JP2000212310A - Oriented film, its production and liquid crystal display device - Google Patents
Oriented film, its production and liquid crystal display deviceInfo
- Publication number
- JP2000212310A JP2000212310A JP11009997A JP999799A JP2000212310A JP 2000212310 A JP2000212310 A JP 2000212310A JP 11009997 A JP11009997 A JP 11009997A JP 999799 A JP999799 A JP 999799A JP 2000212310 A JP2000212310 A JP 2000212310A
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- liquid crystal
- substrate
- light
- alignment film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133711—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
- G02F1/133726—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films made of a mesogenic material
Landscapes
- Liquid Crystal (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、メソゲン構造を含む側
鎖を有する重合体の膜に、紫外線を照射することによっ
て、液晶パネルに封入した液晶の配向を促進する高分子
膜を提供し、液晶ディスプレイの製造方法の改良に役立
つものである。BACKGROUND OF THE INVENTION The present invention provides a polymer film which promotes the orientation of a liquid crystal encapsulated in a liquid crystal panel by irradiating a polymer film having a side chain containing a mesogen structure with ultraviolet rays. This is useful for improving the method of manufacturing a liquid crystal display.
【0002】[0002]
【従来の技術】従来、液晶パネルに封入した液晶を配向
させるには、図2に示すように基板21にポリイミト゛な
どの高分子化合物22を塗布し、表面をナイロンやポリ
エステル繊維を植毛した布を巻きつけたドラム23で擦
り、表面に極微細な溝を形成するか、または延伸配向さ
せる方法や酸化珪素(SiO)を基板に対して斜めから蒸
着して得られるSiO斜方蒸着法などの方法により作製さ
れた配向膜が利用されてきた。このような前例の中で、
高分子化合物表面を植毛した布で物理的に擦る方法は、
微細な埃や静電気による放電の原因となり、液晶パネル
の製造工程において問題となっていた。また、SiOの斜
方蒸着法は、基板上での蒸着角や膜厚の均一性を保つこ
とが難しいことやプロセスが大掛かりになってしまうな
どの問題点があった。近年、上記のような問題点を解決
するために、ノンラビング配向膜の製法として直線偏光
性の紫外光(以下、「偏光」と称する)を照射して液晶
を配向させる技術が注目されてきている。該液晶光配向
技術として光2量化反応を用いるもの、アゾ系ポリマー
の光異性化を用いるものなどが挙げられる。これらの方
法では、ラビング処理とは異なりマスク露光により一画
素内で液晶の配向方向を2方向以上に制御が可能となり
液晶表示装置の視野角依存の低減も可能となる。これら
の方法では、自然光を直線偏光に変換して照射する必要
がある。このような偏光変換に用いられる一般的な2色
性偏光子としては、PVA(ポリビニルアルコール)を一
軸延伸したシートにヨードを含浸したものをTAC(トリ
アセチルセルロース)で挟んだものがある。しかしなが
ら、このような2色性偏光子では、紫外域の光の透過率
が低く耐熱性も低いため液晶光配向技術の使用には耐え
ない。このような理由から、紫外域の光を偏光させるに
は複屈折型プリズムが用いられているが、複屈折型プリ
ズムでは方解石の自然結晶をプリズムとして用いるた
め、LCDに用いるような基板全面を照射できるような大
型プリズムはない。これに対し、偏光変換手段を用いる
ことなく被照射物表面に異方性を生じさせる手法が提案
されている。特開平10−104626号では、アゾ系
ポリマーや重合性プレポリマーで被覆した被照射物表面
に45°以上の入射角で非偏性の紫外光(以下、「自然
光」と称する)を照射し、S波が相対的に多く反射され
透過光のP波の割合が増強されることにより、共役系の
切断など光反応の異方性を膜中に発現させ液晶を配向さ
せる方法が提案されている。しかしながら、提案されて
いる材料ではP波の電界方向と液晶配向方向が直交する
ため、液晶パネルにおいて液晶配向の欠陥を防ぐプレチ
ルト角の発現が困難である。非偏光光を照射しプレチル
ト角を発現させる方法として、唯一、アゾベンゼン系高
分子材料の配向が報告されている(Appl. Phys. Lett.,
Vol73, No.7, 17 August 1998)。しかしながら、可視
域に光吸収があるため透過光は着色してしまうためフル
カラーLCDの用途には向かない。また、光異性化反応を
用いているため、耐光性や耐熱性の面でも問題がある。
LCDに用いる光配向膜の材料としては、可視域に吸収が
無く、波長400nm以下の光に感光する化合物が適し
ている。2. Description of the Related Art Conventionally, in order to align a liquid crystal enclosed in a liquid crystal panel, as shown in FIG. 2, a polymer compound 22 such as polyimid is applied to a substrate 21 and a cloth whose surface is planted with nylon or polyester fibers is used. A method such as a method of forming an extremely fine groove on the surface by rubbing with the wound drum 23, or extending and orienting the silicon oxide (SiO) obliquely on a substrate, and a method such as a SiO oblique evaporation method. Has been used. In such a precedent,
The method of physically rubbing the polymer compound surface with a flocking cloth is
This causes a discharge due to fine dust or static electricity, which has been a problem in a liquid crystal panel manufacturing process. In addition, the oblique deposition of SiO has problems that it is difficult to maintain the uniformity of the deposition angle and the film thickness on the substrate, and the process becomes large. In recent years, in order to solve the above-described problems, a technique of irradiating linearly polarized ultraviolet light (hereinafter, referred to as “polarized light”) to align liquid crystals has been attracting attention as a method for producing a non-rubbing alignment film. I have. Examples of the liquid crystal photo-alignment technique include a technique using a photodimerization reaction and a technique using photoisomerization of an azo polymer. In these methods, unlike the rubbing treatment, the orientation of the liquid crystal can be controlled in two or more directions within one pixel by mask exposure, and the viewing angle dependence of the liquid crystal display device can be reduced. In these methods, it is necessary to convert natural light into linearly polarized light for irradiation. As a general dichroic polarizer used for such polarization conversion, there is a sheet obtained by impregnating a sheet obtained by uniaxially stretching PVA (polyvinyl alcohol) with iodine with TAC (triacetyl cellulose). However, such a dichroic polarizer has a low transmittance of light in the ultraviolet region and a low heat resistance, and thus cannot withstand the use of the liquid crystal light alignment technology. For this reason, birefringent prisms are used to polarize light in the ultraviolet region.However, since birefringent prisms use natural crystals of calcite as prisms, they irradiate the entire surface of a substrate such as that used for LCDs. There is no large prism that can be made. On the other hand, a method has been proposed in which anisotropy is generated on the surface of an irradiation object without using polarization conversion means. In JP-A-10-104626, non-polarized ultraviolet light (hereinafter, referred to as "natural light") is irradiated onto an irradiation target surface coated with an azo-based polymer or a polymerizable prepolymer at an incident angle of 45 ° or more, A method has been proposed in which a relatively large amount of S-waves are reflected and the proportion of P-waves in transmitted light is enhanced, so that anisotropy of the photoreaction, such as cutting of conjugated systems, is expressed in the film and the liquid crystal is aligned. . However, in the proposed material, the direction of the electric field of the P-wave is perpendicular to the direction of the liquid crystal alignment, so that it is difficult to develop a pretilt angle that prevents defects in the liquid crystal alignment in the liquid crystal panel. As the only method of irradiating non-polarized light to develop a pretilt angle, the orientation of azobenzene-based polymer materials has been reported (Appl. Phys. Lett.,
Vol 73, No. 7, 17 August 1998). However, since the transmitted light is colored due to light absorption in the visible region, it is not suitable for use in a full-color LCD. Further, since the photoisomerization reaction is used, there is a problem in light resistance and heat resistance.
As a material for the photo-alignment film used for the LCD, a compound which does not absorb light in the visible region and is sensitive to light having a wavelength of 400 nm or less is suitable.
【0003】[0003]
【発明が解決しようとする課題】これまで提案されてい
る液晶光配向技術では、液晶の配向規制力を付与するた
めに偏光の照射を必要とする。これは、照射光の電界振
動方向とその垂直方向における配向膜材料の光反応性の
違いを利用したものであるため、偏光素子を介して照射
光を直線偏光としなければならなかった。自然光から直
線偏光を得る手段として最も一般的なのは、一軸延伸し
たPVAシートにヨードを含浸させたような2色性偏光子で
あるが、紫外域の吸収や耐久性の面でこの用途には向か
ない。唯一、紫外線を直線偏光とするには、紫外域に吸
収のない方解石の結晶を用いた複屈折型プリズムを用い
ることができる。しかしながら、このような複屈折型プ
リズムでは大型化し難く、大面積照射に用いる場合には
問題がある。このように、照射光の直線偏光性を利用し
ようとしている従来の液晶光配向技術では、実用的な偏
光素子の開発が必要であった。また、自然光の照射によ
る配向膜では、プレチルト角が発現しない、透過光が着
色してしまうなどの問題があった。本発明は、照射光の
偏光性を利用することなく、液晶性のメソゲン成分と感
光基を結合した構造を含む側鎖を有する重合体の膜に自
然光を照射することによって、液晶パネルに封入した液
晶のプレチルト角を伴なう配向を促進すると共に、着色
が無く耐光性や耐熱性に優れた高分子膜を提供し、液晶
ディスプレイの製造方法の改良に役立つものである。The liquid crystal photo-alignment technology proposed so far requires irradiation of polarized light in order to provide a liquid crystal alignment regulating force. This utilizes the difference in the photoreactivity of the alignment film material between the direction of the electric field oscillation of the irradiation light and the direction perpendicular thereto, so that the irradiation light has to be linearly polarized through a polarizing element. The most common means of obtaining linearly polarized light from natural light is a dichroic polarizer in which uniaxially stretched PVA sheet is impregnated with iodine.However, it is not suitable for this application in terms of absorption in the ultraviolet region and durability. No The only way to convert ultraviolet light into linearly polarized light is to use a birefringent prism using calcite crystals that do not absorb in the ultraviolet region. However, it is difficult to increase the size of such a birefringent prism, and there is a problem when using it for irradiation with a large area. As described above, in the conventional liquid crystal photo-alignment technology that attempts to use the linear polarization of the irradiation light, it is necessary to develop a practical polarizing element. In addition, in the orientation film irradiated by natural light, there are problems such as the absence of a pretilt angle and the coloring of transmitted light. The present invention encapsulates a liquid crystal panel by irradiating natural light to a polymer film having a side chain containing a structure in which a liquid crystal mesogen component and a photosensitive group are bonded, without utilizing the polarization property of irradiation light. The present invention promotes the alignment of a liquid crystal with a pretilt angle, provides a polymer film free from coloring and excellent in light resistance and heat resistance, and is useful for improving a method of manufacturing a liquid crystal display.
【0004】[0004]
【課題を解決する手段】前記の問題に鑑み、本発明で
は、側鎖に少なくとも化学式1または化学式2または化
学式3で表される構造を1種以上含む高分子であり、主
鎖が炭化水素、アクリレート、メタクリレート、シロキ
サンである化学式4で表される単独重合体または共重合
体を用いた配向膜およびその製造方法を提供する。In view of the above problems, the present invention is directed to a polymer comprising at least one structure represented by the chemical formula 1, 2, or 3 in a side chain, wherein the main chain is a hydrocarbon, Provided are an alignment film using a homopolymer or a copolymer represented by Chemical Formula 4, which is acrylate, methacrylate, or siloxane, and a method for producing the same.
【化5】 但し、x:y:z=100〜0:100〜0:99〜0
(ここで、x+y+z=100)、n=1〜12、m=
1〜12、j=1〜12、k=1〜12、X,Y,Z=
none、−COO、−OCO−、−N=N−、−C=C−or−C6H4
−、−R1〜−R10=−H、ハロゲン基、またはメトキ
シ基などのアルキルオキシ基、更に−R11=−H、−C
N、またはメトキシ基などのアルキルオキシ基である。
該側鎖型高分子は側鎖に液晶性高分子のメソゲン成分と
して多用されているビフェニル、ターフェニル、フェニ
ルベンゾエート、アゾベンゼンなどの置換基を有した、
炭化水素、アクリレート、メタクリレート、シロキサン
などの構造を主鎖に有する高分子である。また、必要に
応じて、側鎖のメソゲン成分に桂皮酸基(または、その
誘導体基)などの感光性基を結合した構造としたり、感
光性基を含む側鎖を有すると共に感光性基の結合してい
ない側鎖をある割合で含有させたものである。図1に示
すように、該高分子体の溶液を基板11上に塗布(スピ
ンコートないしはキャスト)した高分子塗布膜12を形
成する。該高分子化合物の塗布膜に自然光Lを照射する
ことにより、桂皮酸(または、その誘導体)基の2量化
を抑制した膜となり配向膜を形成し得る。更に、この解
決手段により、高分子化合物表面を物理的に擦る場合に
おける、微細な埃、静電気による放電の発生や大掛かり
なプロセスが必要でなくなる。また、自然光による液晶
配向が可能なことから、偏光素子を用いることなく光配
向を実現でき、従来の技術における最大の問題点が解決
される。Embedded image However, x: y: z = 100-0: 100-0: 99-0
(Where x + y + z = 100), n = 1 to 12, m =
1-12, j = 1-12, k = 1-12, X, Y, Z =
none, -COO, -OCO-, -N = N-, -C = C-or-C6H4
-, -R1 to -R10 = -H, an alkyloxy group such as a halogen group or a methoxy group, and -R11 = -H, -C
N or an alkyloxy group such as a methoxy group.
The side chain type polymer has a substituent such as biphenyl, terphenyl, phenylbenzoate, or azobenzene which is frequently used as a mesogen component of a liquid crystalline polymer in a side chain.
It is a polymer having a structure such as a hydrocarbon, acrylate, methacrylate, or siloxane in the main chain. Also, if necessary, a structure in which a photosensitive group such as a cinnamic acid group (or a derivative group thereof) is bonded to the mesogen component of the side chain, or a structure having a side chain containing a photosensitive group and the bonding of the photosensitive group is provided. It contains a certain proportion of untreated side chains. As shown in FIG. 1, a polymer coating film 12 is formed by applying (spin coating or casting) a solution of the polymer on a substrate 11. By irradiating natural light L to the coating film of the polymer compound, a film in which dimerization of cinnamic acid (or a derivative thereof) groups is suppressed can be formed, and an alignment film can be formed. Furthermore, this solution eliminates the need to generate fine dust and static electricity and to perform a large-scale process when physically rubbing the surface of the polymer compound. Further, since the liquid crystal alignment by natural light is possible, the optical alignment can be realized without using a polarizing element, and the biggest problem in the conventional technology is solved.
【0005】[0005]
【発明の実施の形態】以下に、本発明の詳細を説明す
る。前述の単独重合体または共重合体の溶液を基板上に
塗布(スピンコートないしキャスト)した高分子塗布膜
を形成する。該高分子塗布膜内は、製膜時には無配向で
あり、側鎖部は特定方向を向いていない。該膜に紫外線
を照射すると、照射紫外線の進行方向と垂直方向に向い
た側鎖部は、平行方向に向いた側鎖部より感光しやすい
ため、異方性の膜となる。ベンゼン環などを含有するメ
ソゲン側鎖の共役系は、側鎖の長軸方向に延びており、
この方向に電子が運動する。図3に示すように、このよ
うな側鎖を自然光Lの照射を受ける放射場に置いたと
き、光の電界振動方向が側鎖の長軸方向と一致する3a
に相互作用が極大となり、光の進行方向と側鎖の長軸方
向が一致した成分3bに相互作用が極小となることによ
る。この配向膜表面に液晶分子を接触させると、側鎖の
反応量が方向的に異なり、この影響を受け液晶分子が配
向するようになる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below. A solution of the above-mentioned homopolymer or copolymer is applied (spin-coated or cast) on a substrate to form a polymer coating film. The inside of the polymer coating film is not oriented at the time of film formation, and the side chain portion does not face a specific direction. When the film is irradiated with ultraviolet light, the side chain portion directed in the direction perpendicular to the direction of the irradiation ultraviolet light is more sensitive than the side chain portion directed in the parallel direction, and thus becomes an anisotropic film. The conjugated mesogen side chain containing a benzene ring etc. extends in the long axis direction of the side chain,
The electrons move in this direction. As shown in FIG. 3, when such a side chain is placed in a radiation field irradiated with natural light L, the direction of the electric field oscillation of light coincides with the long axis direction of the side chain.
The interaction is maximized, and the interaction is minimized in the component 3b in which the light traveling direction coincides with the long axis direction of the side chain. When liquid crystal molecules are brought into contact with the surface of the alignment film, the reaction amount of the side chain is different in direction, and the liquid crystal molecules are aligned under the influence of the reaction.
【0006】側鎖部の感光性基の2量化を進めるには、
この部分の反応に適した波長の光を照射する。この波長
は、化学式1または化学式2で示された構造によっても
異なるが、メソゲン成分としてビフェニルや感光性基と
して桂皮酸基(または、その誘導体基)を用いた場合で
は、一般に200-500nmであり、中でも250-450nmの有効性
が高い場合が多い。In order to promote the dimerization of the photosensitive group in the side chain,
Light of a wavelength suitable for the reaction of this part is irradiated. This wavelength varies depending on the structure represented by Formula 1 or 2, but is generally 200-500 nm when biphenyl is used as the mesogenic component or cinnamic acid group (or a derivative thereof) is used as the photosensitive group. In particular, the effectiveness of 250-450 nm is often high.
【0007】従来の光配向技術では液晶の配向方向が照
射光のS波電界振動方向と平行であり、液晶パネルにお
いて液晶配向の欠陥を防ぐプレチルト角の発現が困難で
あった。これに対し、本発明の重合体では、液晶の配向
方向が照射光中のP波成分の電界振動方向と平行である
ので、プレチルト角を発現できる。また、照射光の照射
方向と照射光量によって未反応の側鎖部の配向方向と密
度を制御でき、照射光の照射方向と照射光量によってプ
レチルト角の大きさと発現する方向を任意に設定でき
る。図4と図5には、それぞれ本発明の異なる重合体
(x:y:z=100:0:0、n=6、m=2、X=
none、−R1〜−R5=−H、およびx:y:z=0:1
00:0、k=6、Z=none、−R6〜−R10=−H)
に自然光を照射した際の照射時間に対するプレチルト角
の変化を示す。照射光の光源に高圧水銀ランプを用い、
照射角度は、基板法線方向に対しそれぞれ60°と35
°、45°、55°である。照射時間を増加すると、プ
レチルト角は90°から徐々に低下する照射時間依存性
を示し、また照射角度依存性もあることが確認できた。In the conventional optical alignment technology, the alignment direction of the liquid crystal is parallel to the S-wave electric field oscillation direction of the irradiation light, and it is difficult to develop a pretilt angle for preventing a defect in the liquid crystal alignment in the liquid crystal panel. In contrast, the polymer of the present invention can exhibit a pretilt angle because the orientation direction of the liquid crystal is parallel to the direction of the electric field oscillation of the P-wave component in the irradiation light. Further, the orientation direction and density of the unreacted side chain can be controlled by the irradiation direction of the irradiation light and the irradiation light amount, and the magnitude of the pretilt angle and the direction in which the pretilt angle appears can be arbitrarily set by the irradiation direction and the irradiation light amount of the irradiation light. FIGS. 4 and 5 show different polymers (x: y: z = 100: 0: 0, n = 6, m = 2, X =
none, -R1--R5 = -H, and x: y: z = 0: 1
00: 0, k = 6, Z = none, -R6 to -R10 = -H)
3 shows the change of the pretilt angle with respect to the irradiation time when natural light is irradiated to the light emitting element. Using a high-pressure mercury lamp as the light source of the irradiation light,
The irradiation angles are 60 ° and 35
°, 45 °, and 55 °. It was confirmed that when the irradiation time was increased, the pretilt angle showed an irradiation time dependency that gradually decreased from 90 °, and that there was also an irradiation angle dependency.
【0008】液晶分子のプレチルト角の測定には、一対
の偏光子の間に挿入した測定試料を回転させながら波長
が633nmのHe-Neレーザー光の透過強度を測定する
クリスタルローテーション法を用いた。該測定法では、
He-Neレーザー光の透過率の角度依存性から測定試料の
立体的な複屈折の測定ができる。For the measurement of the pretilt angle of the liquid crystal molecules, a crystal rotation method for measuring the transmission intensity of He-Ne laser light having a wavelength of 633 nm while rotating a measurement sample inserted between a pair of polarizers was used. In the measurement method,
The three-dimensional birefringence of the measurement sample can be measured from the angle dependence of the transmittance of the He-Ne laser light.
【0009】このようなことから、本発明の高分子材料
は、基板に塗布(スピンコートないしキャスト)して製
膜するが、この基板面に対して特定方向から自然光を照
射することによって、特定方向の高分子側鎖部のみの光
反応を抑制できる。この未反応の側鎖部の密度は、照射
光の照射量を変えることによって任意に設定できる。こ
の配向膜を持つ基板を液晶セルに用いると、液晶分子は
該側鎖との相互作用によって所望のプレチルト角に設定
できるので、TN、VA、IPSモードなど種々のモードのLCD
において配向膜として活用できる。また、本発明の光配
向膜およびその製造法では、物理的に基板表面を擦るな
どの工程が不要であるため、静電気、埃などを発生する
ことなく、更に、自然光による液晶配向が可能なことか
ら偏光素子を用いること無く液晶表示装置を提供でき
る。From the above, the polymer material of the present invention is applied (spin-coated or cast) to a substrate to form a film, and the substrate surface is irradiated with natural light from a specific direction to form the film. The photoreaction of only the polymer side chain in the direction can be suppressed. The density of the unreacted side chains can be arbitrarily set by changing the irradiation amount of irradiation light. When a substrate having this alignment film is used for a liquid crystal cell, liquid crystal molecules can be set to a desired pretilt angle by interaction with the side chain, so that various modes of LCD such as TN, VA, and IPS modes are used.
Can be used as an alignment film. In addition, in the photo-alignment film and the method of manufacturing the same according to the present invention, since a process such as physically rubbing the substrate surface is unnecessary, static electricity, dust and the like are not generated, and the liquid crystal can be aligned by natural light. Therefore, a liquid crystal display device can be provided without using a polarizing element.
【0010】高分子材料の原料化合物に関する合成方法
を以下に示す。 (単量体1)4,4’−ビフェニルジオールに、アルカ
リ条件下で1,6−ジブロモヘキサンを反応させ、4−
(6−ブロモヘキシルオキシ)−4’−ビフェノールを
合成した。次いで、リチウムメタクリレートを反応さ
せ、4−ヒドロキシ−4’−(6’−ビフェニルオキシ
ヘキシル)メタクリレートを合成した。最後に、塩基性
の条件下において、塩化シンナモイルを加え、化学式5
に示されるメタクリル酸エステルを合成した。A method for synthesizing a raw material compound of a polymer material will be described below. (Monomer 1) 4,6-dibromohexane is reacted with 4,4′-biphenyldiol under alkaline conditions,
(6-Bromohexyloxy) -4′-biphenol was synthesized. Next, lithium methacrylate was reacted to synthesize 4-hydroxy-4 ′-(6′-biphenyloxyhexyl) methacrylate. Finally, under basic conditions, cinnamoyl chloride is added,
Was synthesized.
【化6】 Embedded image
【0011】(単量体2)4,4’−ビフェニルジオー
ルと2−クロロエタノールを、アルカリ条件下で加熱す
ることにより、4−ヒドロキシ−4’−ヒドロキシエト
キシビフェニルを合成した。この生成物に、アルカリ条
件下で1,6−ジブロモヘキサンを反応させ、4−(6
−ブロモヘキシルオキシ)−4’−ヒドロキシエトキシ
ビフェニルを合成した。次いで、リチウムメタクリレー
トを反応させ、4−ヒドロキシエトキシ−4’−(6’
−ビフェニルオキシヘキシル)メタクリレートを合成し
た。最後に、塩基性の条件下において、塩化シンナモイ
ルを加え、化学式6に示されるメタクリル酸エステルを
合成した。(Monomer 2) 4-Hydroxy-4'-hydroxyethoxybiphenyl was synthesized by heating 4,4'-biphenyldiol and 2-chloroethanol under alkaline conditions. This product was reacted with 1,6-dibromohexane under alkaline conditions to obtain 4- (6
-Bromohexyloxy) -4'-hydroxyethoxybiphenyl was synthesized. Next, lithium methacrylate was reacted to give 4-hydroxyethoxy-4 ′-(6 ′).
-Biphenyloxyhexyl) methacrylate was synthesized. Finally, cinnamoyl chloride was added under basic conditions to synthesize a methacrylic ester represented by Chemical Formula 6.
【化7】 Embedded image
【0012】(単量体3)4,4’−ビフェニルジオー
ルに、アルカリ条件下で1,6−ジブロモヘキサンを反
応させ、4−(6−ブロモヘキシルオキシ)−4’−ヒ
ドロキシビフェニルを合成した。次いで、リチウムメタ
クリレートを反応させ、4−ヒドロキシ−4’−(6’
−ビフェニルオキシヘキシル)メタクリレートを合成し
た。最後に、塩基性の条件下において、2−メトキシ塩
化シンナモイルを加え、化学式7に示されるメタクリル
酸エステルを合成した。(Monomer 3) 1,4-Dibromohexane was reacted with 4,4'-biphenyldiol under alkaline conditions to synthesize 4- (6-bromohexyloxy) -4'-hydroxybiphenyl. . Subsequently, lithium methacrylate was reacted to give 4-hydroxy-4 ′-(6 ′
-Biphenyloxyhexyl) methacrylate was synthesized. Finally, under basic conditions, 2-methoxycinnamoyl chloride was added to synthesize a methacrylic acid ester represented by Chemical Formula 7.
【化8】 Embedded image
【0013】(単量体4)4,4’−ビフェニルジオー
ルと2−クロロヘキサノールを、アルカリ条件下で加熱
することにより、4−ヒドロキシ−4’−ヒドロキシヘ
キシルオキシビフェニルを合成した。この生成物に、ア
ルカリ条件下で1,6−ジブロモヘキサンを反応させ、
4−(6−ブロモヘキシルオキシ)−4’−ヒドロキシ
ヘキシルオキシビフェニルを合成した。次いで、リチウ
ムメタクリレートを反応させ、4−ヒドロキシヘキシル
オキシ−4’−(6’−ビフェニルオキシヘキシル)メ
タクリレートを合成した。最後に、塩基性の条件下にお
いて、2−メトキシ塩化シンナモイルを加え、化学式8
に示されるメタクリル酸エステルを合成した。(Monomer 4) 4-Hydroxy-4'-hydroxyhexyloxybiphenyl was synthesized by heating 4,4'-biphenyldiol and 2-chlorohexanol under alkaline conditions. The product is reacted with 1,6-dibromohexane under alkaline conditions,
4- (6-Bromohexyloxy) -4′-hydroxyhexyloxybiphenyl was synthesized. Next, lithium methacrylate was reacted to synthesize 4-hydroxyhexyloxy-4 ′-(6′-biphenyloxyhexyl) methacrylate. Finally, under basic conditions, 2-methoxycinnamoyl chloride was added to obtain a compound of formula 8
Was synthesized.
【化9】 Embedded image
【0014】(単量体5)4−ヒドロキシ−4’−シア
ノビフェニルをアルカリ条件下で1,6−ジブロモヘキ
サンと反応させ、4−(6−ブロモヘキシルオキシ)−
4’−シアノビフェニルを合成した。次いで、リチウム
メタクリレートを反応させ、4−シアノ−4’−(6’
−ビフェニルオキシヘキシル)メタクリレートを合成し
た。化学式9に示されるメタクリル酸エステルを合成し
た。(Monomer 5) 4-Hydroxy-4'-cyanobiphenyl is reacted with 1,6-dibromohexane under alkaline conditions to give 4- (6-bromohexyloxy)-
4′-cyanobiphenyl was synthesized. Next, lithium methacrylate was reacted to obtain 4-cyano-4 ′-(6 ′).
-Biphenyloxyhexyl) methacrylate was synthesized. A methacrylic ester represented by Chemical Formula 9 was synthesized.
【化10】 Embedded image
【0015】(重合体1)この単量体1をテトラヒドロ
フラン中に溶解し、反応開始剤としてAIBN(アゾビスイ
ソブチロニトリル)を添加して重合することにより重合
体1を得た。この重合体1は、144−219℃の温度
領域において、液晶性を呈した。(Polymer 1) Polymer 1 was obtained by dissolving this monomer 1 in tetrahydrofuran, adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. This polymer 1 exhibited liquid crystallinity in a temperature range of 144 to 219 ° C.
【0016】(重合体2)単量体2をテトラヒドロフラ
ン中に溶解し、反応開始剤としてAIBN(アゾビスイソブ
チロニトリル)を添加して重合することにより重合体2
を得た。この重合体2も、47−75℃の温度領域にお
いて、液晶性を呈した。(Polymer 2) Polymer 2 is dissolved by dissolving monomer 2 in tetrahydrofuran and adding AIBN (azobisisobutyronitrile) as a reaction initiator to carry out polymerization.
I got This polymer 2 also exhibited liquid crystallinity in a temperature range of 47 to 75 ° C.
【0017】(重合体3)単量体4をテトラヒドロフラ
ン中に溶解し、反応開始剤としてAIBN(アゾビスイソブ
チロニトリル)を添加して重合することにより重合体3
を得た。この重合体3も、92−116℃の温度領域に
おいて、液晶性を呈した。(Polymer 3) Polymer 4 is dissolved by dissolving monomer 4 in tetrahydrofuran and adding AIBN (azobisisobutyronitrile) as a reaction initiator to carry out polymerization.
I got This polymer 3 also exhibited liquid crystallinity in a temperature range of 92 to 116 ° C.
【0018】(重合体4)単量体2と単量体5を1:1
の割合でテトラヒドロフラン中に溶解し、反応開始剤と
してAIBN(アゾビスイソブチロニトリル)を添加して重
合することにより重合体4を得た。この重合体4も液晶
性を呈した。この重合体4は、44−99℃の温度領域
において、液晶性を呈した。(Polymer 4) 1: 1 of monomer 2 and monomer 5
Was dissolved in tetrahydrofuran at a ratio of, and polymer 4 was obtained by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. This polymer 4 also exhibited liquid crystallinity. This polymer 4 exhibited liquid crystallinity in a temperature range of 44-99 ° C.
【0019】(実施例1)重合体1をクロロホルムに溶
解し、ITO(インジウム錫酸化物)で覆った基板上に約
100 nmの厚さでスピンコートした。該基板を水平面
に対して55度傾くように配置し、非偏紫外線を水平面
に対し垂直方向から室温で120秒間照射した。このよ
うな基板を2枚作製して液晶ZLI2061を充填するこ
とにより、厚さ4.5μmのTN型液晶セルを組み立て
た。このTN型液晶セルの駆動電圧は2Vであった。更
に、アンチパラレル型のセルとしてクリスタルローテー
ション法でプレチルト角を測定したところプレチルト角
は6°であった。Example 1 Polymer 1 was dissolved in chloroform and spin-coated to a thickness of about 100 nm on a substrate covered with ITO (indium tin oxide). The substrate was placed at an angle of 55 degrees with respect to the horizontal plane, and was irradiated with non-polarized ultraviolet light at room temperature for 120 seconds from a direction perpendicular to the horizontal plane. By preparing two such substrates and filling the liquid crystal ZLI2061, a TN type liquid crystal cell having a thickness of 4.5 μm was assembled. The driving voltage of this TN type liquid crystal cell was 2V. Further, when the pretilt angle was measured by a crystal rotation method as an anti-parallel cell, the pretilt angle was 6 °.
【0020】(実施例2)重合体2をクロロホルムに溶
解し、ITO(インジウム錫酸化物)で覆った基板上に約
100 nmの厚さでスピンコートした。該基板を水平面
に対して60度傾くように配置し、紫外線を水平面に対
し垂直方向から室温で200秒間照射した。このような
基板を2枚作製してアンチパラレル型のセルを作製し液
晶ZLI2061を充填した。クリスタルローテーション
法でプレチルト角を測定したところプレチルト角は45
°であった。Example 2 Polymer 2 was dissolved in chloroform and spin-coated to a thickness of about 100 nm on a substrate covered with ITO (indium tin oxide). The substrate was arranged so as to be tilted by 60 degrees with respect to the horizontal plane, and irradiated with ultraviolet rays at a room temperature for 200 seconds from a direction perpendicular to the horizontal plane. Two such substrates were produced to produce an anti-parallel cell, which was filled with liquid crystal ZLI2061. When the pretilt angle was measured by the crystal rotation method, the pretilt angle was 45.
°.
【0021】(実施例3)重合体2をクロロホルムに溶
解し、ITO(インジウム錫酸化物)で覆った基板上に約
100 nmの厚さでスピンコートした。該基板を水平面
に対して60度傾くように配置し、紫外線を水平面に対
し垂直方向から室温で180秒間照射した。このような
基板を2枚作製してアンチパラレル型のセルを作製し液
晶ZLI2061を充填した。クリスタルローテーション
法でプレチルト角を測定したところプレチルト角は55
°であった。Example 3 The polymer 2 was dissolved in chloroform and spin-coated to a thickness of about 100 nm on a substrate covered with ITO (indium tin oxide). The substrate was arranged so as to be inclined by 60 degrees with respect to the horizontal plane, and irradiated with ultraviolet rays at room temperature for 180 seconds from a direction perpendicular to the horizontal plane. Two such substrates were produced to produce an anti-parallel cell, which was filled with liquid crystal ZLI2061. When the pretilt angle was measured by the crystal rotation method, the pretilt angle was 55.
°.
【0022】(実施例4)重合体2をクロロホルムに溶
解し、ITO(インジウム錫酸化物)で覆った基板上に約
100 nmの厚さでスピンコートした。該基板を水平面
に対して60度傾くように配置し、紫外線を水平面に対
し垂直方向から室温で90秒間照射した。このような基
板を2枚作製してアンチパラレル型のセルを作製し液晶
ZLI2061を充填した。クリスタルローテーション法
でプレチルト角を測定したところプレチルト角は88°
であった。Example 4 Polymer 2 was dissolved in chloroform and spin-coated to a thickness of about 100 nm on a substrate covered with ITO (indium tin oxide). The substrate was arranged so as to be inclined by 60 degrees with respect to the horizontal plane, and ultraviolet rays were irradiated from a direction perpendicular to the horizontal plane at room temperature for 90 seconds. An anti-parallel cell is manufactured by manufacturing two such substrates, and a liquid crystal is manufactured.
ZLI2061 was filled. When the pretilt angle was measured by the crystal rotation method, the pretilt angle was 88 °.
Met.
【0023】(実施例5)重合体4をクロロホルムに溶
解し、ITO(インジウム錫酸化物)で覆った基板上に約
100 nmの厚さでスピンコートした。該基板を水平面
に対して30度傾くように配置し、紫外線を水平面に対
し垂直方向から室温で500秒間照射した。このような
基板を2枚作製してアンチパラレル型のセルを作製し液
晶ZLI2061を充填した。クリスタルローテーション
法でプレチルト角を測定したところプレチルト角は82
°であった。Example 5 The polymer 4 was dissolved in chloroform and spin-coated to a thickness of about 100 nm on a substrate covered with ITO (indium tin oxide). The substrate was arranged so as to be inclined by 30 degrees with respect to the horizontal plane, and irradiated with ultraviolet rays at room temperature for 500 seconds from a direction perpendicular to the horizontal plane. Two such substrates were produced to produce an anti-parallel cell, which was filled with liquid crystal ZLI2061. When the pretilt angle was measured by the crystal rotation method, the pretilt angle was 82.
°.
【0024】(実施例6)重合体4をクロロホルムに溶
解し、ITO(インジウム錫酸化物)で覆った基板上に約
100 nmの厚さでスピンコートした。該基板を水平面
に対して30度傾くように配置し、紫外線を水平面に対
し垂直方向から室温で700秒間照射した。このような
基板を2枚作製してアンチパラレル型のセルを作製し液
晶ZLI2061を充填した。クリスタルローテーション
法でプレチルト角を測定したところプレチルト角は59
°であった。Example 6 The polymer 4 was dissolved in chloroform and spin-coated to a thickness of about 100 nm on a substrate covered with ITO (indium tin oxide). The substrate was arranged so as to be inclined by 30 degrees with respect to the horizontal plane, and irradiated with ultraviolet rays at room temperature for 700 seconds from a direction perpendicular to the horizontal plane. Two such substrates were produced to produce an anti-parallel cell, which was filled with liquid crystal ZLI2061. When the pretilt angle was measured by the crystal rotation method, the pretilt angle was 59.
°.
【0025】[0025]
【発明の効果】以上に記述したように、本発明によれ
ば、自然光を照射することにより液晶分子のプレチルト
角を発現する配向膜が得られると共に、この膜を液晶デ
ィスプレイ用の配向膜に応用できる。これにより、従来
の光配向技術で不可欠であった偏光素子が不要となる。
また、該配向では液晶の配向方向とプレチルト角の大き
さは光の照射方向と照射量により任意に設定することが
可能であるので、TN、VA、IPSモードなど種々のモード
のLCDにおいて配向膜として活用できる。更に、マスク
を用いて露光することによりプレチルト角が異なる膜を
同一基板上に作製することもできる。液晶表示装置にお
ける視野角の拡大においては、1画素内で液晶に低チル
ト角と高チルト角の配向状態を発現させたり、1画素内
で液晶の配向を反転させる画素分割配向が有効な技術で
ある。本発明の高分子材料により、光照射による該画素
分割配向も可能となる。更に、ラビングなど、液晶分子
を配向させる操作が不要な配向膜が調製されるので、液
晶ディスプレイの組立工程で生じる欠陥が著しく低減さ
れる。As described above, according to the present invention, an alignment film which exhibits a pretilt angle of liquid crystal molecules by irradiating natural light can be obtained, and this film is applied to an alignment film for a liquid crystal display. it can. This eliminates the need for a polarizing element that is indispensable in the conventional optical alignment technology.
In addition, in this orientation, the orientation direction of the liquid crystal and the magnitude of the pretilt angle can be arbitrarily set according to the irradiation direction and the irradiation amount of light, so that the alignment film is used in LCDs of various modes such as TN, VA, and IPS modes. Can be used as. Further, by exposing using a mask, films having different pretilt angles can be formed on the same substrate. In order to increase the viewing angle in a liquid crystal display device, a pixel division orientation that allows the liquid crystal to exhibit an alignment state with a low tilt angle and a high tilt angle within one pixel or inverts the alignment of the liquid crystal within one pixel is an effective technology. is there. The polymer material of the present invention also enables the pixel division alignment by light irradiation. Furthermore, since an alignment film that does not require an operation for aligning liquid crystal molecules, such as rubbing, is prepared, defects generated in the assembly process of the liquid crystal display are significantly reduced.
【図1】本発明の配向膜の製造方法を示す概念図。FIG. 1 is a conceptual diagram illustrating a method for manufacturing an alignment film according to the present invention.
【図2】従来の配向膜の製造方法を示す例図。FIG. 2 is an example showing a conventional method for manufacturing an alignment film.
【図3】照射光と側鎖の配置による反応性を示す模式
図。FIG. 3 is a schematic diagram showing reactivity depending on arrangement of irradiation light and side chains.
【図4】照射時間とチルト角の関係を示す。FIG. 4 shows the relationship between irradiation time and tilt angle.
【図5】照射時間および照射角度とチルト角の関係を示
す。FIG. 5 shows the relationship between irradiation time, irradiation angle, and tilt angle.
11・・・基板 12・・・高分子塗布膜 L・・・自然光 11: substrate 12: polymer coating film L: natural light
フロントページの続き Fターム(参考) 2H090 HB13Y HB17Y HC05 HC11 KA05 LA16 MA10 MB14 4D075 BB18Z BB22X BB46Z CA50 DA04 DB13 DC22 EA05 EB22 EB42 4F073 AA14 BA34 BB01 CA45 Continued on the front page F term (reference) 2H090 HB13Y HB17Y HC05 HC11 KA05 LA16 MA10 MB14 4D075 BB18Z BB22X BB46Z CA50 DA04 DB13 DC22 EA05 EB22 EB42 4F073 AA14 BA34 BB01 CA45
Claims (6)
を基板上に塗布する工程および、塗布された重合体に紫
外光を照射する操作を含む工程で、作製されることを特
徴とする、配向膜および、その製造方法。1. A method comprising the steps of: applying a polymer having a side chain containing a mesogen structure onto a substrate; and irradiating the applied polymer with ultraviolet light. An alignment film and a method of manufacturing the same.
する工程および、塗布された重合体に斜方より紫外光を
照射する操作を含む工程で、作製されることを特徴とす
る、配向膜および、その製造方法。2. A process comprising applying the polymer according to claim 1 onto a substrate and irradiating the applied polymer with ultraviolet light obliquely. , Alignment film and method for producing the same.
が、光反応性を有することを特徴とする、配向膜およ
び、その製造方法。3. An alignment film and a method for producing the alignment film, wherein the side chains of the polymer according to claim 1 and 2 have photoreactivity.
2または化学式3で表される構造を含み、化学式4で表
される主鎖が炭化水素、アクリレート、メタクリレー
ト、シロキサンなどの単独重合体または共重合体を基板
上に塗布する工程および、塗布された化合物に光照射す
る操作を含む工程で、作製されることを特徴とする、配
向膜および、その製造方法。 【化1】 【化2】 【化3】 【化4】 但し化学式1〜化学式4において、x:y:z=100
〜0:100〜0:99〜0(ここで、x+y+z=1
00)、n=1〜12、m=1〜12、j=1〜12、
k=1〜12、X,Y,Z=none、−COO、−OCO−、−
N=N−、−C=C−or−C6H4−、−R1〜−R10=−H、
ハロゲン基、またはメトキシ基などのアルキルオキシ
基、更に−R11=−H、−CN、またはメトキシ基などの
アルキルオキシ基である。4. A side chain comprising at least a structure represented by Formula 1 or Formula 2 or Formula 3, wherein a main chain represented by Formula 4 is a homopolymer or copolymer such as hydrocarbon, acrylate, methacrylate, or siloxane. An alignment film and a method for producing the alignment film, which are produced in a step of applying the union onto a substrate and a step of irradiating the applied compound with light. Embedded image Embedded image Embedded image Embedded image However, in the chemical formulas 1 to 4, x: y: z = 100
0: 100-0: 99-0 (where x + y + z = 1
00), n = 1 to 12, m = 1 to 12, j = 1 to 12,
k = 1 to 12, X, Y, Z = none, -COO, -OCO-,-
N = N-, -C = C-or-C6H4-, -R1--R10 = -H,
An alkyloxy group such as a halogen group or a methoxy group, and an alkyloxy group such as -R11 = -H, -CN, or a methoxy group.
または請求項4に記載の製造方法において、基板を加熱
ならびに冷却する工程を含んで、作製されることを特徴
とする、配向膜および、その製造方法。5. The method according to claim 1, 2 or 3.
5. The method of claim 4, wherein the method includes the steps of heating and cooling the substrate. 5.
または請求項4または請求項5に記載の製造方法により
製造された、配向膜により液晶配向を達成させた液晶表
示装置。6. The method according to claim 1, wherein said first and second means are different from each other.
6. A liquid crystal display device produced by the production method according to claim 4 or 5, wherein liquid crystal alignment is achieved by an alignment film.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11009997A JP2000212310A (en) | 1999-01-19 | 1999-01-19 | Oriented film, its production and liquid crystal display device |
TW089100508A TW500747B (en) | 1999-01-19 | 2000-01-14 | Alignment layer and a liquid crystal display using the same |
US09/484,698 US6696114B1 (en) | 1999-01-19 | 2000-01-18 | Alignment layer and a liquid crystal display using the same |
KR1020000002339A KR100639536B1 (en) | 1999-01-19 | 2000-01-19 | Alignmemt layer, and a liquid crystal display using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11009997A JP2000212310A (en) | 1999-01-19 | 1999-01-19 | Oriented film, its production and liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000212310A true JP2000212310A (en) | 2000-08-02 |
Family
ID=11735498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11009997A Pending JP2000212310A (en) | 1999-01-19 | 1999-01-19 | Oriented film, its production and liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000212310A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002044801A2 (en) | 2000-11-23 | 2002-06-06 | Merck Patent Gmbh | Homeotropic alignment layer |
JP2002226858A (en) * | 2001-02-01 | 2002-08-14 | Sumitomo Chem Co Ltd | Photoreactive polymer liquid crystal for birefringent film and birefringent film using the same |
WO2002093242A2 (en) * | 2001-05-15 | 2002-11-21 | Innovative Technology Licensing, Llc | Polyimide-free alignment layer for lcd fabrication and method |
NL1019506C2 (en) * | 2000-12-06 | 2005-02-07 | Nitto Denko Corp | A method of making a homeotrophically positioned liquid crystal film, a homeotrophically positioned crystalline composition, and a homeotrophically positioned liquid crystal film. |
KR100484851B1 (en) * | 2001-09-11 | 2005-04-22 | 샤프 가부시키가이샤 | Liquid Crystal Display Device, Optical Element, Method Of Fabricating The Liquid Crystal Display Device And Method Of Making The Optical Element |
CN100424566C (en) * | 2004-10-19 | 2008-10-08 | 夏普株式会社 | Liquid crystal display device and electronic device using the same |
JP2009086243A (en) * | 2007-09-28 | 2009-04-23 | Fujifilm Corp | Alignment layer, method for manufacturing the same and composition for forming alignment layer, and liquid crystal cell having alignment layer, and liquid crystal display device |
US7859624B2 (en) | 1999-07-30 | 2010-12-28 | Sharp Kabushiki Kaisha | Alignment films in a liquid crystal display device with polymer mixture and a method of manufacturing the same |
US9348073B2 (en) | 2012-02-13 | 2016-05-24 | Samsung Display Co., Ltd. | Photoreactive material layer and method of manufacturing the same |
JPWO2014054785A1 (en) * | 2012-10-05 | 2016-08-25 | 日産化学工業株式会社 | Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element |
KR101829478B1 (en) | 2010-03-31 | 2018-02-14 | 닛산 가가쿠 고교 가부시키 가이샤 | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
KR20180037971A (en) | 2015-07-30 | 2018-04-13 | 닛산 가가쿠 고교 가부시키 가이샤 | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
US10005920B2 (en) | 2012-06-06 | 2018-06-26 | Jnc Corporation | Polymer composition having photoalignable group, liquid crystal alignment film formed of the polymer composition, and optical device having phase difference plate formed of the liquid crystal alignment film |
KR20190070331A (en) | 2016-10-14 | 2019-06-20 | 닛산 가가쿠 가부시키가이샤 | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
KR20210143802A (en) | 2019-03-27 | 2021-11-29 | 닛산 가가쿠 가부시키가이샤 | Polymer composition, a liquid crystal aligning film, a liquid crystal display element, and the manufacturing method of the board|substrate which has a liquid crystal aligning film |
JP2022036952A (en) * | 2016-02-01 | 2022-03-08 | 日産化学株式会社 | Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element |
-
1999
- 1999-01-19 JP JP11009997A patent/JP2000212310A/en active Pending
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7859624B2 (en) | 1999-07-30 | 2010-12-28 | Sharp Kabushiki Kaisha | Alignment films in a liquid crystal display device with polymer mixture and a method of manufacturing the same |
US8416379B2 (en) | 1999-07-30 | 2013-04-09 | Sharp Kabushiki Kaisha | Alignment films in a liquid crystal display device and a method of manufacturing the same |
WO2002044801A3 (en) * | 2000-11-23 | 2002-08-01 | Merck Patent Gmbh | Homeotropic alignment layer |
WO2002044801A2 (en) | 2000-11-23 | 2002-06-06 | Merck Patent Gmbh | Homeotropic alignment layer |
US7105209B2 (en) | 2000-11-23 | 2006-09-12 | Merck Kgaa | Homeotropic alignment layer |
NL1019506C2 (en) * | 2000-12-06 | 2005-02-07 | Nitto Denko Corp | A method of making a homeotrophically positioned liquid crystal film, a homeotrophically positioned crystalline composition, and a homeotrophically positioned liquid crystal film. |
US6885423B2 (en) | 2000-12-06 | 2005-04-26 | Nitto Denko Corporation | Method for manufacturing homeotropic alignment liquid crystal film |
US7037443B2 (en) | 2000-12-06 | 2006-05-02 | Nitto Denko Corporation | Homeotropic alignment liquid crystal film |
JP2002226858A (en) * | 2001-02-01 | 2002-08-14 | Sumitomo Chem Co Ltd | Photoreactive polymer liquid crystal for birefringent film and birefringent film using the same |
WO2002093242A2 (en) * | 2001-05-15 | 2002-11-21 | Innovative Technology Licensing, Llc | Polyimide-free alignment layer for lcd fabrication and method |
WO2002093242A3 (en) * | 2001-05-15 | 2004-01-29 | Innovative Tech Licensing Llc | Polyimide-free alignment layer for lcd fabrication and method |
KR100484851B1 (en) * | 2001-09-11 | 2005-04-22 | 샤프 가부시키가이샤 | Liquid Crystal Display Device, Optical Element, Method Of Fabricating The Liquid Crystal Display Device And Method Of Making The Optical Element |
CN100424566C (en) * | 2004-10-19 | 2008-10-08 | 夏普株式会社 | Liquid crystal display device and electronic device using the same |
JP2009086243A (en) * | 2007-09-28 | 2009-04-23 | Fujifilm Corp | Alignment layer, method for manufacturing the same and composition for forming alignment layer, and liquid crystal cell having alignment layer, and liquid crystal display device |
KR101829478B1 (en) | 2010-03-31 | 2018-02-14 | 닛산 가가쿠 고교 가부시키 가이샤 | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
US9348073B2 (en) | 2012-02-13 | 2016-05-24 | Samsung Display Co., Ltd. | Photoreactive material layer and method of manufacturing the same |
US10005920B2 (en) | 2012-06-06 | 2018-06-26 | Jnc Corporation | Polymer composition having photoalignable group, liquid crystal alignment film formed of the polymer composition, and optical device having phase difference plate formed of the liquid crystal alignment film |
JPWO2014054785A1 (en) * | 2012-10-05 | 2016-08-25 | 日産化学工業株式会社 | Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element |
JP2019023744A (en) * | 2012-10-05 | 2019-02-14 | 日産化学株式会社 | Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element |
KR20180037971A (en) | 2015-07-30 | 2018-04-13 | 닛산 가가쿠 고교 가부시키 가이샤 | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
US11111387B2 (en) | 2015-07-30 | 2021-09-07 | Nissan Chemical Industries, Ltd. | Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element |
JP2022036952A (en) * | 2016-02-01 | 2022-03-08 | 日産化学株式会社 | Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element |
KR20190070331A (en) | 2016-10-14 | 2019-06-20 | 닛산 가가쿠 가부시키가이샤 | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
KR20210143802A (en) | 2019-03-27 | 2021-11-29 | 닛산 가가쿠 가부시키가이샤 | Polymer composition, a liquid crystal aligning film, a liquid crystal display element, and the manufacturing method of the board|substrate which has a liquid crystal aligning film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3945789B2 (en) | Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film | |
Chigrinov et al. | Photoalignment of liquid crystalline materials: physics and applications | |
JP3945790B2 (en) | Birefringent film and manufacturing method thereof | |
US6743487B2 (en) | Retardation film and process for producing the same | |
Yaroshchuk et al. | Photoalignment of liquid crystals: basics and current trends | |
KR102012533B1 (en) | Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element | |
KR100639536B1 (en) | Alignmemt layer, and a liquid crystal display using the same | |
JP2000212310A (en) | Oriented film, its production and liquid crystal display device | |
JPH0321904A (en) | Polar screen and manufacture thereof | |
JPH03140921A (en) | Liquid-crystal display unit | |
WO2004063779A1 (en) | Broad-band-cholesteric liquid-crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display | |
JP2990270B2 (en) | Oriented resin film, method for producing the same, and optical element using the oriented resin film | |
JP2000258772A (en) | Liquid crystal display device | |
JP3897204B2 (en) | Optical compensation sheet, manufacturing method thereof, and liquid crystal display device using the same | |
JP2002202409A (en) | Retardation film and method for manufacturing the same | |
KR19990028998A (en) | Optical member including a liquid crystal display device and a polarizer | |
JP2002090750A (en) | Alignment film and method for manufacturing the same | |
Chigrinov et al. | New developments in photo-aligning and photo-patterning technologies: physics and applications | |
JP2002202406A (en) | Retardation film and method for manufacturing the same | |
JP2004170595A (en) | Manufacture method of retardation film and the retardation film | |
JP4338001B2 (en) | Liquid crystal alignment film | |
JP2002090540A (en) | Birefringent film and method for manufacturing the same | |
JPH10161132A (en) | Liquid crystal oriented film and its production | |
JP2002202407A (en) | Retardation film and method for manufacturing the same | |
JP2002202408A (en) | Retardation film and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080508 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081007 |