[go: up one dir, main page]

JP2000243437A - Solute for nonaqueous electrolyte battery and nonaqueous electrolyte battery - Google Patents

Solute for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Info

Publication number
JP2000243437A
JP2000243437A JP11042566A JP4256699A JP2000243437A JP 2000243437 A JP2000243437 A JP 2000243437A JP 11042566 A JP11042566 A JP 11042566A JP 4256699 A JP4256699 A JP 4256699A JP 2000243437 A JP2000243437 A JP 2000243437A
Authority
JP
Japan
Prior art keywords
solute
lithium
aqueous electrolyte
electrolyte battery
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11042566A
Other languages
Japanese (ja)
Other versions
JP4306858B2 (en
Inventor
Seiji Yoshimura
精司 吉村
Toshiyuki Noma
俊之 能間
Ikuro Yonezu
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04256699A priority Critical patent/JP4306858B2/en
Publication of JP2000243437A publication Critical patent/JP2000243437A/en
Application granted granted Critical
Publication of JP4306858B2 publication Critical patent/JP4306858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a capacitance from reducing when stored under the high temperature with a battery charged and to provide a battery with excellent storage characteristics under the high temperature by using lithium borate bonded with one kind of group selected from an alkoxy group, phenoxy group and their derivative group. SOLUTION: A solute of lithium borate bonded with an alkoxy group and phenoxy group is lithium tetraphenoxyborates or lithium tetraalkoxyborates such as lithium tetramethoxyborate and lithium tetraethoxyborate. When the solute that a part of hydrogen is substituted with fluorine is used, the solute is hardly reduced so that the reaction of the solute to a negative electrode in a charging condition is further suppressed. As the solute substituted with the fluorine, the solute in which the hydrogen of the alkoxy group or phenoxy group of lithium tetrakis (trifluoromethoxy) borate, etc., is substituted with the fluorine is named.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、正極と負極と非
水電解液とを備えた非水電解質電池及びこの非水電解質
電池における非水電解液に使用する溶質に係り、この非
水電解液に用いる溶質を改善し、特に、高温下において
この溶質が解離して電極と反応するのを抑制し、非水電
解質電池の高温での保存特性を向上させるようにした点
に特徴を有するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery provided with a positive electrode, a negative electrode, and a non-aqueous electrolyte, and a solute used for the non-aqueous electrolyte in the non-aqueous electrolyte battery. It is characterized by improving the solute used for, especially, suppressing the dissociation of this solute at high temperature and reacting with the electrode, and improving the storage characteristics of the nonaqueous electrolyte battery at high temperature. is there.

【0002】[0002]

【従来の技術】近年、高出力,高エネルギー密度の新型
電池として、非水電解液を用い、リチウムの酸化,還元
を利用した高起電力の非水電解質電池が利用されるよう
になった。
2. Description of the Related Art In recent years, non-aqueous electrolyte batteries having a high electromotive force using a non-aqueous electrolyte and utilizing oxidation and reduction of lithium have been used as new batteries having a high output and a high energy density.

【0003】ここで、このような非水電解質電池におい
ては、その非水電解液として、一般にプロピレンカーボ
ネートやジメチルカーボネート等の溶媒に、ヘキサフル
オロリン酸リチウムLiPF6 や過塩素酸リチウムLi
ClO4 等の溶質を溶解させたものが使用されていた
が、過塩素酸リチウムLiClO4 等の溶質は安全性等
の点で問題があり、また高温下において、このような溶
質が電極と反応して自己放電が生じ、非水電解質電池を
充電した状態で高温下で保存した場合に容量が低下する
という問題があった。
Here, in such a non-aqueous electrolyte battery, as a non-aqueous electrolyte, a solvent such as propylene carbonate or dimethyl carbonate is generally added to lithium hexafluorophosphate LiPF 6 or lithium perchlorate Lithium.
Solutes such as ClO 4 have been used, but solutes such as lithium perchlorate LiClO 4 have problems in safety, etc., and at high temperatures such solutes react with the electrodes. As a result, self-discharge occurs and the capacity is reduced when the nonaqueous electrolyte battery is charged and stored at a high temperature.

【0004】また、近年においては、特開昭61−21
4375号公報に示されるように、非水電解液の溶質
に、有機溶媒中で再結晶させて精製したテトラフェニル
ホウ酸リチウムを用いるようにしたものが提案されてい
る。
In recent years, Japanese Patent Application Laid-Open No. 61-21 / 1986
As disclosed in Japanese Patent No. 4375, there has been proposed a method in which lithium tetraphenylborate purified by recrystallization in an organic solvent is used as a solute of a nonaqueous electrolyte.

【0005】しかし、このように非水電解液の溶質にテ
トラフェニルホウ酸リチウムを用いた場合においても、
この溶質が非水電解液中において解離しやすく、特に、
高温下においてこの溶質が解離し、これが電極と反応し
て自己放電が生じ、依然として、非水電解質電池を充電
した状態で高温下で保存した場合に容量が低下するとい
う問題があった。
[0005] However, even when lithium tetraphenylborate is used as the solute of the non-aqueous electrolyte,
This solute is easily dissociated in the non-aqueous electrolyte,
This solute is dissociated at a high temperature and reacts with the electrode to cause self-discharge, and there is a problem that the capacity is reduced when the nonaqueous electrolyte battery is stored at a high temperature while being charged.

【0006】[0006]

【発明が解決しようとする課題】この発明は、正極と負
極と非水電解液とを備えた非水電解質電池における上記
のような問題を解決することを課題とするものであり、
非水電解液に用いる溶質として、高温下において解離し
て電極と反応するということが少ない溶質を提供し、ま
たこのような溶質を非水電解質電池に使用し、非水電解
質電池を充電した状態で高温下で保存した場合に、この
非水電解質電池の容量が低下するのを防止し、高温での
保存特性に優れた非水電解質電池が得られるようにする
ことを課題とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems in a non-aqueous electrolyte battery provided with a positive electrode, a negative electrode, and a non-aqueous electrolyte.
As a solute used for the non-aqueous electrolyte, a solute that does not dissociate and react with the electrode at high temperatures is provided, and such a solute is used in a non-aqueous electrolyte battery, and the non-aqueous electrolyte battery is charged. It is an object of the present invention to prevent the capacity of the nonaqueous electrolyte battery from lowering when stored at a high temperature in order to obtain a nonaqueous electrolyte battery having excellent storage characteristics at a high temperature. .

【0007】[0007]

【課題を解決するための手段】この発明の請求項1にお
ける非水電解質電池用溶質においては、上記のような課
題を解決するため、アルコキシ基、フェノキシ基及びこ
れらの誘導基から選択される少なくとも1種の基がホウ
酸リチウムに結合されたものを用いるようにしたのであ
る。
According to the first aspect of the present invention, there is provided a solute for a non-aqueous electrolyte battery, wherein at least one selected from an alkoxy group, a phenoxy group and a derivative group thereof is used in order to solve the above-mentioned problems. That is, one in which one type of group was bonded to lithium borate was used.

【0008】そして、この請求項1における非水電解質
電池用溶質においては、アルコキシ基、フェノキシ基及
びこれらの誘導基から選択される基がホウ素にしっかり
と結合し、これにより、この溶質が非水電解液中におい
て解離するのが抑制され、特に高温下においてもこの溶
質が非水電解液中において安定に存在し、電極と反応す
るということが少なくなる。
In the solute for a non-aqueous electrolyte battery according to the first aspect, a group selected from an alkoxy group, a phenoxy group and a derivative group thereof is firmly bonded to boron, whereby the solute becomes non-aqueous. Dissociation in the electrolytic solution is suppressed, and this solute is stably present in the non-aqueous electrolytic solution even at a high temperature, and it is less likely to react with the electrode.

【0009】ここで、上記のようにアルコキシ基、フェ
ノキシ基及びこれらの誘導基から選択される少なくとも
1種の基がホウ酸リチウムに結合された非水電解質電池
用溶質としては、例えば、テトラメトキシホウ酸リチウ
ム、テトラエトキシホウ酸リチウム、テトラプロポキシ
ホウ酸リチウム、テトラブトキシホウ酸リチウム等のテ
トラアルコキシホウ酸リチウム類や;テトラフェノキシ
ホウ酸リチウム、テトラキス(3−メチルフェノキシ)
ホウ酸リチウム、テトラキス(3,5−ジメチルフェノ
キシ)ホウ酸リチウム等のテトラフェノキシホウ酸リチ
ウム類等が挙げられる。
The solute for a non-aqueous electrolyte battery in which at least one group selected from an alkoxy group, a phenoxy group and a derivative group thereof is bonded to lithium borate as described above includes, for example, tetramethoxy Lithium tetraalkoxy borate such as lithium borate, lithium tetraethoxy borate, lithium tetrapropoxy borate, lithium tetrabutoxy borate and the like; lithium tetraphenoxy borate, tetrakis (3-methylphenoxy)
Lithium tetraphenoxyborates such as lithium borate and lithium tetrakis (3,5-dimethylphenoxy) borate.

【0010】また、請求項2に示す非水電解質電池用溶
質のように、上記のアルコキシ基、フェノキシ基及びこ
れらの誘導基から選択される基において、その水素の少
なくとも一部がフッ素で置換されたものを用いると、こ
の溶質が還元されにくくなり、溶質が充電状態における
負極と反応するのが一層抑制されるようになる。
In a solute for a non-aqueous electrolyte battery according to a second aspect of the present invention, in a group selected from the above-mentioned alkoxy group, phenoxy group and these derived groups, at least a part of hydrogen is replaced by fluorine. When the solute is used, the solute is less likely to be reduced, and the solute is further suppressed from reacting with the negative electrode in a charged state.

【0011】ここで、上記のようにホウ酸リチウムに結
合されるアルコキシ基、フェノキシ基及びこれらの誘導
基における水素の少なくとも一部がフッ素で置換された
非水電解質電池用溶質としては、例えば、テトラキス
(トリフルオロメトキシ)ホウ酸リチウム、テトラキス
(2,2,2−トリフルオロエトキシ)ホウ酸リチウ
ム、テトラキス(ペンタフルオロエトキシ)ホウ酸リチ
ウム、ビス(トリフルオロメトキシ)ビス(ペンタフル
オロエトキシ)ホウ酸リチウム等のアルコキシ基におけ
る水素の少なくとも一部がフッ素で置換されたものや、
テトラキス(ペンタフルオロフェノキシ)ホウ酸リチウ
ム、テトラキス(3−トリフルオロメチルフェノキシ)
ホウ酸リチウム、テトラキス(3,5−ビス(トリフル
オロメチル)フェノキシ)ホウ酸リチウム等のフェノキ
シ基における水素の一部がフッ素で置換されたものが挙
げられる。
The solute for a non-aqueous electrolyte battery in which at least a part of the hydrogen in the alkoxy group, the phenoxy group, and the derivative group bonded to lithium borate is substituted with fluorine as described above includes, for example, Lithium tetrakis (trifluoromethoxy) borate, lithium tetrakis (2,2,2-trifluoroethoxy) borate, lithium tetrakis (pentafluoroethoxy) borate, bis (trifluoromethoxy) bis (pentafluoroethoxy) borate At least part of hydrogen in an alkoxy group such as lithium is substituted with fluorine,
Lithium tetrakis (pentafluorophenoxy) borate, tetrakis (3-trifluoromethylphenoxy)
Phenoxy groups such as lithium borate and lithium tetrakis (3,5-bis (trifluoromethyl) phenoxy) borate in which part of hydrogen in a phenoxy group is substituted with fluorine are mentioned.

【0012】そして、この発明の請求項3における非水
電解質電池においては、非水電解液における溶質とし
て、上記の請求項1又は2に記載した非水電解質電池用
溶質を用いるようにしたのである。
Further, in the non-aqueous electrolyte battery according to claim 3 of the present invention, the solute for a non-aqueous electrolyte battery described in claim 1 or 2 is used as the solute in the non-aqueous electrolyte. .

【0013】ここで、この発明の請求項3における非水
電解質電池のように、非水電解液における溶質として、
上記の請求項1又は2に記載した非水電解質電池用溶質
を用いると、上記のように溶質が非水電解液中において
解離するのが抑制され、特に、高温下においてもこの溶
質が非水電解液中において安定に存在し、この溶質が電
極と反応して自己放電するのが防止され、この非水電解
質電池を充電状態で高温下で保存した場合に容量が低下
するのが抑制され、高温下における保存特性が向上す
る。
Here, as in the non-aqueous electrolyte battery according to claim 3 of the present invention, the solute in the non-aqueous electrolyte is
When the solute for a non-aqueous electrolyte battery according to claim 1 or 2 is used, dissociation of the solute in the non-aqueous electrolyte is suppressed as described above. It is stably present in the electrolyte, preventing the solute from reacting with the electrode and self-discharging, and suppressing a decrease in capacity when the nonaqueous electrolyte battery is stored at a high temperature in a charged state. The storage characteristics at high temperatures are improved.

【0014】なお、この発明の非水電解質電池は、上記
のように非水電解液に用いる溶質に特徴を有するもので
あり、非水電解液に用いる溶媒、正極や負極を構成する
材料等については特に限定されず、非水電解質電池にお
いて一般に使用されているものを用いることができる。
The non-aqueous electrolyte battery of the present invention is characterized by the solute used for the non-aqueous electrolyte as described above. Is not particularly limited, and those generally used in nonaqueous electrolyte batteries can be used.

【0015】ここで、上記の非水電解液に用いる溶媒と
しては、例えば、エチレンカーボネート、プロピレンカ
ーボネート、ビニレンカーボネート、ブチレンカーボネ
ート等の環状炭酸エステルや、ジメチルカーボネート、
ジエチルカーボネート、メチルエチルカーボネート等の
非環状炭酸エステルや、1,2−ジエトキシエタン、
1,2−ジメトキシエタン、エトキシメトキシエタン等
の溶媒を単独若しくは2種以上混合させて用いることが
できる。特に、非水電解液における溶媒に、上記の環状
炭酸エステルと非環状炭酸エステルとを混合させた混合
溶媒を用いると、この非水電解液におけるイオン伝導率
が向上すると共に、非水電解液中において前記の溶質が
解離するのがさらに抑制され、高温下における保存特性
がさらに向上する。
The solvent used for the non-aqueous electrolyte is, for example, a cyclic carbonate such as ethylene carbonate, propylene carbonate, vinylene carbonate or butylene carbonate, dimethyl carbonate, or the like.
Acyclic carbonates such as diethyl carbonate and methyl ethyl carbonate, 1,2-diethoxyethane,
Solvents such as 1,2-dimethoxyethane and ethoxymethoxyethane can be used alone or as a mixture of two or more. In particular, when a mixed solvent obtained by mixing the cyclic carbonate and the non-cyclic carbonate described above is used as the solvent in the non-aqueous electrolyte, the ionic conductivity of the non-aqueous electrolyte is improved, and , The dissociation of the solute is further suppressed, and the storage characteristics at high temperatures are further improved.

【0016】また、この発明における非水電解質電池に
おいては、上記の溶質を上記のような溶媒に溶解させた
非水電解液をポリマーに含浸させ、ゲル状のポリマー電
解質にして用いることも可能である。
In the non-aqueous electrolyte battery according to the present invention, a non-aqueous electrolyte obtained by dissolving the above-mentioned solute in the above-mentioned solvent can be impregnated into a polymer to be used as a gel polymer electrolyte. is there.

【0017】また、この発明の非水電解質電池におい
て、その正極を構成する正極材料としては、例えば、二
酸化マンガン、リチウム含有マンガン酸化物、リチウム
含有コバルト酸化物、リチウム含有バナジウム酸化物、
リチウム含有ニッケル酸化物、リチウム含有鉄酸化物、
リチウム含有クロム酸化物、リチウム含有チタン酸化物
等が使用される。
In the non-aqueous electrolyte battery of the present invention, the positive electrode material constituting the positive electrode includes, for example, manganese dioxide, lithium-containing manganese oxide, lithium-containing cobalt oxide, lithium-containing vanadium oxide,
Lithium-containing nickel oxide, lithium-containing iron oxide,
Lithium-containing chromium oxide, lithium-containing titanium oxide and the like are used.

【0018】また、この発明の非水電解液電池におい
て、その負極を構成する負極材料としては、金属リチウ
ム、Li−Al,Li−In,Li−Sn,Li−P
b,Li−Bi,Li−Ga,Li−Sr,Li−S
i,Li−Zn,Li−Cd,Li−Ca,Li−Ba
等のリチウム合金、リチウムイオンの吸蔵,放出が可能
な黒鉛,コークス,有機物焼成体等の炭素を含む材料、
SnO2 ,SnO,TiO,Nb2 3 等の電位が正極
材料よりも低い金属酸化物等を用いることができ、特
に、請求項4に示すように、負極材料に炭素材料を用い
ると、上記の溶質を含む非水電解液により炭素材料の表
面にイオン伝導性に優れた被膜が形成され、この被膜に
よって負極が非水電解液と反応するのが一層抑制され、
負極材料に炭素材料を用いた非水電解質電池における高
温での保存特性が著しく向上する。
In the nonaqueous electrolyte battery according to the present invention, the negative electrode constituting the negative electrode may be lithium metal, Li-Al, Li-In, Li-Sn, Li-P.
b, Li-Bi, Li-Ga, Li-Sr, Li-S
i, Li-Zn, Li-Cd, Li-Ca, Li-Ba
Materials containing carbon, such as lithium alloys such as graphite, graphite, coke, and organic materials that can store and release lithium ions,
Metal oxides such as SnO 2 , SnO, TiO, and Nb 2 O 3 having a lower potential than the positive electrode material can be used. In particular, when a carbon material is used as the negative electrode material, A film having excellent ion conductivity is formed on the surface of the carbon material by the non-aqueous electrolyte containing the solute, and the reaction of the negative electrode with the non-aqueous electrolyte is further suppressed by this film,
High-temperature storage characteristics of a nonaqueous electrolyte battery using a carbon material as a negative electrode material are significantly improved.

【0019】[0019]

【実施例】以下、この発明に係る非水電解質電池用溶質
及びこの溶質を用いた非水電解質電池について実施例を
挙げて具体的に説明すると共に、この実施例における非
水電解質電池においては、高温下で保存した場合におけ
る容量の低下が少なくなって、高温下における保存特性
が向上することを比較例を挙げて明らかにする。なお、
この発明に係る非水電解質電池用溶質及び非水電解質電
池は、下記の実施例に示したものに限定されるものでは
なく、その要旨を変更しない範囲において適宜変更して
実施できるものである。
EXAMPLES Hereinafter, a solute for a non-aqueous electrolyte battery according to the present invention and a non-aqueous electrolyte battery using the solute will be specifically described with reference to examples, and in the non-aqueous electrolyte battery in this example, It will be clarified that a decrease in capacity when stored at a high temperature is reduced and storage characteristics under a high temperature are improved by using a comparative example. In addition,
The solute for a non-aqueous electrolyte battery and the non-aqueous electrolyte battery according to the present invention are not limited to those shown in the following examples, and can be appropriately modified and implemented without changing the gist thereof.

【0020】(実施例1)この実施例1においては、正
極と負極を下記のようにして作製すると共に、非水系電
解液を下記のようにして調製し、図1に示すように、直
径が14mm、高さが50mm、電池容量が400mA
hになった円筒型のリチウム二次電池を作製した。
Example 1 In Example 1, a positive electrode and a negative electrode were prepared as described below, and a non-aqueous electrolyte was prepared as described below. As shown in FIG. 14mm, height 50mm, battery capacity 400mA
h, a cylindrical lithium secondary battery was manufactured.

【0021】[正極の作製]正極を作製するにあたって
は、正極材料にLiCoO2 粉末を用い、このLiCo
2 粉末と、導電剤であるアセチレンブラック粉末とを
90:6の重量比になるように混合して正極合剤を調製
した。
[Preparation of Positive Electrode] In preparing a positive electrode, LiCoO 2 powder was used as a positive electrode material.
O 2 powder and acetylene black powder as a conductive agent were mixed at a weight ratio of 90: 6 to prepare a positive electrode mixture.

【0022】そして、この正極合剤に結着剤であるポリ
フッ化ビニリデン(以下、PVdFと略す。)をN−メ
チル−2−ピロリドン(以下、NMPと略す。)に溶解
させた溶液を加えて、上記の正極合剤とPVdFとが9
6:4の重量比になるようにし、これらを混練してスラ
リーを調製し、このスラリーをアルミニウム箔からなる
正極集電体の両面にドクターブレード法により塗布し、
これを150℃で2時間真空乾燥させて正極を作製し
た。
Then, a solution prepared by dissolving polyvinylidene fluoride (hereinafter abbreviated as PVdF) as a binder in N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) is added to the positive electrode mixture. The above positive electrode mixture and PVdF are 9
A slurry was prepared by kneading them so as to have a weight ratio of 6: 4, and this slurry was applied to both surfaces of a positive electrode current collector made of aluminum foil by a doctor blade method,
This was vacuum-dried at 150 ° C. for 2 hours to produce a positive electrode.

【0023】[負極の作製]負極を作製するにあたって
は、負極材料に天然黒鉛粉末を用い、この天然黒鉛粉末
に結着剤であるPVdFをNMPに溶解させた溶液を加
えて、天然黒鉛粉末とPVdFとが96:4の重量比に
なるようにし、これを混練してスラリーを調製し、この
スラリーを負極集電体である銅箔の両面にドクターブレ
ード法により塗布し、これを150℃で2時間真空乾燥
させて負極を作製した。
[Preparation of Negative Electrode] In preparing the negative electrode, a natural graphite powder was used as a negative electrode material, and a solution of PVdF as a binder dissolved in NMP was added to the natural graphite powder. PVdF was adjusted to a weight ratio of 96: 4, and the mixture was kneaded to prepare a slurry. The slurry was applied to both surfaces of a copper foil as a negative electrode current collector by a doctor blade method. Vacuum drying was performed for 2 hours to produce a negative electrode.

【0024】[非水電解液の調製]非水電解液を調製す
るにあたっては、環状炭酸エステルであるエチレンカー
ボネート(以下、ECと略す。)と非環状炭酸エステル
であるジエチルカーボネート(以下、DECと略す。)
とを1:1の体積比で混合させた混合溶媒に、テトラメ
トキシホウ酸リチウムLiB(OCH3 4 を1mol
/lの割合で溶解させて非水電解液を調製した。
[Preparation of Non-Aqueous Electrolyte] In preparing a non-aqueous electrolyte, ethylene carbonate (hereinafter abbreviated as EC) which is a cyclic carbonate and diethyl carbonate (hereinafter abbreviated as DEC) which is a non-cyclic carbonate are used. Abbreviated.)
And 1 mol of lithium tetramethoxyborate LiB (OCH 3 ) 4 in a mixed solvent in which
/ L to prepare a non-aqueous electrolyte.

【0025】[電池の作製]電池を作製するにあたって
は、図1に示すように、上記のようにして作製した正極
1と負極2との間に、セパレータ3としてポリエチレン
製の微多孔膜を介在させ、これらをスパイラル状に巻い
て電池缶4内に収容させ、この電池缶4内に上記の非水
電解液を注液して封口し、上記の正極1を正極リード1
aを介して正極蓋5に接続させる一方、上記の負極2を
負極リード2aを介して電池缶4に接続させ、電池缶4
と正極蓋5とを絶縁パッキン6により電気的に絶縁させ
てリチウム二次電池を得た。
[Preparation of Battery] In preparing the battery, as shown in FIG. 1, a microporous polyethylene film as a separator 3 was interposed between the positive electrode 1 and the negative electrode 2 prepared as described above. These are wound in a spiral shape and accommodated in a battery can 4, and the above-mentioned non-aqueous electrolyte is poured into the battery can 4 and sealed.
a, the negative electrode 2 is connected to the battery can 4 via the negative electrode lead 2a.
The positive electrode cover 5 and the positive electrode cover 5 were electrically insulated by an insulating packing 6 to obtain a lithium secondary battery.

【0026】(実施例2〜17)実施例2〜17のリチ
ウム二次電池においては、上記の実施例1のリチウム二
次電池の場合と、非水電解液の調製において使用する溶
質だけを変更させ、それ以外については、上記の実施例
1の場合と同様にして円筒型のリチウム二次電池を作製
した。
(Examples 2 to 17) In the lithium secondary batteries of Examples 2 to 17, only the solute used in the preparation of the non-aqueous electrolyte was changed from that of the lithium secondary battery of Example 1 described above. Otherwise, a cylindrical lithium secondary battery was fabricated in the same manner as in Example 1 above.

【0027】ここで、実施例2〜17においては、非水
電解液における溶質に、下記の表1に示すように、実施
例2においてはLiB(CH3 )(OCH3 3 を、実
施例3においてはLiB(CH3 2 (OCH3
2 を、実施例4においてはLiB(CH3 3 (OCH
3 )を、実施例5においてはLiB(OC2 5
4 を、実施例6においてはLiB(OC3 7 4 を、
実施例7においてはLiB(OC4 9 4 を、実施例
8においてはLiB(OCF3 4 を、実施例9におい
てはLiB(OCH2 CF3 4 を、実施例10におい
てはLiB(OC2 54 を、実施例11においては
LiB(OCF3 2 (OC2 5 2 を、実施例12
においてはLiB(OC6 5 4 を、実施例13にお
いてはLiB(OC6 4 CH3 4 を、実施例14に
おいてはLiB(OC6 3 (CH3 24 を、実施
例15においてはLiB(OC6 5 4 を、実施例1
6においてはLiB(OC6 4 CF3 4 を、実施例
17においてはLiB(OC6 3(CF3 2 4
用いるようにした。
Here, in Examples 2 to 17, LiB (CH 3 ) (OCH 3 ) 3 was added to the solute in the non-aqueous electrolyte as shown in Table 1 below. In No. 3, LiB (CH 3 ) 2 (OCH 3 )
2 and LiB (CH 3 ) 3 (OCH
3 ) is replaced by LiB (OC 2 H 5 ) in Example 5.
4 and LiB (OC 3 H 7 ) 4 in Example 6.
Example 7 uses LiB (OC 4 H 9 ) 4 , Example 8 uses LiB (OCF 3 ) 4 , Example 9 uses LiB (OCH 2 CF 3 ) 4 , and Example 10 uses LiB ( OC 2 F 5 ) 4 , LiB (OCF 3 ) 2 (OC 2 F 5 ) 2 in Example 11, and Example 12
In Example 13, LiB (OC 6 H 5 ) 4 was used. In Example 13, LiB (OC 6 H 4 CH 3 ) 4 was used. In Example 14, LiB (OC 6 H 3 (CH 3 ) 2 ) 4 was used. In Example 15, LiB (OC 6 F 5 ) 4 was used.
In Example 6, LiB (OC 6 H 4 CF 3 ) 4 was used, and in Example 17, LiB (OC 6 H 3 (CF 3 ) 2 ) 4 was used.

【0028】(比較例1〜3)比較例1〜3のリチウム
二次電池においても、上記の実施例1のリチウム二次電
池の場合と、非水電解液の調製において使用する溶質だ
けを変更させ、それ以外については、上記の実施例1の
場合と同様にして円筒型のリチウム二次電池を作製し
た。
(Comparative Examples 1 to 3) In the lithium secondary batteries of Comparative Examples 1 to 3, only the solute used in the preparation of the non-aqueous electrolyte was changed from that of the lithium secondary battery of Example 1 described above. Otherwise, a cylindrical lithium secondary battery was fabricated in the same manner as in Example 1 above.

【0029】ここで、比較例1〜3においては、非水電
解液における溶質に、下記の表1に示すように、比較例
1においてはLiPF6 を、比較例2においてはLiB
(CH3 4 を、比較例3においてはLiB(C
6 5 4 を用いるようにした。
Here, in Comparative Examples 1 to 3, as shown in Table 1 below, LiPF 6 in Comparative Example 1 and LiB 6 in Comparative Example 2
(CH 3 ) 4 and LiB (C
6 H 5 ) 4 was used.

【0030】そして、上記の実施例1〜17及び比較例
1〜3の各リチウム二次電池をそれぞれ1mA/cm2
の充電電流で充電終止電圧4.2Vまで充電した後、1
mA/cm2 の放電電流で放電終止電圧3Vまで放電さ
せて、保存前における放電容量Q0を測定し、また上記
の各リチウム二次電池を1mA/cm2 の充電電流で充
電終止電圧4.2Vまで充電させた後、各リチウム二次
電池を60℃の温度雰囲気下において1ヶ月保存し、そ
の後、放電電流1mA/cm2 で放電終止電圧3Vまで
放電を行い、保存後における放電容量Q1を測定し、保
存後における放電容量の低下率(容量低下率)を下記の
式によって求め、その結果を下記の表1に示した。 容量低下率(%)=[(Q0−Q1)/Q0]×100
Then, each of the lithium secondary batteries of Examples 1 to 17 and Comparative Examples 1 to 3 was charged at 1 mA / cm 2.
After charging to a charging end voltage of 4.2 V with a charging current of
A discharge current of 3 mA was discharged at a discharge current of mA / cm 2 to measure a discharge capacity Q0 before storage. Each of the above-mentioned lithium secondary batteries was charged at a charge current of 1 mA / cm 2 and had a discharge voltage of 4.2 V. After charging, each lithium secondary battery was stored for 1 month in a temperature atmosphere of 60 ° C., and then discharged at a discharge current of 1 mA / cm 2 to a discharge termination voltage of 3 V, and a discharge capacity Q1 after storage was measured. The rate of decrease in discharge capacity after storage (capacity decrease rate) was determined by the following equation, and the results are shown in Table 1 below. Capacity reduction rate (%) = [(Q0−Q1) / Q0] × 100

【0031】[0031]

【表1】 [Table 1]

【0032】この結果から明らかなように、非水電解液
における溶質としてホウ酸リチウムにアルコキシ基、フ
ェノキシ基及びこれらの誘導基から選択される1種の基
が結合された溶質を用いた実施例1〜17の各リチウム
二次電池は、この発明の要件を満たさない溶質を使用し
た比較例1〜5の各リチウム二次電池に比べて、60℃
の温度雰囲気下において1ヶ月保存した場合における容
量低下率が低くなっており、高温下における保存特性が
向上していた。また、ホウ酸リチウムに結合される上記
のアルコキシ基、フェノキシ基及びこれらの誘導基にお
ける水素の少なくとも一部がフッ素で置換された実施例
8〜11,15〜17の各リチウム二次電池は、それぞ
れ対応するアルコキシ基、フェノキシ基及びこれらの誘
導基における水素がフッ素で置換されていないものに比
べて、高温下における保存特性が一層向上していた。
As is apparent from the results, an embodiment using a solute in which lithium borate is bonded to lithium alkoxylate, a phenoxy group and one group selected from these derived groups as the solute in the non-aqueous electrolyte. Each of the lithium secondary batteries of Nos. 1 to 17 had a temperature of 60 ° C. as compared with the lithium secondary batteries of Comparative Examples 1 to 5 using a solute that did not satisfy the requirements of the present invention.
At a temperature of 1 month, the capacity reduction rate after storage for one month was low, and the storage characteristics at high temperatures were improved. Further, each of the lithium secondary batteries of Examples 8 to 11 and 15 to 17 in which at least a part of hydrogen in the above-mentioned alkoxy group, phenoxy group and these derived groups bonded to lithium borate was substituted with fluorine, The storage characteristics at high temperatures were further improved as compared with those in which the hydrogen in the corresponding alkoxy group, phenoxy group and these derived groups was not substituted with fluorine.

【0033】(実施例18〜27)実施例18〜27の
リチウム二次電池においては、上記の実施例1における
非水電解液の調製において、その溶質に上記の実施例8
の場合と同じLiB(OCF3 4 を用いると共に、非
水電解液における溶媒を下記の表2に示すように変更
し、それ以外については、上記の実施例1の場合と同様
にして円筒型のリチウム二次電池を作製した。
(Examples 18 to 27) In the lithium secondary batteries of Examples 18 to 27, in the preparation of the nonaqueous electrolyte in Example 1 described above, the solute in Example 8 was used.
The same LiB (OCF 3 ) 4 as in Example 1 was used, and the solvent in the non-aqueous electrolyte was changed as shown in Table 2 below. Was manufactured.

【0034】ここで、非水電解液における溶媒として、
実施例18〜21においては環状炭酸エステルと非環状
炭酸エステルとの混合溶媒を用いるようにし、実施例1
8においてはプロピレンカーボネート(以下、PCと略
す。)とDECとを1:1の体積比で混合した混合溶媒
を、実施例19においてはブチレンカーボネート(以
下、BCと略す。)とDECとを1:1の体積比で混合
した混合溶媒を、実施例20においてはECとジメチル
カーボネート(以下、DMCと略す。)とを1:1の体
積比で混合した混合溶媒を、実施例21においてはEC
とエチルメチルカーボネート(以下、EMCと略す。)
とを1:1の体積比で混合した混合溶媒を用いるように
した。一方、実施例22においてはECだけを、実施例
23においてはDECだけを、実施例24においては
1,2−ジメトキシエタン(以下、DMEと略す。)だ
けを、実施例25においてはECとDMEとを1:1の
体積比で混合した混合溶媒を、実施例26においてはE
Cとテトラヒドロフラン(以下、THFと略す。)とを
1:1の体積比で混合した混合溶媒を、実施例27にお
いてはγ−ブチロラクトン(以下、γ−BLと略す。)
とDECとを1:1の体積比で混合した混合溶媒を用い
るようにした。
Here, as a solvent in the non-aqueous electrolyte,
In Examples 18 to 21, a mixed solvent of cyclic carbonate and acyclic carbonate was used.
In Example 8, a mixed solvent obtained by mixing propylene carbonate (hereinafter abbreviated as PC) and DEC at a volume ratio of 1: 1 was used. In Example 19, butylene carbonate (hereinafter abbreviated as BC) and DEC were mixed in a ratio of 1 to 1. In Example 20, a mixed solvent obtained by mixing EC and dimethyl carbonate (hereinafter abbreviated as DMC) at a volume ratio of 1: 1 was used.
And ethyl methyl carbonate (hereinafter abbreviated as EMC)
And a mixed solvent obtained by mixing at a 1: 1 volume ratio. On the other hand, in Example 22, only EC, in Example 23, only DEC, in Example 24, only 1,2-dimethoxyethane (hereinafter abbreviated as DME), and in Example 25, EC and DME were used. In a 1: 1 volume ratio, and in Example 26
In Example 27, a mixed solvent obtained by mixing C and tetrahydrofuran (hereinafter abbreviated as THF) at a volume ratio of 1: 1 was used. In Example 27, γ-butyrolactone (hereinafter abbreviated as γ-BL) was used.
And DEC in a 1: 1 volume ratio.

【0035】そして、これらの実施例18〜27の各リ
チウム二次電池についても、上記の実施例1〜17及び
比較例1〜3の各リチウム二次電池の場合と同様にし
て、保存前における放電容量Q0と、各リチウム二次電
池を60℃の温度雰囲気下において1ヶ月保存した後の
放電容量Q1とを測定して上記の容量低下率を求め、そ
の結果を上記の実施例8と合わせて下記の表2に示し
た。
Each of the lithium secondary batteries of Examples 18 to 27 is also similar to the lithium secondary batteries of Examples 1 to 17 and Comparative Examples 1 to 3 before storage. The discharge capacity Q0 and the discharge capacity Q1 after each lithium secondary battery was stored for one month in a 60 ° C. temperature atmosphere were measured to determine the above-mentioned capacity reduction rate, and the results were combined with Example 8 above. The results are shown in Table 2 below.

【0036】[0036]

【表2】 [Table 2]

【0037】この結果から明らかなように、非水電解液
の溶質に、この発明の要件を満たすLiB(OCF3
4 を用いると共に、溶媒に環状炭酸エステルと非環状炭
酸エステルとの混合溶媒を用いた実施例8,18〜21
の各リチウム二次電池は、環状炭酸エステルと非環状炭
酸エステルとの混合溶媒以外の溶媒を使用した実施例2
2〜27の各リチウム二次電池に比べて、60℃の温度
雰囲気下において1ヶ月保存した場合における容量低下
率がさらに低くなっており、高温下における保存特性が
一層向上していた。
As is evident from the results, the solute of the non-aqueous electrolytic solution is made of LiB (OCF 3 ) satisfying the requirements of the present invention.
4 with use of, Example 8,18~21 using a mixed solvent of a cyclic carbonate and a non-cyclic carbonate in the solvent
Example 2 using a solvent other than a mixed solvent of a cyclic carbonate and an acyclic carbonate in each of the lithium secondary batteries of Example 2
Compared with each of the lithium secondary batteries of Nos. 2 to 27, the rate of decrease in capacity when stored for one month in a 60 ° C temperature atmosphere was further reduced, and the storage characteristics at high temperatures were further improved.

【0038】(実施例28,29及び比較例4,5)実
施例28,29においては、非水電解液における溶質に
上記の実施例8の場合と同じLiB(OCF3 4 を用
い、また負極における負極材料として、下記の表3に示
すように、実施例28においてはリチウム金属を、実施
例29においてはLi−Al合金を用いるようにし、そ
れ以外については、上記の実施例1の場合と同様にして
円筒型のリチウム二次電池を作製した。
(Examples 28 and 29 and Comparative Examples 4 and 5) In Examples 28 and 29, the same solute as LiB (OCF 3 ) 4 in Example 8 was used for the solute in the non-aqueous electrolyte. As shown in Table 3 below, as the negative electrode material for the negative electrode, lithium metal was used in Example 28, and a Li-Al alloy was used in Example 29, and the other cases were the same as those in Example 1 above. In the same manner as in the above, a cylindrical lithium secondary battery was produced.

【0039】また、比較例4,5においては、非水電解
液における溶質に上記の比較例1の場合と同じLiPF
6 を用い、また負極における負極材料として、下記の表
3に示すように、比較例4においてはリチウム金属を、
比較例5においてはLi−Al合金を用いるようにし、
それ以外については、上記の実施例1の場合と同様にし
て円筒型のリチウム二次電池を作製した。
In Comparative Examples 4 and 5, the solute in the non-aqueous electrolyte was the same LiPF as in Comparative Example 1 described above.
6, and as a negative electrode material in the negative electrode, as shown in Table 3 below, lithium metal was used in Comparative Example 4;
In Comparative Example 5, a Li-Al alloy was used,
Otherwise, a cylindrical lithium secondary battery was manufactured in the same manner as in Example 1 described above.

【0040】そして、これらの実施例28,29及び比
較例4,5の各リチウム二次電池についても、上記の実
施例1〜17及び比較例1〜3の各リチウム二次電池の
場合と同様にして、保存前における放電容量Q0と、各
リチウム二次電池を60℃の温度雰囲気下において1ヶ
月保存した後の放電容量Q1とを測定して上記の容量低
下率を求め、その結果を上記の実施例8及び比較例1と
合わせて下記の表3に示した。
The lithium secondary batteries of Examples 28 and 29 and Comparative Examples 4 and 5 are the same as those of the lithium secondary batteries of Examples 1 to 17 and Comparative Examples 1 to 3 described above. Then, the discharge capacity Q0 before storage and the discharge capacity Q1 after storage of each lithium secondary battery for one month in a temperature atmosphere of 60 ° C. were measured to obtain the above-mentioned rate of capacity reduction, and the results were obtained as described above. The results are shown in Table 3 below together with Example 8 and Comparative Example 1.

【0041】[0041]

【表3】 [Table 3]

【0042】この結果から明らかなように、実施例2
8,29及び比較例4,5に示すように負極材料に黒鉛
以外のリチウム金属やLi−Al合金を用いた場合にお
いて、非水電解液における溶質にこの発明の要件を満た
すLiB(OCF3 4 を用いた実施例28,29の各
リチウム二次電池は、溶質にLIPF6 を使用した比較
例4,5の各リチウム二次電池に比べて、60℃の温度
雰囲気下において1ヶ月保存した場合における容量低下
率が低くなっており、高温下における保存特性が向上し
ていた。
As is evident from the results, Example 2
As shown in Examples 8 and 29 and Comparative Examples 4 and 5, when a lithium metal other than graphite or a Li-Al alloy is used as the negative electrode material, LiB (OCF 3 ) satisfying the requirements of the present invention is used as the solute in the non-aqueous electrolyte. each lithium secondary batteries of examples 28 and 29 using 4, as compared to the lithium secondary batteries of Comparative examples 4 and 5 using LIPF 6 solute and 1 month storage at an ambient temperature of 60 ° C. In this case, the capacity reduction rate was low, and the storage characteristics at high temperatures were improved.

【0043】また、実施例8,28,29の各リチウム
二次電池とを比較した場合、負極材料に黒鉛を用いた実
施例8のリチウム二次電池の方が、黒鉛以外のリチウム
金属やLi−Al合金を用いた実施例28,29の各リ
チウム二次電池よりも高温下における保存特性の向上が
大きくなっていた。
When comparing the lithium secondary batteries of Examples 8, 28 and 29 with each other, the lithium secondary battery of Example 8 using graphite as the negative electrode material was more suitable for lithium metal and Li other than graphite. The improvement in storage characteristics at high temperatures was greater than those of the lithium secondary batteries of Examples 28 and 29 using -Al alloy.

【0044】[0044]

【発明の効果】以上詳述したように、この発明における
非水電解質電池用溶質のように、アルコキシ基、フェノ
キシ基及びこれらの誘導基から選択される基がホウ酸リ
チウムに結合されたものを用いると、この溶質が非水電
解液中において解離するのが抑制され、特に高温下にお
いてもこの溶質が非水電解液中において安定に存在し、
電極と反応するということが少なくなった。
As described in detail above, the solute for a nonaqueous electrolyte battery according to the present invention, in which a group selected from an alkoxy group, a phenoxy group and a derivative thereof is bonded to lithium borate, is used. When used, this solute is suppressed from dissociating in the non-aqueous electrolyte, and this solute is stably present in the non-aqueous electrolyte, especially at high temperatures,
Reaction with the electrode is reduced.

【0045】そして、上記のような非水電解質電池用溶
質を非水電解質電池の溶質に使用すると、上記のように
この溶質が非水電解液中において解離するのが抑制さ
れ、特に、高温下においてもこの溶質が非水電解液中に
おいて安定に存在して、この溶質が電極と反応して自己
放電するのが防止されるようになり、この非水電解質電
池を充電状態で高温下で保存した場合においても容量が
低下するということが少なく、高温下における保存特性
が向上した。
When the above-mentioned solute for a non-aqueous electrolyte battery is used as a solute for a non-aqueous electrolyte battery, dissociation of the solute in the non-aqueous electrolyte is suppressed as described above, In this case, the solute stably exists in the non-aqueous electrolyte, preventing the solute from reacting with the electrode and self-discharging, and storing the non-aqueous electrolyte battery at a high temperature in a charged state. In this case, the capacity did not decrease much, and the storage characteristics at high temperatures were improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例及び比較例において作製した
リチウム二次電池の内部構造を示した概略断面図であ
る。
FIG. 1 is a schematic cross-sectional view showing an internal structure of a lithium secondary battery produced in an example of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 positive electrode 2 negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H029 AJ04 AK02 AK03 AL02 AL06 AL07 AL12 AM00 AM01 AM02 AM03 AM06 BJ02 BJ14 DJ09 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Ikuo Yonezu 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. F-term (reference) 5H029 AJ04 AK02 AK03 AL02 AL06 AL07 AL12 AM00 AM01 AM02 AM03 AM06 BJ02 BJ14 DJ09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルコキシ基、フェノキシ基及びこれら
の誘導基から選択される少なくとも1種の基がホウ酸リ
チウムに結合されてなることを特徴とする非水電解質電
池用溶質。
1. A solute for a non-aqueous electrolyte battery, wherein at least one group selected from an alkoxy group, a phenoxy group and a derivative group thereof is bonded to lithium borate.
【請求項2】 請求項1に記載した非水電解質電池用の
溶質において、上記のアルコキシ基、フェノキシ基及び
これらの誘導基における水素の少なくとも一部がフッ素
で置換されてなることを特徴とする非水電解質電池用溶
質。
2. The solute for a non-aqueous electrolyte battery according to claim 1, wherein at least a part of the hydrogen in the alkoxy group, the phenoxy group, and the derivative group thereof is replaced with fluorine. Solute for non-aqueous electrolyte batteries.
【請求項3】 正極と負極と非水電解液とを備えた非水
電解質電池において、上記の非水電解液における溶質に
請求項1又は2に記載した非水電解質電池用溶質を用い
たことを特徴とする非水電解質電池。
3. A non-aqueous electrolyte battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte, wherein the solute for the non-aqueous electrolyte battery according to claim 1 or 2 is used as the solute in the non-aqueous electrolyte. Non-aqueous electrolyte battery characterized by the above-mentioned.
【請求項4】 請求項3に記載した非水電解質電池にお
いて、前記の負極ににおける負極材料に炭素材料を用い
たことを特徴とする非水電解質電池。
4. The non-aqueous electrolyte battery according to claim 3, wherein a carbon material is used as a negative electrode material in the negative electrode.
JP04256699A 1999-02-22 1999-02-22 Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery Expired - Fee Related JP4306858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04256699A JP4306858B2 (en) 1999-02-22 1999-02-22 Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04256699A JP4306858B2 (en) 1999-02-22 1999-02-22 Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2000243437A true JP2000243437A (en) 2000-09-08
JP4306858B2 JP4306858B2 (en) 2009-08-05

Family

ID=12639618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04256699A Expired - Fee Related JP4306858B2 (en) 1999-02-22 1999-02-22 Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4306858B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1106617A3 (en) * 1999-12-10 2002-08-28 MERCK PATENT GmbH Alkyl-spiroborate salts and their use in electrochemical cells
JP2002539131A (en) * 1999-03-10 2002-11-19 コロラド ステイト ユニバーシティ リサーチ ファウンデイション Weakly coordinating anions with polyfluoroalkoxide ligands
EP2827430A1 (en) * 2013-07-19 2015-01-21 Basf Se Use of lithium alkoxyborates and lithium alkoxyaluminates as conducting salts in electrolytes of lithium ion batteries
WO2015007586A1 (en) * 2013-07-19 2015-01-22 Basf Se Use of lithium alkoxyborates and lithium alkoxyaluminates as conducting salts in electrolytes of lithium sulphur batteries
WO2015007659A1 (en) * 2013-07-19 2015-01-22 Basf Se Use of reactive lithium alkoxyborates as electrolyte additives in electrolytes for lithium ion batteries
WO2020184690A1 (en) * 2019-03-14 2020-09-17 三井化学株式会社 Lithium borate compound, additive for lithium secondary battery, nonaqueous electrolytic solution for lithium secondary battery, precursor for lithium secondary battery, and production method for lithium secondary battery
CN113764739A (en) * 2021-09-06 2021-12-07 中国科学院青岛生物能源与过程研究所 Wide-temperature-zone high-concentration double-salt flame-retardant electrolyte and application thereof in high-nickel lithium ion battery
WO2022117086A1 (en) * 2020-12-03 2022-06-09 珠海冠宇电池股份有限公司 Electrolyte solution suitable for silicon-carbon system lithium ion battery
JP2022538203A (en) * 2019-07-31 2022-09-01 インノリス・テクノロジー・アー・ゲー rechargeable battery cell
JP2024504479A (en) * 2021-01-29 2024-01-31 インノリス・テクノロジー・アー・ゲー SO2 based electrolyte and rechargeable battery cells for rechargeable battery cells
JP2024504477A (en) * 2021-01-29 2024-01-31 インノリス・テクノロジー・アー・ゲー rechargeable battery cells
CN117586295A (en) * 2024-01-18 2024-02-23 山东海化集团有限公司 Preparation method of sodium tetra (pentafluorophenol) borate and application of sodium tetra (pentafluorophenol) borate in sodium electricity

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4037036A1 (en) 2021-01-29 2022-08-03 Innolith Technology AG Rechargeable battery cell
EP4199150A1 (en) 2021-12-17 2023-06-21 Innolith Technology AG Rechargeable battery cell

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539131A (en) * 1999-03-10 2002-11-19 コロラド ステイト ユニバーシティ リサーチ ファウンデイション Weakly coordinating anions with polyfluoroalkoxide ligands
EP1106617A3 (en) * 1999-12-10 2002-08-28 MERCK PATENT GmbH Alkyl-spiroborate salts and their use in electrochemical cells
EP2827430A1 (en) * 2013-07-19 2015-01-21 Basf Se Use of lithium alkoxyborates and lithium alkoxyaluminates as conducting salts in electrolytes of lithium ion batteries
WO2015007586A1 (en) * 2013-07-19 2015-01-22 Basf Se Use of lithium alkoxyborates and lithium alkoxyaluminates as conducting salts in electrolytes of lithium sulphur batteries
WO2015007659A1 (en) * 2013-07-19 2015-01-22 Basf Se Use of reactive lithium alkoxyborates as electrolyte additives in electrolytes for lithium ion batteries
JP2016533624A (en) * 2013-07-19 2016-10-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Use of reactive lithium alkoxyborate as an electrolyte additive in electrolytes for lithium ion batteries
WO2020184690A1 (en) * 2019-03-14 2020-09-17 三井化学株式会社 Lithium borate compound, additive for lithium secondary battery, nonaqueous electrolytic solution for lithium secondary battery, precursor for lithium secondary battery, and production method for lithium secondary battery
JPWO2020184690A1 (en) * 2019-03-14 2020-09-17
US12315879B2 (en) 2019-03-14 2025-05-27 Mitsui Chemicals, Inc. Lithium borate compound, additive for lithium secondary battery, nonaqueous electrolytic solution for lithium secondary battery, precursor for lithium secondary battery, and production method for lithium secondary battery
JP7209805B2 (en) 2019-03-14 2023-01-20 三井化学株式会社 Lithium borate compound, additive for lithium secondary battery, non-aqueous electrolyte for lithium secondary battery, precursor for lithium secondary battery, and method for producing lithium secondary battery
EP3939982A4 (en) * 2019-03-14 2022-12-28 Mitsui Chemicals, Inc. Lithium borate compound, additive for lithium secondary battery, nonaqueous electrolytic solution for lithium secondary battery, precursor for lithium secondary battery, and production method for lithium secondary battery
JP2022538962A (en) * 2019-07-31 2022-09-07 インノリス・テクノロジー・アー・ゲー rechargeable battery cell
JP7232356B2 (en) 2019-07-31 2023-03-02 インノリス・テクノロジー・アー・ゲー rechargeable battery cell
JP2022538513A (en) * 2019-07-31 2022-09-05 インノリス・テクノロジー・アー・ゲー rechargeable battery cell
JP2022538377A (en) * 2019-07-31 2022-09-02 インノリス・テクノロジー・アー・ゲー rechargeable battery cell
JP2022539947A (en) * 2019-07-31 2022-09-14 インノリス・テクノロジー・アー・ゲー SO2-based electrolyte for rechargeable battery cells and rechargeable battery cells
JP2022538203A (en) * 2019-07-31 2022-09-01 インノリス・テクノロジー・アー・ゲー rechargeable battery cell
JP7232359B2 (en) 2019-07-31 2023-03-02 インノリス・テクノロジー・アー・ゲー SO2-based electrolyte for rechargeable battery cells and rechargeable battery cells
JP7232354B2 (en) 2019-07-31 2023-03-02 インノリス・テクノロジー・アー・ゲー rechargeable battery cell
JP7232355B2 (en) 2019-07-31 2023-03-02 インノリス・テクノロジー・アー・ゲー rechargeable battery cell
JP2022538376A (en) * 2019-07-31 2022-09-02 インノリス・テクノロジー・アー・ゲー rechargeable battery cell
JP7232353B2 (en) 2019-07-31 2023-03-02 インノリス・テクノロジー・アー・ゲー rechargeable battery cell
JP7232357B2 (en) 2019-07-31 2023-03-02 インノリス・テクノロジー・アー・ゲー rechargeable battery cell
WO2022117086A1 (en) * 2020-12-03 2022-06-09 珠海冠宇电池股份有限公司 Electrolyte solution suitable for silicon-carbon system lithium ion battery
JP2024504479A (en) * 2021-01-29 2024-01-31 インノリス・テクノロジー・アー・ゲー SO2 based electrolyte and rechargeable battery cells for rechargeable battery cells
JP2024504477A (en) * 2021-01-29 2024-01-31 インノリス・テクノロジー・アー・ゲー rechargeable battery cells
JP7676564B2 (en) 2021-01-29 2025-05-14 インノリス・テクノロジー・アー・ゲー SO2-based electrolyte for rechargeable battery cells and rechargeable battery cells
CN113764739A (en) * 2021-09-06 2021-12-07 中国科学院青岛生物能源与过程研究所 Wide-temperature-zone high-concentration double-salt flame-retardant electrolyte and application thereof in high-nickel lithium ion battery
CN117586295A (en) * 2024-01-18 2024-02-23 山东海化集团有限公司 Preparation method of sodium tetra (pentafluorophenol) borate and application of sodium tetra (pentafluorophenol) borate in sodium electricity

Also Published As

Publication number Publication date
JP4306858B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
JP5666287B2 (en) Nonaqueous electrolyte secondary battery
JP4092618B2 (en) Nonaqueous electrolyte secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JPH10312826A (en) Nonaqueous electrolyte battery and charging method therefor
EP1022797A1 (en) Polymer electrolyte battery and polymer electrolyte
JPH09147913A (en) Nonaqueous electrolyte battery
JP2009110886A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP4306858B2 (en) Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JPH10289731A (en) Nonaqueous electrolytic battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JP3244389B2 (en) Lithium secondary battery
JPH10199510A (en) Negative electrode for lithium battery and lithium battery
JPH11283667A (en) Lithium ion battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP4306891B2 (en) Non-aqueous electrolyte battery
JPH117977A (en) Non-aqueous electrolyte battery
JPH08171934A (en) Lithium secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP2000228215A (en) Lithium secondary battery
JP3525921B2 (en) Cathode active material for non-aqueous secondary batteries
WO2012086618A1 (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte secondary battery
JP2000173653A (en) Nonaqueous electrolyte battery
JP3258907B2 (en) Non-aqueous electrolyte secondary battery
JPH07320778A (en) Nonaqueous electrolytic battery
JP3825574B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees