JP2000212215A - Preparation of hydrophilic polymer - Google Patents
Preparation of hydrophilic polymerInfo
- Publication number
- JP2000212215A JP2000212215A JP11326000A JP32600099A JP2000212215A JP 2000212215 A JP2000212215 A JP 2000212215A JP 11326000 A JP11326000 A JP 11326000A JP 32600099 A JP32600099 A JP 32600099A JP 2000212215 A JP2000212215 A JP 2000212215A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- polymer
- water
- water content
- drying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001477 hydrophilic polymer Polymers 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 126
- 229920000642 polymer Polymers 0.000 claims abstract description 97
- 238000001035 drying Methods 0.000 claims abstract description 85
- 239000000178 monomer Substances 0.000 claims abstract description 74
- 239000000463 material Substances 0.000 claims abstract description 59
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 24
- 230000008859 change Effects 0.000 claims abstract description 16
- 239000000017 hydrogel Substances 0.000 claims description 87
- 238000004519 manufacturing process Methods 0.000 claims description 45
- 239000007864 aqueous solution Substances 0.000 claims description 32
- 230000032683 aging Effects 0.000 claims description 20
- 239000000499 gel Substances 0.000 claims description 20
- 239000002250 absorbent Substances 0.000 claims description 15
- 239000011347 resin Substances 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 15
- 230000000379 polymerizing effect Effects 0.000 claims description 7
- 238000010528 free radical solution polymerization reaction Methods 0.000 claims description 4
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 claims description 4
- 230000000704 physical effect Effects 0.000 abstract description 22
- 239000000047 product Substances 0.000 description 47
- 238000010521 absorption reaction Methods 0.000 description 36
- 230000000052 comparative effect Effects 0.000 description 29
- 239000000843 powder Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 23
- 239000000243 solution Substances 0.000 description 22
- 239000003505 polymerization initiator Substances 0.000 description 17
- 238000009423 ventilation Methods 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 16
- 239000002245 particle Substances 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 229910001220 stainless steel Inorganic materials 0.000 description 14
- 239000010935 stainless steel Substances 0.000 description 14
- -1 alkali metal salt Chemical class 0.000 description 13
- 239000000126 substance Substances 0.000 description 12
- 230000008961 swelling Effects 0.000 description 12
- 239000007787 solid Substances 0.000 description 11
- 238000003756 stirring Methods 0.000 description 11
- 239000002202 Polyethylene glycol Substances 0.000 description 10
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 10
- 229920001223 polyethylene glycol Polymers 0.000 description 10
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 9
- 235000013372 meat Nutrition 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 238000010298 pulverizing process Methods 0.000 description 9
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 9
- 229920003169 water-soluble polymer Polymers 0.000 description 9
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 125000004386 diacrylate group Chemical group 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 210000002700 urine Anatomy 0.000 description 7
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 239000003431 cross linking reagent Substances 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 229940047670 sodium acrylate Drugs 0.000 description 6
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 6
- 235000019187 sodium-L-ascorbate Nutrition 0.000 description 6
- 239000011755 sodium-L-ascorbate Substances 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 229940048053 acrylate Drugs 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 241000238366 Cephalopoda Species 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 2
- CCTFAOUOYLVUFG-UHFFFAOYSA-N 2-(1-amino-1-imino-2-methylpropan-2-yl)azo-2-methylpropanimidamide Chemical compound NC(=N)C(C)(C)N=NC(C)(C)C(N)=N CCTFAOUOYLVUFG-UHFFFAOYSA-N 0.000 description 2
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 2
- XFCMNSHQOZQILR-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOC(=O)C(C)=C XFCMNSHQOZQILR-UHFFFAOYSA-N 0.000 description 2
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 2
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 235000013373 food additive Nutrition 0.000 description 2
- 239000002778 food additive Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N isopropyl alcohol Natural products CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920000768 polyamine Chemical class 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- ORTVZLZNOYNASJ-UPHRSURJSA-N (z)-but-2-ene-1,4-diol Chemical compound OC\C=C/CO ORTVZLZNOYNASJ-UPHRSURJSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- HDPLHDGYGLENEI-UHFFFAOYSA-N 2-[1-(oxiran-2-ylmethoxy)propan-2-yloxymethyl]oxirane Chemical compound C1OC1COC(C)COCC1CO1 HDPLHDGYGLENEI-UHFFFAOYSA-N 0.000 description 1
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 1
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- WOAMRAPSJUZQJV-UHFFFAOYSA-N 3-oxopent-4-ene-2-sulfonic acid Chemical compound OS(=O)(=O)C(C)C(=O)C=C WOAMRAPSJUZQJV-UHFFFAOYSA-N 0.000 description 1
- PUEFXLJYTSRTGI-UHFFFAOYSA-N 4,4-dimethyl-1,3-dioxolan-2-one Chemical compound CC1(C)COC(=O)O1 PUEFXLJYTSRTGI-UHFFFAOYSA-N 0.000 description 1
- LWLOKSXSAUHTJO-UHFFFAOYSA-N 4,5-dimethyl-1,3-dioxolan-2-one Chemical compound CC1OC(=O)OC1C LWLOKSXSAUHTJO-UHFFFAOYSA-N 0.000 description 1
- JFMGYULNQJPJCY-UHFFFAOYSA-N 4-(hydroxymethyl)-1,3-dioxolan-2-one Chemical compound OCC1COC(=O)O1 JFMGYULNQJPJCY-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- OVDQEUFSGODEBT-UHFFFAOYSA-N 4-methyl-1,3-dioxan-2-one Chemical compound CC1CCOC(=O)O1 OVDQEUFSGODEBT-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical class OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical class OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical class CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- GQPVFBDWIUVLHG-UHFFFAOYSA-N [2,2-bis(hydroxymethyl)-3-(2-methylprop-2-enoyloxy)propyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(CO)(CO)COC(=O)C(C)=C GQPVFBDWIUVLHG-UHFFFAOYSA-N 0.000 description 1
- CQHKDHVZYZUZMJ-UHFFFAOYSA-N [2,2-bis(hydroxymethyl)-3-prop-2-enoyloxypropyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(CO)COC(=O)C=C CQHKDHVZYZUZMJ-UHFFFAOYSA-N 0.000 description 1
- JUDXBRVLWDGRBC-UHFFFAOYSA-N [2-(hydroxymethyl)-3-(2-methylprop-2-enoyloxy)-2-(2-methylprop-2-enoyloxymethyl)propyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(CO)(COC(=O)C(C)=C)COC(=O)C(C)=C JUDXBRVLWDGRBC-UHFFFAOYSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- XDODWINGEHBYRT-UHFFFAOYSA-N [2-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCCCC1CO XDODWINGEHBYRT-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- BRXCDHOLJPJLLT-UHFFFAOYSA-N butane-2-sulfonic acid Chemical compound CCC(C)S(O)(=O)=O BRXCDHOLJPJLLT-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960005069 calcium Drugs 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- LLSDKQJKOVVTOJ-UHFFFAOYSA-L calcium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ca+2] LLSDKQJKOVVTOJ-UHFFFAOYSA-L 0.000 description 1
- 229940052299 calcium chloride dihydrate Drugs 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical class OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000009982 effect on human Effects 0.000 description 1
- GKIPXFAANLTWBM-UHFFFAOYSA-N epibromohydrin Chemical compound BrCC1CO1 GKIPXFAANLTWBM-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- RPOCFUQMSVZQLH-UHFFFAOYSA-N furan-2,5-dione;2-methylprop-1-ene Chemical compound CC(C)=C.O=C1OC(=O)C=C1 RPOCFUQMSVZQLH-UHFFFAOYSA-N 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 238000003898 horticulture Methods 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 229940079826 hydrogen sulfite Drugs 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229940050906 magnesium chloride hexahydrate Drugs 0.000 description 1
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 1
- 229940091250 magnesium supplement Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000223 polyglycerol Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000012966 redox initiator Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229950003937 tolonium Drugs 0.000 description 1
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- YFHICDDUDORKJB-UHFFFAOYSA-N trimethylene carbonate Chemical compound O=C1OCCCO1 YFHICDDUDORKJB-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、親水性重合体、即
ち、水溶性重合体及び水膨潤性重合体の製造方法に関す
るものである。更に詳しくは、重合により得られた含水
ゲル状重合体の物性を保持したまま、残存モノマーの少
ない親水性重合体を製造する方法に関するものである。[0001] The present invention relates to a method for producing a hydrophilic polymer, that is, a water-soluble polymer and a water-swellable polymer. More specifically, the present invention relates to a method for producing a hydrophilic polymer having a small amount of residual monomers while maintaining the physical properties of a hydrogel polymer obtained by polymerization.
【0002】[0002]
【従来の技術】親水性重合体には水溶性重合体と水膨潤
性重合体があり、水溶性重合体としては、例えばポリア
クリル酸ソーダ、ポリアクリルアミド部分加水分解物、
ポリビニルアルコール等があり、これらの水溶性高分子
は、水処理用凝集剤、石油掘削用泥水添加剤、食品添加
物等に用いられている。水膨潤性重合体としては、例え
ば架橋ポリアクリル酸塩、アクリル酸エステル−酢酸ビ
ニル共重合体のけん化物、架橋ポリビニルアルコール変
性物、部分中和ポリアクリル酸塩架橋体、架橋イソブチ
レン−無水マレイン酸共重合体、でんぷん−アクリル酸
グラフト重合物などがあり、生理用品、紙おむつ等の衛
生材料用吸収剤、あるいは、農林、園芸、緑化用の保水
剤、食品鮮度保持フィルム等に用いられ、今後更に需要
が拡大しようとしている。2. Description of the Related Art A hydrophilic polymer includes a water-soluble polymer and a water-swellable polymer. Examples of the water-soluble polymer include sodium polyacrylate, partially hydrolyzed polyacrylamide,
There are polyvinyl alcohol and the like, and these water-soluble polymers are used as a flocculant for water treatment, a muddy water additive for petroleum drilling, a food additive and the like. Examples of the water-swellable polymer include a crosslinked polyacrylate, a saponified acrylate-vinyl acetate copolymer, a crosslinked polyvinyl alcohol modified product, a partially neutralized polyacrylate crosslinked product, and a crosslinked isobutylene-maleic anhydride. There are copolymers, starch-acrylic acid graft polymer, etc., used for sanitary products, absorbents for sanitary materials such as disposable diapers, or water retention agents for agriculture, forestry, horticulture, revegetation, food freshness retaining films, etc. Demand is about to grow.
【0003】これら親水性重合体に含まれる未反応の残
存モノマーや、水膨潤性重合体に含まれる水溶性高分子
は外圧によりあるいは経時的に流出して、人の皮膚に接
触したり、体内に吸収されたりする可能性があり、用途
によっては重大な問題となる場合がある。また廃棄され
て環境に流出した後再び飲料水等に混入したりする危険
性もあり、親水性重合体中の残存モノマーや、水膨潤性
重合体中の水溶性高分子に対する低減要求が近年ますま
す高まっている。The unreacted residual monomers contained in these hydrophilic polymers and the water-soluble polymers contained in the water-swellable polymer flow out under external pressure or with the passage of time, and come into contact with human skin, Or it may be absorbed into the water, which may be a serious problem in some applications. In addition, there is a risk that it will be discarded and discharged into the environment and then mixed into drinking water again.Therefore, there is a recent demand for reduction of residual monomers in hydrophilic polymers and water-soluble polymers in water-swellable polymers. Increasingly.
【0004】一般に重合体の残存モノマー低減の方法と
しては、アンモニア、アミンの添加(特公昭33-2646 号
公報、特開昭50-40689号公報)や、亜硫酸塩、亜硫酸水
素塩の添加(USP2960486号明細書、特開昭55-135110 号
公報)により、これら化合物を残存モノマーへ付加して
低減する方法、低温分解型、高温分解型重合開始剤の併
用(特公昭50-44280号公報、特開昭59-133205 号公報、
特開昭53-141388 号公報)やレドックス触媒とアゾ系開
始剤との併用(特開昭50-96689号公報、特公昭47-26430
号公報)により、残存モノマーを重合して低下する方
法等が提案されている。しかし、アンモニア、アミン、
又は、亜硫酸塩、亜硫酸水素塩の添加は、残存モノマー
の低減には効果があるものの、これら化合物の添加量は
少量では効果が無く、更にはこうした添加物自体の毒性
が問題となる。また、触媒を併用する方法は、効果が不
充分である。[0004] In general, as a method of reducing the residual monomer of a polymer, addition of ammonia and amine (Japanese Patent Publication No. 33-2646, Japanese Patent Application Laid-Open No. 40-40689) and addition of sulfite and hydrogen sulfite (US Pat. No. 2,960,486) JP-A-55-135110), a method of adding these compounds to the remaining monomer to reduce the amount, and a combination of a low-temperature decomposition type and a high-temperature decomposition type polymerization initiator (Japanese Patent Publication No. 50-44280, JP-A-59-133205,
JP-A-53-141388) or a combination of a redox catalyst and an azo-based initiator (JP-A-50-96689, JP-B-47-26430)
Discloses a method of polymerizing and lowering the residual monomer. However, ammonia, amines,
Alternatively, the addition of sulfites and bisulfites is effective in reducing the residual monomer, but the addition of these compounds is ineffective at small amounts, and furthermore, the toxicity of such additives themselves becomes a problem. Also, the method using a catalyst in combination is insufficient in effect.
【0005】一方、親水性モノマーを水溶液重合して含
水ゲル状重合体を得て、これを乾燥して親水性重合体を
製造する場合の残存モノマー低減方法として、含水ゲル
状重合体の乾燥時に、含水ゲル状重合体を80〜250
℃の温度で、50〜100℃の露点を有する水蒸気との
混合気体と接触させながら乾燥する方法(特開平1-2660
4 号公報)が知られている。この方法では乾燥機が大き
くなりすぎるおそれがある。また、含水ゲル状重合体を
部分乾燥した後マイクロ波照射によりゲル温度を上昇さ
せ残存モノマーの低減を図る方法(特開平5-209010号公
報)等が提示されている。しかし、この方法は、残存モ
ノマーの低減効果、又は、吸収倍率の向上は認められる
ものの、水溶性重合体では、不溶化物の生成や、分子量
の低下を伴い、又、水膨潤性重合体では、水可溶分の増
加が認められる等、含水ゲル状重合体よりも物性が顕著
に劣化するため、工業上適切な方法とは言えない。又、
乾燥時のマイクロ波の照射は、材料の局部加熱を伴い、
含水ゲル状重合体の物性変化を伴なうばかりでなく、マ
イクロ波そのものの安全性や、マイクロ波照射付近の材
料が限定されたり、装置コストも大きく、今後克服しな
ければならない課題が多く、現状では実用的でない。[0005] On the other hand, when a hydrogel is obtained by polymerizing a hydrophilic monomer in an aqueous solution to obtain a hydrogel polymer and then drying it to produce a hydrophilic polymer, a method for reducing the residual monomer is as follows. , A hydrogel polymer in the range of 80 to 250
A method of drying while contacting with a mixed gas of water vapor having a dew point of 50 to 100 ° C. at a temperature of 50 ° C.
No. 4) is known. In this method, the dryer may be too large. In addition, a method has been proposed in which a hydrogel polymer is partially dried and then the temperature of the gel is increased by microwave irradiation to reduce residual monomers (Japanese Patent Application Laid-Open No. H5-209010). However, in this method, although the effect of reducing the residual monomer or the improvement of the absorption capacity is recognized, in the case of the water-soluble polymer, the formation of an insolubilized substance and the reduction of the molecular weight are accompanied, and in the case of the water-swellable polymer, Since the physical properties are remarkably deteriorated as compared with the hydrogel polymer, for example, an increase in the water-soluble component is observed, it is not an industrially suitable method. or,
Microwave irradiation during drying involves local heating of the material,
Not only is the physical property of the hydrogel polymer changed, but also the safety of the microwave itself, materials around microwave irradiation are limited, and equipment costs are large.There are many issues that must be overcome in the future. Not practical at present.
【0006】また、減圧下60〜120℃で含水率を4
0〜70重量%から10〜35重量%に低める方法(特
開平5-310806号公報)の提示もあるが、減圧下での乾燥
は、乾燥器の装置のコストアップを伴い、乾燥時間も長
時間を要し実用的でない。関連する技術として、固形分
20〜60重量%、含水ゲル温度50℃で水蒸気処理す
る処理し、固形分を最大30重量%上げた後通常乾燥
し、吸収倍率の向上を図る方法(特開平3-76719 号公
報)も提示されているが、この方法は吸収倍率の上昇の
みならず、水可溶分の上昇も伴い、物性低下が著しいた
め、適切な方法とは言えない。Further, at a reduced pressure of 60 to 120 ° C., the water content is 4
Although there is a method of reducing the weight from 0 to 70% by weight to 10 to 35% by weight (Japanese Patent Laid-Open No. 5-310806), drying under reduced pressure involves an increase in the cost of a dryer and a long drying time. Takes time and is not practical. As a related technique, there is a method of improving the absorption capacity by carrying out a steam treatment at a solid content of 20 to 60% by weight and a hydrogel temperature of 50 ° C., raising the solid content by a maximum of 30% by weight, and then drying normally (Japanese Patent Laid-Open No. However, this method cannot be said to be an appropriate method because not only the absorption capacity is increased but also the water-soluble content is increased and the physical properties are significantly reduced.
【0007】[0007]
【発明が解決しようとする課題】従って本発明の課題
は、重合によって得られた含水ゲル状重合体の物性を維
持したまま、残存モノマーの少ない親水性重合体を、生
産性良く得る製造方法を提供することにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for producing a hydrophilic polymer having a small amount of residual monomers with good productivity while maintaining the physical properties of a hydrogel polymer obtained by polymerization. To provide.
【0008】[0008]
【課題を解決するための手段】前記課題は、以下の方法
によって解決される。 (1) 親水性モノマーを水溶液重合して含水ゲル状重合体
を得た後、前記含水ゲル状重合体を乾燥して親水性重合
体を製造する方法において、前記乾燥工程が、前記含水
ゲル状重合体の含水率が15〜40重量%になるまで、
材料温度90℃以下で常圧で乾燥を行う部分乾燥工程
と、前記部分乾燥工程の後、前記含水ゲル状重合体の含
水率の変化量が5重量%以内、材料温度が70〜120
℃の状態を10分間以上保つ加熱熟成工程と、前記加熱
熟成工程の後、前記含水ゲル状重合体が所望の含水率と
なるまで乾燥する仕上げ乾燥工程とを含むことを特徴と
する親水性重合体の製造方法。 (2) 親水性モノマーを水溶液重合して含水ゲル状重合体
を得た後、前記含水ゲル状重合体を乾燥して親水性重合
体を製造する方法において、前記乾燥工程が、前記含水
ゲル状重合体の含水率が15〜40重量%になるまで、
材料温度90℃以下で常圧で乾燥を行う部分乾燥工程
と、前記部分乾燥工程の後、前記含水ゲル状重合体の含
水率15〜40重量%、材料温度70〜120℃の状態
を10分間以上保つ加熱熟成工程と、前記加熱熟成工程
の後、前記含水ゲル状重合体が所望の含水率となるまで
乾燥する仕上げ乾燥工程とを含むことを特徴とする親水
性重合体の製造方法。The above object is achieved by the following method. (1) A method for producing a hydrophilic polymer by drying a hydrogel polymer by aqueous solution polymerization of a hydrophilic monomer to obtain a hydrogel polymer, wherein the drying step comprises: Until the water content of the polymer becomes 15 to 40% by weight,
A partial drying step of drying at a material temperature of 90 ° C. or lower at normal pressure, and after the partial drying step, a change in the water content of the hydrogel polymer is within 5% by weight, and the material temperature is 70 to 120.
And a finishing drying step of drying the hydrated gel-like polymer to a desired moisture content after the heating aging step. Manufacturing method of coalescence. (2) In a method for producing a hydrophilic polymer by drying a hydrogel polymer after obtaining a hydrogel polymer by aqueous solution polymerization of a hydrophilic monomer, the drying step includes the hydrogel process. Until the water content of the polymer becomes 15 to 40% by weight,
A partial drying step in which the material is dried at normal temperature at a temperature of 90 ° C. or less, and after the partial drying step, a state in which the water-containing gel polymer has a water content of 15 to 40% by weight and a material temperature of 70 to 120 ° C. for 10 minutes. A method for producing a hydrophilic polymer, comprising: a heating aging step for maintaining the above; and a finishing drying step after the heating aging step, in which the hydrogel polymer is dried until a desired water content is obtained.
【0009】[0009]
【発明の実施の形態】本発明において乾燥に供される含
水ゲル状重合体は、親水性モノマーを水溶液重合して得
られた水溶性又は水膨潤性の含水ゲル状物であり、未反
応のモノマーを含有している。必要により、乾燥するの
に必要な表面積を確保するために細分化された粒子状の
含水ゲル状重合体であってもよい。BEST MODE FOR CARRYING OUT THE INVENTION The hydrogel polymer subjected to drying in the present invention is a water-soluble or water-swellable hydrogel obtained by polymerizing a hydrophilic monomer in an aqueous solution. Contains monomer. If necessary, a particulate hydrogel polymer may be finely divided in order to secure a surface area necessary for drying.
【0010】このような含水ゲル状重合体としては、例
えば、 特公昭48-42466号公報に記載されたような、型枠の中
にモノマー水溶液を入れ重合することによって得られた
含水ゲル状重合体を必要によりミートチョッパー、押し
出し機、ニーダー等により粉砕細分化したもの。 特開昭57-34101号公報、特開平10-67805号公報に記載
されたような、内部に含水ゲル状重合体を細分化出来る
ような攪拌羽根を持ったニーダー等の中で重合した含水
ゲル状重合体の細分化物。 特開昭58-49714号公報に記載されたような、ベルトコ
ンベアー上で重合させた含水ゲル状重合体を必要により
ミートチョッパー、押し出し機、ニーダー等により粉砕
細分化したもの。 等がある。As such a hydrogel polymer, there is, for example, a hydrogel polymer obtained by polymerizing an aqueous monomer solution in a mold as described in JP-B-48-42466. A product obtained by pulverizing the coalesced as necessary using a meat chopper, extruder, kneader, or the like. JP-A-57-34101, JP-A-10-67805, as described in JP-A-10-67805, a hydrogel polymerized in a kneader or the like having a stirring blade capable of subdividing the hydrogel polymer inside Of fine polymer. A hydrated gel polymer polymerized on a belt conveyor as described in JP-A-58-49714, which is pulverized and divided by a meat chopper, an extruder, a kneader or the like as necessary. Etc.
【0011】本発明における含水ゲル状重合体を得るた
めに用いられる親水性モノマーとしては、例えば(メ
タ)アクリル酸又は、これらのアルカリ金属塩もしくは
アンモニウム塩;(メタ)アクリルアミド;(メタ)ア
クリロニトリル;マレイン酸、フマル酸等の不飽和二塩
基酸又はこれら不飽和二塩基酸の半エステル化物又は、
これら不飽和二塩基酸もしくは半エステル化物のアルカ
リ金属塩もしくはアンモニウム塩;2-アクリルアミド-2
- メチルプロパンスルホン酸、2−(メタ)アクリロイ
ルエタンスルホン酸等の不飽和スルホン酸又は、これら
のアルカリ金属塩もしくはアンモニウム塩;2-ヒドロキ
シエチル(メタ)アクリレート、2-ヒドロキシプロピル
(メタ)アクリレート等を挙げる事ができ、これらの1
種又は2種以上の混合物を用いる事が出来る。また、例
えばメチル(メタ)アクリレート、エチル(メタ)アク
リレート、ブチル(メタ)アクリレート、酢酸ビニル、
プロピオン酸ビニル等の親水性モノマー以外のモノマー
を得られる含水ゲル状重合体の親水性を極度に阻害しな
い量で用いても良い。更に、水膨潤性重合体の含水ゲル
状重合体を得るに際しては、例えばエチレングリコール
ジアクリレート、エチレングリコールジメタクリレー
ト、ジエチレングリコールジアクリレート、ジエチレン
グリコールジメタクリレート、トリエチレングリコール
ジアクリレート、トリエチレングリコールジメタクリレ
ート、ポリエチレングリコールジアクリレート、ポリエ
チレングリコールジメタクリレート、トリメチロールプ
ロパントリアクリレート、トリメチロールプロパントリ
メタクリレート、ペンタエリスリトールトリアクリレー
ト、ペンタエリスリトールトリメタクリレート、N,N −
メチレンビスアクリルアミド、イソシアヌル酸トリアリ
ル、ペンタエリスリトールジアクリレート、ペンタエリ
スリトールジメタクリレート等の架橋剤を前記親水性モ
ノマーに併用して用いても良い。The hydrophilic monomer used for obtaining the hydrogel polymer of the present invention includes, for example, (meth) acrylic acid or an alkali metal salt or ammonium salt thereof; (meth) acrylamide; (meth) acrylonitrile; Maleic acid, unsaturated dibasic acids such as fumaric acid or semi-esterified products of these unsaturated dibasic acids or
Alkali metal salts or ammonium salts of these unsaturated dibasic acids or half-esterified products; 2-acrylamide-2
-Unsaturated sulfonic acids such as methylpropanesulfonic acid and 2- (meth) acryloylethanesulfonic acid, or alkali metal salts or ammonium salts thereof; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, etc. And one of these
Species or a mixture of two or more can be used. Further, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, vinyl acetate,
It may be used in an amount that does not extremely inhibit the hydrophilicity of the hydrogel polymer from which monomers other than the hydrophilic monomer such as vinyl propionate can be obtained. Further, in obtaining a water-containing gel-like polymer of a water-swellable polymer, for example, ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, polyethylene Glycol diacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, N, N −
A cross-linking agent such as methylene bisacrylamide, triallyl isocyanurate, pentaerythritol diacrylate, pentaerythritol dimethacrylate and the like may be used in combination with the hydrophilic monomer.
【0012】含水ゲル状重合体とするための重合は、親
水性モノマーの水溶液重合であり、一般的には、親水性
モノマー成分、重合開始剤及び必要により用いる架橋剤
を水に溶解してなる親水性モノマー水溶液を窒素ガス等
の不活性ガスにより脱気した後、例えば特公昭48-42466
号公報に記載されたような型枠の中に入れて重合する注
型重合、特開昭58-49714号公報に記載されたようなベル
トコンベアー上で重合する方法、特開昭57-34101号公報
に記載されたような内部に含水ゲル状重合体を細分化で
きるような攪拌羽根を有するニーダー等の中で重合する
方法、等によって達成される。重合開始剤は、特に制限
なく使用でき、例えば過硫酸アンモニウム、過硫酸カリ
ウム、過硫酸ナトリウム、過酸化水素、2,2'- アゾビス
(2-アミジノプロパン)ジハイドロクロリド)等が挙げ
られ、またこれらと亜硫酸水素ナトリウム、L- アスコ
ルビン酸、第一鉄塩などの還元剤との組み合わせによる
レドックス系開始剤等が用いられるが、過硫酸塩を必要
により還元剤と組み合わせて用いるのが好ましい。過硫
酸塩は熱分解温度が高いため重合後の含水ゲル状重合体
にも残存しやすく、これと残存モノマーとを反応させる
ことで、残存モノマーを低減できるからである。The polymerization for forming a hydrogel polymer is an aqueous solution polymerization of a hydrophilic monomer, and is generally formed by dissolving a hydrophilic monomer component, a polymerization initiator and an optional crosslinking agent in water. After degassing the aqueous hydrophilic monomer solution with an inert gas such as nitrogen gas, for example, JP-B-48-42466
JP-A-57-34101, a cast polymerization in which polymerization is carried out in a mold as described in JP-A-57-34101, a polymerization on a belt conveyor as described in JP-A-58-49714 This can be achieved by a method of polymerizing in a kneader or the like having a stirring blade capable of subdividing a hydrogel polymer inside as described in the gazette. The polymerization initiator can be used without any particular limitation. Examples thereof include ammonium persulfate, potassium persulfate, sodium persulfate, hydrogen peroxide, 2,2′-azobis (2-amidinopropane) dihydrochloride) and the like. A redox initiator or the like is used in combination with a reducing agent such as sodium hydrogen sulfite, L-ascorbic acid, and ferrous salt. Persulfate is preferably used in combination with a reducing agent if necessary. This is because the persulfate has a high thermal decomposition temperature and thus easily remains in the hydrogel polymer after polymerization, and the remaining monomer can be reduced by reacting the persulfate with the remaining monomer.
【0013】含水ゲル状重合体の含水率は、好ましくは
80〜60重量%である。含水ゲル状重合体の含水率
は、親水性モノマー水溶液の濃度により調整できる。重
合開始剤の使用量は、水溶性重合体では、モノマーに対
して通常0.0001〜3重量%、好ましくは、0.0
002〜2重量%、水膨潤性重合体では、モノマーに対
して通常0.01〜2重量%、好ましくは0.05〜1
重量%である。The water content of the hydrogel polymer is preferably 80 to 60% by weight. The water content of the hydrogel polymer can be adjusted by the concentration of the aqueous hydrophilic monomer solution. The amount of the polymerization initiator to be used is usually 0.0001 to 3% by weight, preferably 0.0
002 to 2% by weight, for water-swellable polymers, usually 0.01 to 2% by weight, preferably 0.05 to 1% by weight, based on the monomer.
% By weight.
【0014】本発明を実施するにあたり、重合して得ら
れた含水ゲル状重合体は、既に解砕されている場合もあ
るが、多くの場合、細分化し、乾燥しやすい形にする必
要がある。細分化する方法としては、例えばミートチョ
ッパー、押し出し機、ニーダー、等による解砕が有効で
ある。通常、重合により得られた含水ゲル状重合体の残
存モノマーは、1000ppm以上であるが、本発明で
の乾燥に際しては、通常10000ppm以上、好まし
くは20000ppm以上、更に好ましくは30000
ppm以上、最も好ましくは40000ppm以上の含
水ゲル状重合体が用いられる。重合のみで残存モノマー
を少なくしようとすると、重合時間が長くなり、生産性
が低くなる。また、重合開始剤を多量に使用して残存モ
ノマーを少なくしようとすると、得られる吸水性樹脂の
無加圧下吸収倍率が低下したり、可溶分が増加する等の
物性の低下を招いてしまう。そのため、残存モノマーが
多い状態で重合を止め、乾燥する方が生産性及び物性の
点から好ましいものである。In practicing the present invention, the hydrogel polymer obtained by polymerization may be already pulverized, but in many cases, it is necessary to divide the polymer into a form that can be easily dried. . As a method of subdividing, for example, pulverization using a meat chopper, an extruder, a kneader, or the like is effective. Usually, the residual monomer of the hydrogel polymer obtained by polymerization is at least 1000 ppm, but upon drying in the present invention, it is usually at least 10,000 ppm, preferably at least 20,000 ppm, more preferably at least 30,000 ppm.
A hydrogel polymer having a content of at least ppm, most preferably at least 40,000 ppm is used. If an attempt is made to reduce the residual monomer only by the polymerization, the polymerization time is prolonged, and the productivity is reduced. In addition, if the amount of the polymerization initiator is used in a large amount to reduce the residual monomer, the absorption capacity of the resulting water-absorbent resin under no pressure is reduced, or the physical properties such as an increase in the soluble component are caused. . Therefore, it is preferable to stop the polymerization in a state in which the amount of the residual monomer is large and to dry the polymer in terms of productivity and physical properties.
【0015】本発明は、含水ゲル状重合体の乾燥に際し
て、含水率が15〜40重量%になるまでの乾燥を材料
温度90℃以下で常圧で行い(部分乾燥工程)、その
後、含水率の変化量が5重量%以内、材料温度が70〜
120℃の状態、あるいは、含水率15〜40重量%、
材料温度70〜120℃の状態を10分間以上保つ加熱
熟成工程を経た後、所望の含水率となるまで乾燥する仕
上げ乾燥工程を設けることで達成される。In the present invention, when the hydrogel polymer is dried, drying is performed at a material temperature of 90 ° C. or less at normal pressure until the water content reaches 15 to 40% by weight (partial drying step). Change within 5% by weight, material temperature 70 ~
120 ° C. or water content of 15 to 40% by weight,
This is achieved by providing a finish drying step in which a heating and aging step of maintaining the state of the material temperature of 70 to 120 ° C. for 10 minutes or more and then drying until a desired moisture content is achieved are provided.
【0016】部分乾燥工程は、常圧で行われ、材料温度
は90℃以下、好ましくは80℃以下である。材料温度
が90℃を超えると残存モノマーの増加や含水ゲルの劣
化が起こり好ましくない。また、減圧下での乾燥は、乾
燥機の装置のコストアップを伴い、乾燥時間も長時間を
要し、実用的でない。部分乾燥工程は含水率が15〜4
0重量%になるまで行われ、20〜35重量%になるま
で行われることが好ましい。部分乾燥工程終了時の含水
率が40重量%よりも高い場合、次の加熱熟成工程での
残存モノマーの低減効果が不十分であり、また含水ゲル
状重合体の劣化が大きくなり、かつ、可溶分が増加す
る。一方、部分乾燥工程終了時の含水率が15重量%よ
りも低い場合、残存モノマーの低減効果が乏しい。The partial drying step is performed at normal pressure, and the material temperature is 90 ° C. or lower, preferably 80 ° C. or lower. If the material temperature exceeds 90 ° C., the amount of residual monomers increases and the hydrogel deteriorates, which is not preferable. In addition, drying under reduced pressure involves an increase in the cost of a dryer device, requires a long drying time, and is not practical. The partial drying process has a water content of 15 to 4
0% by weight, and preferably 20 to 35% by weight. When the water content at the end of the partial drying step is higher than 40% by weight, the effect of reducing the residual monomer in the next heat aging step is insufficient, and the deterioration of the hydrogel polymer becomes large, and The dissolved content increases. On the other hand, if the water content at the end of the partial drying step is lower than 15% by weight, the effect of reducing residual monomers is poor.
【0017】加熱熟成工程で、含水率の変化量が5重量
%以内、材料温度が70〜120℃の状態、あるいは、
含水率15〜40重量%、材料温度70〜120℃の状
態を10分間以上保つためには、例えば、乾燥を抑制す
るため密閉容器で加熱したり、熱風乾燥においては風量
を少なくしたり、又は、乾燥器内を水蒸気で満たしたり
する事で実現できる。この時の材料温度は70〜120
℃であり、好ましくは80〜100℃である。材料温度
が120℃を超えると、ポリマーの劣化が大きくなり、
かつ、水溶性重合体含量が増加し、また、70℃未満で
は残存モノマーの低減に時間がかかり過ぎ、実用的でな
い。また、熟成時間は10分間以上であり、好ましくは
20分間以上である。熟成時間が10分間未満では、残
存モノマーの低減効果が不十分である。また、このとき
の含水率は15〜40重量%、好ましくは20〜35重
量%の範囲内であるか、変化量が5重量%以内、好まし
くは4重量%以内である。含水率が40重量%を超えた
り、15重量%未満であったり、変化量が5重量%を越
えると残存モノマーが増加したり、含水ゲル状重合体の
劣化が大きくなる。In the heat aging step, the amount of change in the water content is within 5% by weight, the material temperature is 70 to 120 ° C., or
In order to maintain the state of the water content of 15 to 40% by weight and the material temperature of 70 to 120 ° C. for 10 minutes or more, for example, heating in a closed container to suppress drying, or reducing the air volume in hot air drying, or It can be realized by filling the inside of the dryer with steam. The material temperature at this time is 70 to 120
° C, preferably 80 to 100 ° C. When the material temperature exceeds 120 ° C., the deterioration of the polymer increases,
In addition, the content of the water-soluble polymer increases, and if the temperature is lower than 70 ° C., it takes too much time to reduce the residual monomer, which is not practical. The aging time is at least 10 minutes, preferably at least 20 minutes. When the aging time is less than 10 minutes, the effect of reducing the residual monomer is insufficient. The water content at this time is in the range of 15 to 40% by weight, preferably 20 to 35% by weight, or the change is within 5% by weight, preferably within 4% by weight. If the water content exceeds 40% by weight or less than 15% by weight, or if the variation exceeds 5% by weight, the amount of residual monomers increases or the hydrogel polymer deteriorates greatly.
【0018】加熱熟成工程を終えた材料は、所望の含水
率に達するまで仕上げ乾燥を行う。この時の乾燥温度
は、80〜250℃が好ましく、より好ましくは含水ゲ
ル状重合体の劣化防止のため、80〜170℃が適当で
ある。又、含水率の低下と共に乾燥温度を上昇させる事
も時として有効である。ここで言う乾燥温度とは、使用
される気体の温度又は乾燥されるべき材料温度を指す。
所望の含水率は目的に応じて適宜設定できるが、通常0
〜10重量%であり、好ましくは3〜7重量%である。The material after the heat aging step is subjected to finish drying until the desired moisture content is reached. The drying temperature at this time is preferably from 80 to 250 ° C, and more preferably from 80 to 170 ° C to prevent the degradation of the hydrogel polymer. Increasing the drying temperature with decreasing water content is also sometimes effective. The drying temperature here refers to the temperature of the gas used or the temperature of the material to be dried.
The desired moisture content can be appropriately set according to the purpose, but is usually 0%.
10 to 10% by weight, preferably 3 to 7% by weight.
【0019】本発明で用いられる乾燥機の形態に制限は
ないが、例えば、伝導伝熱型乾燥器、輻射伝熱型乾燥
器、熱風伝熱型乾燥器、等が挙げられる。部分乾燥工程
及び仕上げ乾燥工程以降の、特に乾燥を目的とした工程
では、乾燥効率からみて、特に熱風伝熱型乾燥器(以下
熱風乾燥器と言う)が好ましい。熱風乾燥器としては、
通気バンド式、通気回転式、通気竪型式、平行流バンド
式、通気トンネル式、通気溝型攪拌式、流動層式、気流
式、噴霧式等の装置が挙げられる。輻射伝熱型装置とし
ては、赤外線、遠赤外線乾燥器等、又、伝導伝熱型装置
としては、パドルドライヤー、ドラムドライヤー、等が
挙げられる。そのとき用いられる気体としては特に制限
は無く、空気、窒素、二酸化炭素、ヘリウム、水蒸気等
が挙げられる。The form of the dryer used in the present invention is not limited, and examples thereof include a conductive heat transfer dryer, a radiation heat transfer dryer, and a hot air transfer dryer. In a step after the partial drying step and the finish drying step, particularly for the purpose of drying, a hot air heat transfer dryer (hereinafter, referred to as a hot air dryer) is particularly preferable from the viewpoint of drying efficiency. As a hot air dryer,
Examples include a ventilation band type, a ventilation rotation type, a vertical ventilation type, a parallel flow band type, a ventilation tunnel type, a ventilation groove type stirring type, a fluidized bed type, an air flow type, and a spray type. Examples of the radiation heat transfer type device include infrared and far-infrared dryers, and examples of the conduction heat transfer type device include a paddle dryer and a drum dryer. The gas used at this time is not particularly limited, and examples thereof include air, nitrogen, carbon dioxide, helium, and water vapor.
【0020】本発明により含水ゲル状重合体は乾燥さ
れ、目的の親水性重合体が得られるが、乾燥の後、粉砕
し、必要により、分級した後、水膨潤性重合体において
は公知の方法で表面架橋処理を施すことが好ましい。表
面架橋処理では、たとえば、水膨潤性重合体粒子と、水
膨潤性重合体粒子の表面の官能基(たとえば酸性基)と
反応し得る表面架橋剤とを混合した後、架橋剤の種類に
より必要により更に加熱処理を行い表面近傍を架橋させ
る。表面架橋剤の量としては、水膨潤性重合体100重
量部に対して0.01〜10重量部が好ましく、より好
ましくは0.5〜5重量部である。According to the present invention, the hydrogel polymer is dried to obtain the desired hydrophilic polymer. After drying, pulverization and, if necessary, classification, a known method for a water-swellable polymer is used. It is preferable to perform a surface cross-linking treatment. In the surface cross-linking treatment, for example, after mixing the water-swellable polymer particles with a surface cross-linking agent capable of reacting with a functional group (for example, an acidic group) on the surface of the water-swellable polymer particles, To further crosslink the vicinity of the surface. The amount of the surface crosslinking agent is preferably from 0.01 to 10 parts by weight, more preferably from 0.5 to 5 parts by weight, based on 100 parts by weight of the water-swellable polymer.
【0021】このような表面架橋剤としては、例えば、
エチレングリコール、ジエチレングリコール、プロピレ
ングリコール、トリエチレングリコール、テトラエチレ
ングリコール、ポリエチレングリコール、1,3−プロ
パンジオール、ジプロピレングリコール、2,2,4−
トリメチル−1,3−ペンタジオール、ポリプロピレン
グリコール、グリセリン、ポリグリセリン、2−ブテン
−1,4−ジオール、1,3−ブタンジオール、1,4
−ブタンジオール、1,5−ペンタンジオール、1,6
−ヘキサンジオール、1,2−シクロヘキサンジメタノ
ール、1,2−シクロヘキサノール、トリメチロールプ
ロパン、ジエタノールアミン、トリエタノールアミン、
ポリオキシプロピレン、オキシエチレン−オキシプロピ
レンブロック共重合体、ペンタエリスリトール、ソルビ
トール等の多価アルコール化合物;エチレングリコール
ジグリシジルエーテル、ポリエチレンジグリシジルエー
テル、グリセロールポリグリシジルエーテル、ジグリセ
ロールポリグリシジルエーテル、ポリグリセロールポリ
グリシジルエーテル、プロピレングリコールジグリシジ
ルエーテル、ポリプロピレングリコールジグリシジルエ
ーテル、グリシドール等の多価エポキシ化合物;エチレ
ンジアミン、ジエチレントリアミン、トリエチレンテト
ラミン、テトラエチレンペンタミン、ペンタエチレンヘ
キサミン、ポリエチレンイミン等の多価アミン化合物
や、それらの無機塩ないし有機塩(例えば、アジチニウ
ム塩等);2,4−トリレンジイソシアネート、ヘキサ
メチレンジイソシアネート等の多価イソシアネート化合
物;1,2−エチレンビスオキサゾリン等の多価オキサ
ゾリン化合物;1,3−ジオキソラン−2−オン、4−
メチル−1,3−ジオキソラン−2−オン、4,5−ジ
メチル−1,3−ジオキソラン−2−オン、4,4−ジ
メチル−1,3−ジオキソラン−2−オン、4−エチル
−1,3−ジオキソラン−2−オン、4−ヒドロキシメ
チル−1,3−ジオキソラン−2−オン、1,3−ジオ
キサン−2−オン、4−メチル−1,3−ジオキサン−
2−オン、4,6−ジメチル−1,3−ジオキサン−2
−オン、1,3−ジオキソパン−2−オン等のアルキレ
ンカーボネート化合物;エピクロロヒドリン、エピブロ
ムヒドリン、α−メチルエピクロロヒドリン等のハロエ
ポキシ化合物、および、その多価アミン付加物(例えば
ハーキュレス製カイメン:登録商標);γ−グリシドキ
シプロピルトリメトキシシラン、γ−アミノプロピルト
リエトキシシラン等のシランカップリング剤;亜鉛、カ
ルシウム、マグネシウム、アルミニウム、鉄、ジルコニ
ウム等の水酸化物及び塩化物等の多価金属化合物等が挙
げられる。これらの中でも多価アルコール化合物、多価
エポキシ化合物、アルキレンカーボネート化合物、多価
金属化合物が好ましい。これらの表面架橋剤は単独で用
いてもよいし、二種以上併用してもよい。Examples of such a surface crosslinking agent include, for example,
Ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, 1,3-propanediol, dipropylene glycol, 2,2,4-
Trimethyl-1,3-pentadiol, polypropylene glycol, glycerin, polyglycerin, 2-butene-1,4-diol, 1,3-butanediol, 1,4
-Butanediol, 1,5-pentanediol, 1,6
-Hexanediol, 1,2-cyclohexanedimethanol, 1,2-cyclohexanol, trimethylolpropane, diethanolamine, triethanolamine,
Polyhydric alcohol compounds such as polyoxypropylene, oxyethylene-oxypropylene block copolymer, pentaerythritol and sorbitol; ethylene glycol diglycidyl ether, polyethylene diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol poly Polyhydric epoxy compounds such as glycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether and glycidol; polyamine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and polyethyleneimine; Their inorganic or organic salts (e.g., aztinium salts); 2,4- Li diisocyanate, polyvalent isocyanate compound such as hexamethylene diisocyanate; 1,2-ethylene polyvalent oxazoline compound of bisoxazoline, and the like; 1,3-dioxolan-2-one, 4-
Methyl-1,3-dioxolan-2-one, 4,5-dimethyl-1,3-dioxolan-2-one, 4,4-dimethyl-1,3-dioxolan-2-one, 4-ethyl-1, 3-dioxolan-2-one, 4-hydroxymethyl-1,3-dioxolan-2-one, 1,3-dioxan-2-one, 4-methyl-1,3-dioxane-
2-one, 4,6-dimethyl-1,3-dioxane-2
Alkylene carbonate compounds such as -one and 1,3-dioxopan-2-one; haloepoxy compounds such as epichlorohydrin, epibromohydrin and α-methylepichlorohydrin, and polyamine adducts thereof (for example, Hercules Sponge: registered trademark); silane coupling agents such as γ-glycidoxypropyltrimethoxysilane and γ-aminopropyltriethoxysilane; hydroxides and chlorides such as zinc, calcium, magnesium, aluminum, iron, zirconium and the like Metal compounds such as organic compounds. Among these, polyhydric alcohol compounds, polyvalent epoxy compounds, alkylene carbonate compounds, and polyvalent metal compounds are preferred. These surface cross-linking agents may be used alone or in combination of two or more.
【0022】本発明によれば、重合により得られた含水
ゲル状重合体の物性を保持しつつ、残存モノマーの少な
い親水性重合体を製造することができる。特に親水性重
合体が、吸水性樹脂である場合、乾燥工程前後における
無加圧下吸収倍率変化率を10%以下で、可溶分変化率
を100%以下とすることができ、かつ残存モノマーを
300ppm以下と低減することができる。According to the present invention, a hydrophilic polymer having a small amount of residual monomers can be produced while maintaining the physical properties of a hydrogel polymer obtained by polymerization. In particular, when the hydrophilic polymer is a water-absorbing resin, the rate of change in absorption capacity under no pressure before and after the drying step can be 10% or less, the rate of change in solubles can be 100% or less, and the residual monomer can be reduced. It can be reduced to 300 ppm or less.
【0023】本発明により製造された親水性重合体は、
人体、環境などへの悪影響も少なく、水処理用凝集剤、
石油掘削用泥水添加剤、食品添加剤、衛生材料用吸収
剤、保水剤、食品鮮度保持フィルム、等の用途に好適に
用いられるものである。The hydrophilic polymer produced according to the present invention comprises:
Less adverse effect on human body and environment, water treatment flocculant,
It is suitably used for applications such as muddy oil additives for oil drilling, food additives, absorbents for sanitary materials, water retention agents, food freshness retaining films, and the like.
【0024】[0024]
【実施例】以下、実施例と比較例により本発明の詳細な
説明を行うが、本発明の範囲がこれら実施例にのみ限定
されるものではない。本発明において、含水率、固形
分、無加圧下吸収倍率、可溶分、残存モノマー、加圧下
吸収倍率、膨潤ゲル圧力は以下の方法で測定した。 (ア)含水率 1mm以下に細粒化した粒子状含水ゲル状重合体又は3
00μm〜500μmの粉体、約2.0gをホイールコ
ンテナーに秤採り、180℃で5時間乾燥後の乾燥重量
から含水率を求めた。EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the scope of the present invention is not limited only to these Examples. In the present invention, water content, solid content, absorption capacity under no pressure, soluble matter, residual monomer, absorption capacity under pressure, and swelling gel pressure were measured by the following methods. (A) Moisture content Particulate hydrogel polymer finely divided to 1 mm or less or 3
Approximately 2.0 g of a powder of 00 μm to 500 μm was weighed into a wheel container, and the water content was determined from the dry weight after drying at 180 ° C. for 5 hours.
【0025】含水率(重量%)=(乾燥前の重量−乾燥
後の重量)/乾燥前の重量×100 (イ)固形分 固形分(重量%)=100−含水率(重量%) (ウ)無加圧下吸収倍率 固形分A(重量%)の、1mm以下に細粒化した粒子状
含水ゲル状重合体又は300μm〜500μmに粉砕分
級した粉体W1(g)(100%固形分として約0.2
g)を不織布製の袋(60mm×60mm)に入れ、
0.9重量%塩化ナトリウム水溶液に浸漬した。16時
間後袋を引き上げ、遠心分離器を用いて250Gにて3
分間水切りを行った後、袋の重量W2(g)を測定し
た。又、試料(含水ゲル又は、粉体)を用いないで袋だ
けで、同様の操作を行った時の袋の重量W0(g)を測
定した。これら重量W1,W2,W0から、次式に従っ
て無加圧下吸収倍率を算出した。Water content (% by weight) = (weight before drying−weight after drying) / weight before drying × 100 (a) Solid content Solid content (% by weight) = 100−water content (% by weight) (C) ) Absorption capacity under no pressure Absorption of solids A (% by weight) of a particulate hydrogel polymer finely divided into 1 mm or less or powder W1 (g) pulverized and classified to 300 μm to 500 μm (about 100% solid content) 0.2
g) into a non-woven bag (60 mm x 60 mm),
It was immersed in a 0.9% by weight aqueous solution of sodium chloride. After 16 hours, pull up the bag and centrifuge at 250 G for 3 hours.
After draining for a minute, the weight W2 (g) of the bag was measured. The weight W0 (g) of the bag when the same operation was performed using only the bag without using a sample (a hydrogel or a powder) was measured. From the weights W1, W2, and W0, the absorption capacity under no pressure was calculated according to the following equation.
【0026】無加圧下吸収倍率(g/g)=(W2−W
0)/W1×(100/A)−1 (エ)可溶分(水溶性重合体含量) 固形分A(重量%)の1mm以下に細粒化した粒子状含水
ゲル状重合体又は300μm〜500μmに粉砕分級し
た粉体W3(g)(100%固形分として約0.5g)
を1000gの脱イオン水中に分散し、16時間攪拌し
た後濾紙で濾過した。次いで、得られた濾液50gを1
00mlビーカーに採り、0.1N−水酸化ナトリウム
水溶液1ml、N/200−メチルグリコールキトサン
水溶液10ml、及び0.1重量%トルイジンブルー水
溶液5滴を添加した。次いで、上記ビーカー中の溶液を
N/400ポリビニル硫酸カリウム水溶液を用いて、コ
ロイド滴定し、溶液の色が青色から赤紫色に変化した時
点を滴定の終点として滴定量B(ml)を求めた。又、
濾液50gに代えて脱イオン水50gを用いて同様の操
作を行い、ブランクとして滴定量C(ml)を求めた。
そして、これら滴定量B,Cと重合体を構成するモノマ
ーの分子量Dとから、次式に従って可溶分量(重量%)
を算出した。Absorption capacity under no pressure (g / g) = (W2-W
0) / W1 × (100 / A) -1 (d) Soluble content (water-soluble polymer content) Particulate hydrogel polymer finely divided into 1 mm or less of solid content A (% by weight) or 300 μm or less Powder W3 (g) pulverized and classified to 500 μm (about 0.5 g as 100% solid content)
Was dispersed in 1000 g of deionized water, stirred for 16 hours, and then filtered through filter paper. Then, 50 g of the obtained filtrate was added to 1
The mixture was placed in a 00 ml beaker, and 1 ml of a 0.1 N sodium hydroxide aqueous solution, 10 ml of an N / 200-methyl glycol chitosan aqueous solution, and 5 drops of a 0.1 wt% toluidine blue aqueous solution were added. Next, the solution in the above beaker was subjected to colloidal titration using an aqueous solution of N / 400 polyvinyl potassium sulfate, and a titration end point B (ml) was determined when the color of the solution changed from blue to reddish purple. or,
The same operation was performed using 50 g of deionized water instead of 50 g of the filtrate, and the titer C (ml) was obtained as a blank.
Then, based on these titration amounts B and C and the molecular weight D of the monomer constituting the polymer, the soluble content (% by weight) is calculated according to the following equation.
Was calculated.
【0027】可溶分(重量%)=(C−B)×0.00
5×D/W3×(100/A) (オ)無加圧下吸収倍率変化率 含水ゲル状重合体の無加圧下吸収倍率をGV0とし、乾
燥後の含水ゲル又は、粉体の無加圧下吸収倍率をGV1
とした時、無加圧下吸収倍率変化率としては絶対値を用
い、次式に従って算出した。Soluble (% by weight) = (CB) × 0.00
5 × D / W3 × (100 / A) (e) Rate of change in absorption capacity under no pressure Absorption capacity under no pressure of the hydrogel polymer is defined as GV0, and absorption of the dried hydrogel or powder under no pressure GV1 magnification
The absolute value was used as the rate of change in absorption capacity under no pressure, and was calculated according to the following equation.
【0028】無加圧下吸収倍率変化率(%)=|GV0
−GV1|/GV0×100 (カ)可溶分変化率 含水ゲル状重合体の可溶分をExt 0とし、乾燥後の含水
ゲル又は、粉体の可溶分をExt 1とした時、可溶分変化
率としては絶対値を用い、次式に従って算出した。Absorption magnification change rate under no pressure (%) = | GV0
−GV1 | / GV0 × 100 (f) Change rate of soluble component When the soluble component of the hydrogel polymer is Ext 0 and the soluble component of the dried hydrogel or powder is Ext 1, The absolute value was used as the change rate of the dissolved component, and was calculated according to the following equation.
【0029】可溶分変化率(%)=|Ext 0−Ext 1|
/Ext 0×100 (キ)残存モノマー 固形分A(重量%)の、1mm以下に細粒化した粒子状
含水ゲル状重合体約3g(100%固形分として約0.
5g)または300μm〜500μmに粉砕分級した粉
体約0.5gを1000gの脱イオン水中に分散し、1
6時間攪拌した後濾紙で濾過した。濾液中に含まれるモ
ノマー量を高速クロマトグラフィーにより測定し、含水
ゲル状重合体または粉砕した粉体中に残存するモノマー
量を定量した。 (ク)加圧下吸収倍率 表面処理後の吸水性樹脂に0.7psi荷重下人工尿を
1時間吸収させ、吸収量を吸水性樹脂の重量で除し、加
圧下吸収倍率を求めた。人工尿は、硫酸ナトリウム0.
2重量%、塩化カリウム0.2重量%、塩化マグネシウ
ム6水和物0.05重量%、塩化カルシウム2水和物
0.025重量%、リン酸2水素アンモニウム0.03
5重量%、リン酸水素2アンモニウム0.015重量%
を含む水溶液である。 (ケ)膨潤ゲル圧力 図1に示したような構造の測定装置(The Crow
n Tool andSupply Company製
のAccuforce Cadet Force Ga
ge(デジタルフォースゲージ))を用い、次の方法に
より測定した。300〜600μmに分級した吸水性樹
脂a0.358gをFISHER ELECTRO−P
HOTOMETER用セルbに入れ、25℃に調温され
た人工尿c10gを上記セルbに入れ、ポリエチレン製
落とし蓋dを浮かべ、その落とし蓋dに円盤eを重ね
た。人工尿c10gをさらに加え、人工尿cを吸収した
吸水性樹脂(膨潤ゲル)aが落とし蓋dに到達してから
30分後の値を読みとり、次式に従って膨潤圧(Kdy
nes/cm2 )を算出した。人工尿は加圧下吸収倍率
の測定に用いたものと同じものである。Soluble change rate (%) = | Ext 0−Ext 1 |
/ Ext 0 × 100 (g) Residual monomer Approximately 3 g of a particulate hydrogel polymer having a solid content A (% by weight) finely divided into 1 mm or less (approximately 0.1% as 100% solid content).
5 g) or about 0.5 g of a powder pulverized and classified to 300 μm to 500 μm is dispersed in 1000 g of deionized water.
After stirring for 6 hours, the mixture was filtered with filter paper. The amount of the monomer contained in the filtrate was measured by high performance chromatography, and the amount of the monomer remaining in the hydrogel polymer or the pulverized powder was quantified. (H) Absorption under pressure The water-absorbent resin after the surface treatment was allowed to absorb artificial urine under a load of 0.7 psi for 1 hour, and the amount of absorption was divided by the weight of the water-absorbent resin to determine the absorption under pressure. Artificial urine contains sodium sulfate 0.
2% by weight, potassium chloride 0.2% by weight, magnesium chloride hexahydrate 0.05% by weight, calcium chloride dihydrate 0.025% by weight, ammonium dihydrogen phosphate 0.03%
5% by weight, 0.015% by weight of diammonium hydrogen phosphate
An aqueous solution containing (G) Swelling gel pressure A measuring device having a structure as shown in FIG. 1 (The Crow)
Accuforce Cadet Force Ga manufactured by Tool & Supply Company
ge (Digital Force Gauge)) and the following method. 0.358 g of the water-absorbent resin a classified to 300 to 600 μm was applied to FISHER ELECTRO-P
10 g of artificial urine c adjusted to 25 ° C. was placed in the cell b for HOTOMETER, and the dropping d made of polyethylene was floated on the cell b, and a disk e was placed on the dropping d. An additional 10 g of artificial urine c was added, the value was read 30 minutes after the water-absorbent resin (swelling gel) a that absorbed the artificial urine c dropped and reached the lid d, and the swelling pressure (Kdy) was calculated according to the following equation.
nes / cm 2 ) was calculated. The artificial urine is the same as that used for measuring the absorption capacity under pressure.
【0030】膨潤圧(Kdynes/cm2 )=読み取
り目盛り(g)×981/3.8/1000 (製造例1)220mm×300mmのステンレスバッ
トに、アクリル酸204g、アクリル酸ソーダ496
g、ポリエチレングリコールジアクリレート1.6g及
び、水1286gからなるモノマー水溶液を仕込み、液
温20℃に保ったまま、反応系の窒素置換を行った。次
いで、モノマー水溶液をマグネチックスターラーで攪拌
しながら、重合開始剤として、5重量%V−50(和光
純薬(株)製 2,2'- アゾビス(2-アミジノプロパン)
ジハイドロクロリド)水溶液を3g、5重量%過硫酸ナ
トリウム水溶液3g、0.5重量%L-アスコルビン酸ナ
トリウム水溶液3g、及び0.35重量%過酸化水素水
溶液を3.5g添加した。重合開始剤を添加して約1分
後に重合が開始した。ステンレスバットを20℃のウォ
ーターバスにつけ20分間冷却した後、更に10分間6
0℃温水で熟成した。重合ゲルはミートチョッパー(平
賀製作所)で粉砕し、平均粒径約3mm、含水率65重
量%の粒子状含水ゲルを得た。 (製造例2)220mm×300mmのステンレスバッ
トに、アクリル酸204g、アクリル酸ソーダ496
g、ポリエチレングリコールジアクリレート1.6g及
び、水1286gからなるモノマー水溶液を仕込み、液
温20℃に保ったまま、反応系の窒素置換を行った。次
いで、モノマー水溶液をマグネチックスターラーで攪拌
しながら、重合開始剤として、5重量%V−50水溶液
を3g、5重量%過硫酸ナトリウム水溶液3g、0.5
重量%L-アスコルビン酸ナトリウム水溶液3g、及び
0.35重量%過酸化水素水溶液を3.5g添加した。
重合開始剤を添加して約1分後に重合が開始した。ステ
ンレスバットを20℃のウォーターバスにつけ20分間
冷却した後、更に40分間60℃温水で熟成した。重合
ゲルはミートチョッパー(平賀製作所)で粉砕し、平均
粒径約3mm、含水率65重量%の粒子状含水ゲルを得
た。 (製造例3)220mm×300mmのステンレスバッ
トに、アクリル酸204g、アクリル酸ソーダ496
g、ポリエチレングリコールジアクリレート1.6g及
び、水1286gからなるモノマー水溶液を仕込み、液
温20℃に保ったまま、反応系の窒素置換を行った。次
いで、モノマー水溶液をマグネチックスターラーで攪拌
しながら、重合開始剤として、5重量%V−50水溶液
を3g、5重量%過硫酸ナトリウム水溶液6g、0.5
重量%L-アスコルビン酸ナトリウム水溶液3g、及び
0.35重量%過酸化水素水溶液を3.5g添加した。
重合開始剤を添加して約1分後に重合が開始した。ステ
ンレスバットを20℃のウォーターバスにつけ20分間
冷却した後、更に30分間60℃温水で熟成した。重合
ゲルはミートチョッパー(平賀製作所)で粉砕し、平均
粒径約3mm、含水率65重量%の粒子状含水ゲルを得
た。 (製造例4)220mm×300mmのステンレスバッ
トに、アクリル酸204g、アクリル酸ソーダ496
g、ポリエチレングリコールジアクリレート1.6g及
び、水1286gからなるモノマー水溶液を仕込み、液
温20℃に保ったまま、反応系の窒素置換を行った。次
いで、モノマー水溶液をマグネチックスターラーで攪拌
しながら、重合開始剤として、5重量%V−50水溶液
を3g、5重量%過硫酸ナトリウム水溶液9g、0.5
重量%L-アスコルビン酸ナトリウム水溶液3g、及び
0.35重量%過酸化水素水溶液を3.5g添加した。
重合開始剤を添加して約1分後に重合が開始した。ステ
ンレスバットを20℃のウォーターバスにつけ20分間
冷却した後、更に30分間60℃温水で熟成した。重合
ゲルはミートチョッパー(平賀製作所)で粉砕し、平均
粒径約3mm、含水率65重量%の粒子状含水ゲルを得
た。 (製造例5)内容量10リットル、開口部220mm ×260m
m 、深さ240mm 、羽根の回転径120mm のシグマ型羽根を
2本有するジャケット付きステンレス製双腕型ねつか機
(ニーダー)にふたを付け、このニーダー中に、アクリ
ル酸408g、アクリル酸ソーダ992g、ポリエチレ
ングリコールジアクリレート3.2g及び、水2572
gからなるモノマー水溶液を仕込み、ジャケットに25
℃の温水を循環させ、モノマー水溶液の液温を25℃に
保ったまま、反応系の窒素置換を行った。次いで、モノ
マー水溶液を二本のシグマ型攪拌羽根で40rpm にて攪
拌しながら、重合開始剤として、5重量%V−50水溶
液を6g、5重量%過硫酸ナトリウム水溶液6g、0.
5重量%L-アスコルビン酸ナトリウム水溶液6g、及び
0.35重量%過酸化水素水溶液を7g添加した。重合
開始剤を添加して約1分後に重合が開始し、15分後に
反応系内の温度はピークに達し、この時の温度は63℃
であった。次いでジャケットの温水温度を60℃にし、
更に10分間熟成した。その後、重合ゲルをミートチョ
ッパー(平賀製作所)で粉砕し、平均粒径約3mm、含
水率65重量%の粒子状含水ゲルを得た。 (製造例6)製造例1においてポリエチレングリコール
ジアクリレートの使用量を0.8gとした以外は製造例
1と同様にして粒子状含水ゲルを得た。 (製造例7)220mm×300mmのステンレスバッ
トに、アクリル酸184g、37重量%アクリル酸ソー
ダ水溶液1611g、ポリエチレングリコールジアクリ
レート4.3g及び水194gからなるモノマー水溶液
を仕込み、液温18℃に保ったまま、反応系の窒素置換
を行った。次いで、モノマー水溶液をマグネチックスタ
ーラーで攪拌しながら、重合開始剤として、20重量%
過硫酸ナトリウム水溶液5.3gおよび5重量%L-アス
コルビン酸ナトリウム水溶液1.6gを添加した。重合
開始剤を添加して約1分後に重合が開始した。ステンレ
スバットを10℃のウォーターバスにつけ12分間冷却
した後、更に10分間80℃温水で熟成した。重合ゲル
はミートチョッパー(平賀製作所)で粉砕し、平均粒径
約2mm、含水率60重量%の粒子状含水ゲルを得た。 (実施例1)製造例1で得られた粒子状含水ゲル1kg
を、通気回分式乾燥器(佐竹化学機械工業製71−S
6)を用いて、風速1m/sec、温度80℃、で20
分間静置乾燥した(部分乾燥工程)。この時の凝集し
た、いわおこし状の凝集物の中心部に温度計を刺し、材
料温度を測定したところ70℃であった。又、含水率は
25重量%であった。次いで得られた凝集状の半乾燥物
を、ステンレスビーカーに入れ、容器全体をアルミホイ
ールで包み密閉した後1時間100℃で加熱した(加熱
熟成工程)。加熱後の半乾燥物の材料温度は95℃であ
り、含水率は23重量%であった。その後再び、いわお
こし状の凝集物を金網に広げ通気回分式乾燥器で150
℃、30分間仕上げ乾燥を行ない(仕上げ乾燥工程)、
含水率7重量%の乾燥物を得た。このものを粉砕、分級
した後、500μm〜300μmの粉体での無加圧下吸
収倍率、可溶分、残存モノマーの測定を行った。 (実施例2)製造例2で得られた粒子状含水ゲルを用い
た以外は、実施例1と同様な操作を行い、ポリマーの物
性測定を行った。Swelling pressure (Kdynes / cm 2 ) = reading scale (g) × 981 / 3.8 / 1000 (Production Example 1) 204 g of acrylic acid and 496 of sodium acrylate in a 220 mm × 300 mm stainless steel vat.
g, 1.6 g of polyethylene glycol diacrylate and 1286 g of water, and the reaction system was purged with nitrogen while maintaining the solution temperature at 20 ° C. Next, while stirring the monomer aqueous solution with a magnetic stirrer, 5% by weight V-50 (2,2′-azobis (2-amidinopropane) manufactured by Wako Pure Chemical Industries, Ltd.) was used as a polymerization initiator.
3 g of an aqueous solution of dihydrochloride), 3 g of an aqueous solution of 5% by weight of sodium persulfate, 3 g of an aqueous solution of 0.5% by weight of sodium L-ascorbate, and 3.5 g of an aqueous solution of 0.35% by weight of hydrogen peroxide were added. The polymerization started about 1 minute after the addition of the polymerization initiator. Place the stainless steel vat in a water bath at 20 ° C., cool for 20 minutes, and then
Aged with 0 ° C warm water. The polymer gel was pulverized with a meat chopper (Hiraga Seisakusho) to obtain a particulate hydrogel having an average particle size of about 3 mm and a water content of 65% by weight. (Production Example 2) 204 g of acrylic acid and 496 of sodium acrylate were placed in a 220 mm × 300 mm stainless steel bat.
g, 1.6 g of polyethylene glycol diacrylate and 1286 g of water, and the reaction system was purged with nitrogen while maintaining the solution temperature at 20 ° C. Next, while stirring the monomer aqueous solution with a magnetic stirrer, 3 g of a 5 wt% aqueous solution of V-50 was used as a polymerization initiator, 3 g of a 5 wt% aqueous solution of sodium persulfate, 0.5 g of a 0.5 wt% aqueous solution of sodium persulfate were added.
3 g of a weight% sodium L-ascorbate aqueous solution and 3.5 g of a 0.35 weight% aqueous hydrogen peroxide solution were added.
The polymerization started about 1 minute after the addition of the polymerization initiator. The stainless steel vat was placed in a water bath at 20 ° C., cooled for 20 minutes, and then aged for 40 minutes with warm water at 60 ° C. The polymer gel was pulverized with a meat chopper (Hiraga Seisakusho) to obtain a particulate hydrogel having an average particle size of about 3 mm and a water content of 65% by weight. (Production Example 3) 204 g of acrylic acid and 496 of sodium acrylate were placed in a 220 mm × 300 mm stainless steel bat.
g, 1.6 g of polyethylene glycol diacrylate and 1286 g of water, and the reaction system was purged with nitrogen while maintaining the solution temperature at 20 ° C. Then, while stirring the aqueous monomer solution with a magnetic stirrer, 3 g of a 5 wt% aqueous V-50 solution as a polymerization initiator, 6 g of a 5 wt% aqueous sodium persulfate solution,
3 g of a weight% sodium L-ascorbate aqueous solution and 3.5 g of a 0.35 weight% aqueous hydrogen peroxide solution were added.
The polymerization started about 1 minute after the addition of the polymerization initiator. The stainless steel vat was placed in a water bath at 20 ° C., cooled for 20 minutes, and then aged for 30 minutes with warm water at 60 ° C. The polymer gel was pulverized with a meat chopper (Hiraga Seisakusho) to obtain a particulate hydrogel having an average particle size of about 3 mm and a water content of 65% by weight. (Production Example 4) 204 g of acrylic acid and 496 of sodium acrylate were placed in a 220 mm × 300 mm stainless steel bat.
g, 1.6 g of polyethylene glycol diacrylate and 1286 g of water, and the reaction system was purged with nitrogen while maintaining the solution temperature at 20 ° C. Next, while stirring the aqueous monomer solution with a magnetic stirrer, 3 g of a 5 wt% aqueous solution of V-50 as a polymerization initiator, 9 g of a 5 wt% aqueous sodium persulfate solution,
3 g of a weight% sodium L-ascorbate aqueous solution and 3.5 g of a 0.35 weight% aqueous hydrogen peroxide solution were added.
The polymerization started about 1 minute after the addition of the polymerization initiator. The stainless steel vat was placed in a water bath at 20 ° C., cooled for 20 minutes, and then aged for 30 minutes with warm water at 60 ° C. The polymer gel was pulverized with a meat chopper (Hiraga Seisakusho) to obtain a particulate hydrogel having an average particle size of about 3 mm and a water content of 65% by weight. (Production Example 5) Content 10 liters, opening 220 mm x 260 m
A lid is attached to a jacketed stainless steel double-armed crane (kneader) having two sigma-type blades having a m, a depth of 240 mm, and a rotating diameter of the blades of 120 mm. In the kneader, 408 g of acrylic acid and 992 g of sodium acrylate are placed. 3.2 g of polyethylene glycol diacrylate and 2572 of water
g of the monomer aqueous solution, and put 25 g on the jacket.
The reaction system was purged with nitrogen while maintaining the liquid temperature of the aqueous monomer solution at 25 ° C. by circulating hot water at a temperature of 25 ° C. Next, while stirring the aqueous monomer solution at 40 rpm with two sigma-type stirring blades, 6 g of a 5 wt% aqueous V-50 solution as a polymerization initiator, 6 g of a 5 wt% aqueous sodium persulfate solution and 0.1 g of a 0.1 wt% aqueous sodium persulfate solution were added.
6 g of a 5% by weight sodium L-ascorbate aqueous solution and 7 g of a 0.35% by weight aqueous hydrogen peroxide solution were added. About 1 minute after the addition of the polymerization initiator, the polymerization starts. After 15 minutes, the temperature in the reaction system reaches a peak, and the temperature at this time is 63 ° C.
Met. Next, the temperature of the hot water in the jacket is set to 60 ° C.
Aged for another 10 minutes. Thereafter, the polymer gel was pulverized with a meat chopper (Hiraga Seisakusho) to obtain a particulate hydrogel having an average particle size of about 3 mm and a water content of 65% by weight. (Production Example 6) A particulate hydrogel was obtained in the same manner as in Production Example 1 except that the amount of polyethylene glycol diacrylate used was changed to 0.8 g. (Production Example 7) A 220 mm x 300 mm stainless steel vat was charged with a monomer aqueous solution composed of 184 g of acrylic acid, 1611 g of a 37% by weight aqueous sodium acrylate solution, 4.3 g of polyethylene glycol diacrylate, and 194 g of water, and the liquid temperature was maintained at 18 ° C. The reaction system was replaced with nitrogen. Next, while stirring the aqueous monomer solution with a magnetic stirrer, 20% by weight as a polymerization initiator was used.
5.3 g of an aqueous solution of sodium persulfate and 1.6 g of an aqueous solution of 5% by weight of sodium L-ascorbate were added. The polymerization started about 1 minute after the addition of the polymerization initiator. The stainless steel vat was placed in a 10 ° C. water bath, cooled for 12 minutes, and then aged for 10 minutes with 80 ° C. warm water. The polymer gel was pulverized with a meat chopper (Hiraga Seisakusho) to obtain a particulate hydrogel having an average particle size of about 2 mm and a water content of 60% by weight. (Example 1) 1 kg of the particulate hydrogel obtained in Production Example 1
Is a ventilation batch type dryer (71-S manufactured by Satake Chemical Machinery Co., Ltd.)
Using 6), wind speed is 1m / sec, temperature is 80 ° C, and 20
It was left to dry for a minute (partial drying step). The temperature of the material was measured at 70 ° C. by measuring the material temperature by inserting a thermometer into the center of the aggregated, squid-like aggregate at this time. The water content was 25% by weight. Next, the obtained coagulated semi-dried product was placed in a stainless steel beaker, the whole container was wrapped with an aluminum wheel and sealed, and then heated at 100 ° C. for 1 hour (heating aging step). The material temperature of the semi-dried product after heating was 95 ° C., and the water content was 23% by weight. After that, again, the flocculent aggregate was spread on a wire net and passed through a batch-type dryer for 150 minutes.
℃, finish drying for 30 minutes (finish drying step),
A dried product having a water content of 7% by weight was obtained. After pulverizing and classifying this product, the absorption capacity under no pressure, the soluble component, and the residual monomer of the powder of 500 μm to 300 μm were measured. (Example 2) The same operation as in Example 1 was carried out except that the particulate hydrogel obtained in Production Example 2 was used, and physical properties of the polymer were measured.
【0031】部分乾燥工程後の材料温度は70℃、含水
率は25重量%であり、加熱熟成工程後の材料温度は9
5℃、含水率は23重量%であり、仕上げ乾燥工程後の
含水率は7重量%であった。 (実施例3)製造例3で得られた粒子状含水ゲルを用い
た以外は、実施例1と同様な操作を行い、ポリマーの物
性測定を行った。The material temperature after the partial drying step is 70 ° C., the water content is 25% by weight, and the material temperature after the heat aging step is 9%.
At 5 ° C., the water content was 23% by weight, and the water content after the finish drying step was 7% by weight. Example 3 The same operation as in Example 1 was carried out except that the particulate hydrogel obtained in Production Example 3 was used, and the physical properties of the polymer were measured.
【0032】部分乾燥工程後の材料温度は73℃、含水
率は24重量%であり、加熱熟成工程後の材料温度は9
6℃、含水率は22重量%であり、仕上げ乾燥工程後の
含水率は6重量%であった。 (実施例4)製造例4で得られた粒子状含水ゲルを用い
た以外は、実施例1と同様な操作を行い、ポリマーの物
性測定を行った。The material temperature after the partial drying step is 73 ° C., the water content is 24% by weight, and the material temperature after the heat aging step is 9%.
At 6 ° C., the water content was 22% by weight, and the water content after the finish drying step was 6% by weight. (Example 4) The same operation as in Example 1 was carried out except that the particulate hydrogel obtained in Production Example 4 was used, and the physical properties of the polymer were measured.
【0033】部分乾燥工程後の材料温度は72℃、含水
率は25重量%であり、加熱熟成工程後の材料温度は9
6℃、含水率は24重量%であり、仕上げ乾燥工程後の
含水率は7重量%であった。 (実施例5)製造例5で得られた粒子状含水ゲルを用い
た以外は、実施例1と同様な操作を行い、ポリマーの物
性測定を行った。The material temperature after the partial drying step is 72 ° C., the water content is 25% by weight, and the material temperature after the heat aging step is 9%.
At 6 ° C., the water content was 24% by weight, and the water content after the finish drying step was 7% by weight. Example 5 The same operation as in Example 1 was carried out except that the particulate hydrogel obtained in Production Example 5 was used, and the physical properties of the polymer were measured.
【0034】部分乾燥工程後の材料温度は72℃、含水
率は25重量%であり、加熱熟成工程後の材料温度は9
5℃、含水率は25重量%であり、仕上げ乾燥工程後の
含水率は6重量%であった。 (実施例6)製造例6で得られた粒子状含水ゲルを用い
た以外は、実施例1と同様な操作を行い、ポリマーの物
性測定を行った。The material temperature after the partial drying step is 72 ° C., the water content is 25% by weight, and the material temperature after the heat aging step is 9%.
At 5 ° C., the water content was 25% by weight, and the water content after the finish drying step was 6% by weight. (Example 6) The same operation as in Example 1 was carried out except that the particulate hydrogel obtained in Production Example 6 was used, and the physical properties of the polymer were measured.
【0035】部分乾燥工程後の材料温度は71℃、含水
率は24重量%であり、加熱熟成工程後の材料温度は9
6℃、含水率は23重量%であり、仕上げ乾燥工程後の
含水率は7重量%であった。 (実施例7)製造例7で得られた粒子状含水ゲルを用い
た以外は、実施例1と同様な操作を行い、ポリマーの物
性測定を行った。The material temperature after the partial drying step is 71 ° C., the water content is 24% by weight, and the material temperature after the heat aging step is 9%.
At 6 ° C., the water content was 23% by weight, and the water content after the finish drying step was 7% by weight. (Example 7) The same operation as in Example 1 was carried out except that the particulate hydrogel obtained in Production Example 7 was used, and physical properties of the polymer were measured.
【0036】部分乾燥工程後の材料温度は70℃、含水
率は25重量%であり、加熱熟成工程後の材料温度は9
7℃、含水率は24重量%であり、仕上げ乾燥工程後の
含水率は7重量%であった。 (実施例8)実施例1において、部分乾燥工程後の凝集
状の半乾燥物をステンレス製圧力容器に入れ、密閉した
後12分間120℃で加熱した。加熱後の半乾燥物の材
料温度は118℃であり、含水率は23重量%であっ
た。その後再びいわおこし状の凝集物を金網に広げ通気
回分式乾燥器で150℃、30分間仕上げ乾燥を行い、
含水率7重量%の乾燥物を得た。このものを粉砕、分級
した後、500〜300μmの粉体での無加圧下吸収倍
率、可溶分、残存モノマーの測定を行った。 (比較例1)製造例1で得られた粒子状含水ゲル1kg
を、通気回分式乾燥器(佐竹化学機械工業製71−S
6)を用いて、風速1m/sec、温度80℃、で15
分間静置乾燥した。この時の凝集した、いわおこし状の
凝集物の中心部に温度計を刺し、材料温度を測定したと
ころ40℃であった。又、含水率は50重量%であっ
た。次いで得られた凝集状の半乾燥物を、ステンレスビ
ーカーに入れ、容器全体をアルミホイールで包み密閉し
た後1時間100℃で加熱した。加熱後の半乾燥物の材
料温度は90℃であり、含水率は45重量%であった。
その後再び、いわおこし状の凝集物を金網に広げ通気回
分式乾燥器で150℃、30分間仕上げ乾燥を行ない、
含水率7重量%の乾燥物を得た。このものを粉砕、分級
した後、500μm〜300μmの粉体での無加圧下吸
収倍率、可溶分、残存モノマーの測定を行った。 (比較例2)製造例1で得られた粒子状含水ゲル1kg
を、通気回分式乾燥器(佐竹化学機械工業製71−S
6)を用いて、風速1m/sec、温度80℃、で30
分間静置乾燥した。この時の凝集した、いわおこし状の
凝集物の中心部に温度計を刺し、材料温度を測定したと
ころ80℃であった。又、含水率は10重量%であっ
た。次いで得られた凝集状の半乾燥物を、ステンレスビ
ーカーに入れ、容器全体をアルミホイールで包み密閉し
た後1時間100℃で加熱した。加熱後の半乾燥物のの
材料温度は98℃であり、含水率は9重量%であった。
その後再び、いわおこし状の凝集物を金網に広げ通気回
分式乾燥器で150℃、30分間仕上げ乾燥を行ない、
含水率6重量%の乾燥物を得た。このものを粉砕、分級
した後、500μm〜300μmの粉体での無加圧下吸
収倍率、可溶分、残存モノマーの測定を行った。 (比較例3)製造例1で得られた粒子状含水ゲル1kg
を、通気回分式乾燥器(佐竹化学機械工業製71−S
6)を用いて、風速1m/sec、温度180℃、で1
0分間静置乾燥した。この時の凝集した、いわおこし状
の凝集物の中心部に温度計を刺し、材料温度を測定した
ところ95℃であった。又、含水率は25重量%であっ
た。次いで得られた凝集状の半乾燥物を、ステンレスビ
ーカーに入れ、容器全体をアルミホイールで包み密閉し
た後1時間100℃で加熱した。加熱後の半乾燥物の材
料温度は98℃であり、含水率は23重量%であった。
その後再び、いわおこし状の凝集物を金網に広げ通気回
分式乾燥器で150℃、30分間仕上げ乾燥を行ない、
含水率7重量%の乾燥物を得た。このものを粉砕、分級
した後、500μm〜300μmの粉体での無加圧下吸
収倍率、可溶分、残存モノマーの測定を行った。 (比較例4)製造例1で得られた粒子状含水ゲル1kg
を、通気回分式乾燥器(佐竹化学機械工業製71−S
6)を用いて、風速1m/sec、温度80℃、で20
分間静置乾燥した。この時の凝集した、いわおこし状の
凝集物の中心部に温度計を刺し、材料温度を測定したと
ころ70℃であった。又、含水率は25重量%であっ
た。次いで得られた凝集状の半乾燥物を、ステンレス製
圧力容器に入れ、8分間140℃で加熱した。加熱後の
半乾燥物の材料温度は125℃であり、含水率は22重
量%であった。その後再び、いわおこし状の凝集物を金
網に広げ通気回分式乾燥器で150℃、30分間仕上げ
乾燥を行ない、含水率6重量%の乾燥物を得た。このも
のを粉砕、分級した後、500μm〜300μmの粉体
での無加圧下吸収倍率、可溶分、残存モノマーの測定を
行った。 (比較例5)製造例1で得られた粒子状含水ゲル1kg
を、通気回分式乾燥器(佐竹化学機械工業製71−S
6)を用いて、風速1m/sec、温度170℃、で4
0分間静置乾燥して、含水率6重量%の乾燥物を得た。
このものを粉砕、分級し、500μm〜300μmの粉
体での無加圧下吸収倍率、可溶分、残存モノマーの測定
を行った。 (比較例6)製造例2で得られた粒子状含水ゲルを用い
た以外は、比較例5と同様な操作を行い、含水率6重量
%の乾燥物を得た。このものを粉砕、分級し、500μ
m〜300μmの粉体での物性測定を行った。 (比較例7)製造例3で得られた粒子状含水ゲルを用い
た以外は、比較例5と同様な操作を行い、含水率6重量
%の乾燥物を得た。このものを粉砕、分級し、500μ
m〜300μmの粉体での物性測定を行った。 (比較例8)製造例4で得られた粒子状含水ゲルを用い
た以外は、比較例5と同様な操作を行い、含水率7重量
%の乾燥物を得た。このものを粉砕、分級し、500μ
m〜300μmの粉体での物性測定を行った。 (比較例9)製造例5で得られた粒子状含水ゲルを用い
た以外は、比較例5と同様な操作を行い、含水率6重量
%の乾燥物を得た。このものを粉砕、分級し、500μ
m〜300μmの粉体での物性測定を行った。 (比較例10)製造例6で得られた粒子状含水ゲルを用
いた以外は、比較例5と同様な操作を行い、含水率6重
量%の乾燥物を得た。このものを粉砕、分級し、500
μm〜300μmの粉体での物性測定を行った。 (比較例11)製造例7で得られた粒子状含水ゲルを用
いた以外は、比較例5と同様な操作を行い、含水率6重
量%の乾燥物を得た。このものを粉砕、分級し、500
μm〜300μmの粉体での物性測定を行った。 (比較例12)製造例1で得られた粒子状含水ゲル1k
gを、通気回分式乾燥器(佐竹化学機械工業製71−S
6)を用いて、風速1m/sec、温度80℃、で15
分間静置乾燥した。この時の凝集した、いわおこし状の
凝集物の中心部に温度計を刺し、材料温度を測定したと
ころ40℃であった。又、含水率は50重量%であっ
た。次いで得られた凝集状の半乾燥物を電子レンジで5
00wで3分間かけた。加熱後の半乾燥物の材料温度は
95℃であり、含水率は27重量%であった。その後再
び、いわおこし状の凝集物を金網に広げ通気回分式乾燥
器で150℃、30分間仕上げ乾燥を行ない、含水率6
重量%の乾燥物を得た。このものを粉砕、分級した後、
500μm〜300μmの粉体での無加圧下吸収倍率、
可溶分、残存モノマーの測定を行った。 (比較例13)製造例1で得られた粒子状含水ゲル1k
gを、通気回分式乾燥器(佐竹化学機械工業製71−S
6)を用いて、風速1m/sec、温度80℃、で20
分間静置乾燥した。この時の凝集した、いわおこし状の
凝集物の中心部に温度計を刺し、材料温度を測定したと
ころ70℃であった。又、含水率は25重量%であっ
た。次いで得られた凝集状の半乾燥物を電子レンジで5
00wで3分間かけた。加熱後の半乾燥物の材料温度は
98℃であり、含水率は15重量%であった。その後再
び、いわおこし状の凝集物を金網に広げ通気回分式乾燥
器で150℃、30分間仕上げ乾燥を行ない、含水率6
重量%の乾燥物を得た。このものを粉砕、分級した後、
500μm〜300μmの粉体での無加圧下吸収倍率、
可溶分、残存モノマーの測定を行った。 (比較例14)比較例13において、凝集状の半乾燥物
を電子レンジで1500wで9分間かけた以外は比較例
13と同様にして乾燥を行ない、粉砕、分級した後、5
00μm〜300μmの粉体での無加圧下吸収倍率、可
溶分、残存モノマーの測定を行った。The material temperature after the partial drying step is 70 ° C., the water content is 25% by weight, and the material temperature after the heat aging step is 9%.
At 7 ° C., the water content was 24% by weight, and the water content after the finish drying step was 7% by weight. Example 8 In Example 1, the coagulated semi-dried product after the partial drying step was placed in a stainless steel pressure vessel, sealed, and heated at 120 ° C. for 12 minutes. The material temperature of the semi-dried product after heating was 118 ° C., and the water content was 23% by weight. After that, the agglomerate in the form of squid is spread again on a wire mesh and subjected to finish drying at 150 ° C. for 30 minutes using a batch-type air dryer.
A dried product having a water content of 7% by weight was obtained. After pulverizing and classifying the powder, the absorption capacity under non-pressurization, the soluble content, and the residual monomer of the powder of 500 to 300 μm were measured. (Comparative Example 1) 1 kg of the particulate hydrogel obtained in Production Example 1
Is a ventilation batch type dryer (71-S manufactured by Satake Chemical Machinery Co., Ltd.)
6), at a wind speed of 1 m / sec and a temperature of 80 ° C.,
It was left to dry for minutes. At this time, a thermometer was inserted into the center of the agglomerate-like aggregate, and the temperature of the material was measured. The water content was 50% by weight. Next, the obtained coagulated semi-dried product was put into a stainless beaker, the whole container was wrapped with an aluminum wheel, and then sealed, and then heated at 100 ° C. for 1 hour. The material temperature of the semi-dried product after heating was 90 ° C., and the water content was 45% by weight.
After that, again, the flocculent aggregates are spread on a wire mesh, and subjected to finish drying at 150 ° C. for 30 minutes in a ventilation batch type dryer.
A dried product having a water content of 7% by weight was obtained. After pulverizing and classifying this product, the absorption capacity under no pressure, the soluble component, and the residual monomer of the powder of 500 μm to 300 μm were measured. (Comparative Example 2) 1 kg of the particulate hydrogel obtained in Production Example 1
Is a ventilation batch type dryer (71-S manufactured by Satake Chemical Machinery Co., Ltd.)
6), the wind speed is 1 m / sec, the temperature is 80 ° C, and the temperature is 30
It was left to dry for minutes. The temperature of the material was measured at 80 ° C. by measuring the material temperature by inserting a thermometer into the center of the flocculated aggregate. The water content was 10% by weight. Next, the obtained coagulated semi-dried product was put into a stainless beaker, the whole container was wrapped with an aluminum wheel, and then sealed, and then heated at 100 ° C. for 1 hour. The material temperature of the semi-dried product after heating was 98 ° C., and the water content was 9% by weight.
After that, again, the flocculent aggregates are spread on a wire mesh, and subjected to finish drying at 150 ° C. for 30 minutes in a ventilation batch type dryer.
A dried product having a water content of 6% by weight was obtained. After pulverizing and classifying this product, the absorption capacity under no pressure, the soluble component, and the residual monomer of the powder of 500 μm to 300 μm were measured. (Comparative Example 3) 1 kg of the particulate hydrogel obtained in Production Example 1
Is a ventilation batch type dryer (71-S manufactured by Satake Chemical Machinery Co., Ltd.)
6), 1 m / sec wind speed, 180 ° C temperature, 1
It was left to dry for 0 minutes. The temperature of the material was measured at 95 ° C. by measuring the material temperature by inserting a thermometer into the center of the agglomerated agglomerate at this time. The water content was 25% by weight. Next, the obtained coagulated semi-dried product was put into a stainless beaker, the whole container was wrapped with an aluminum wheel, and then sealed, and then heated at 100 ° C. for 1 hour. The material temperature of the semi-dried product after heating was 98 ° C., and the water content was 23% by weight.
After that, again, the flocculent aggregates are spread on a wire mesh, and subjected to finish drying at 150 ° C. for 30 minutes in a ventilation batch type dryer.
A dried product having a water content of 7% by weight was obtained. After pulverizing and classifying this product, the absorption capacity under no pressure, the soluble component, and the residual monomer of the powder of 500 μm to 300 μm were measured. (Comparative Example 4) 1 kg of the particulate hydrogel obtained in Production Example 1
Is a ventilation batch type dryer (71-S manufactured by Satake Chemical Machinery Co., Ltd.)
Using 6), wind speed is 1m / sec, temperature is 80 ° C, and 20
It was left to dry for minutes. The temperature of the material was measured at 70 ° C. by measuring the material temperature by inserting a thermometer into the center of the aggregated, squid-like aggregate at this time. The water content was 25% by weight. Next, the obtained semi-dried aggregated product was placed in a stainless steel pressure vessel and heated at 140 ° C. for 8 minutes. The material temperature of the semi-dried product after heating was 125 ° C., and the water content was 22% by weight. Thereafter, the agglomerate-like aggregate was spread again on a wire net and subjected to finish drying at 150 ° C. for 30 minutes using a ventilation batch dryer to obtain a dried product having a water content of 6% by weight. After pulverizing and classifying this product, the absorption capacity under no pressure, the soluble component, and the residual monomer of the powder of 500 μm to 300 μm were measured. (Comparative Example 5) 1 kg of the particulate hydrogel obtained in Production Example 1
Is a ventilation batch type dryer (71-S manufactured by Satake Chemical Machinery Co., Ltd.)
6) using 4 m at a wind speed of 1 m / sec and a temperature of 170 ° C.
It was left to dry for 0 minutes to obtain a dried product having a water content of 6% by weight.
This was pulverized and classified, and the absorption capacity under no pressure, the soluble matter, and the residual monomer of a powder of 500 μm to 300 μm were measured. (Comparative Example 6) A dried product having a water content of 6% by weight was obtained in the same manner as in Comparative Example 5, except that the particulate hydrogel obtained in Production Example 2 was used. This is crushed and classified, and 500μ
Physical properties of powders of m to 300 μm were measured. (Comparative Example 7) A dried product having a water content of 6% by weight was obtained in the same manner as in Comparative Example 5, except that the particulate hydrogel obtained in Production Example 3 was used. This is crushed and classified, and 500μ
Physical properties of powders of m to 300 μm were measured. (Comparative Example 8) A dried product having a water content of 7% by weight was obtained in the same manner as in Comparative Example 5, except that the particulate hydrogel obtained in Production Example 4 was used. This is crushed and classified, and 500μ
Physical properties of powders of m to 300 μm were measured. (Comparative Example 9) A dried product having a water content of 6% by weight was obtained in the same manner as in Comparative Example 5, except that the particulate hydrogel obtained in Production Example 5 was used. This is crushed and classified, and 500μ
Physical properties of powders of m to 300 μm were measured. (Comparative Example 10) A dried product having a water content of 6% by weight was obtained in the same manner as in Comparative Example 5, except that the particulate hydrogel obtained in Production Example 6 was used. This is crushed and classified, and 500
Physical properties of powders of μm to 300 μm were measured. (Comparative Example 11) A dried product having a water content of 6% by weight was obtained in the same manner as in Comparative Example 5, except that the particulate hydrogel obtained in Production Example 7 was used. This is crushed and classified, and 500
Physical properties of powders of μm to 300 μm were measured. (Comparative Example 12) 1 k of the particulate hydrogel obtained in Production Example 1
g into a batch batch dryer (71-S manufactured by Satake Chemical Machinery Co., Ltd.)
6), at a wind speed of 1 m / sec and a temperature of 80 ° C.,
It was left to dry for minutes. At this time, a thermometer was inserted into the center of the agglomerate-like aggregate, and the temperature of the material was measured. The water content was 50% by weight. Next, the obtained coagulated semi-dried product is microwaved for 5 minutes.
It took 3 minutes at 00w. The material temperature of the semi-dried product after heating was 95 ° C., and the water content was 27% by weight. Thereafter, the aggregates in the form of squid are spread again on a wire mesh and finish-dried at 150 ° C. for 30 minutes using a ventilation batch type dryer.
% By weight of the dried product was obtained. After crushing and classifying this,
500 μm to 300 μm powder with no pressure absorption capacity,
The soluble components and residual monomers were measured. (Comparative Example 13) 1 k of the particulate hydrogel obtained in Production Example 1
g into a batch batch dryer (71-S manufactured by Satake Chemical Machinery Co., Ltd.)
Using 6), wind speed is 1m / sec, temperature is 80 ° C, and 20
It was left to dry for minutes. The temperature of the material was measured at 70 ° C. by measuring the material temperature by inserting a thermometer into the center of the aggregated, squid-like aggregate at this time. The water content was 25% by weight. Next, the obtained coagulated semi-dried product is microwaved for 5 minutes.
It took 3 minutes at 00w. The material temperature of the semi-dried product after heating was 98 ° C., and the water content was 15% by weight. Thereafter, the aggregates in the form of squid are spread again on a wire mesh and finish-dried at 150 ° C. for 30 minutes using a ventilation batch type dryer.
% By weight of the dried product was obtained. After crushing and classifying this,
500 μm to 300 μm powder with no pressure absorption capacity,
The soluble components and residual monomers were measured. (Comparative Example 14) Drying was carried out in the same manner as in Comparative Example 13 except that the coagulated semi-dried product was subjected to a microwave oven at 1500 w for 9 minutes, pulverized and classified.
The absorption capacity under no pressure, the soluble component, and the residual monomer of the powder of 00 μm to 300 μm were measured.
【0037】電子レンジで加熱後の材料温度は98℃で
あり、含水率は5重量%であり、また、仕上げ乾燥後の
乾燥物の含水率は4重量%であった。また、電子レンジ
から取り出した半乾燥物は、表面の一部が焦げており異
臭を発生させていた。 (比較例15)製造例1で得られた粒子状含水ゲル1k
gを、通気回分式乾燥器(佐竹化学機械工業製71−S
6)を用いて、風速1.0m/sec、温度120℃、
露点80℃の水蒸気、空気混合気体からなる熱風を吹き
付け、含水率20重量%まで乾燥した。次いで温度18
0℃、露点5℃、風速1.0m/secの加湿されてい
ない熱風にて含水率6重量%まで乾燥を行ない、粉砕、
分級し、500μm〜300μmの粉体での無加圧下吸
収倍率、可溶分、残存モノマーの測定を行った。 (比較例16)製造例1で得られた粒子状含水ゲル1k
gを、通気回分式乾燥器(佐竹化学機械工業製71−S
6)を用いて、風速1.0m/sec、温度130℃、
露点80℃の水蒸気、空気混合気体からなる熱風を15
分間吹き付け、次いで温度160℃、露点5℃、風速
1.0m/secの加湿されていない熱風を50分間吹
き付け、含水率6重量%まで乾燥した。その後、粉砕、
分級し、500μm〜300μmの粉体での無加圧下吸
収倍率、可溶分、残存モノマーの測定を行った。The material temperature after heating in a microwave oven was 98 ° C., the water content was 5% by weight, and the water content of the dried product after finish drying was 4% by weight. In addition, the semi-dried product taken out of the microwave oven had a part of the surface burnt and generated an offensive odor. (Comparative Example 15) 1 k of the particulate hydrogel obtained in Production Example 1
g into a batch batch dryer (71-S manufactured by Satake Chemical Machinery Co., Ltd.)
Using 6), wind speed 1.0 m / sec, temperature 120 ° C.,
Hot air composed of steam and air mixed gas having a dew point of 80 ° C. was blown, and dried to a water content of 20% by weight. Then temperature 18
0 ° C, dew point 5 ° C, wind speed 1.0m / sec.
The powder was classified, and the absorption capacity under no pressure, the soluble matter, and the residual monomer of a powder of 500 μm to 300 μm were measured. (Comparative Example 16) 1 k of the particulate hydrogel obtained in Production Example 1
g into a batch batch dryer (71-S manufactured by Satake Chemical Machinery Co., Ltd.)
6), using a wind speed of 1.0 m / sec, a temperature of 130 ° C.,
Hot air consisting of steam and air mixed gas with a dew point of 80 ° C
Then, non-humidified hot air having a temperature of 160 ° C., a dew point of 5 ° C. and an air velocity of 1.0 m / sec was sprayed for 50 minutes, and dried to a water content of 6% by weight. Then crush,
The powder was classified, and the absorption capacity under no pressure, the soluble matter, and the residual monomer of a powder of 500 μm to 300 μm were measured.
【0038】[0038]
【表1】 [Table 1]
【0039】(実施例9)実施例6で得られた乾燥物を
ロールミルで粉砕分級し、850μmの篩を通過し15
0μmの篩上に残る粒子を得た。このものの粒度分布は
850μmオン:0重量%、600〜850μm:32
重量%、300〜600μm:53重量%、150〜3
00μm:15重量%であった。Example 9 The dried product obtained in Example 6 was pulverized and classified with a roll mill, passed through an 850 μm sieve, and dried.
Particles remaining on the 0 μm sieve were obtained. The particle size distribution was 850 μm on: 0% by weight, 600 to 850 μm: 32
% By weight, 300 to 600 μm: 53% by weight, 150 to 3
00 μm: 15% by weight.
【0040】この粒子100重量部に、エチレングリコ
ールジグリシジルエーテル/プロピレングリコール/水
/イソプロピルアルコール=0.03/0.5/3/1
重量部からなる表面処理液を混合し、212℃のオイル
バス中で約40分間攪拌し、表面処理された吸水性樹脂
を得た。このものの無加圧下吸収倍率は40(g/
g)、加圧下吸収倍率は38(g/g)であった。 (比較例17)比較例10で得られた乾燥物を用いた以
外は実施例9と同様にして表面処理された吸水性樹脂を
得た。このものの無加圧下吸収倍率は50(g/g)、
加圧下吸収倍率は30(g/g)であった。To 100 parts by weight of the particles, ethylene glycol diglycidyl ether / propylene glycol / water / isopropyl alcohol = 0.03 / 0.5 / 3/1
The surface treating solution consisting of parts by weight was mixed and stirred in an oil bath at 212 ° C. for about 40 minutes to obtain a surface-treated water-absorbing resin. The absorption capacity under no pressure was 40 (g / g).
g), the absorption capacity under pressure was 38 (g / g). (Comparative Example 17) A surface-treated water-absorbent resin was obtained in the same manner as in Example 9 except that the dried product obtained in Comparative Example 10 was used. Its absorption capacity under no pressure is 50 (g / g),
The absorbency against pressure was 30 (g / g).
【0041】実施例9と比較例17の結果から明らかな
ように、本発明によると吸水性樹脂は劣化を受けること
なく乾燥されるので優れた加圧下吸収性能を示す。 (実施例10)実施例6で得られた500〜300μm
に分級された粒子の膨潤圧力を測定したところ、23k
dyne/cm2 であった。一方、比較例10で得られ
た500〜300μmに分級された粒子の膨潤圧力は7
kdyne/cm2 であった。As is apparent from the results of Example 9 and Comparative Example 17, according to the present invention, the water-absorbent resin is dried without undergoing deterioration, and thus exhibits excellent absorption performance under pressure. (Example 10) 500 to 300 μm obtained in Example 6
The swelling pressure of the classified particles was measured to be 23 k
dyne / cm 2 . On the other hand, the swelling pressure of the particles classified into 500 to 300 μm obtained in Comparative Example 10 is 7
kdyne / cm 2 .
【0042】この結果から明らかなように、本発明によ
ると吸水性樹脂は劣化を受けることなく乾燥されるので
膨潤圧力の高いものとなる。 (実施例11)実施例7で得られた500〜300μm
に分級された粒子の膨潤圧力を測定したところ、53k
dyne/cm2 であった。一方、比較例11で得られ
た500〜300μmに分級された粒子の膨潤圧力は4
1kdyne/cm2 であった。As is evident from the results, according to the present invention, the water-absorbent resin is dried without undergoing deterioration, and therefore has a high swelling pressure. (Example 11) 500 to 300 μm obtained in Example 7
The swelling pressure of the classified particles was measured to be 53 k
dyne / cm 2 . On the other hand, the swelling pressure of the particles classified into 500 to 300 μm obtained in Comparative Example 11 was 4
It was 1 kdyne / cm 2 .
【0043】この結果から明らかなように、本発明によ
ると吸水性樹脂は劣化を受けることなく乾燥されるので
膨潤圧力の高いものとなる。As is evident from the results, according to the present invention, the water-absorbent resin is dried without undergoing deterioration, and therefore has a high swelling pressure.
【0044】[0044]
【発明の効果】本発明の方法によれば、重合によって得
られた含水ゲル状重合体の物性を維持したまま、即ち乾
燥による重合体の劣化を抑えつつ、残存モノマーの少な
い親水性重合体を、生産性良く得ることができる。According to the method of the present invention, while maintaining the physical properties of the hydrogel polymer obtained by polymerization, that is, while suppressing deterioration of the polymer due to drying, a hydrophilic polymer having a small amount of residual monomers can be produced. , With good productivity.
【図1】 実施例で膨潤ゲル圧力の測定に用いた装置の
概略図である。FIG. 1 is a schematic view of an apparatus used for measuring a swelling gel pressure in Examples.
a 吸水性樹脂 b セル c 人工尿 d 落とし蓋 e 円盤 a Water absorbent resin b Cell c Artificial urine d Drop lid e Disk
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 康弘 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 (72)発明者 入江 好夫 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuhiro Fujita 992, Nishioki, Okihama-ku, Abashiri-ku, Himeji-shi, Hyogo 1 Inside Nippon Shokubai Co., Ltd. Nippon Shokubai
Claims (6)
ル状重合体を得た後、前記含水ゲル状重合体を乾燥して
親水性重合体を製造する方法において、 前記乾燥工程が、 前記含水ゲル状重合体の含水率が15〜40重量%にな
るまで、材料温度90℃以下で常圧で乾燥を行う部分乾
燥工程と、 前記部分乾燥工程の後、前記含水ゲル状重合体の含水率
の変化量が5重量%以内、材料温度が70〜120℃の
状態を10分間以上保つ加熱熟成工程と、 前記加熱熟成工程の後、前記含水ゲル状重合体が所望の
含水率となるまで乾燥する仕上げ乾燥工程とを含むこと
を特徴とする親水性重合体の製造方法。1. A method for producing a hydrophilic polymer by polymerizing a hydrophilic monomer with an aqueous solution to obtain a hydrogel polymer, and then drying the hydrogel polymer to produce a hydrophilic polymer, wherein the drying step comprises: A partial drying step of drying at a material temperature of 90 ° C. or less at normal pressure until the water content of the gel polymer becomes 15 to 40% by weight; and after the partial drying step, a water content of the water-containing gel polymer A heat aging step in which the amount of change is within 5% by weight and a material temperature of 70 to 120 ° C. for 10 minutes or more; and drying after the heat aging step until the hydrogel polymer has a desired water content. And a finish drying step.
ル状重合体を得た後、前記含水ゲル状重合体を乾燥して
親水性重合体を製造する方法において、 前記乾燥工程が、 前記含水ゲル状重合体の含水率が15〜40重量%にな
るまで、材料温度90℃以下で常圧で乾燥を行う部分乾
燥工程と、 前記部分乾燥工程の後、前記含水ゲル状重合体の含水率
15〜40重量%、材料温度70〜120℃の状態を1
0分間以上保つ加熱熟成工程と、 前記加熱熟成工程の後、前記含水ゲル状重合体が所望の
含水率となるまで乾燥する仕上げ乾燥工程とを含むこと
を特徴とする親水性重合体の製造方法。2. A method for producing a hydrophilic polymer by subjecting a hydrophilic monomer to aqueous solution polymerization to obtain a hydrogel polymer, and then drying the hydrogel polymer to produce a hydrophilic polymer, wherein the drying step comprises: A partial drying step of drying at a material temperature of 90 ° C. or less at normal pressure until the water content of the gel polymer becomes 15 to 40% by weight; and after the partial drying step, a water content of the water-containing gel polymer 15-40% by weight, material temperature 70-120 ° C
A method for producing a hydrophilic polymer, comprising: a heat aging step of maintaining for 0 minute or more; and a finish drying step of drying the water-containing gel polymer until a desired water content is obtained after the heat aging step. .
含水率が80〜60重量%の範囲である、請求項1また
は2記載の親水性重合体の製造方法。3. The method for producing a hydrophilic polymer according to claim 1, wherein the water content of the hydrogel polymer obtained by the polymerization is in the range of 80 to 60% by weight.
を用いて行われる、請求項1または2記載の親水性重合
体の製造方法。4. The method for producing a hydrophilic polymer according to claim 1, wherein the aqueous polymerization of the hydrophilic monomer is performed using a persulfate.
残存モノマーが10000ppm以上である、請求項1
または2記載の親水性重合体の製造方法。5. The hydrogel polymer obtained by polymerization has a residual monomer content of 10,000 ppm or more.
Or a method for producing a hydrophilic polymer according to item 2.
ル状重合体を得た後、前記含水ゲル状重合体を乾燥して
吸水性樹脂を製造する方法において、 乾燥工程前後における無加圧下吸収倍率変化率が10%
以下、可溶分変化率が100%以下であり、かつ得られ
た吸水性樹脂の残存モノマーが300ppm以下である
ことを特徴とする吸水性樹脂の製造方法。6. A method for producing a water-absorbent resin by producing a water-containing gel polymer by polymerizing a hydrophilic monomer in an aqueous solution and then drying the water-containing gel polymer, comprising: Magnification change rate is 10%
Hereinafter, a method for producing a water-absorbent resin, wherein a change rate of a soluble component is 100% or less and a residual monomer of the obtained water-absorbent resin is 300 ppm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32600099A JP4323647B2 (en) | 1998-11-18 | 1999-11-16 | Method for producing hydrophilic polymer |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32823698 | 1998-11-18 | ||
JP10-328236 | 1998-11-18 | ||
US09/436,345 US6207796B1 (en) | 1998-11-18 | 1999-11-09 | Production process for hydrophilic polymer |
JP32600099A JP4323647B2 (en) | 1998-11-18 | 1999-11-16 | Method for producing hydrophilic polymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000212215A true JP2000212215A (en) | 2000-08-02 |
JP4323647B2 JP4323647B2 (en) | 2009-09-02 |
Family
ID=27340145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32600099A Expired - Fee Related JP4323647B2 (en) | 1998-11-18 | 1999-11-16 | Method for producing hydrophilic polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4323647B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009028568A1 (en) | 2007-08-28 | 2009-03-05 | Nippon Shokubai Co., Ltd. | Process for producing water-absorbing resin |
JP2009079176A (en) * | 2007-09-27 | 2009-04-16 | Nippon Junyaku Kk | Unsaturated carboxylic acid polymer powder for thickening and production method thereof |
JP2010518211A (en) * | 2007-02-06 | 2010-05-27 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for producing water-absorbing polymer particles by polymerization of droplets of monomer solution |
WO2021049493A1 (en) * | 2019-09-09 | 2021-03-18 | 住友精化株式会社 | Method for producing water-absorbent resin particles |
WO2022024789A1 (en) * | 2020-07-28 | 2022-02-03 | 住友精化株式会社 | Method for producing water-absorbing resin particles |
WO2022071503A1 (en) * | 2020-10-02 | 2022-04-07 | 住友精化株式会社 | Method for producing crosslinked polymer particles |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005014291A1 (en) * | 2005-03-24 | 2006-09-28 | Basf Ag | Process for the preparation of water-absorbing polymers |
-
1999
- 1999-11-16 JP JP32600099A patent/JP4323647B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010518211A (en) * | 2007-02-06 | 2010-05-27 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for producing water-absorbing polymer particles by polymerization of droplets of monomer solution |
WO2009028568A1 (en) | 2007-08-28 | 2009-03-05 | Nippon Shokubai Co., Ltd. | Process for producing water-absorbing resin |
EP2690114A1 (en) | 2007-08-28 | 2014-01-29 | Nippon Shokubai Co., Ltd. | Process for producing water-absorbing resin |
JP2009079176A (en) * | 2007-09-27 | 2009-04-16 | Nippon Junyaku Kk | Unsaturated carboxylic acid polymer powder for thickening and production method thereof |
WO2021049493A1 (en) * | 2019-09-09 | 2021-03-18 | 住友精化株式会社 | Method for producing water-absorbent resin particles |
WO2022024789A1 (en) * | 2020-07-28 | 2022-02-03 | 住友精化株式会社 | Method for producing water-absorbing resin particles |
JP7708768B2 (en) | 2020-07-28 | 2025-07-15 | 住友精化株式会社 | Method for producing water-absorbent resin particles |
WO2022071503A1 (en) * | 2020-10-02 | 2022-04-07 | 住友精化株式会社 | Method for producing crosslinked polymer particles |
Also Published As
Publication number | Publication date |
---|---|
JP4323647B2 (en) | 2009-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1002806B1 (en) | Production process for hydrophilic polymer | |
US12187860B2 (en) | Water-absorbent resin powder and production method thereof | |
KR102629476B1 (en) | Method for producing absorbent resin particles | |
JP6800998B2 (en) | Method for producing water-absorbent resin powder, and drying device and drying method for particulate hydrogel | |
EP2272898B1 (en) | Water-absorbent polymer particles and production process therefor | |
WO2006094907A1 (en) | Hydrolytically stable postcrosslinked superabsorbents | |
KR102554051B1 (en) | Water absorbing agent containing water absorbing resin as a main component and method for producing the same | |
JPWO2011090130A1 (en) | Method for producing water absorbent resin | |
JPH11106514A (en) | Production of granulated water-absorbing resin | |
JPH0639487B2 (en) | Super absorbent resin manufacturing method | |
JP2000212215A (en) | Preparation of hydrophilic polymer | |
WO2020145383A1 (en) | Water absorbent, and method for producing water absorbent | |
JP2000007790A (en) | Preparation of water-absorbing resin | |
JP4198266B2 (en) | Method for producing water absorbent resin | |
JP3845177B2 (en) | Water absorbent resin | |
JP4198265B2 (en) | Method for producing water absorbent resin | |
JP7595080B2 (en) | Method for producing water-absorbent resin powder | |
JP4242467B2 (en) | Method for producing water absorbent resin | |
JP6521668B2 (en) | Method for producing polyacrylic acid (salt) -based water absorbent resin | |
JP3963550B2 (en) | Method for producing water-absorbing agent | |
JP4244084B2 (en) | Water-absorbing agent, method for producing the same, and body fluid-absorbing article | |
JPH0717758B2 (en) | Super absorbent resin manufacturing method | |
JP7591415B2 (en) | Manufacturing method of water-absorbent resin | |
JP4727005B2 (en) | Method for producing water-absorbing agent | |
WO2025058084A1 (en) | Water-absorbing resin and method for producing water-absorbing resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060630 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090127 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090602 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090605 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4323647 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |