として前記短波長レーザ
ー光用のレンズ等を製作し、前記欠点の解消を図った
が、なお高出力の短波長レーザー光用光学系として満足
が得られる結果が得られなかった。On the other hand, the change in optical properties such as a decrease in transmittance generated by the irradiation of laser light as described above and the generation of fluorescence are generally Li, Na, Mg, Al, K, C existing in the quartz glass structure.
a, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, etc., and is attributed to the impurity metal elements. Therefore, in the development of the photolithography, highly purified silicon compounds such as SiCl 4 are used. By using the soot method or plasma method to form a synthetic quartz glass of extremely high purity while eliminating the mixture of metal elements as much as possible, and using the quartz glass material as a base material, the lens for short wavelength laser light, etc. is manufactured. However, although the above-mentioned drawbacks have been solved, satisfactory results have not been obtained as an optical system for high-power short-wavelength laser light.
本発明はかかる従来技術の欠点に鑑み、高純度の石英
ガラス材を用いつつも該石英ガラス材に所定の熱処理を
施す事により、高出力の且つ短波長域のレーザ光に対し
耐久性と高品質性を保証し得るレーザ光学系母材の製造
方法を提供する事を目的とする。In view of the above-mentioned drawbacks of the prior art, the present invention performs high-purity quartz glass material while subjecting the quartz glass material to a predetermined heat treatment, so that it has high durability and high durability against laser light of high output and short wavelength range. An object of the present invention is to provide a method for manufacturing a laser optical system base material capable of guaranteeing quality.
「課題を解決する為の手段」 本発明はかかる技術的課題を達成する為に、例えば、
スート法あるいはプラズマ法等により石英ガラスを合成
して高純度の石英ガラス塊を形成した後、該高純度の石
英ガラス塊を酸化性又は還元性のいずれか一又は複数の
選択された雰囲気中で、前記石英ガラス塊を加熱処理し
て多数種類のレーザ光学系母材を形成し、該夫々の母材
を用いて製作した試験片に、エネルギー密度(J/cm2・p
ulse)と、総照射パルス数(pulse)を変化させた同一
波長域(248nm)の短波長エキシマレーザ光を照射さ
せ、その蛍光特性、透過率、屈折率変化、及びクラック
発生の有無について調査してみた所、前記試験片中に、
短波長域レーザー光に使用されるレーザー光学系の蛍光
発生を低減させ、屈折率、透過率等の安定性を向上させ
ることが出来、特に300nm以下の高出力レーザ用の光学
系母材として極めて好ましい結果が得られた。[Means for Solving the Problems] In order to achieve the above technical problems, the present invention provides, for example,
After synthesizing quartz glass by a soot method or a plasma method to form a high-purity quartz glass ingot, the high-purity quartz glass ingot is oxidized or reduced in one or more selected atmospheres. , A plurality of types of laser optical system preforms are formed by heat-treating the quartz glass block, and the energy density (J / cm 2
ulse) and short wavelength excimer laser light of the same wavelength range (248 nm) in which the total irradiation pulse number (pulse) is changed, and the fluorescence characteristics, transmittance, change in refractive index, and the presence of cracks are investigated. As a result, in the test piece,
It can reduce the fluorescence generation of the laser optical system used for short wavelength laser light and improve the stability of refractive index, transmittance, etc., and it is extremely useful as an optical system base material for high power lasers of 300 nm or less. Good results have been obtained.
そこで、前記好ましい結果が得られたレーザ光学系母
材とそれ以外の母材について分析を加えた所、 前記好ましい結果が得られた母材は加熱処理前の母材
に比していずれも石英ガラス組織(SiO2)中に存在する
酸素欠陥、具体的にはスート再溶融法により合成した合
成石英ガラス塊においては下記式で示される酸素欠損
型欠陥が、又プラズマ合成法により合成した合成石英ガ
ラス塊においては下記式で示される酸素過剰型欠陥が
実質的に除去されている事が確認された。Therefore, when the analysis was performed on the laser optical system base material from which the preferable result was obtained and the base material other than that, the base material from which the preferable result was obtained was quartz in comparison with the base material before the heat treatment. Oxygen defects existing in the glass structure (SiO 2 ), specifically, in the synthetic quartz glass block synthesized by the soot remelting method, oxygen deficiency type defects represented by the following formula It was confirmed that oxygen excess defects represented by the following formula were substantially removed from the glass gob.
ここでスート再溶融法により合成した合成石英ガラス
塊とは、例えばSiCl4その他の高純度の珪素化合物を、
火炎中での酸水素加水分解により多孔質シリカガラス体
(シリカガラススート体又は単にスート体という)を製
造した後、該多孔質シリカガラス体を1500〜1700℃前後
の温度で溶融透明固体化してなる合成石英ガラス材を示
し、一方プラズマ合成法により合成した合成石英ガラス
塊とは、高純度の珪素化合物を、プラズマ火炎中にて分
解、酸化処理してなる合成石英ガラス材を示す。Here, the synthetic quartz glass block synthesized by the soot remelting method is, for example, SiCl 4 or other high-purity silicon compound,
After producing a porous silica glass body (called silica glass soot body or simply soot body) by oxyhydrogen hydrolysis in a flame, the porous silica glass body is melted and solidified at a temperature of about 1500 to 1700 ° C. On the other hand, the synthetic quartz glass material synthesized by the plasma synthesis method means a synthetic quartz glass material obtained by decomposing and oxidizing a high-purity silicon compound in a plasma flame.
従って本発明は上述した知見と実験結果に基づいてな
されたものであり、その特徴とするところは、レーザ光
学系の母材となるべき高純度石英ガラス塊を形成した
後、酸化性又は還元性のいずれか一又は複数の選択され
た雰囲気中で、前記石英ガラス塊を加熱処理する事によ
り、該石英ガラス塊組織中に存在する酸素欠陥の実質的
な除去を図った点にある。 Therefore, the present invention has been made on the basis of the above-mentioned findings and experimental results, and is characterized by the fact that after forming a high-purity quartz glass ingot to be a base material of a laser optical system, it is oxidized or reduced. The point is that the quartz glass ingot is subjected to heat treatment in any one or a plurality of selected atmospheres to substantially remove oxygen defects existing in the quartz glass ingot structure.
即ち具体的には、第1の発明においてはレーザ光学系
の母材となるべき高純度石英ガラス塊をプラズマ合成法
により合成した後、該合成石英ガラス塊を還元性雰囲気
中で加熱処理する事により、前記石英ガラス塊組織中に
存在する酸素欠陥の実質的な除去を図る事を特徴とす
る。That is, specifically, in the first invention, after a high-purity quartz glass ingot to be a base material of a laser optical system is synthesized by a plasma synthesis method, the synthetic quartz glass ingot is heat-treated in a reducing atmosphere. By this, the oxygen defects existing in the quartz glass ingot structure are substantially removed.
第2発明においては、レーザ光学系の母材となるべき
高純度石英ガラス塊をスート再溶融法により合成した
後、該合成石英ガラス塊を酸化性雰囲気中で加熱処理す
る事により、前記石英ガラス塊組織中に存在する酸素欠
陥の実質的な除去を図る事を特徴とする。In the second invention, after the high-purity quartz glass ingot to be the base material of the laser optical system is synthesized by the soot remelting method, the synthetic quartz glass ingot is heat-treated in an oxidizing atmosphere to obtain the quartz glass. It is characterized in that the oxygen defects existing in the lump structure are substantially removed.
第3発明については、レーザ光学系の母材となるべき
高純度石英ガラス塊をスート再溶融法により合成した
後、該合成石英ガラス塊を酸化性雰囲気中で加熱処理し
た後、更に還元性雰囲気で熱処理する事により、前記石
英ガラス塊組織中に存在する酸素欠陥の実質的な除去を
図る事を特徴とする。In the third invention, after a high-purity quartz glass ingot to be a base material of a laser optical system is synthesized by a soot remelting method, the synthetic quartz glass ingot is heat-treated in an oxidizing atmosphere, and then in a reducing atmosphere. It is characterized in that the oxygen deficiency existing in the quartz glass lump structure is substantially removed by the heat treatment in step 1.
すなわち、第3発明は酸素欠陥型の石英ガラスを酸化
熱処理し、若干の酸素過剰型欠陥を持つ石英ガラスと変
えた後、水素雰囲気で熱処理することにより、過剰酸素
の大部分をOH基に変化させて耐エキシマレーザ性を向上
させるものである。That is, according to the third aspect of the present invention, most of the excess oxygen is converted to OH groups by subjecting oxygen-deficient quartz glass to oxidative heat treatment, changing it to quartz glass having some oxygen-excessive defects, and then heat-treating it in a hydrogen atmosphere. Thus, the excimer laser resistance is improved.
加熱処理の温度は500〜1500℃の間で任意に選択する
ことが望ましく、500℃より低い温度では酸素欠陥の除
去が困難となるし、一方1500℃よりも高い温度にしても
更に効果が向上するわけでもなく、かえってガラス塊変
形の不利が生じる。It is desirable to arbitrarily select the temperature of heat treatment between 500 and 1500 ° C, and it becomes difficult to remove oxygen defects at a temperature lower than 500 ° C, while the effect is further improved if the temperature is higher than 1500 ° C. However, the disadvantage of deforming the glass lumps occurs.
酸素欠陥の存在が何故光学特性に悪影響を及ぼすかそ
の理由についてはさだかではないが、下記の理由による
ものと推定される。The reason why the presence of oxygen defects adversely affects the optical properties is not critical, but it is presumed that the reason is as follows.
即ちガラス組織中に、不純物に加えて酸素欠陥が存在
すると、前記ガラス組織を構成する元素間の結合が、理
想的石英ガラスの元素間の結合に比較して弱くなり、該
レーザー光のエネルギーにより結合が切断されやすくな
り、そして石英ガラスの元素間の結合が切断されること
により密度変化を起こし、屈折率を変化させるものと推
定される。又同様に不純物もしくは酸素欠陥の存在が前
駆体となり、レーザー光照射後各種のカラーセンターを
形成し、透過率の低下をもたらし、更に不純物元素の存
在及び前記カラーセンターの形成に伴って、レーザー照
射中の石英ガラスの蛍光波長と強度が決り、これにより
蛍光が発生し易くなるものと思慮される。That is, in the glass structure, if oxygen defects are present in addition to impurities, the bond between the elements constituting the glass structure becomes weaker than the bond between the elements of the ideal quartz glass, and the energy of the laser light causes It is presumed that the bonds are easily broken, and the bonds between the elements of the quartz glass are broken, causing a density change and changing the refractive index. Similarly, the presence of impurities or oxygen vacancies serves as a precursor to form various color centers after laser light irradiation, resulting in a decrease in transmittance. Further, the presence of impurity elements and the formation of the color centers causes laser irradiation. It is considered that the fluorescence wavelength and intensity of the quartz glass inside are determined, and this facilitates the generation of fluorescence.
そして本発明を円滑に達成し得る上で好ましい酸素欠
陥の低減程度は、下記実施例に記載した実験結果によれ
ば、下記Shelby(1980)法を参考にして前記ガラス組織
中の欠損酸素原子濃度及び過剰酸素原子濃度を測定した
場合その測定値が検出限界以下、具体的には理想的なガ
ラス組織(SiO2)に対し不足又は過剰の酸素原子数が、
ガラス1g中おおむね1017個以下であるものがよいと推測
される。And in order to achieve the present invention smoothly, the preferred degree of reduction of oxygen defects is based on the experimental results described in the following examples, the concentration of deficient oxygen atoms in the glass structure with reference to the following Shelby (1980) method. And, when the concentration of excess oxygen atoms is measured, the measured value is below the detection limit, specifically, the number of oxygen atoms insufficient or excessive with respect to the ideal glass structure (SiO 2 ) is
It is presumed that it is preferable that there are approximately 10 17 or less in 1 g of glass.
ちなみに酸素過剰型欠陥の場合過剰の酸素原子濃度10
17個(ガラス1g当り)は約3ppmに相当し、又これが1019
個であると約300ppmに相当する。By the way, in the case of oxygen excess type defects, excess oxygen atom concentration 10
17 pieces (per 1g of glass) correspond to about 3ppm, and this is 10 19
When it is an individual, it corresponds to about 300 ppm.
尚、酸素過剰型欠陥は、高温で水素と反応させた時発
生するOH基の赤外吸収ピークの増大を測定することによ
り検知出来、酸素欠損型欠陥は、真空紫外域7.6eV(163
nm)の吸収ピークの存在、及び高温で酸素と反応させた
時減少する7.6eV吸収ピークを測定することにより検知
出来る。Oxygen-excessive defects can be detected by measuring the increase in the infrared absorption peak of the OH group generated when they are reacted with hydrogen at a high temperature, and oxygen-deficient defects can be detected in the vacuum ultraviolet region of 7.6 eV (163
(nm) absorption peak and the 7.6 eV absorption peak that decreases when reacted with oxygen at high temperature can be detected.
「実施例」 本発明に至った経過を具体的な実験例に基づいて説明
する。[Examples] The process leading to the present invention will be described based on specific experimental examples.
原料四塩化ケイ素を蒸留処理して不純物を除去させた
後、テフロンライニング付ステンレス製容器に貯溜した
高純度四塩化ケイ素を用意し、該高純度の四塩化ケイ素
原料を用いて、アルゴンプラズマ合成法とCVDスート再
溶融合成法にて、2種類の高純度石英ガラス塊を夫々複
数個合成する。この場合前記石英ガラス塊においては、
スート法及びプラズマ法のいずれの石英ガラス塊につい
てもFe,Mg,Al,Li,Na,K,Ca,Ti,Cr,Cu等の金属元素不純物
含有量は検出限界以下であった。After the raw material silicon tetrachloride is distilled to remove impurities, high-purity silicon tetrachloride stored in a stainless steel container with Teflon lining is prepared, and an argon plasma synthesis method is performed using the high-purity silicon tetrachloride raw material. By using the CVD soot remelting synthesis method, two kinds of high-purity quartz glass lumps are respectively synthesized. In this case, in the quartz glass block,
The content of metallic element impurities such as Fe, Mg, Al, Li, Na, K, Ca, Ti, Cr and Cu was below the detection limit in both soot method and plasma method.
次に、前記2種類の夫々複数の石英ガラス塊の内、一
部の石英ガラス塊を残して他の石英ガラス塊を順次雰囲
気加熱炉内の石英ガラスチャンバー内に設置して、アル
ゴンガスもしくはチッ素ガスで稀釈した酸素ガス、もし
くは水素ガスの濃度と熱処理温度を選択的に変化させな
がら、一部の石英ガラス塊は酸化性雰囲気で約1000℃前
後の加熱処理を熱処理し、又同様に一部の石英ガラス塊
は還元性雰囲気で約1000℃前後の加熱処理で熱処理を行
った。Next, among the plurality of quartz glass ingots of each of the above-mentioned two types, some quartz glass ingots are left and other quartz glass ingots are sequentially installed in a quartz glass chamber in an atmosphere heating furnace, and an argon gas or a chip is used. While selectively changing the concentration of oxygen gas or hydrogen gas diluted with elementary gas and the heat treatment temperature, some quartz glass ingots were heat-treated at about 1000 ° C. in an oxidizing atmosphere, or similarly heat-treated. The quartz glass ingot of this part was heat-treated in a reducing atmosphere by heat treatment at about 1000 ° C.
そして、このようにして形成した加熱処理後の又加熱
処理前の合成石英ガラス塊を30×20×10mmの寸法に切断
し、かつ両面鏡面仕上げを行ってエキシマレーザ照射実
験用試験片を各々9個作成する。Then, the synthetic quartz glass block after the heat treatment and before the heat treatment thus formed was cut into a size of 30 × 20 × 10 mm, and double-sided mirror finishing was performed to obtain test pieces for excimer laser irradiation experiment 9 times each. Create one.
次にこれらの各9個の試験片に対して、248nm(KrF)
の波長域を有するレーザ光について、パルス当りエネル
ギー密度200,400,600(mJ/cm2・pulse)、及び照射パル
ス数1×104、1×105、1×106(pulse)の組合せから
成る照射条件にて照射を行った。Then, for each of these 9 test pieces, 248 nm (KrF)
Irradiation conditions consisting of energy density per pulse of 200,400,600 (mJ / cm 2 · pulse) and number of irradiation pulses 1 × 10 4 , 1 × 10 5 , 1 × 10 6 (pulse) Irradiation was performed.
そして、前記照射終了後の各試験片について、干渉計
にて屈折率分布変化、透過率計にてソーラリゼーショ
ン、蛍光測定器にて蛍光強度測定を行い、その結果を下
記実験結果一覧表に示す。Then, for each test piece after the end of irradiation, the refractive index distribution change with an interferometer, the solarization with a transmittance meter, the fluorescence intensity was measured with a fluorescence measuring device, and the results are shown in the following experimental result list. Show.
下記一覧表より理解される如く、プラズマ法で合成さ
れた石英ガラス塊には、酸素過剰型欠陥が存在し、耐エ
キシマレーザ性は好ましい結果が得られなかったが、そ
の後この石英ガラス塊を還元性雰囲気にて熱処理し、酸
素欠陥濃度を検出限界以下まで実質的な除去を図る事に
より耐エキシマレーザ性を大幅に改善させることが出来
た。しかし、酸化性雰囲気にて熱処理したサンプルは、
酸素欠陥濃度が増大し耐エキシマレーザ性が大幅に悪化
することが明らかとなった(実験例1)〜4))。As can be understood from the table below, the quartz glass ingots synthesized by the plasma method had oxygen-excessive defects, and the excimer laser resistance was not favorable, but after that, the quartz glass ingots were reduced. It was possible to significantly improve the excimer laser resistance by carrying out heat treatment in a strong atmosphere and substantially removing the oxygen defect concentration below the detection limit. However, the sample heat treated in an oxidizing atmosphere,
It was revealed that the oxygen defect concentration was increased and the excimer laser resistance was significantly deteriorated (Experimental Examples 1 to 4)).
次に、スート再溶融法で合成された石英ガラス塊に
は、酸素欠損型欠陥が存在し、耐エキシマレーザ性は好
ましい結果が得られなかったが、その後その石英ガラス
塊を酸化性雰囲気にて熱処理し、酸素欠陥濃度を実質的
に除去させる事により耐エキシマレーザ性を大幅に改善
させることが出来た。しかし、還元性雰囲気にて熱処理
したサンプルは逆に酸素欠陥濃度が増大し耐エキシマレ
ーザ性が悪化することが明らかとなった(実験例5)〜
7))。Next, in the quartz glass ingot synthesized by the soot remelting method, oxygen deficiency type defects were present, and the excimer laser resistance was not favorable, but after that, the quartz glass ingot was exposed to an oxidizing atmosphere. It was possible to significantly improve the excimer laser resistance by heat treatment to substantially remove the oxygen defect concentration. However, it was revealed that, in the sample heat-treated in the reducing atmosphere, the oxygen defect concentration was increased and the excimer laser resistance was deteriorated (Experimental Example 5).
7)).
更に、実験例8)に示されるように、スート再溶融法
で合成された石英ガラス塊を一度酸化性雰囲気で熱処理
し、その後還元性雰囲気で熱処理して酸素欠陥濃度を検
出限界以下にしその実質的な除去を図る事により、耐エ
キシマレーザ性が向上することが認められた。Further, as shown in Experimental Example 8), the quartz glass ingot synthesized by the soot remelting method was heat-treated once in an oxidizing atmosphere and then in a reducing atmosphere to reduce the oxygen defect concentration to below the detection limit. It was confirmed that the excimer laser resistance is improved by the effective removal.
これは、以下のように推測される。すなわち、酸素欠
損型の石英ガラスを酸化熱処理し、若干の酸素過剰型欠
陥を持つ石英ガラスと変えた後、水素雰囲気で熱処理す
ることにより、過剰酸素の大部分をOH基に変化させため
耐エキシマレーザ性が向上したものと考えられる。This is presumed as follows. That is, the oxygen-deficient quartz glass is subjected to an oxidative heat treatment to change it to a quartz glass having some oxygen-excessive defects, and then heat-treated in a hydrogen atmosphere to change most of the excess oxygen into an OH group so that the excimer resistance is high. It is considered that the laser property is improved.
「発明の効果」 以上記載の如く本発明によれば、高純度の石英ガラス
材を用いつつも該石英ガラス材に特殊な処理を施す事に
より、高出力の且つ短波長域のレーザ光に対し耐久性と
高品質性を保証し得るレーザ光学系母材の製造方法を提
供し得、而も本発明に基づいて製造されたレーザ光学系
母材は、リソグラフィー装置その他の高集積回路製造装
置のみならず、レーザ核融合装置その他の高出力エキシ
マレーザーに使用されるレーザ光学系母材にも十分適用
可能である。 "Effects of the Invention" As described above, according to the present invention, by using a high-purity silica glass material and performing a special treatment on the silica glass material, a laser beam of high output and in a short wavelength range can be obtained. It is possible to provide a method for manufacturing a laser optical system base material capable of guaranteeing durability and high quality, and a laser optical system base material manufactured according to the present invention can be used only in a lithography apparatus or other highly integrated circuit manufacturing apparatus. Of course, the present invention is sufficiently applicable to laser fusion devices and other laser optical system base materials used in high-power excimer lasers.
等の種々の著効を有す。It has various remarkable effects.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特公 昭42−22634(JP,B2) 特公 昭61−45824(JP,B2) 電気学会研究会資料光・量子デバイス 研究会(1985−7−22発行)OQD−85 −48,P.15〜19 「ガラスハンドブック」初版(昭50. 9.30)朝倉書店P.1005 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References Japanese Patent Publication No. 42-22634 (JP, B2) Japanese Patent Publication No. 61-45824 (JP, B2) Institute of Electrical Engineers of Japan Material Optical and Quantum Device Study Group (1985-7- 22) OQD-85-48, P. 15-19 "Glass Handbook" First Edition (Sep. 50, September 30) Asakura Shoten P.P. 1005
Claims (3)
用されるレーザ光学系母材の製造方法において、 レーザ光学系の母材となるべき高純度石英ガラス塊をプ
ラズマ合成法により合成した後、該合成石英ガラス塊を
還元性雰囲気中で加熱処理する事により、前記石英ガラ
ス塊組織中に存在する酸素欠陥の実質的な除去を図る事
を特徴とするレーザ光学系母材の製造方法1. A method of manufacturing a laser optical system base material used for laser light in a specific wavelength range of about 400 nm or less, wherein a high-purity quartz glass ingot to be a base material of the laser optical system is synthesized by a plasma synthesis method. Then, the synthetic quartz glass gob is subjected to a heat treatment in a reducing atmosphere to substantially remove oxygen defects existing in the structure of the quartz glass gob, and a method for producing a laser optical system preform.
用されるレーザ光学系母材の製造方法において、 レーザ光学系の母材となるべき高純度石英ガラス塊をス
ート再溶融法により合成した後、該合成石英ガラス塊を
酸化性雰囲気中で加熱処理する事により、前記石英ガラ
ス塊組織中に存在する酸素欠陥の実質的な除去を図る事
を特徴とするレーザ光学系母材の製造方法2. A method of manufacturing a laser optical system base material used for laser light in a specific wavelength range of about 400 nm or less, wherein a high-purity silica glass block to be a base material of the laser optical system is synthesized by a soot remelting method. After that, the synthetic quartz glass ingot is subjected to heat treatment in an oxidizing atmosphere to substantially remove oxygen defects existing in the structure of the quartz glass ingot. Method
用されるレーザ光学系母材の製造方法において、 レーザ光学系の母材となるべき高純度石英ガラス塊をス
ート再溶融法により合成した後、該合成石英ガラス塊を
酸化性雰囲気中で加熱処理した後、更に還元性雰囲気で
熱処理する事により、前記石英ガラス塊組織中に存在す
る酸素欠陥の実質的な除去を図る事を特徴とするレーザ
光学系母材の製造方法3. A method of manufacturing a laser optical system base material used for laser light in a specific wavelength range of about 400 nm or less, wherein a high-purity quartz glass block to be a base material of the laser optical system is synthesized by a soot remelting method. After that, the synthetic quartz glass ingot is heat-treated in an oxidizing atmosphere, and then further heat-treated in a reducing atmosphere to substantially remove oxygen defects existing in the structure of the quartz glass ingot. For manufacturing laser optical system base material
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63021362A JP2566151B2 (en) | 1988-02-02 | 1988-02-02 | Method for manufacturing laser optical system base material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63021362A JP2566151B2 (en) | 1988-02-02 | 1988-02-02 | Method for manufacturing laser optical system base material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01197335A JPH01197335A (en) | 1989-08-09 |
JP2566151B2 true JP2566151B2 (en) | 1996-12-25 |
Family
ID=12052980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63021362A Expired - Lifetime JP2566151B2 (en) | 1988-02-02 | 1988-02-02 | Method for manufacturing laser optical system base material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2566151B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4011217B2 (en) * | 1998-12-25 | 2007-11-21 | 信越石英株式会社 | Manufacturing method of optical quartz glass for excimer laser |
DE10308466A1 (en) * | 2003-02-21 | 2004-09-02 | Carl Zeiss Smt Ag | Producing quartz glass material used in microlithography-projection devices comprises minimizing the amount of peroxide defects in the material |
JP5130735B2 (en) * | 2007-02-15 | 2013-01-30 | 住友電気工業株式会社 | Method for producing quartz glass molded article and quartz glass molded article |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6145824A (en) * | 1984-08-01 | 1986-03-05 | Nippon Kiki Kogyo Kk | Load handling apparatus |
-
1988
- 1988-02-02 JP JP63021362A patent/JP2566151B2/en not_active Expired - Lifetime
Non-Patent Citations (2)
Title |
---|
「ガラスハンドブック」初版(昭50.9.30)朝倉書店P.1005 |
電気学会研究会資料光・量子デバイス研究会(1985−7−22発行)OQD−85−48,P.15〜19 |
Also Published As
Publication number | Publication date |
---|---|
JPH01197335A (en) | 1989-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0720969B1 (en) | Silica glass, optical member including the same, and method for producing the same | |
KR100359947B1 (en) | Excimer laser and silica glass optical material for the same and its manufacturing method | |
EP0691312A1 (en) | Method for producing silica glass for use with light in a vacuum ultraviolet wavelength range, and silica glass and optical member produced by the method | |
JPH0388742A (en) | Synthetic silica glass optical body and its manufacturing method | |
JPWO2003091175A1 (en) | Synthetic quartz glass for optical members, projection exposure apparatus and projection exposure method | |
JPH0627014B2 (en) | Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof | |
JPH0627013B2 (en) | Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof | |
JP2566151B2 (en) | Method for manufacturing laser optical system base material | |
JPH06166522A (en) | Method for producing optical member for ultraviolet resistant laser | |
JP4323319B2 (en) | Fused silica containing aluminum | |
JPH01212247A (en) | Production of base material for laser optical system | |
EP1130000A1 (en) | Synthesized silica glass optical member and method for manufacturing the same | |
JPH0648734B2 (en) | Optical components for laser light | |
JPH0624997B2 (en) | Optical components for laser light | |
US6835683B2 (en) | Quartz glass member and projection aligner | |
KR20040075015A (en) | Fused silica containing aluminum | |
JP4228493B2 (en) | Synthetic quartz glass | |
JPH11116248A (en) | Synthetic quartz glass member | |
JPH0825773B2 (en) | Manufacturing body of laser optical system | |
JPH0761823A (en) | Production of silica glass having ultraviolet resistance and silica glass optical member | |
JP2652847B2 (en) | Optical system member for laser beam and optical system member for lithographic apparatus | |
JPH01167258A (en) | Element assembly of laser optical system | |
JP4674972B2 (en) | Synthetic quartz glass and manufacturing method thereof | |
JP4093393B2 (en) | Highly homogeneous synthetic quartz glass for vacuum ultraviolet light, method for producing the same, and mask substrate for vacuum ultraviolet light using the same | |
JP4166456B2 (en) | Synthetic quartz glass for vacuum ultraviolet light, manufacturing method thereof, and mask substrate for vacuum ultraviolet light using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071003 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081003 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081003 Year of fee payment: 12 |