JP2000249520A - Method for measuring thickness of multilayer thin film - Google Patents
Method for measuring thickness of multilayer thin filmInfo
- Publication number
- JP2000249520A JP2000249520A JP11055929A JP5592999A JP2000249520A JP 2000249520 A JP2000249520 A JP 2000249520A JP 11055929 A JP11055929 A JP 11055929A JP 5592999 A JP5592999 A JP 5592999A JP 2000249520 A JP2000249520 A JP 2000249520A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- thickness
- dielectric layer
- value
- recording layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims description 57
- 230000003287 optical effect Effects 0.000 claims abstract description 100
- 230000003595 spectral effect Effects 0.000 claims abstract description 60
- 239000000758 substrate Substances 0.000 claims abstract description 53
- 239000002184 metal Substances 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000013078 crystal Substances 0.000 claims abstract description 5
- 239000010408 film Substances 0.000 claims description 94
- 238000004364 calculation method Methods 0.000 claims description 11
- 230000014509 gene expression Effects 0.000 abstract description 15
- 229920005668 polycarbonate resin Polymers 0.000 abstract description 10
- 239000004431 polycarbonate resin Substances 0.000 abstract description 10
- 239000000470 constituent Substances 0.000 abstract 1
- 238000005286 illumination Methods 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 17
- 238000002425 crystallisation Methods 0.000 description 9
- 230000008025 crystallization Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000001737 promoting effect Effects 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000001678 irradiating effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910000618 GeSbTe Inorganic materials 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000013041 optical simulation Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910005900 GeTe Inorganic materials 0.000 description 1
- 101000854908 Homo sapiens WD repeat-containing protein 11 Proteins 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 102100020705 WD repeat-containing protein 11 Human genes 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Manufacturing Optical Record Carriers (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、光学情報記録媒
体を構成する各層の膜厚測定方法として好適な、多層薄
膜の膜厚測定方法に関する。The present invention relates to a method for measuring the thickness of a multilayer thin film, which is suitable as a method for measuring the thickness of each layer constituting an optical information recording medium.
【0002】[0002]
【従来の技術】光学情報記録媒体は、従来の記録媒体と
比較して記録密度が高いため、小さなサイズで記録容量
を大きくできることから注目され、これまでにも様々な
用途で使用されている。例えば、再生専用の光ディスク
としては、コンパクトディスクやデータ再生専用のCD
−ROM等があり、音楽分野、コンピュータ分野、ゲー
ム分野等において広く使用されている。また、一回だけ
記録可能な追記型光ディスクは、文書ファイリングシス
テム、データファイリングシステム等で特にデータのセ
キュリティが重要視される分野で利用されている。2. Description of the Related Art Optical information recording media have attracted attention because they have a higher recording density than conventional recording media and can be increased in recording capacity in a small size, and have been used in various applications. For example, as a read-only optical disk, a compact disk or a CD dedicated to data reproduction is used.
ROM, etc., which are widely used in the music field, computer field, game field, and the like. In addition, write-once optical discs that can be recorded only once are used in document filing systems, data filing systems, and the like, particularly in fields where data security is important.
【0003】さらに、記録された情報の消去と再記録が
できる書換え可能型光ディスクは、データの修復や更新
が可能であるとともに、書換えによって繰り返し使用で
きるため、光ディスクの用途拡大に貢献するものとして
期待される。このような書換え可能型光ディスクとして
は、これまでに光磁気ディスクや相変化型光ディスクが
実用化されており、データファイル等に使用されてい
る。[0003] Furthermore, rewritable optical discs capable of erasing and re-recording recorded information are expected to contribute to expanding the use of optical discs, because they are capable of restoring and updating data and can be used repeatedly by rewriting. Is done. As such rewritable optical disks, magneto-optical disks and phase-change optical disks have been put to practical use, and are used for data files and the like.
【0004】相変化型光ディスクの記録層材料として
は、GeSbTe系、GeTe系、TeSe系、TeO
x系、InSb系、InSbTe系、InSbTeAg
系等のカルコゲナイド系材料が一般的に知られている。
これらの材料は、結晶とアモルファスとの間を可逆的に
相転移できるため、この性質を利用して照射光の強度を
変化させることにより情報の記録および消去を行ってい
る。As a recording layer material of a phase change type optical disk, there are GeSbTe-based, GeTe-based, TeSe-based, and TeO-based.
x-based, InSb-based, InSbTe-based, InSbTeAg
Chalcogenide-based materials, such as those based on phenols, are generally known.
Since these materials can reversibly change phase between crystal and amorphous, information is recorded and erased by changing the intensity of irradiation light using this property.
【0005】一般的な相変化型光ディスクの層構造とし
ては、基板の一方の面に、第1誘電体層、記録層、第2
誘電体層、および熱伝達層を順次設けた4層構造が挙げ
られる。基板としては、ポリカーボネート樹脂、アクリ
ル系樹脂、エポキシ樹脂、ポリスチレン等のプラスチッ
ク材料からなるもの、あるいはガラス製のものがある
が、光学的特性および強度の面から、一般に、ポリカー
ボネート樹脂製の基板が使用されている。[0005] The layer structure of a general phase-change type optical disk includes a first dielectric layer, a recording layer, and a second layer on one surface of a substrate.
A four-layer structure in which a dielectric layer and a heat transfer layer are sequentially provided. As the substrate, there is a substrate made of a plastic material such as a polycarbonate resin, an acrylic resin, an epoxy resin, and polystyrene, or a substrate made of glass, but from the viewpoint of optical characteristics and strength, a substrate made of a polycarbonate resin is generally used. Have been.
【0006】第1および第2誘電体層は、水分等が記録
層へ進入することを防止するとともに、光干渉効果によ
って再生時の信号強度を大きくする目的で設けられてい
る。第1および第2誘電体層は、金属または半金属の酸
化物、フッ化物、窒化物、硫化物、炭化物およびホウ化
物や金属の無機物あるいは有機物、またはこれらの混合
物や複合材料等からなる。熱伝達層は、AlやAu等の
金属を主成分としている。The first and second dielectric layers are provided for the purpose of preventing moisture and the like from entering the recording layer and increasing the signal intensity during reproduction by the optical interference effect. The first and second dielectric layers are made of metal or metalloid oxides, fluorides, nitrides, sulfides, carbides and borides, inorganic or organic metals, or mixtures or composites thereof. The heat transfer layer contains a metal such as Al or Au as a main component.
【0007】また、この4層構造に加えて、記録層と第
1誘電体層または第2誘電体層との間に、記録層の結晶
化を促進させる結晶化促進層(金属窒化物あるいは金属
酸化物からなる層)を設けた5層構造の相変化型光ディ
スクもある。この結晶化促進層は、光ディスクシステム
の高速化および大容量化に伴い、微小な記録マークの消
去および形成が素早く行われるようにする目的で設けら
れている。[0007] In addition to the four-layer structure, a crystallization promoting layer (metal nitride or metal nitride) for promoting crystallization of the recording layer is provided between the recording layer and the first dielectric layer or the second dielectric layer. There is also a phase-change type optical disk having a five-layer structure provided with an oxide layer). This crystallization promoting layer is provided for the purpose of erasing and forming minute recording marks quickly with the increase in speed and capacity of the optical disk system.
【0008】このような相変化型光ディスクの各層は、
所望の光学的特性および熱的特性を得るために、所定の
膜厚に制御する必要がある。特に、記録層および誘電体
層の膜厚は、光ディスクの記録および消去特性に大きな
影響を与えるため、膜厚を正確に管理する事が必要とな
る。従来は、相変化型光ディスクの各層の膜厚測定を、
段差計あるいは蛍光X線装置等を用いて行っている。[0008] Each layer of such a phase-change type optical disk has
In order to obtain desired optical and thermal characteristics, it is necessary to control the thickness to a predetermined value. In particular, since the thicknesses of the recording layer and the dielectric layer greatly affect the recording and erasing characteristics of the optical disk, it is necessary to accurately control the thickness. Conventionally, the thickness measurement of each layer of the phase change optical disc
The measurement is performed using a step meter or a fluorescent X-ray device.
【0009】しかしながら、段差計を用いた方法では、
多層膜をなす各層の膜厚測定を積層状態で行うことが困
難であるため、1層毎に成膜しながら各層の膜厚を測定
している。したがって、膜厚測定時に製造条件の変更を
伴うことから、膜厚測定を行いながら連続生産を行う
と、生産効率が低下するという問題がある。また、成膜
する層の膜厚が段差計に適した膜厚でない場合には、膜
厚測定用に段差計に適した膜厚でこの層を成膜し、この
層の膜厚を測定する必要がある。この場合には、実際の
光ディスク各層の膜厚とは異なる膜厚の測定値に基づい
て、成膜速度を求めることになるため、その分の誤差を
伴うという問題がある。However, in the method using the step gauge,
Since it is difficult to measure the film thickness of each layer constituting the multilayer film in a laminated state, the film thickness of each layer is measured while forming each layer. Therefore, since the production conditions are changed at the time of measuring the film thickness, there is a problem that the production efficiency is reduced when the continuous production is performed while measuring the film thickness. If the thickness of the layer to be formed is not a thickness suitable for the step gauge, this layer is formed with a thickness suitable for the step gauge for measuring the thickness, and the thickness of the layer is measured. There is a need. In this case, the film formation rate is determined based on the measured value of the film thickness different from the actual film thickness of each layer of the optical disc, and thus there is a problem that an error corresponding thereto is involved.
【0010】蛍光X線装置を用いた方法では非破壊測定
ができないため、製品とともに膜厚測定用のサンプル基
板に成膜を行う必要がある。そのため、サンプル基板を
セットする手間がかかる。また、蛍光X線装置を用いた
方法では、二つの誘電体層が同じ材料で形成されている
場合に、第1誘電体層の膜厚が変化したのか、第2誘電
体層の膜厚が変化したのかの区別がしにくいという問題
もある。Since nondestructive measurement cannot be performed by a method using a fluorescent X-ray apparatus, it is necessary to form a film on a sample substrate for film thickness measurement together with a product. Therefore, it takes time to set the sample substrate. Further, in the method using the fluorescent X-ray device, when the two dielectric layers are formed of the same material, whether the thickness of the first dielectric layer has changed or the thickness of the second dielectric layer has changed. There is also a problem that it is difficult to distinguish whether it has changed.
【0011】このような問題点を解決できる膜厚測定法
として、特開平10−9829号公報には、多層薄膜の
分光反射率を測定し、反射率が極小である点の波長値
と、複数ある反射率の極大値とに基づいて、各層の膜厚
を測定する方法が開示されている。具体的には、反射率
が極小である点の波長値とその標準値との差異に基づい
て、基板上の第一番目の層の膜厚を求め、二つの反射率
の極大値とそれらの標準値との差異に基づいて、第二番
目および第三番目の層の膜厚を求めている。As a film thickness measuring method which can solve such a problem, Japanese Patent Application Laid-Open No. Hei 10-9829 discloses a method of measuring the spectral reflectance of a multilayer thin film, and determining the wavelength value at the point where the reflectance is minimum, and a plurality of wavelength values. A method for measuring the film thickness of each layer based on a certain maximum value of the reflectance is disclosed. Specifically, based on the difference between the wavelength value at the point where the reflectance is minimal and the standard value, the film thickness of the first layer on the substrate is obtained, and the maximum values of the two reflectances and their maximum values are calculated. The thicknesses of the second and third layers are obtained based on the difference from the standard value.
【0012】[0012]
【発明が解決しようとする課題】しかしながら、一般的
な相変化型光ディスク(ポリカーボネート樹脂製の基板
上に、上記4層または5層の薄膜が形成されているも
の)の場合には、特開平10−9829号公報に記載の
方法で各層の膜厚を精度良く測定することは困難であっ
た。その理由を以下に述べる。However, in the case of a general phase-change type optical disk (one in which the above four or five layers of thin films are formed on a substrate made of polycarbonate resin), Japanese Patent Laid-Open No. It was difficult to accurately measure the thickness of each layer by the method described in JP-A-9829. The reason is described below.
【0013】ポリカーボネート樹脂製の基板は、波長が
380nm未満となると透過率が急激に小さくなるた
め、380nmより低波長側では正確な反射率測定が困
難になる。また、一般的な相変化型光ディスクであっ
て、第1誘電体層の膜厚が比較的薄い(90〜110n
m)光ディスクの分光反射率は、図1に示すように、正
確な反射率が測定できる380nm以上800nm以下
の波長領域で、反射率の極大点は一つだけとなる。上記
公報に記載の方法では、第二番目および第三番目の層の
膜厚を求める際に反射率の極大値が二つ必要である。The transmittance of a substrate made of a polycarbonate resin sharply decreases when the wavelength is shorter than 380 nm, so that it is difficult to measure the reflectance accurately at a wavelength lower than 380 nm. Further, this is a general phase-change type optical disk, in which the film thickness of the first dielectric layer is relatively small (90 to 110n).
m) As shown in FIG. 1, the spectral reflectance of the optical disk has only one maximum reflectance point in a wavelength range from 380 nm to 800 nm where accurate reflectance can be measured. In the method described in the above-mentioned publication, two maximum values of the reflectance are required when obtaining the thicknesses of the second and third layers.
【0014】したがって、図1に示すような分光反射率
を有する相変化型光ディスクの場合には、上記公報に記
載の方法で、第二番目および第三番目の層の膜厚を精度
良く測定することはできない。また、一般的な相変化型
光ディスクであって第1誘電体層の膜厚が比較的薄い光
ディスクは、図1から分かるように、反射率の極小点が
高波長側にあり、高波長側では、波長の変化量に対する
反射率の変化量が小さいため、反射率が極小である点の
波長値に含まれる誤差が大きい。したがって、図1に示
すような分光反射率を有する相変化型光ディスクについ
て、上記公報に記載の方法で、反射率が極小である点の
波長値を使用して求めた第1番目の層の膜厚は、測定精
度が低い場合がある。Therefore, in the case of a phase change type optical disk having a spectral reflectance as shown in FIG. 1, the thicknesses of the second and third layers are accurately measured by the method described in the above publication. It is not possible. In addition, as can be seen from FIG. 1, a general phase-change type optical disk in which the first dielectric layer has a relatively small thickness has a minimum point of reflectance on the high wavelength side. Since the amount of change in the reflectance with respect to the amount of change in the wavelength is small, the error included in the wavelength value at the point where the reflectance is minimal is large. Therefore, for the phase-change optical disk having a spectral reflectance as shown in FIG. 1, the film of the first layer obtained by using the wavelength value at the point where the reflectance is minimum by the method described in the above publication. Thickness may have low measurement accuracy.
【0015】本発明は、このような従来技術の問題点に
着目してなされたものであり、ポリカーボネート樹脂製
の基板を有する一般的な相変化型光ディスクの場合で
も、多層薄膜の分光反射率に基づいて各層の膜厚を精度
良く測定できる方法を提供することを課題とする。The present invention has been made in view of such problems of the prior art. Even in the case of a general phase-change type optical disk having a substrate made of a polycarbonate resin, the spectral reflectivity of the multilayer thin film is reduced. It is an object to provide a method capable of accurately measuring the film thickness of each layer based on the method.
【0016】[0016]
【課題を解決するための手段】上記課題を解決するため
に、本発明は、基板上に積層された光学定数の異なる複
数の薄膜からなる多層薄膜の分光反射率を測定し、測定
された分光反射率の極大値および極小値と極大点の波長
値を、これらの値(反射率の極大値、反射率の極小値、
極大点の波長値)を変数とする、予め導出された各層の
膜厚算出式に代入して、各層の膜厚を算出することを特
徴とする多層薄膜の膜厚測定方法を提供する。In order to solve the above-mentioned problems, the present invention measures the spectral reflectance of a multilayer thin film composed of a plurality of thin films having different optical constants laminated on a substrate, and measures the measured spectral reflectance. The maximum value and the minimum value of the reflectance and the wavelength value of the maximum point are calculated by using these values (the maximum value of the reflectance, the minimum value of the reflectance,
Provided is a method for measuring the thickness of a multilayer thin film, characterized in that the thickness of each layer is calculated by substituting it into a previously calculated formula for calculating the thickness of each layer, using the wavelength value of the maximum point as a variable.
【0017】この方法によれば、分光反射率の極大点が
一つだけであって極小点も有する多層薄膜の各層の膜厚
を測定することができる。極小点が二つ以上ある場合に
は最も波長の長い極小点の極小値を使用する。この方法
で使用する膜厚算出式は、例えば、反射率の極大値、反
射率の極小値、および極大点の波長値が、それぞれ近似
的に各層の膜厚を変数とした一次式で表されることを利
用して、以下のようにして導出される。According to this method, it is possible to measure the thickness of each layer of the multilayer thin film having only one maximum point of the spectral reflectance and also having the minimum point. When there are two or more minimum points, the minimum value of the minimum point having the longest wavelength is used. The film thickness calculation formula used in this method is, for example, the maximum value of the reflectance, the minimum value of the reflectance, and the wavelength value of the maximum point are each represented by a linear expression in which the film thickness of each layer is approximately a variable. Using the fact, it is derived as follows.
【0018】先ず、同一の層構成で各層の膜厚が異なる
多数の多層薄膜の分光反射率を測定する。次に、得られ
た各分光反射率の極大値および極小値と極大点の波長値
を、これらの値と各層の膜厚との関係を近似的に示す3
つの一次式に代入し、これらの一次式にさらに各層の膜
厚値を代入して、残差が小さくなるように(例えば最小
二乗法で)各一次式の係数と定数を求める。これによ
り、3つの一次式を確定し、これら3つの一次式から各
層の膜厚算出式を導出する。First, the spectral reflectances of a number of multilayer thin films having the same layer structure but different thicknesses are measured. Next, the maximum value and the minimum value of each of the obtained spectral reflectances and the wavelength value of the maximum point are shown, and the relationship between these values and the film thickness of each layer is approximately shown.
Then, the coefficients and constants of each linear expression are determined so that the residual is reduced (for example, by the least squares method) by substituting the film thickness value of each layer into these linear expressions. As a result, three linear equations are determined, and a film thickness calculation equation for each layer is derived from these three linear equations.
【0019】本発明はまた、透明な基板の一方の面に、
少なくとも、第1誘電体層、照射光の強度に応じて結晶
とアモルファスとの間の相変化が生じる記録層、第2誘
電体層、および金属を主成分とする熱伝達層が順次積層
されている光学情報記録媒体の、第1誘電体層、記録
層、および第2誘電体層の膜厚を測定する多層薄膜の膜
厚測定方法において、下記のおよびをそれぞれ特徴
とする多層薄膜の膜厚測定方法を提供する。 記録層がアモルファス状態で、380nm以上800
nm以下の波長領域での分光反射率を基板側から測定
し、測定された分光反射率の極大値および極小値と極大
点の波長値を、これらの値(反射率の極大値、反射率の
極小値、極大点の波長値)を変数とする、予め導出され
た各層の膜厚算出式に代入して、各層の膜厚を算出す
る。 記録層がアモルファス状態で、380nm以上800
nm以下の波長領域での分光反射率を基板側から測定し
た後に、この記録層を結晶化し、記録層が結晶状態で同
じ波長領域での分光反射率を基板側から測定し、記録層
がアモルファス状態での分光反射率の極大値および極小
値と極大点の波長値と、記録層が結晶状態での分光反射
率の極大値とを、これらの値(記録層がアモルファス状
態での、分光反射率の極大値と極小値および極大点の波
長値、記録層が結晶状態での分光反射率の極大値)を変
数とする、予め導出された各層の膜厚算出式に代入し
て、各層の膜厚を算出する。[0019] The present invention also provides a transparent substrate on one side,
At least a first dielectric layer, a recording layer in which a phase change between crystal and amorphous occurs according to the intensity of irradiation light, a second dielectric layer, and a heat transfer layer mainly composed of metal are sequentially laminated. In the method for measuring the thickness of the first dielectric layer, the recording layer, and the second dielectric layer of the optical information recording medium, the thickness of the multilayer thin film is characterized by the following characteristics. Provide a measurement method. When the recording layer is in an amorphous state,
The spectral reflectance in the wavelength region of nm or less is measured from the substrate side, and the maximum value and the minimum value of the measured spectral reflectance and the wavelength value of the maximum point are determined by these values (the maximum value of the reflectance and the reflectance value). The film thickness of each layer is calculated by substituting the minimum value and the wavelength value at the maximum point into variables, which are derived in advance, into the equation for calculating the film thickness of each layer. When the recording layer is in an amorphous state,
After measuring the spectral reflectance in the wavelength region of nm or less from the substrate side, the recording layer is crystallized, and the recording layer is in a crystalline state, and the spectral reflectance in the same wavelength region is measured from the substrate side. The maximum value and the minimum value of the spectral reflectance in the state and the wavelength value of the maximum point, and the maximum value of the spectral reflectance in the crystalline state of the recording layer are represented by these values (the spectral reflectance in the amorphous state of the recording layer). The maximum value of the ratio, the minimum value, the wavelength value of the maximum point, and the maximum value of the spectral reflectance when the recording layer is in a crystalline state) are used as variables, and are substituted into the previously derived film thickness calculation formula of each layer. Calculate the film thickness.
【0020】上述のように、例えば、基板がポリカーボ
ネート製であって、第1誘電体層の膜厚が比較的薄い
(例えば90〜110nm)光学情報記録媒体は、38
0nm以上800nm以下の波長領域での分光反射率の
極大点および極小点が一つだけであって、極小点の波長
値の測定精度が低くなる。このような光学情報記録媒体
の場合でも、これらおよびの方法によれば、分光反
射率の極大値および極小値と極大点の波長値を使用して
各層の膜厚を算出するため、各層の膜厚を精度良く測定
することができる。As described above, for example, an optical information recording medium in which the substrate is made of polycarbonate and the first dielectric layer has a relatively small thickness (for example, 90 to 110 nm) is 38
There is only one maximum point and minimum point of the spectral reflectance in the wavelength region of 0 nm or more and 800 nm or less, and the measurement accuracy of the wavelength value of the minimum point is low. Even in the case of such an optical information recording medium, according to these methods, the film thickness of each layer is calculated by using the maximum value and the minimum value of the spectral reflectance and the wavelength value of the maximum point. The thickness can be accurately measured.
【0021】なお、基板がポリカーボネート製であっ
て、第1誘電体層の膜厚が130nm程度である光学情
報記録媒体の場合は、380nm以上800nm以下の
波長領域での分光反射率の極大点が一つだけで、極小点
は二つある。この場合には、長波長側の極小点の極小値
を使用する。また、の方法はの方法よりも各層の膜
厚算出式の変数が多いため、の方法はの方法よりも
膜厚の算出精度が高くなると考えられる。In the case where the substrate is made of polycarbonate and the thickness of the first dielectric layer is about 130 nm, the maximum point of the spectral reflectance in the wavelength region of 380 nm or more and 800 nm or less is obtained. There is only one and two minimum points. In this case, the minimum value of the minimum point on the long wavelength side is used. Further, the method of (1) has more variables in the equation for calculating the film thickness of each layer than the method of (1), and thus it is considered that the method of (2) has a higher accuracy in calculating the film thickness than the method of (2).
【0022】の方法で使用する膜厚算出式は、例えば
以下のようにして導出される。前記膜構成の光学情報記
録媒体の場合、膜厚が数nmと小さい範囲では、記録層
がアモルファス状態で測定された分光反射率において、
反射率の極大値(Rtop )、反射率の極小値(Rbot
)、および極大点の波長値(λtop )が、それぞれ近
似的に、第1誘電体層の膜厚(Td1)、第2誘電体層の
膜厚(Td2)、記録層の膜厚(Tr )を変数とした下記
の式(1)〜式(3)で表される。The formula for calculating the film thickness used in the above method is derived, for example, as follows. In the case of the optical information recording medium having the film configuration, in a range where the film thickness is as small as several nm, the recording layer has a spectral reflectance measured in an amorphous state.
The maximum value of the reflectance (Rtop) and the minimum value of the reflectance (Rbot)
) And the wavelength value (λtop) of the local maximum point are approximately the thickness of the first dielectric layer (Td1), the thickness of the second dielectric layer (Td2), and the thickness of the recording layer (Tr), respectively. Are represented by the following formulas (1) to (3), where
【0023】λtop =a×Td1+b……(1) Rtop =c×Td1+d×Tr +e×Td2+f……(2) Rbot =g×Td1+h×Tr +i×Td2+j……(3) そのため、先ず、同一の層構成で各層の膜厚を変えた多
数の光学情報記録媒体について、記録層がアモルファス
状態で前記波長領域で分光反射率を測定する。次に、得
られた各分光反射率の極大値(Rtop )、極小値(Rbo
t )、極大点の波長値(λtop )と、各層の膜厚値(T
d1,Td2,Tr )を、上記式(1)〜式(3)に代入し
て、残差が小さくなるように(例えば最小二乗法で)各
式の係数(a,c,d,e,g,h,i)と定数(b,
f,j)を求める。これにより式(1)〜式(3)を確
定する。Λtop = a × Td1 + b (1) Rtop = c × Td1 + d × Tr + e × Td2 + f (2) Rbot = g × Td1 + h × Tr + i × Td2 + j (3) Therefore, first, the same layer With respect to a large number of optical information recording media in which the thickness of each layer is changed in the configuration, the spectral reflectance is measured in the above wavelength region while the recording layer is in an amorphous state. Next, the maximum value (Rtop) and the minimum value (Rbo) of each obtained spectral reflectance
t), the wavelength value at the maximum point (λtop), and the film thickness value (T
d1, Td2, Tr) are substituted into the above equations (1) to (3), and the coefficients (a, c, d, e, g, h, i) and constants (b,
f, j). Thus, equations (1) to (3) are determined.
【0024】これら3つの式から、第1誘電体層の膜厚
(Td1)、第2誘電体層の膜厚(Td2)、記録層の膜厚
(Tr )を、極大値(Rtop )と極小値(Rbot )と極
大点の波長値(λtop )とで表す各膜厚の算出式が導出
される。の方法で使用する膜厚算出式は、例えば以下
のようにして導出される。前記膜構成の光学情報記録媒
体の場合、膜厚が数nmと小さい範囲では、記録層がア
モルファス状態で測定された分光反射率において、反射
率の極大値(Rtop )、反射率の極小値(Rbot )、お
よび極大点の波長値(λtop )が、それぞれ近似的に、
第1誘電体層の膜厚(Td1)、第2誘電体層の膜厚(T
d2)、記録層の膜厚(Tr )を変数とした上記式(1)
〜式(3)で表される。また、記録層が結晶状態で測定
された分光反射率については、反射率の極大値(Rtop-
c )が近似的に、第1誘電体層の膜厚(Td1)と記録層
の膜厚(Tr )を変数とした下記の式(4)で表され
る。From these three equations, the film thickness (Td1) of the first dielectric layer, the film thickness (Td2) of the second dielectric layer, and the film thickness (Tr) of the recording layer are defined as the maximum value (Rtop) and the minimum value. A formula for calculating each film thickness is represented by the value (Rbot) and the wavelength value (λtop) at the maximum point. The film thickness calculation formula used in the above method is derived, for example, as follows. In the case of the optical information recording medium having the above film configuration, in the range where the film thickness is as small as several nm, the maximum value of the reflectance (Rtop) and the minimum value of the reflectance (Rtop) in the spectral reflectance measured when the recording layer is in an amorphous state. Rbot) and the wavelength value of the maximum point (λtop) are approximately
The thickness of the first dielectric layer (Td1) and the thickness of the second dielectric layer (Td1)
d2), the above equation (1) using the recording layer thickness (Tr) as a variable
To (3). Also, regarding the spectral reflectance measured in a crystalline state of the recording layer, the maximum value of the reflectance (Rtop-
c) is approximately expressed by the following equation (4) using the thickness of the first dielectric layer (Td1) and the thickness of the recording layer (Tr) as variables.
【0025】 Rtop-c =p×Td1+q×Tr +s……(4) そのため、先ず、同一の層構成で各層の膜厚を変えた多
数の光学情報記録媒体について、記録層がアモルファス
状態で前記波長領域で分光反射率を測定する。次に、各
光学情報記録媒体の記録層を結晶化させた状態で前記波
長領域で分光反射率を測定する。Rtop-c = p × Td1 + q × Tr + s (4) Therefore, first, for a large number of optical information recording media having the same layer configuration and different thicknesses of the respective layers, the above-mentioned wavelength is obtained when the recording layer is in an amorphous state. Measure the spectral reflectance in the area. Next, the spectral reflectance is measured in the above wavelength range while the recording layer of each optical information recording medium is crystallized.
【0026】得られた各分光反射率の、記録層がアモル
ファス状態での極大値(Rtop )、極小値(Rbot )、
極大点の波長値(λtop )、記録層が結晶状態での極大
値(Rtop-c )と、各層の膜厚値(Td1,Td2,Tr )
を上記式(1)〜式(4)に代入して、残差が小さくな
るように(例えば最小二乗法で)各式の係数(a,c,
d,e,g,h,i,p,q)と定数(b,f,j,
s)を求める。これにより、式(1)〜式(4)を確定
する。For each of the obtained spectral reflectances, the maximum value (Rtop), the minimum value (Rbot) when the recording layer is in an amorphous state,
The wavelength value at the maximum point (λtop), the maximum value (Rtop-c) when the recording layer is in a crystalline state, and the film thickness values (Td1, Td2, Tr) of each layer.
Is substituted into the above equations (1) to (4), and the coefficients (a, c,
d, e, g, h, i, p, q) and constants (b, f, j,
s). As a result, equations (1) to (4) are determined.
【0027】これら4つの式から、第1誘電体層の膜厚
(Td1)、第2誘電体層の膜厚(Td2)、記録層の膜厚
(Tr )を、極大値(Rtop )と極小値(Rbot )と極
大点の波長値(λtop )と極大値(Rtop-c )とで表
す、各膜厚の算出式が導出される。光学情報記録媒体を
製造する際には、成膜前に、基板の一方の面(薄膜を形
成しない側の面であって、この面を「表面」、薄膜を形
成する側の面を「裏面」と定義する。)に透明な合成樹
脂からなる膜を設けて、成膜時に基板の表面に傷が生じ
ることを防止する場合がある。この膜はハードコートと
称され、通常は、紫外線硬化型樹脂を基板の表面に塗布
し、紫外線を照射して硬化させることによって形成され
る。このハードコートがある部分で分光反射率を測定す
ると、ハードコートの干渉により、光学情報記録媒体の
分光反射率は図2のようになって、分光反射率の正確な
測定がなされない。From these four equations, the film thickness (Td1) of the first dielectric layer, the film thickness (Td2) of the second dielectric layer, and the film thickness (Tr) of the recording layer are defined as the maximum value (Rtop) and the minimum value. A formula for calculating each film thickness is derived, which is represented by the value (Rbot), the wavelength value (λtop) of the maximum point, and the maximum value (Rtop-c). When manufacturing an optical information recording medium, one surface of the substrate (the surface on which the thin film is not formed, this surface is referred to as the “front surface” and the surface on which the thin film is formed is referred to as the “back surface” ) May be provided with a film made of a transparent synthetic resin to prevent the surface of the substrate from being damaged during the film formation. This film is called a hard coat, and is usually formed by applying an ultraviolet curable resin to the surface of the substrate and irradiating it with ultraviolet light to cure the resin. When the spectral reflectance is measured at the portion where the hard coat is present, the spectral reflectance of the optical information recording medium becomes as shown in FIG. 2 due to the interference of the hard coat, and the spectral reflectance is not accurately measured.
【0028】そのため、ハードコートを有する光学情報
記録媒体の場合には、ハードコート形成範囲を基板の表
面全体としないで、ハードコートを形成しない部分を裏
面側に薄膜が形成される範囲内に設ける。そして、基板
の平坦部であって、裏面に薄膜が形成されていて表面に
ハードコートが形成されていない領域内に、基板の表面
側から光を入射して分光反射率を測定する。これによ
り、光学情報記録媒体の分光反射率が正確に測定され
る。なお、前記領域の大きさは、使用する分光器のスポ
ットサイズよりも大きくする必要があり、例えば、直径
2mm以上の円より大きくすることが好ましい。Therefore, in the case of an optical information recording medium having a hard coat, the hard coat formation range is not set to the entire surface of the substrate, and the portion where the hard coat is not formed is provided in the range where the thin film is formed on the back surface side. . Then, light is incident from the front surface side of the substrate into a flat portion of the substrate where a thin film is formed on the back surface and a hard coat is not formed on the front surface, and the spectral reflectance is measured. Thereby, the spectral reflectance of the optical information recording medium is accurately measured. The size of the region needs to be larger than the spot size of the spectroscope to be used, and for example, is preferably larger than a circle having a diameter of 2 mm or more.
【0029】各層の膜厚に関しては、例えば、第1誘電
体層として、図3に示すような光学定数(N:屈折率、
K:消衰係数)のZnS−SiO2 からなる薄膜が形成
されている光学情報記録媒体の場合には、第1誘電体層
の膜厚が160nm以下になると、分光反射率の極大点
は一つだけになり、この膜厚が70nmより薄いと極大
点は380nmより低波長側に現れる。したがって、こ
のような第1誘電体層を有する光学情報記録媒体の場合
には、第1誘電体層の膜厚が70nm以上160nm以
下であると、本発明の方法により精度の高い膜厚測定が
行われる。Regarding the thickness of each layer, for example, as the first dielectric layer, the optical constants (N: refractive index,
K: In the case of the optical information recording medium in which a thin film made of ZnS-SiO 2 of the extinction coefficient) is formed, the film thickness of the first dielectric layer is equal to or less than 160 nm, the maximum point of the spectral reflectance one When the film thickness is smaller than 70 nm, the maximum point appears on the lower wavelength side than 380 nm. Therefore, in the case of an optical information recording medium having such a first dielectric layer, if the thickness of the first dielectric layer is 70 nm or more and 160 nm or less, highly accurate film thickness measurement can be performed by the method of the present invention. Done.
【0030】また、ポリカーボネート基板の上に、膜厚
100nmのZnS−SiO2 からなる第1誘電体層、
GeSbTeからなる記録層、膜厚20nmのZnS−
SiO2 からなる第2誘電体層、膜厚100nmのAl
合金からなる熱伝達層が順次形成された光ディスクにつ
いて、記録層の膜厚を変化させた場合の分光反射率の極
大値(Rtop )の変化を光学シミュレーションにより調
べた。その結果を図4にグラフで示す。A first dielectric layer made of ZnS-SiO 2 having a thickness of 100 nm is formed on a polycarbonate substrate.
GeSbTe recording layer, 20 nm thick ZnS-
Second dielectric layer made of SiO 2 , 100 nm thick Al
With respect to an optical disk on which a heat transfer layer made of an alloy was sequentially formed, a change in the maximum value (Rtop) of the spectral reflectance when the film thickness of the recording layer was changed was examined by optical simulation. The results are shown in a graph in FIG.
【0031】このグラフに示すように、記録層の膜厚が
15nm以上40nm以下の範囲では、記録層の膜厚の
変化に伴って反射率の極大値(Rtop )が大きく変化し
ており、この範囲内の数nmの領域に限ると、記録層の
膜厚と反射率の極大値(Rtop )とは近似的に一次の相
関がある。しかしながら、この範囲以外では記録層の膜
厚に対する反射率の極大値(Rtop )の変化率が小さ
い。したがって、上記膜構成を有する光学情報記録媒体
の場合には、記録層の膜厚が15nm以上40nm以下
であると、本発明の方法により精度の高い膜厚測定が行
われる。As shown in this graph, when the thickness of the recording layer is in the range of 15 nm or more and 40 nm or less, the maximum value (Rtop) of the reflectance greatly changes as the thickness of the recording layer changes. In the range of a few nm within the range, there is an approximate first-order correlation between the thickness of the recording layer and the maximum value (Rtop) of the reflectance. However, outside this range, the rate of change of the maximum value (Rtop) of the reflectance with respect to the thickness of the recording layer is small. Therefore, in the case of the optical information recording medium having the above film configuration, if the thickness of the recording layer is 15 nm or more and 40 nm or less, highly accurate film thickness measurement is performed by the method of the present invention.
【0032】[0032]
【発明の実施の形態】以下、本発明の実施形態について
説明する。先ず、以下の手順で、図5に示す層構成の光
ディスクを作製した。基板1として、ポリカーボネート
樹脂からなり、外径120mm、厚さ0.6mmの円板
を用意する。この基板1は、半径15mmの中心穴11
を有する。図6はこの光ディスクの断面図である。この
図に示すように、この光ディスクの基板1の表面にはハ
ードコート2が形成され、裏面には多層薄膜3が形成さ
れている。ハードコート2の形成後に多層薄膜3の形成
を行った。Embodiments of the present invention will be described below. First, an optical disk having the layer configuration shown in FIG. 5 was manufactured in the following procedure. As the substrate 1, a disk made of a polycarbonate resin and having an outer diameter of 120 mm and a thickness of 0.6 mm is prepared. This substrate 1 has a center hole 11 having a radius of 15 mm.
Having. FIG. 6 is a sectional view of the optical disk. As shown in this figure, a hard coat 2 is formed on the front surface of a substrate 1 of the optical disk, and a multilayer thin film 3 is formed on the back surface. After the formation of the hard coat 2, the multilayer thin film 3 was formed.
【0033】ハードコート2は、基板1の中心穴11の
周囲に半径22mmの未形成部分2Aが形成されるよう
に、基板1の表面に紫外線硬化型樹脂を塗布した後、紫
外線を照射して硬化させることにより形成した。多層薄
膜3は、基板1の中心穴11の周囲に未成膜部分3Aが
形成されるように、中心穴11を保持する内周マスクの
大きさを半径15mmとして成膜を行った。The hard coat 2 is formed by applying an ultraviolet curable resin to the surface of the substrate 1 so that an unformed portion 2A having a radius of 22 mm is formed around the center hole 11 of the substrate 1 and then irradiating ultraviolet rays. It was formed by curing. The multilayer thin film 3 was formed by setting the size of the inner peripheral mask holding the center hole 11 to a radius of 15 mm so that the unformed portion 3A was formed around the center hole 11 of the substrate 1.
【0034】これにより、基板1の中心部に、裏面に多
層薄膜3が形成されていて表面にハードコート2が形成
されていない領域15が、内径15mmで外径22mm
の円環状に形成される。この領域15には、レーザのト
ラッキング溝や、金型のスタンパ押さえ部の転写によっ
て生じる周溝等がなく、平坦部となっている。多層薄膜
3は、基板1の上に、図3に示す光学定数を有するZn
S−SiO2からなる第1誘電体層31、アモルファス
状態で図7に示す光学定数を有するGeSbTeからな
る記録層32、第1誘電体層31と同じZnS−SiO
2 からなる第2誘電体層33、図8に示す光学定数を有
するAl主成分とする金属からなる反射層34を、順次
スパッタリング法で成膜することにより形成した。As a result, in the central portion of the substrate 1, a region 15 in which the multilayer thin film 3 is formed on the back surface and the hard coat 2 is not formed on the front surface has an inner diameter of 15 mm and an outer diameter of 22 mm
Are formed in an annular shape. This region 15 is a flat portion without a laser tracking groove or a peripheral groove generated by transfer of a stamper holding portion of a mold. The multilayer thin film 3 is formed on the substrate 1 with Zn having an optical constant shown in FIG.
A first dielectric layer 31 made of S-SiO 2 , a recording layer 32 made of GeSbTe having an optical constant shown in FIG. 7 in an amorphous state, and ZnS-SiO same as the first dielectric layer 31
A second dielectric layer 33 made of No. 2 and a reflective layer made of a metal containing Al as a main component and having an optical constant shown in FIG. 8 were formed by successive sputtering.
【0035】また、基板1の成膜面を保護するために、
多層薄膜3の表面に、スピンコーターで紫外線硬化型樹
脂を塗布した後、紫外線を照射させて硬化させた。な
お、多層薄膜3の形成は、各層の膜厚を表1に示すよう
に変化させて行うことにより、同じ層構成で各層の膜厚
が異なる多数の光ディスク(A〜M)を作製した。In order to protect the film formation surface of the substrate 1,
An ultraviolet curable resin was applied to the surface of the multilayer thin film 3 using a spin coater, and then cured by irradiating ultraviolet rays. The multilayer thin film 3 was formed by changing the thickness of each layer as shown in Table 1, thereby producing a large number of optical disks (A to M) having the same layer configuration and different thicknesses of each layer.
【0036】次に、各光ディスクについて、記録層32
がアモルファス状態のままで380nm〜800nmの
波長領域で分光反射率を測定した。この測定は、基板1
の領域15内にハードコート2側の面から光を入射して
行う。なお、記録層32はアモルファス状態で成膜され
ているため、成膜した直後に初期化(結晶化)を行わず
に測定を行えば、記録層32がアモルファス状態での分
光反射率が測定される。Next, for each optical disk, the recording layer 32
Was measured in a wavelength range of 380 nm to 800 nm in an amorphous state. This measurement is performed on the substrate 1
Light is incident from the surface on the hard coat 2 side into the region 15 of FIG. Since the recording layer 32 is formed in an amorphous state, if the measurement is performed immediately after the film formation without performing initialization (crystallization), the spectral reflectance in the amorphous state of the recording layer 32 is measured. You.
【0037】次に、各光ディスクについて、初期化装置
を用いて記録層32の全面を結晶化した後、前記と同様
に分光反射率を測定した。測定により得られた各光ディ
スクの波長−反射率特性曲線から、記録層がアモルファ
ス状態で測定された場合の反射率の極大値(Rtop )、
極小値(Rbot )、極大点の波長値(λtop )と、記録
層が結晶状態で測定された場合の反射率の極大値(Rto
p-c )を調べた。これらの値を表1に示す。Next, with respect to each optical disk, after the entire surface of the recording layer 32 was crystallized using an initialization device, the spectral reflectance was measured in the same manner as described above. From the wavelength-reflectance characteristic curve of each optical disk obtained by the measurement, the maximum value (Rtop) of the reflectance when the recording layer is measured in an amorphous state,
The minimum value (Rbot), the wavelength value of the maximum point (λtop), and the maximum value (Rto) of the reflectance when the recording layer is measured in a crystalline state.
pc). These values are shown in Table 1.
【0038】[0038]
【表1】 [Table 1]
【0039】表1に示すように、サンプルA〜Mの各光
ディスクは、第1誘電体層の膜厚のみが異なる第1グル
ープ(サンプルA〜E)と、記録層の膜厚のみが異なる
第2グループ(サンプルF〜I)と、第2誘電体層の膜
厚のみが異なる第3グループ(サンプルJ〜M)とに分
類される。そして、この表1の結果から、極大点の波長
値(λtop )については、第2および第3グループ内で
の差(2.5nm、0.5nm)と比較して、第1グル
ープ内で大きな差(56.4nm)が生じていることが
分かる。したがって、この膜構成の光ディスクにおい
て、極大点の波長値(λtop )は、第1誘電体層の膜厚
が90nm以上110nm以下の範囲内で、近似的に、
第1誘電体層膜の膜厚(Td1)を変数とした一次式(前
述の式(1))で表される。As shown in Table 1, each of the optical discs of Samples A to M has a first group (Samples A to E) in which only the thickness of the first dielectric layer is different from a first group (Samples A to E) in which only the thickness of the recording layer is different. It is classified into two groups (samples F to I) and a third group (samples J to M) in which only the thickness of the second dielectric layer is different. From the results in Table 1, the wavelength value (λtop) of the maximum point is larger in the first group than the difference (2.5 nm, 0.5 nm) in the second and third groups. It can be seen that a difference (56.4 nm) has occurred. Therefore, in the optical disk having this film configuration, the wavelength value (λtop) at the maximum point is approximately determined when the thickness of the first dielectric layer is in the range of 90 nm or more and 110 nm or less.
It is expressed by a linear equation (the above-described equation (1)) with the thickness (Td1) of the first dielectric layer film as a variable.
【0040】また、反射率の極大値(Rtop )、極小値
(Rbot )、極大値(Rtop-c )に関しては、各グルー
プ内での差に大きな隔たりがなく、それぞれの値が、第
1誘電体層、第2誘電体層、記録層の各膜厚に依存して
いることが分かる。したがって、この膜構成の光ディス
クにおいて、反射率の極大値(Rtop )、極小値(Rbo
t )、極大値(Rtop-c )は、記録層の膜厚が23nm
以上27nm以下で第2誘電体層の膜厚が18nm以上
21nm以下となる範囲内で、近似的に、第1誘電体層
の膜厚(Td1)、第2誘電体層の膜厚(Td2)、記録層
の膜厚(Tr )を変数とした一次式(前述の式(2)〜
(4))で表される。As for the maximum value (Rtop), the minimum value (Rbot) and the maximum value (Rtop-c) of the reflectance, there is no large difference between the groups, and the respective values correspond to the first dielectric constant. It can be seen that the thickness depends on the thickness of the body layer, the second dielectric layer, and the recording layer. Therefore, in the optical disc having this film configuration, the maximum value (Rtop) and the minimum value (Rbo) of the reflectivity are obtained.
t), the maximum value (Rtop-c) indicates that the film thickness of the recording layer is 23 nm.
The thickness of the first dielectric layer (Td1) and the thickness of the second dielectric layer (Td2) are approximately within the range where the thickness of the second dielectric layer is not less than 27 nm and not more than 18 nm and not more than 21 nm. , A linear equation with the film thickness (Tr) of the recording layer as a variable (formula (2)
(4)).
【0041】そのため、第1の方法としては、先ず、得
られた各分光反射率の極大値(Rtop )、極小値(Rbo
t )、極大点の波長値(λtop )と、各層の形成膜厚
(Td1,Td2,Tr )を、上記式(1)〜式(3)に代
入して、最小二乗法で各式の係数(a,c,d,e,
g,h,i)と定数(b,f,j)を求める。これによ
り、この場合の上記式(1)〜式(3)に相当する式
(11)〜式(13)を得た。Therefore, as a first method, first, the maximum value (Rtop) and the minimum value (Rbo) of each of the obtained spectral reflectances are obtained.
t), the wavelength value of the maximum point (λtop) and the film thickness of each layer (Td1, Td2, Tr) are substituted into the above equations (1) to (3), and the coefficients of each equation are calculated by the least square method. (A, c, d, e,
g, h, i) and constants (b, f, j). Thereby, Expressions (11) to (13) corresponding to Expressions (1) to (3) in this case were obtained.
【0042】 λtop =2.88×Td1+174.8……(11) Rtop =−0.104×Td1+1.02×Tr +0.2×Td2+8.39 ……(12) Rbot =−0.04×Td1+0.35×Tr +0.25×Td2−4.04 ……(13) そして、これら3つの式を用いて所定の近似計算を行う
ことにより、第1誘電体層の膜厚(Td1)、第2誘電体
層の膜厚(Td2)、記録層の膜厚(Tr )を、極大値
(Rtop )と極小値(Rbot )と極大点の波長値(λto
p )とで表す、各膜厚の算出式(5)〜(7)を導出し
た。Λtop = 2.88 × Td1 + 174.8 (11) Rtop = −0.104 × Td1 + 1.02 × Tr + 0.2 × Td2 + 8.39 (12) Rbot = −0.04 × Td1 + 0. 35 × Tr + 0.25 × Td2−4.04 (13) Then, by performing a predetermined approximate calculation using these three equations, the film thickness (Td1) of the first dielectric layer and the second dielectric The film thickness (Td2) of the body layer and the film thickness (Tr) of the recording layer are set to a maximum value (Rtop), a minimum value (Rbot), and a wavelength value (λto
Equations (5) to (7) for calculating each film thickness, which are expressed by p), were derived.
【0043】 Td1=0.347×λtop −60.7……(5) Td2=0.008×λtop −1.89×Rtop +5.51×Rbot +36.7 ……(6) Tr =0.034×λtop +1.35×Rtop −1.08×Rbot −21.6 ……(7) これらの算出式を用いて、各サンプルA〜Mの第1誘電
体層の膜厚、第2誘電体層の膜厚、記録層の膜厚を算出
した。その結果を表2に示す。Td1 = 0.347 × λtop−60.7 (5) Td2 = 0.008 × λtop−1.89 × Rtop + 5.51 × Rbot + 36.7 (6) Tr = 0.034 × λtop + 1.35 × Rtop−1.08 × Rbot−21.6 (7) By using these formulas, the film thickness of the first dielectric layer and the second dielectric layer of each of Samples A to M And the thickness of the recording layer were calculated. Table 2 shows the results.
【0044】[0044]
【表2】 [Table 2]
【0045】表2の結果から、算出式(5)〜(7)を
用いて算出された各サンプルA〜Mの第1誘電体層の膜
厚算出値、第2誘電体層の膜厚算出値、記録層の膜厚算
出値は、各層の形成膜厚とほぼ一致していることが分か
る。したがって、この層構成の光ディスクの場合には、
分光反射率を測定し、その極大値(Rtop )と極小値
(Rbot )と極大点の波長値(λtop )を算出式(5)
〜(7)に代入すれば、第1誘電体層31、記録層3
2、および第2誘電体層33の膜厚測定を精度よく行う
ことができる。From the results shown in Table 2, the thickness of the first dielectric layer and the thickness of the second dielectric layer of each of the samples A to M were calculated using the calculation formulas (5) to (7). It can be seen that the value and the calculated value of the film thickness of the recording layer substantially coincide with the film thickness of each layer. Therefore, in the case of an optical disc having this layer structure,
The spectral reflectance is measured, and the maximum value (Rtop), the minimum value (Rbot), and the wavelength value (λtop) of the maximum point are calculated by Equation (5).
To (7), the first dielectric layer 31, the recording layer 3
2 and the film thickness of the second dielectric layer 33 can be accurately measured.
【0046】第2の方法としては、記録層が結晶状態で
の反射率の極大値(Rtop-c )と、各層の形成膜厚(T
d1,Td2,Tr )を上記式(4)に代入して、最小二乗
法で係数(p,q)と定数(s)を求める。これによ
り、この場合の上記式(4)に相当する式(14)を得
た。 Rtop-c =−0.052×Td1+0.70×Tr +28.7……(14) この式(14)と上記式(11)〜(13)の4つの式
を用いて、これらの各式との残差が小さくなるような解
(Td1,Tr ,Td2)を求める。式(11)〜(14)
はTd1とTr とTd2を座標軸とした平面を表す式である
ため、各式が表す4つの平面で囲まれた図形、すなわち
四面体の内部に解が存在する。As a second method, the maximum value (Rtop-c) of the reflectance in the crystalline state of the recording layer and the film thickness (T
d1, Td2, Tr) are substituted into the above equation (4), and a coefficient (p, q) and a constant (s) are obtained by the least squares method. Thereby, Expression (14) corresponding to Expression (4) in this case was obtained. Rtop-c = −0.052 × Td1 + 0.70 × Tr + 28.7 (14) Using this equation (14) and the above four equations (11) to (13), A solution (Td1, Tr, Td2) that reduces the residual of is obtained. Expressions (11) to (14)
Is a formula that represents a plane with Td1, Tr, and Td2 as coordinate axes, and a solution exists inside a figure surrounded by four planes represented by each formula, that is, a tetrahedron.
【0047】したがって、例えば、この四面体の重心を
近似解として算出する下記の式(8)〜(10)を、各
膜厚の算出式として導出する。 Td1=0.26×λtop −14.7×Rtop +11.7×Rbot +15.5×Rtop-c −320.3 ……(8) Tr =0.021×λtop −0.75×Rtop +0.60×Rbot +2.22×Rtop-c −58.8 ……(9) Td2=0.019×λtop −0.045×Rtop +4.04×Rbot −1.95×Rtop-c +69.4 ……(10) これらの算出式を用いれば、分光反射率(特にRbot )
の測定誤差が大きい場合でも膜厚の算出誤差が小さくな
るため、精度の高い膜厚測定が可能となる。Therefore, for example, the following equations (8) to (10) for calculating the center of gravity of this tetrahedron as an approximate solution are derived as equations for calculating each film thickness. Td1 = 0.26 × λtop−14.7 × Rtop + 11.7 × Rbot + 15.5 × Rtop-c−320.3 (8) Tr = 0.21 × λtop−0.75 × Rtop + 0.60 × Rbot + 2.22 × Rtop-c−58.8 (9) Td2 = 0.19 × λtop−0.045 × Rtop + 4.04 × Rbot−1.95 × Rtop-c + 69.4 (9) 10) If these formulas are used, the spectral reflectance (particularly Rbot)
Even when the measurement error is large, the calculation error of the film thickness becomes small, so that the film thickness can be measured with high accuracy.
【0048】次に、図9に示す層構成の光ディスクを作
製した。この光ディスクは、図5に示す前述の光ディス
クと層構成が異なるため、多層薄膜3の形成方法は以下
のようにして行う。それ以外の点(ハードコート2およ
び多層薄膜3の形成範囲等)については、図5の光ディ
スクの場合と同じ方法で作製した。Next, an optical disk having a layer structure shown in FIG. 9 was manufactured. Since this optical disc has a different layer configuration from the above-described optical disc shown in FIG. 5, the method of forming the multilayer thin film 3 is performed as follows. Other points (the formation range of the hard coat 2 and the multilayer thin film 3 and the like) were manufactured by the same method as the optical disk of FIG.
【0049】多層薄膜3は、基板1の上に、図3に示す
光学定数を有するZnS−SiO2からなる第1誘電体
層31、図10に示す光学定数を有する金属窒化物から
なる結晶化促進層35、図7に示す光学定数を有するG
eSbTeからなる記録層32、第1誘電体層31と同
じZnS−SiO2 からなる第2誘電体層33、図8に
示す光学定数を有するAl主成分とする金属からなる反
射層34を、順次スパッタリング法で成膜することによ
り形成した。The multilayer thin film 3 is formed on the substrate 1 by a first dielectric layer 31 made of ZnS--SiO 2 having an optical constant shown in FIG. 3 and a crystallization made of a metal nitride having an optical constant shown in FIG. Promoting layer 35, G having the optical constants shown in FIG.
recording layer 32 made of ESbTe, second dielectric layer 33 made of the same ZnS-SiO 2 as the first dielectric layer 31, a reflective layer 34 made of a metal to Al main component having optical constants shown in FIG. 8, sequentially It was formed by forming a film by a sputtering method.
【0050】なお、多層薄膜3の形成は、各層の膜厚を
表3に示すように変化させて行うことにより、同じ層構
成で各層の膜厚が異なる多数の光ディスク(N〜Z)を
作製した。次に、各光ディスクについて、記録層32が
アモルファス状態のままで380nm〜800nmの波
長領域で分光反射率を測定した。この測定は、図6に示
す基板1の領域15内にハードコート2側から光を入射
して行う。The multilayer thin film 3 is formed by changing the thickness of each layer as shown in Table 3 to produce a large number of optical discs (N to Z) having the same layer configuration and different thicknesses of each layer. did. Next, with respect to each optical disk, the spectral reflectance was measured in a wavelength range of 380 nm to 800 nm while the recording layer 32 was in an amorphous state. This measurement is performed by irradiating light from the hard coat 2 side into the region 15 of the substrate 1 shown in FIG.
【0051】測定により得られた各光ディスクの波長−
反射率特性曲線から、記録層がアモルファス状態で測定
された反射率の極大値(Rtop )、極小値(Rbot )、
極大点の波長値(λtop )を調べた。これらの値を表3
に示す。The wavelength of each optical disk obtained by the measurement
From the reflectance characteristic curve, the maximum value (Rtop), the minimum value (Rbot), and the maximum value of the reflectance measured in the amorphous state of the recording layer.
The wavelength value (λtop) at the maximum point was examined. Table 3 shows these values.
Shown in
【0052】[0052]
【表3】 [Table 3]
【0053】表3に示すように、サンプルN〜Zの各光
ディスクは、第1誘電体層の膜厚のみが異なる第1グル
ープ(サンプルN〜R)と、記録層の膜厚のみが異なる
第2グループ(サンプルS〜V)と、第2誘電体層の膜
厚のみが異なる第3グループ(サンプルW〜Z)とに分
類される。そして、この表1の結果から、極大点の波長
値(λtop )については、第2および第3グループ内で
の差(2.2nm、0.2nm)と比較して、第1グル
ープ内で大きな差(57.5nm)が生じていることが
分かる。したがって、この膜構成の光ディスクにおい
て、極大点の波長値(λtop )は、第1誘電体層の膜厚
が90nm以上110nm以下の範囲内で、近似的に、
第1誘電体層膜の膜厚(Td1)を変数とした一次式(前
述の式(1))で表される。As shown in Table 3, each of the optical discs of samples NZ has a first group (samples N to R) in which only the thickness of the first dielectric layer is different from the first group (samples N to R) in which only the thickness of the recording layer is different. It is classified into two groups (samples S to V) and a third group (samples W to Z) in which only the thickness of the second dielectric layer is different. From the results in Table 1, the wavelength value (λtop) at the maximum point is larger in the first group than in the difference (2.2 nm, 0.2 nm) in the second and third groups. It can be seen that a difference (57.5 nm) has occurred. Therefore, in the optical disk having this film configuration, the wavelength value (λtop) at the maximum point is approximately determined when the thickness of the first dielectric layer is in the range of 90 nm or more and 110 nm or less.
It is expressed by a linear equation (the above-described equation (1)) with the thickness (Td1) of the first dielectric layer film as a variable.
【0054】また、反射率の極大値(Rtop )および極
小値(Rbot )に関しては、各グループ内での差に大き
な隔たりがなく、それぞれの値が、第1誘電体層、第2
誘電体層、記録層の各膜厚に依存していることが分か
る。したがって、この膜構成の光ディスクにおいて、反
射率の極大値(Rtop )および極小値(Rbot )は、記
録層の膜厚が23nm以上27nm以下で第2誘電体層
の膜厚が18nm以上21nm以下となる範囲内で、近
似的に、第1誘電体層の膜厚(Td1)、第2誘電体層の
膜厚(Td2)、記録層の膜厚(Tr )を変数とした一次
式(前述の式(2),(3))で表される。Regarding the maximum value (Rtop) and the minimum value (Rbot) of the reflectance, there is no large difference between the groups, and the respective values correspond to the first dielectric layer and the second dielectric layer.
It can be seen that it depends on the thickness of each of the dielectric layer and the recording layer. Therefore, in the optical disk having this film configuration, the maximum value (Rtop) and the minimum value (Rbot) of the reflectance are as follows: the film thickness of the recording layer is 23 nm or more and 27 nm or less, and the film thickness of the second dielectric layer is 18 nm or more and 21 nm or less. Within the range shown below, a linear expression (approximately as described above) using the thickness of the first dielectric layer (Td1), the thickness of the second dielectric layer (Td2), and the thickness of the recording layer (Tr) as approximations is obtained. Expressions (2) and (3)).
【0055】そのため、先ず、得られた各分光反射率の
極大値(Rtop )、極小値(Rbot)、極大点の波長値
(λtop )と、各層の形成膜厚(Td1,Td2,Tr )
を、上記式(1)〜式(3)に代入して、最小二乗法で
各式の係数(a,c,d,e,g,h,i)と定数
(b,f,j)を求める。これにより、この場合の上記
式(1)〜式(3)に相当する式(21)〜(23)を
得た。Therefore, first, the maximum value (Rtop), the minimum value (Rbot), the wavelength value of the maximum point (λtop) of each obtained spectral reflectance, and the film thickness (Td1, Td2, Tr) of each layer.
Is substituted into the above equations (1) to (3), and the coefficients (a, c, d, e, g, h, i) and constants (b, f, j) of each equation are calculated by the least square method. Ask. Thereby, Expressions (21) to (23) corresponding to Expressions (1) to (3) in this case were obtained.
【0056】 λtop =2.82×Td1+193.2……(21) Rtop =−0.098×Td1+1.00×Tr +0.20×Td2+8.38 ……(22) Rbot =−0.03×Td1+0.27×Tr +0.15×Td2−1.28 ……(23) そして、これら3つの式を用いて所定の近似計算を行う
ことにより、第1誘電体層の膜厚(Td1)、第2誘電体
層の膜厚(Td2)、記録層の膜厚(Tr )を、極大値
(Rtop )と極小値(Rbot )と極大点の波長値(λto
p )とで表す、各膜厚の算出式(14)〜(16)を導
出した。Λtop = 2.82 × Td1 + 193.2 (21) Rtop = −0.098 × Td1 + 1.00 × Tr + 0.20 × Td2 + 8.38 (22) Rbot = −0.03 × Td1 + 0. 27 × Tr + 0.15 × Td2−1.28 (23) Then, by performing a predetermined approximate calculation using these three equations, the film thickness (Td1) of the first dielectric layer and the second dielectric The film thickness (Td2) of the body layer and the film thickness (Tr) of the recording layer are set to a maximum value (Rtop), a minimum value (Rbot), and a wavelength value (λto
The formulas (14) to (16) for calculating each film thickness, which are expressed by p), were derived.
【0057】 Td1=0.355×λtop −68.5……(14) Td2=0.013×λtop −2.81×Rtop +10.42×Rbot +34.3 ……(15) Tr =0.032×λtop +1.56×Rtop −2.08×Rbot −22.0 ……(16) これらの算出式を用いて、各サンプルN〜Zの第1誘電
体層の膜厚、第2誘電体層の膜厚、記録層の膜厚を算出
した。その結果を表4に示す。Td1 = 0.355 × λtop−68.5 (14) Td2 = 0.133 × λtop−2.81 × Rtop + 10.42 × Rbot + 34.3 (15) Tr = 0.032 × λtop + 1.56 × Rtop−2.08 × Rbot−22.0 (16) Using these formulas, the film thickness of the first dielectric layer and the second dielectric layer of each sample NZ And the thickness of the recording layer were calculated. Table 4 shows the results.
【0058】[0058]
【表4】 [Table 4]
【0059】表4の結果から、算出式(14)〜(1
6)を用いて算出された各サンプルN〜Zの第1誘電体
層の膜厚算出値、第2誘電体層の膜厚算出値、記録層の
膜厚算出値は、各層の形成膜厚とほぼ一致していること
が分かる。したがって、この層構成の光ディスクの場合
には、分光反射率を測定し、その極大値(Rtop )と極
小値(Rbot )と極大点の波長値(λtop )を算出式
(14)〜(16)に代入すれば、第1誘電体層31、
記録層32、および第2誘電体層33の膜厚測定を精度
よく行うことができる。From the results in Table 4, the calculation formulas (14) to (1)
The calculated value of the thickness of the first dielectric layer, the calculated value of the thickness of the second dielectric layer, and the calculated value of the thickness of the recording layer of each sample NZ calculated using 6) are the formed film thickness of each layer. It can be seen that the values almost match. Therefore, in the case of an optical disk having this layer configuration, the spectral reflectance is measured, and the maximum value (Rtop), the minimum value (Rbot), and the wavelength value (λtop) of the maximum point are calculated by equations (14) to (16). Into the first dielectric layer 31,
The thickness measurement of the recording layer 32 and the second dielectric layer 33 can be accurately performed.
【0060】ただし、この層構成の光ディスクの場合に
は、結晶化促進層35と第1誘電体層31の光学特性が
似ているため、この実施形態の方法で結晶化促進層35
の膜厚を測定することは難しい。なお、本発明の方法に
おいて測定対象となる多層薄膜は、光ディスク等の光学
情報記録媒体に限定されず、分光反射率の極大点が一つ
だけであって極小点も有する多層薄膜であればいずれの
ものでもよい。However, in the case of an optical disk having this layer configuration, the crystallization promoting layer 35 and the first dielectric layer 31 have similar optical characteristics, and thus the crystallization promoting layer 35 is formed by the method of this embodiment.
It is difficult to measure the film thickness. Note that the multilayer thin film to be measured in the method of the present invention is not limited to an optical information recording medium such as an optical disk, and any multilayer thin film having only one maximum point of spectral reflectance and also having a minimum point. It may be.
【0061】また、本発明の方法において測定対象とな
る多層薄膜の形成方法は、上述のスパッタリング法に限
定されず、スパッタリング法以外の公知の方法、例えば
真空蒸着法、イオンビームスパッタリング法、イオンビ
ーム蒸着法、イオンプレーティング法、電子ビーム蒸着
法、プラズマ重合法等の方法を目的、材料等に応じて適
宜採用することができる。The method of forming the multilayer thin film to be measured in the method of the present invention is not limited to the above-mentioned sputtering method, but may be a known method other than the sputtering method, for example, a vacuum evaporation method, an ion beam sputtering method, an ion beam Methods such as a vapor deposition method, an ion plating method, an electron beam vapor deposition method, and a plasma polymerization method can be appropriately adopted according to the purpose, material, and the like.
【0062】また、本発明の方法において測定対象とな
る多層薄膜の基板は、ポリカーボネート樹脂製のものに
限定されず、アクリル系樹脂、エポキシ樹脂、ポリスチ
レン樹脂等からなるものであってもよい。The substrate of the multilayer thin film to be measured in the method of the present invention is not limited to a polycarbonate resin substrate, but may be an acrylic resin, an epoxy resin, a polystyrene resin, or the like.
【0063】[0063]
【発明の効果】以上説明したように、本発明の方法によ
れば、ポリカーボネート樹脂製の基板を有する一般的な
相変化型光ディスクの場合でも、多層薄膜の分光反射率
に基づいて各層の膜厚を精度良く測定することができ
る。したがって、ポリカーボネート樹脂製の基板を有す
る一般的な相変化型光ディスクの膜厚測定を、非破壊
で、製造条件の変更等を行うことなく、精度良く行うこ
とができる。As described above, according to the method of the present invention, even in the case of a general phase change optical disk having a substrate made of a polycarbonate resin, the thickness of each layer is determined based on the spectral reflectance of the multilayer thin film. Can be accurately measured. Therefore, the thickness of a general phase-change optical disk having a polycarbonate resin substrate can be measured with high accuracy without destruction and without changing the manufacturing conditions.
【0064】特に、請求項2および3の方法では、基板
上に、少なくとも、第1誘電体層、相変化型記録層、第
2誘電体層、および熱伝達層からなる多層薄膜を有する
光学情報記録媒体について、第1誘電体層、記録層、お
よび第2誘電体層の膜厚を精度良く測定することができ
る。また、請求項3の方法では、第1誘電体層、記録
層、および第2誘電体層の膜厚の測定精度をより高くす
ることができる。In particular, according to the method of claims 2 and 3, the optical information has at least a multilayer thin film composed of a first dielectric layer, a phase-change recording layer, a second dielectric layer, and a heat transfer layer on a substrate. With respect to the recording medium, the thicknesses of the first dielectric layer, the recording layer, and the second dielectric layer can be accurately measured. Further, according to the method of the third aspect, the measurement accuracy of the film thickness of the first dielectric layer, the recording layer, and the second dielectric layer can be further improved.
【図1】一般的な相変化型光ディスクの分光反射率の一
例を示すグラフである。FIG. 1 is a graph showing an example of the spectral reflectance of a general phase change optical disc.
【図2】図1と同じ光ディスクについて、ハードコート
がある部分で測定した分光反射率の一例を示すグラフで
ある。FIG. 2 is a graph showing an example of the spectral reflectance measured at a portion where a hard coat is provided on the same optical disk as in FIG. 1;
【図3】実施形態で作製した光ディスクの、第1誘電体
層の光学定数を示すグラフである。FIG. 3 is a graph showing optical constants of a first dielectric layer of the optical disc manufactured in the embodiment.
【図4】一般的な相変化型光ディスクについて、記録層
の膜厚と分光反射率の極大値(Rtop )との関係を、光
学シミュレーションにより調べた結果を示すグラフであ
る。FIG. 4 is a graph showing a result obtained by examining a relationship between a film thickness of a recording layer and a maximum value (Rtop) of a spectral reflectance with respect to a general phase change optical disk by optical simulation.
【図5】実施形態で作製した一方の光ディスクの層構成
を示す断面図である。FIG. 5 is a cross-sectional view showing a layer configuration of one optical disk manufactured in the embodiment.
【図6】実施形態で作製した光ディスクの基板とハード
コートと多層薄膜との位置関係を示す断面図である。FIG. 6 is a cross-sectional view illustrating a positional relationship among a substrate, a hard coat, and a multilayer thin film of the optical disk manufactured in the embodiment.
【図7】実施形態で作製した光ディスクの、記録層の光
学定数を示すグラフである。FIG. 7 is a graph showing optical constants of a recording layer of the optical disc manufactured in the embodiment.
【図8】実施形態で作製した光ディスクの、熱伝達層の
光学定数を示すグラフである。FIG. 8 is a graph showing optical constants of a heat transfer layer of the optical disc manufactured in the embodiment.
【図9】実施形態で作製した他方の光ディスクの層構成
を示す断面図である。FIG. 9 is a cross-sectional view illustrating a layer configuration of the other optical disc manufactured in the embodiment.
【図10】実施形態で作製した光ディスクの、結晶化促
進層の光学定数を示すグラフである。FIG. 10 is a graph showing optical constants of a crystallization promoting layer of the optical disc manufactured in the embodiment.
1 基板 11 中心穴 15 分光反射率測定領域 2 ハードコート 2A ハードコートの未形成部分 3 多層薄膜 3A 未成膜部分 31 第1誘電体層 32 記録層 33 第2誘電体層 34 熱伝達層 35 結晶化促進層 DESCRIPTION OF SYMBOLS 1 Substrate 11 Center hole 15 Spectral reflectance measurement area 2 Hard coat 2A Unformed portion of hard coat 3 Multilayer thin film 3A Unformed portion 31 First dielectric layer 32 Recording layer 33 Second dielectric layer 34 Heat transfer layer 35 Crystallization Promotion layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 牛若 祐治 静岡県富士市鮫島2番地の1 旭化成工業 株式会社内 Fターム(参考) 2F065 AA30 BB17 BB22 CC02 CC03 CC31 DD03 GG23 LL67 QQ29 UU05 UU07 5D121 AA01 AA03 HH04 HH11 HH14 HH18 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yuji Ushiwaka 2nd, Samejima, Fuji-shi, Shizuoka Prefecture HH04 HH11 HH14 HH18
Claims (3)
数の薄膜からなる多層薄膜の分光反射率を測定し、測定
された分光反射率の極大値および極小値と極大点の波長
値を、これらの値を変数とする、予め導出された各層の
膜厚算出式に代入して、各層の膜厚を算出することを特
徴とする多層薄膜の膜厚測定方法。1. The spectral reflectance of a multilayer thin film composed of a plurality of thin films having different optical constants laminated on a substrate is measured, and the measured maximum value, the minimum value, and the wavelength value of the maximum point of the spectral reflectance are determined. A method for measuring the film thickness of a multilayer thin film, wherein the film thickness of each layer is calculated by substituting these values into a previously-calculated formula for calculating the film thickness of each layer.
第1誘電体層、照射光の強度に応じて結晶とアモルファ
スとの間の相変化が生じる記録層、第2誘電体層、およ
び金属を主成分とする熱伝達層が順次積層されている光
学情報記録媒体の、第1誘電体層、記録層、および第2
誘電体層の膜厚を測定する多層薄膜の膜厚測定方法にお
いて、 記録層がアモルファス状態で、380nm以上800n
m以下の波長領域での分光反射率を基板側から測定し、
測定された分光反射率の極大値および極小値と極大点の
波長値を、これらの値を変数とする、予め導出された各
層の膜厚算出式に代入して、各層の膜厚を算出すること
を特徴とする多層薄膜の膜厚測定方法。。2. The method according to claim 1, wherein at least one surface of the transparent substrate has at least
An optical element in which a first dielectric layer, a recording layer in which a phase change between crystal and amorphous occurs according to the intensity of irradiation light, a second dielectric layer, and a heat transfer layer mainly containing metal are sequentially laminated. A first dielectric layer, a recording layer, and a second dielectric layer of the information recording medium;
The method for measuring the thickness of a multilayer thin film for measuring the thickness of a dielectric layer, wherein the recording layer is in an amorphous state and has a thickness of 380 nm or more and 800 n
m from the substrate side in the wavelength range below m
The maximum value and the minimum value of the measured spectral reflectance and the wavelength value of the maximum point are substituted into the previously calculated film thickness calculation formula of each layer using these values as variables to calculate the film thickness of each layer. A method for measuring the thickness of a multilayer thin film, comprising: .
第1誘電体層、照射光の強度に応じて結晶とアモルファ
スとの間の相変化が生じる記録層、第2誘電体層、およ
び金属を主成分とする熱伝達層が順次積層されている光
学情報記録媒体の、第1誘電体層、記録層、および第2
誘電体層の膜厚を測定する多層薄膜の膜厚測定方法にお
いて、 記録層がアモルファス状態で、380nm以上800n
m以下の波長領域での分光反射率を基板側から測定した
後に、この記録層を結晶化し、記録層が結晶状態で同じ
波長領域での分光反射率を基板側から測定し、記録層が
アモルファス状態での分光反射率の極大値および極小値
と極大点の波長値と、記録層が結晶状態での分光反射率
の極大値とを、これらの値を変数とする、予め導出され
た各層の膜厚算出式に代入して、各層の膜厚を算出する
ことを特徴とする多層薄膜の膜厚測定方法。3. At least one surface of a transparent substrate has at least
An optical element in which a first dielectric layer, a recording layer in which a phase change between crystal and amorphous occurs according to the intensity of irradiation light, a second dielectric layer, and a heat transfer layer mainly containing metal are sequentially laminated. A first dielectric layer, a recording layer, and a second dielectric layer of the information recording medium;
The method for measuring the thickness of a multilayer thin film for measuring the thickness of a dielectric layer, wherein the recording layer is in an amorphous state and has a thickness of 380 nm or more and 800 n or more.
After measuring the spectral reflectance in the wavelength region of m or less from the substrate side, the recording layer is crystallized. When the recording layer is in a crystalline state, the spectral reflectance in the same wavelength region is measured from the substrate side. The maximum value and the minimum value of the spectral reflectance in the state and the wavelength value of the maximum point, and the maximum value of the spectral reflectance in the crystalline state of the recording layer, with these values as variables, each layer derived in advance. A method for measuring the thickness of a multilayer thin film, wherein the thickness of each layer is calculated by substituting it into a thickness calculation formula.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11055929A JP2000249520A (en) | 1999-03-03 | 1999-03-03 | Method for measuring thickness of multilayer thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11055929A JP2000249520A (en) | 1999-03-03 | 1999-03-03 | Method for measuring thickness of multilayer thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000249520A true JP2000249520A (en) | 2000-09-14 |
Family
ID=13012787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11055929A Withdrawn JP2000249520A (en) | 1999-03-03 | 1999-03-03 | Method for measuring thickness of multilayer thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000249520A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1760423A1 (en) | 2005-09-06 | 2007-03-07 | Ricoh Company, Ltd. | Method of inspecting optical recording medium |
JP2008039789A (en) * | 2003-06-20 | 2008-02-21 | Lg Electron Inc | Method of measuring thickness in optical disc |
JP2008051699A (en) * | 2006-08-25 | 2008-03-06 | Showa Shinku:Kk | Film thickness measuring device of organic thin film and organic thin film formation device |
JP2012068173A (en) * | 2010-09-24 | 2012-04-05 | Fujifilm Corp | Method for measuring film thickness of optical film and method for manufacturing optical film |
-
1999
- 1999-03-03 JP JP11055929A patent/JP2000249520A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008039789A (en) * | 2003-06-20 | 2008-02-21 | Lg Electron Inc | Method of measuring thickness in optical disc |
EP1760423A1 (en) | 2005-09-06 | 2007-03-07 | Ricoh Company, Ltd. | Method of inspecting optical recording medium |
JP2008051699A (en) * | 2006-08-25 | 2008-03-06 | Showa Shinku:Kk | Film thickness measuring device of organic thin film and organic thin film formation device |
JP2012068173A (en) * | 2010-09-24 | 2012-04-05 | Fujifilm Corp | Method for measuring film thickness of optical film and method for manufacturing optical film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1378896A2 (en) | Optical recording medium and method for recording and reproducing data | |
KR20040063839A (en) | Optical recording medium | |
KR20030079810A (en) | Optical recording medium and method for optically recording information in the same | |
KR20030094048A (en) | Optical recording and playback method, and optical recording media | |
JP2000249520A (en) | Method for measuring thickness of multilayer thin film | |
KR101017004B1 (en) | Optical recording medium and its manufacturing method | |
JPH10172182A (en) | Multilayer optical information media | |
KR20050073486A (en) | Optical information recording medium and manufacturing method thereof | |
WO2010032348A1 (en) | Information recording medium and process for producing the same | |
JP2001126324A (en) | Manufacturing method of optical recording medium | |
JP4161537B2 (en) | Manufacturing method of optical recording medium | |
JPH0298847A (en) | Manufacture of information recording medium | |
JP4085300B2 (en) | Phase change optical disk medium and method for initializing the medium | |
KR20010099945A (en) | Phase change-type optical recording medium and process for manufacturing the same | |
JP2000006524A (en) | Optical recording medium and manufacture thereof | |
JPH07121903A (en) | optical disk | |
JPH03125343A (en) | Optical information recording medium | |
JPH03141054A (en) | Production of optical information recording medium | |
EP0936605A1 (en) | Optical recording medium and manufacturing method thereof | |
JPH10289478A (en) | Optical information recording medium and method of manufacturing the same | |
JPH113538A (en) | Phase change optical disk and method of manufacturing phase change optical disk | |
JPH05225603A (en) | Phase transition optical disk medium for short wavelength | |
JP3582452B2 (en) | Phase change optical disk medium and method of manufacturing the same | |
JP2523904B2 (en) | Recording medium and optical disc using the same | |
JPH07109670B2 (en) | Method for coating multilayer film on optical disk substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060509 |