JP2000210313A - Bone substitutive material having excellent bioaffinity - Google Patents
Bone substitutive material having excellent bioaffinityInfo
- Publication number
- JP2000210313A JP2000210313A JP11012301A JP1230199A JP2000210313A JP 2000210313 A JP2000210313 A JP 2000210313A JP 11012301 A JP11012301 A JP 11012301A JP 1230199 A JP1230199 A JP 1230199A JP 2000210313 A JP2000210313 A JP 2000210313A
- Authority
- JP
- Japan
- Prior art keywords
- bone
- titanium
- bone substitute
- substitute material
- titanate layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、人工骨や人工関
節,人工歯根等といった骨代替材料に関するものであ
り、特に生体親和性に優れた骨代替材料に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bone substitute material such as an artificial bone, an artificial joint or an artificial tooth root, and more particularly to a bone substitute material having excellent biocompatibility.
【0002】[0002]
【従来の技術】損傷或いは欠損した骨や関節,歯根等の
修復にあたって、人工骨や人工関節,人工歯根等といっ
た骨代替材料を用いることがある。この様な骨代替材料
は、十分な強度を有すると共に、生体親和性が良好であ
ることが求められ、従って骨代替材料の素材の選定が行
われ、またその表面状態にも種々の工夫がなされてい
る。2. Description of the Related Art In repairing damaged or missing bones, joints, dental roots, and the like, bone substitute materials such as artificial bones, artificial joints, and artificial roots are sometimes used. Such a bone substitute material is required to have sufficient strength and good biocompatibility. Therefore, the material of the bone substitute material is selected, and various measures are taken for the surface condition. ing.
【0003】例えば基材表面に凹凸を形成した骨代替材
料が提案されている(従来例)。該従来例の骨代替
材料は、体内に埋め込んだ後、新生する生体骨組織が骨
代替材料の凹部内に侵入・成長し、この新生骨によるア
ンカー効果によって強い固着力を発揮する。For example, a bone substitute material having irregularities formed on the surface of a substrate has been proposed (conventional example). In the conventional bone substitute material, after being implanted in the body, a new living bone tissue penetrates and grows in the concave portion of the bone substitute material, and exerts a strong fixing force by the anchor effect of the new bone.
【0004】上記凹凸の形成方法としては、サンドブラ
スト処理による方法や、微細な粉粒体の溶射(アーク溶
射,プラズマ溶射)による方法がある。[0004] As a method of forming the irregularities, there are a method by sandblasting and a method by thermal spraying of fine powders (arc spraying, plasma spraying).
【0005】また上記従来例を改良したものとして、
上述の様に基材表面に凹凸を形成した後、これを生体活
性物質(例えばバイオガラス,バイオ結晶化ガラス,A
Wガラス,ヒドロキシアパタイト,トリカルシウムフォ
スフェート)によって被覆した骨代替材料が提案されて
いる。(従来例:特開平6−154257号公報)。
この従来例の骨代替材料は上記従来例のものよりも
生体適合性に優れ、新生生体組織の侵入,成長が良好で
あり、よって生体骨に対する骨代替材料の固着が確実に
行えるという効果がある。[0005] As an improvement of the above conventional example,
After forming irregularities on the surface of the base material as described above, a bioactive substance (for example, bioglass, biocrystallized glass, A
Bone substitute materials coated with W glass, hydroxyapatite, tricalcium phosphate) have been proposed. (Conventional example: JP-A-6-154257).
This conventional bone substitute material is more excellent in biocompatibility than the above-mentioned conventional one, has good penetration and growth of a new living tissue, and has an effect that the bone substitute material can be securely fixed to living bone. .
【0006】一方、基材の表面を化学的に変化させて生
体親和性を向上させた骨代替材料が提案されている(従
来例:特許番号第2775523号)。該従来例の
骨代替材料は、チタン(或いはチタン合金)からなる基
材をアルカリ液に浸漬した後加熱することによって(以
下、この処理をアルカリ処理と称することがある)、基
材表面に酸化チタン相及びアルカリチタン酸塩の非晶質
相を含む被膜(アルカリチタン酸塩層)を形成したもの
である。On the other hand, there has been proposed a bone substitute material in which the surface of a substrate is chemically changed to improve biocompatibility (conventional example: Patent No. 2775523). The bone substitute material of the conventional example is obtained by immersing a substrate made of titanium (or a titanium alloy) in an alkali solution and then heating (hereinafter, this treatment may be referred to as an alkali treatment) to oxidize the surface of the substrate. A film (alkali titanate layer) containing a titanium phase and an amorphous phase of an alkali titanate is formed.
【0007】[0007]
【発明が解決しようとする課題】ところで、上記従来例
の骨代替材料は従来例よりも固着力が向上している
とはいえ、上記バイオガラス等の生体活性物質は比較的
粘性の高いものであるから、該生体活性物質を凹部の奥
まったところまで万遍なく被覆することが難しく、従っ
て非被覆部分が存在してその分固着力の向上が望めな
い。By the way, although the bone substitute material of the above-mentioned conventional example has an improved fixing force as compared with the conventional example, the bioactive substance such as the bioglass has a relatively high viscosity. For this reason, it is difficult to uniformly cover the inside of the concave portion with the bioactive substance. Therefore, there is an uncovered portion, and it is not expected to improve the fixing force by that amount.
【0008】一方凹部の奥までくまなく生体活性物質を
被覆する方法として、凹凸を形成した基材を真空環境に
曝しつつ、生体活性物質の懸濁液に浸漬するという方法
が提案されている(従来例:特開平4−2341号公
報)。On the other hand, as a method of coating the bioactive substance all over the recess, a method has been proposed in which a substrate having irregularities is exposed to a vacuum environment and immersed in a suspension of the bioactive substance ( Conventional Example: JP-A-4-2341).
【0009】しかし該方法は処理プロセスが煩雑である
為、より簡便な方法で、生体親和性良好な層を万遍なく
形成することが望まれている。[0009] However, since this method requires a complicated process, it is desired to form a layer having good biocompatibility by a simpler method.
【0010】そこで上記基材表面に凹凸を形成したもの
(従来例)に、上記従来例の如く上記アルカリ処理
を施すことによって、凹凸部分にアルカリチタン酸塩層
を形成するという手法が考えられる。上記従来例にお
けるアルカリ処理は、使用するアルカリ液の粘性が低い
から凹部内の奥まで処理することが期待できる。In view of the above, a method is conceivable in which an alkali titanate layer is formed on an uneven portion by applying the above-mentioned alkali treatment to the substrate having the unevenness formed on the substrate surface (conventional example) as in the conventional example. The alkali treatment in the above-mentioned conventional example can be expected to be performed to the inside of the concave portion because the viscosity of the alkaline solution used is low.
【0011】しかしながらこの様に従来例に従来例
を単に適用しただけでは、骨代替材料と生体骨との結合
強度に問題が生じる場合がある。However, if the conventional example is simply applied to the conventional example, a problem may occur in the bonding strength between the bone substitute material and the living bone.
【0012】即ち例えば凸部が細い場合や、アルカリチ
タン酸塩層が深く形成された場合は、凸部の全体がアル
カリチタン酸塩層11となり(図7:骨代替材料表面の
断面図)、該アルカリチタン酸塩層は強度的に弱いもの
であるから、容易に上記凸部が脱落する。尚図7中、1
2は基材のチタン或いはチタン合金のままの部分(アル
カリ処理による化学的変化を受けていない部分)であ
る。That is, for example, when the convex portion is thin or the alkali titanate layer is formed deep, the entire convex portion becomes the alkali titanate layer 11 (FIG. 7: sectional view of the bone substitute material surface), Since the alkali titanate layer is weak in strength, the above-mentioned projections easily fall off. In FIG. 7, 1
Reference numeral 2 denotes a portion of the base material which remains titanium or a titanium alloy (a portion which has not been chemically changed by the alkali treatment).
【0013】つまりこの様な骨代替材料の凹凸に新生骨
が侵入・成長して骨代替材料と生体骨が結合しても、強
い外力が加わると、侵入した新生骨と共に上記凸部が骨
代替材料本体部分から脱落するという問題が生じる。即
ち十分な剪断強度が得られない。特に股関節等の様に負
荷が大きい箇所に骨代替材料(例えば大腿骨用骨代替材
料)を用いた場合においては、強い力が加わる為に生体
骨と骨代替材料の剥離の危険が高い。In other words, even if new bone invades and grows on the irregularities of such a bone substitute material and the bone substitute material and the living bone are combined, when a strong external force is applied, the above-mentioned projections together with the invaded new bone form the bone substitute. The problem of falling off from the material main body arises. That is, sufficient shear strength cannot be obtained. In particular, when a bone substitute material (for example, a bone substitute material for a femur) is used in a place where a load is large, such as a hip joint, a strong force is applied, so that there is a high risk that the bone substitute material is separated from the living bone.
【0014】尚基材凹凸表面にバイオガラス等を塗布・
形成した上記従来例の骨代替材料では、基材表面に被
膜が形成されたものであって、基材(例えばチタン)自
体は変化していないから、凸部は十分な強度を有してお
り、従って上述の様に凸部の脱落といった問題を生じる
恐れがない。It is to be noted that a bioglass or the like is applied to the uneven surface of the base material.
In the formed bone substitute material of the above-mentioned conventional example, a coating is formed on the surface of the base material, and the base material (for example, titanium) itself does not change, so that the projections have sufficient strength. Therefore, there is no possibility that a problem such as dropout of the convex portion occurs as described above.
【0015】そこで本発明においては、簡単な方法で、
良好な生体親和性を示す層が基材凹凸部分に万遍なく形
成され、且つ十分な剪断強度を発揮する骨代替材料を提
供することを目的とする。Therefore, in the present invention, in a simple manner,
It is an object of the present invention to provide a bone substitute material in which layers exhibiting good biocompatibility are uniformly formed on uneven portions of a substrate and exhibit sufficient shear strength.
【0016】[0016]
【課題を解決するための手段】本発明に係る生体親和性
に優れた骨代替材料は、チタン或いはチタン合金製の基
材表面であって生体組織との結合面に凹凸が形成された
骨代替材料において、前記凹凸の凸部根元径が平均40
μm 以上であり、前記凹凸は0.5〜2μm の深さに亘
って、酸素濃度35原子%以上のアルカリチタン酸塩層
が形成されたものであることを要旨とする。Means for Solving the Problems The bone substitute material having excellent biocompatibility according to the present invention is a bone substitute having irregularities formed on the surface of a substrate made of titanium or a titanium alloy and having a joint surface with a living tissue. In the material, the root diameter of the convex portions of the irregularities is 40 on average.
The gist is that the alkali titanate layer having an oxygen concentration of 35 atomic% or more is formed over a depth of 0.5 to 2 μm.
【0017】図1は本発明に係る骨代替材料の表面部分
を示す概略断面図である。図1に示す様に本発明の骨代
替材料は、表面に酸素濃度35原子%以上のアルカリチ
タン酸塩層(以下、高濃度アルカリチタン酸塩層と称す
ることがある)21が形成されているが、凸部の芯部分
はチタン或いはチタン合金製の基材材料のまま(チタン
或いはチタン合金部分12)であるから、凸部の強度が
充分に確保されており、従って外力が加わっても凸部が
脱落する恐れが極めて小さい。FIG. 1 is a schematic sectional view showing a surface portion of a bone substitute material according to the present invention. As shown in FIG. 1, the bone substitute material of the present invention has an alkali titanate layer 21 having an oxygen concentration of 35 atomic% or more (hereinafter, may be referred to as a high-concentration alkaline titanate layer) 21 formed on the surface. However, since the core portion of the convex portion is a base material made of titanium or a titanium alloy (titanium or titanium alloy portion 12), the strength of the convex portion is sufficiently ensured, and therefore, even if an external force is applied, the convex portion is convex. The risk of the part falling off is extremely small.
【0018】尚図1中、22は酸素濃度35原子%未満
のアルカリチタン酸塩層(以下、低濃度アルカリチタン
酸塩層と称することがある)である。つまりアルカリチ
タン酸塩層は最表面が最も酸素濃度が高く、深部に向か
って徐々に低下するが、上記低濃度アルカリチタン酸塩
層22は上記高濃度アルカリチタン酸塩層21からチタ
ン或いはチタン合金部分12への移行部である。In FIG. 1, reference numeral 22 denotes an alkali titanate layer having an oxygen concentration of less than 35 atomic% (hereinafter sometimes referred to as a low-concentration alkaline titanate layer). In other words, the outermost surface of the alkali titanate layer has the highest oxygen concentration and gradually decreases toward the deep portion, but the low-concentration alkali titanate layer 22 separates the high-concentration alkali titanate layer 21 from titanium or titanium alloy. This is the transition to the part 12.
【0019】アルカリチタン酸塩層は比較的生体親和性
が良好であるものの、極めて良好な生体親和性を発揮さ
せる為には、酸素濃度35原子%以上のアルカリチタン
酸塩層が最表面に形成されていることが必要である。該
高濃度アルカリチタン酸塩層は化学的に生体骨との親和
性が良好であることに加えて、該高濃度アルカリチタン
酸塩層の最表面は三次元網目構造(図2:本発明に係る
骨代替材料の最表面を示す電子顕微鏡写真[5000
倍]参照)となっているから、新生骨との接触面積が非
常に大きく、よって極めて良好に結合し得る。従って生
体骨組織が骨代替材料の凹部内に良好に侵入・成長し、
生体骨と骨代替材料が強く固着する。Although the alkali titanate layer has relatively good biocompatibility, an alkali titanate layer having an oxygen concentration of 35 atomic% or more is formed on the outermost surface in order to exhibit extremely good biocompatibility. Need to be done. The high-concentration alkali titanate layer has a good affinity for living bone chemically and, in addition, the outermost surface of the high-concentration alkali titanate layer has a three-dimensional network structure (FIG. 2: the present invention). An electron micrograph showing the outermost surface of such a bone substitute material [5000]
Fold]), the contact area with the new bone is very large, and therefore, the bone can be bonded very well. Therefore, living bone tissue penetrates and grows well in the recess of the bone substitute material,
The living bone and the bone substitute material adhere strongly.
【0020】但し該高濃度アルカリチタン酸塩層の厚み
として2μm 超の場合はアルカリチタン酸塩層が脱落す
る恐れがあり、十分な機械的強度を確保できなくなる。
また厚みが0.5μm 未満の場合は生体との親和性が十
分でなく、例えば疑似体液に浸漬するとヒドロキシアパ
タイトの形成が認められない。よって上述の様に高濃度
アルカリチタン酸塩層の厚み(最表面からの深さ)を
0.5〜2μm とした。より好ましくは0.7μm 以
上、1.7μm 以下である。However, if the thickness of the high-concentration alkali titanate layer is more than 2 μm, the alkali titanate layer may fall off and sufficient mechanical strength cannot be secured.
When the thickness is less than 0.5 μm, the affinity with the living body is not sufficient, and for example, when immersed in a simulated body fluid, formation of hydroxyapatite is not recognized. Therefore, as described above, the thickness (depth from the outermost surface) of the high-concentration alkaline titanate layer is set to 0.5 to 2 μm. More preferably, it is 0.7 μm or more and 1.7 μm or less.
【0021】加えて上記アルカリチタン酸塩層は基材表
面の層を変化させて製造されるものであるから、上記従
来例の様に基材表面に生体活性物質を塗布したものと
異なり、基材の凹凸形状をそのまま残すことができ、即
ち凹凸を埋めて平滑にするということがなく、良好なア
ンカー効果を発揮させることができる。またアルカリチ
タン酸塩層の形成に際して用いるアルカリ液は粘性が低
く、凹部内の奥まで良好に侵入できるから、基材表面に
万遍なくアルカリチタン酸塩層を形成でき、従って固着
力向上が望める。In addition, since the above alkali titanate layer is produced by changing the layer on the surface of the substrate, it differs from the conventional example in which a bioactive substance is applied to the surface of the substrate, unlike the conventional example. The uneven shape of the material can be left as it is, that is, without smoothing by filling the unevenness, a good anchoring effect can be exhibited. In addition, the alkali liquid used for forming the alkali titanate layer has a low viscosity and can penetrate well into the inside of the concave portion, so that the alkali titanate layer can be uniformly formed on the surface of the base material, and therefore an improvement in the fixing force can be expected. .
【0022】上記の様に凹凸の凸部根元径(図1に示す
W)は平均40μm 以上であることが必要であり、この
様に大部分の凸部が十分な太さを有しているから、上述
の様に芯部分がチタン(或いはチタン合金)のままとな
っている凸部が十分量あり、従って良好な剪断強度を発
揮する。尚基材に形成された各凸部の凸部根元径のバラ
ツキは、ほぼ正規分布を描き、上記凸部根元径の平均は
概ね凸部根元径の最大頻出値を示すことになる。As described above, the root diameter of the projections (W in FIG. 1) of the projections and depressions needs to be 40 μm or more on average, and thus most of the projections have a sufficient thickness. Therefore, as described above, there is a sufficient amount of protrusions in which the core portion remains titanium (or titanium alloy), and therefore, a good shear strength is exhibited. The variation of the root diameter of the convex portion of each convex portion formed on the base material has a substantially normal distribution, and the average of the root diameter of the convex portion generally indicates the maximum frequent value of the root diameter of the convex portion.
【0023】凸部が括れのある形状の場合はその頸部分
の径をもって凸部根元径とする。頸部分の径が細い場合
は、該頸部分から折れてしまう恐れがあるからである。In the case where the projection has a constricted shape, the diameter of the neck portion is used as the root diameter of the projection. If the diameter of the neck portion is small, the neck portion may be broken.
【0024】更に上記凸部根元径は平均50μm 以上で
あることが好ましい。また平均300μm 以下であるこ
とが好ましく、あまり凸部が大き過ぎると凹凸に新生骨
が侵入することによるアンカー効果が期待できないから
である。Further, it is preferable that the root diameter of the convex portion is 50 μm or more on average. On the other hand, the average is preferably not more than 300 μm. If the projections are too large, the anchor effect due to the invasion of the new bone into the irregularities cannot be expected.
【0025】本発明の骨代替材料の基材は前述の様にチ
タン或いはチタン合金製であり、この様な基材であれば
十分な強度を発揮し得る。上記チタン合金としては、例
えばアルミニウム,バナジウム,モリブデン,ジルコニ
ウム,ニオブ,タンタル等を1種以上含有するチタン合
金が挙げられる。The substrate of the bone substitute material of the present invention is made of titanium or a titanium alloy as described above, and such a substrate can exhibit sufficient strength. Examples of the titanium alloy include a titanium alloy containing at least one of aluminum, vanadium, molybdenum, zirconium, niobium, tantalum, and the like.
【0026】更に本発明においては、前記凹凸における
凹部が下式(1) を満足することが好ましい。Further, in the present invention, it is preferable that the concave portion in the unevenness satisfies the following expression (1).
【0027】 (200〜300μm の大きさの凹部数)/(100〜500μm の大きさの 凹部数)≧0.3 …(1) (Number of concave portions having a size of 200 to 300 μm) / (number of concave portions having a size of 100 to 500 μm) ≧ 0.3 (1)
【0028】即ち凹部径200〜300μm の凹部が3
0%以上の発生頻度で形成されていれば、該凹部内に新
生骨が侵入,成長して良好なアンカー効果を発揮する。
凹部径が300μm 超のものばかりの場合は凹部内で新
生骨が成長するのに長期間を要して好ましくなく、一方
凹部径が200μm 未満のものばかりだと、新生骨が凹
部内で成長しても小さいものであるからアンカー効果が
十分でない。That is, three concave portions having a concave portion diameter of 200 to 300 μm
If it is formed with a frequency of occurrence of 0% or more, the new bone penetrates and grows in the concave portion to exhibit a good anchoring effect.
If the diameter of the recess is more than 300 μm, it takes a long time for the new bone to grow in the recess, which is not preferable. On the other hand, if the diameter of the recess is less than 200 μm, the new bone grows in the recess. However, the anchor effect is not sufficient because it is small.
【0029】この様に十分なアンカー効果を発揮させ得
る凹凸形状であって、且つ凸部の脱落の生じないものと
して、上記の様に凸部根元径平均40μm 以上,凹部径
200〜300μm の凹部が30%以上,高濃度アルカ
リチタン酸塩層0.5〜2μm の組み合わせた骨代替材
料はより好ましいものである。As described above, a concave portion having an average root diameter of the convex portion of 40 μm or more and a concave portion diameter of 200 to 300 μm as described above is assumed to be a concave and convex shape capable of exhibiting a sufficient anchor effect and not causing the convex portion to fall off. Is more preferable, the combination of which is 30% or more and the high concentration alkali titanate layer is 0.5 to 2 μm.
【0030】[0030]
【発明の実施の形態】次に本発明に係る骨代替材料の製
造方法について述べる。まずチタン或いはチタン合金製
基材の表面に凹凸を形成する方法について述べる。Next, a method for producing a bone substitute material according to the present invention will be described. First, a method for forming irregularities on the surface of a titanium or titanium alloy substrate will be described.
【0031】プラズマ溶射法により、チタン或いはチタ
ン合金粉末・粒体をチタン或いはチタン合金製基材に融
着する。具体的には例えば2つのパウダーポートを有す
るプラズマガンを準備し、1つのポートから粒径100
〜500μm のチタン(或いはチタン合金)粉粒体を吐
出、他のポートから粒径50μm 以下のチタン(或いは
チタン合金)粉末を吐出する様にし、そして各ポートか
ら交互に基材表面に向けてプラズマ溶射を行うことによ
り、上記基材表面に凸部根元径平均40μm 以上、凹部
径200〜300μm の凹部が30%の凹凸層を形成す
る。Titanium or titanium alloy powder / granules are fused to a titanium or titanium alloy base material by a plasma spraying method. Specifically, for example, a plasma gun having two powder ports is prepared, and a particle size of 100 is obtained from one port.
~ 500μm titanium (or titanium alloy) powder is ejected, titanium (or titanium alloy) powder having a particle size of 50μm or less is ejected from another port, and plasma is alternately directed toward the substrate surface from each port. By performing the thermal spraying, a concave / convex layer having an average root diameter of the convex portion of 40 μm or more and a concave portion having a diameter of 200 to 300 μm of 30% is formed on the surface of the base material.
【0032】この様にして形成された凹凸は、その大き
さや配列が不規則であり、凹部内は入り組んだ洞窟状に
なっている。この様な構造の凹凸に新生骨組織が侵入す
ると、抜け難く、よって極めて強い固着力が達成され
る。The irregularities formed in this way are irregular in size and arrangement, and the inside of the concave portion has a complicated cave shape. When the new bone tissue penetrates into the unevenness of such a structure, it is hard to come out, and thus an extremely strong fixing force is achieved.
【0033】また上記溶射法の他、チタン或いはチタン
合金製基材表面をサンドブラスト処理することによって
も、凹凸を形成することもできる。次にアルカリチタン
酸塩層の形成方法について述べる。In addition to the above thermal spraying method, the irregularities can also be formed by sandblasting the surface of a titanium or titanium alloy base material. Next, a method of forming an alkali titanate layer will be described.
【0034】上述の様に凹凸が付与されたチタン或いは
チタン合金製基材をアルカリ水溶液に浸漬してチタン酸
ナトリウムの水和ゲル層を形成し、次いで焼成すること
により、緻密な非晶質のアルカリチタン酸塩層を形成す
ることができる。具体的には例えば50〜80℃の2〜
5規定のアルカリ水溶液に約24〜48時間浸漬し、そ
の後600℃付近で加熱処理を行う。アルカリ水溶液は
粘性が低いから、凹部内の奥まで行き渡ることができ、
よって非アルカリ処理部分を作らず、凹凸部分を万遍な
く処理し得る。The titanium or titanium alloy substrate provided with the irregularities as described above is immersed in an aqueous alkali solution to form a hydrated gel layer of sodium titanate, and then fired to obtain a dense amorphous material. An alkali titanate layer can be formed. Specifically, for example, 2 at 50 to 80 ° C.
It is immersed in a 5N alkaline aqueous solution for about 24 to 48 hours, and then heat-treated at around 600 ° C. Since the alkaline aqueous solution has low viscosity, it can spread all the way inside the recess,
Therefore, uneven portions can be uniformly processed without forming a non-alkali treated portion.
【0035】これにより酸素濃度35原子%以上のアル
カリチタン酸塩層が最表面から0.5〜2μm の深さに
万遍なく形成される。As a result, an alkali titanate layer having an oxygen concentration of 35 atomic% or more is uniformly formed at a depth of 0.5 to 2 μm from the outermost surface.
【0036】該高濃度アルカリチタン酸塩層は生体親和
性が良好であり、例えば疑似体液に浸漬するとヒドロキ
シアパタイトを形成する。該ヒドロキシアパタイトは生
体骨とほぼ同様の成分からなっており、これらは強く結
合する。即ち高濃度アルカリチタン酸塩層はヒドロキシ
アパタイトを介して生体骨と接合する。The high-concentration alkali titanate layer has good biocompatibility, and for example, forms hydroxyapatite when immersed in a simulated body fluid. The hydroxyapatite is composed of almost the same components as living bone, and these strongly bind. That is, the high-concentration alkaline titanate layer is bonded to living bone via hydroxyapatite.
【0037】尚例えばアルカリ水溶液として水酸化ナト
リウムを用いた場合は、上記アルカリチタン酸塩層とし
てチタン酸ナトリウム層が形成され、アルカリ水溶液と
して水酸化カリウムを用いた場合は、アルカリチタン酸
塩層としてチタン酸カリウム層が形成される。For example, when sodium hydroxide is used as the alkaline aqueous solution, a sodium titanate layer is formed as the alkali titanate layer, and when potassium hydroxide is used as the alkaline aqueous solution, the alkali titanate layer is formed. A potassium titanate layer is formed.
【0038】この様にして得られた骨代替材料は、表面
の良好な親和性と、凹凸に基づくアンカー効果によっ
て、生体骨に対して極めて強力な固着力を示す。The bone substitute material thus obtained exhibits a very strong fixation force to living bone due to the good affinity of the surface and the anchor effect based on the irregularities.
【0039】また骨代替材料の製造に際して高温の加熱
処理を行うと、剪断強度の低下を引き起こすが、本発明
に係る骨代替材料の製造に際しては上述の様に加熱処理
は600℃付近で行われるのみであり、チタン合金の変
態点以下の温度であるから、剪断強度の低下をあまり引
き起こさない。例えば処理後の凹凸部の剪断強度は90〜
110MPaを示し、アルカリ水溶液処理前に比べて強度低下
が起こらないから、本発明の骨代替材料は股関節等の様
な大型で負荷の大きい箇所においても、良好に使用する
ことができる。When a high-temperature heat treatment is performed in the production of the bone substitute material, the shear strength is reduced. However, in the production of the bone substitute material according to the present invention, the heat treatment is performed at about 600 ° C. as described above. And the temperature is lower than the transformation point of the titanium alloy, so that the shear strength is not significantly reduced. For example, the shear strength of the uneven part after treatment is 90 to
Since the strength of the bone substitute material of the present invention is 110 MPa and does not lower than that before the treatment with the aqueous alkali solution, the bone substitute material of the present invention can be used favorably even in a large-sized and heavy-load portion such as a hip joint.
【0040】尚従来例の様に基材の凹凸表面にバイオ
ガラス等の生体活性物質を被覆したものは、その製造に
際して一般的に1000℃を超える熱処理が必要であ
り、この熱処理により基材の基盤部分と凹凸層の剪断強
度が低下するという問題があり、例えば生体活性物質被
覆前の剪断強度が100MPa前後であるのに対して、被覆後
は剪断強度30〜50MPa (300 〜500kgf/cm2)となる。In the case of a substrate in which a bioactive substance such as bioglass is coated on the uneven surface of the substrate as in the conventional example, a heat treatment generally exceeding 1000 ° C. is required for the production thereof, and this heat treatment causes There is a problem that the shear strength of the base portion and the uneven layer is reduced. For example, while the shear strength before coating the bioactive substance is around 100 MPa, the shear strength after coating is 30 to 50 MPa (300 to 500 kgf / cm 2). ).
【0041】尚、凹凸部分の表面に対して垂直方向に切
断し、この断面を走査型電子顕微鏡(SEM)により撮
影し、得られた像をもとに画像分析したとき、空隙率が
30〜70%であることが好ましい。上記空隙率が30
%未満の場合は凹部(空隙部)に侵入してくる新生骨量
が少なく、十分な固着力を得難く、一方空隙率が70%
超の場合は凹部に侵入する骨量は多くなるものの、凹凸
部の強度が不十分で凸部の脱落の可能性があるからであ
る。より好ましくは空隙率45%以上、65%以下であ
る。The surface of the uneven portion was cut in a direction perpendicular to the surface, and this cross section was photographed with a scanning electron microscope (SEM), and the image was analyzed based on the obtained image. Preferably, it is 70%. The porosity is 30
%, The amount of new bone invading into the recesses (voids) is small, and it is difficult to obtain a sufficient fixation force, while the porosity is 70%.
This is because, in the case of exceeding, although the amount of bone that penetrates into the concave part increases, the strength of the concave and convex part is insufficient and the convex part may fall off. More preferably, the porosity is 45% or more and 65% or less.
【0042】また上記凹凸は凹部の内部が広くなってい
たり、また凹部が内部で屈曲している方が好ましく、よ
り強力なアンカー効果が期待できる。It is preferable that the concaves and convexes have a wide inside of the concave portion or that the concave portion is bent inside, so that a stronger anchor effect can be expected.
【0043】[0043]
【実施例】以下、本発明に係る骨代替材料に関して、実
施例を示しつつ具体的に説明するが、本発明はもとより
実施例に限定される訳ではなく、前・後記の趣旨に適合
し得る範囲で適当に変更を加えて実施することも可能で
あり、それらはいずれも本発明の技術的範囲に包含され
る。EXAMPLES Hereinafter, the bone substitute material according to the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples, and may be adapted to the above and following points. The present invention can be implemented with appropriate modifications within the scope, and all of them are included in the technical scope of the present invention.
【0044】<実験1>直径4mm,長さ10mmのチタン合
金(Ti・6Al・2Nb・1Ta)製円柱基材に、純
チタン粉末及び純チタン粉粒体をプラズマ溶射し、厚さ
0.7mm の凹凸を形成した。このうち試料No. 1〜8につ
いて表1に示す様々な濃度の水酸化ナトリウム水溶液中
に48時間浸漬し、その後超音波洗浄機を用いて純水中
で洗浄した。次いで乾燥した後、焼成炉を用いて600 〜
650 ℃で1時間熱処理を行った。試料No. 9については
アルカリ処理を行わず、そのままとした。<Experiment 1> Pure titanium powder and pure titanium powder were plasma-sprayed on a titanium alloy (Ti.6Al.2Nb.1Ta) cylindrical base material having a diameter of 4 mm and a length of 10 mm.
An unevenness of 0.7 mm was formed. Sample Nos. 1 to 8 were immersed in aqueous sodium hydroxide solutions having various concentrations shown in Table 1 for 48 hours, and then washed in pure water using an ultrasonic cleaner. Then, after drying, 600-
Heat treatment was performed at 650 ° C. for 1 hour. Sample No. 9 was left as it was without alkali treatment.
【0045】例として試料No. 4について表面の走査型
電子顕微鏡写真[1000倍]を図5に示す。As an example, a scanning electron micrograph (× 1000) of the surface of sample No. 4 is shown in FIG.
【0046】試料No. 1〜8の高濃度アルカリチタン酸
塩層の厚みは下記表1に示す通りである。尚高濃度アル
カリチタン酸塩層の厚みはオージェ電子分光法により求
めた。The thicknesses of the high-concentration alkali titanate layers of Sample Nos. 1 to 8 are as shown in Table 1 below. The thickness of the high-concentration alkali titanate layer was determined by Auger electron spectroscopy.
【0047】例として試料No. 4についてのオージェ電
子分光分析結果を図3に示す。図3から分かる様に、酸
素濃度35原子%以上のアルカリチタン酸塩層が0.83μ
m 形成されている。FIG. 3 shows the result of Auger electron spectroscopy of Sample No. 4 as an example. As can be seen from FIG. 3, the alkali titanate layer having an oxygen concentration of 35 atomic% or more is 0.83 μm.
m is formed.
【0048】尚アルカリ処理を行わなかった試料No. 9
に関しての酸素濃度35原子%以上の層は、数十nm以下
であった。Sample No. 9 not subjected to alkali treatment
The layer having an oxygen concentration of 35 atomic% or more was less than several tens nm.
【0049】[0049]
【表1】 [Table 1]
【0050】試料1〜8について、凹部径200〜30
0μm の凹部の発生頻度を調べたところ、43%であっ
た。尚凹部の発生頻度は、基材表面を垂直に切断して凹
凸部分を観察し、100〜500μm 凹部数を全凹部数
とし、それに対する割合とした。For Samples 1 to 8, the concave diameter was 200 to 30.
When the frequency of occurrence of 0 μm concave portions was examined, it was 43%. The frequency of occurrence of the concave portions was determined by observing the concave and convex portions by vertically cutting the surface of the base material, setting the number of concave portions of 100 to 500 μm as the total number of concave portions, and setting the ratio to the total number.
【0051】例として試料No. 4に関して各サイズの凹
部の発生頻度を図4に示す。図4から、凹部径200〜
300μm の凹部の発生頻度が43%であることが分か
る。As an example, FIG. 4 shows the frequency of occurrence of concave portions of each size for sample No. 4. From FIG.
It can be seen that the frequency of occurrence of 300 μm concave portions is 43%.
【0052】次に上記試料No. 1〜9それぞれを疑似体
液に浸漬し、ヒドロキシアパタイト層の形成状況を調べ
た。その結果を表1に併せて示す。Next, each of the above sample Nos. 1 to 9 was immersed in a simulated body fluid, and the formation state of the hydroxyapatite layer was examined. The results are shown in Table 1.
【0053】尚一例として試料No. 4について表面の走
査型電子顕微鏡写真[1000倍]を図6に示す。図6
に見られる様に骨代替材料の凹凸表面にヒドロキシアパ
タイト層が形成されている。FIG. 6 shows a scanning electron micrograph (× 1000) of the surface of Sample No. 4 as an example. FIG.
As shown in Fig. 5, a hydroxyapatite layer is formed on the uneven surface of the bone substitute material.
【0054】表1から分かる様に例えば試料No. 1,2
の様に高濃度アルカリチタン酸塩層が薄い場合は、ヒド
ロキシアパタイトの形成能が劣っており、生体親和性が
比較的良好でないことが分かる。一方試料No. 7,8の
様に高濃度アルカリチタン酸塩層が2.5 μm 以上の様に
厚い場合は、骨代替材料表面に亀裂が発生した。これら
に対し、試料No. 3〜6のものは骨代替材料に亀裂が発
生することなく、良好にヒドロキシアパタイトが形成さ
れ、生体親和性が良好であることが分かる。As can be seen from Table 1, for example, sample Nos. 1 and 2
When the high-concentration alkali titanate layer is thin as in the above, it can be seen that the ability to form hydroxyapatite is inferior and the biocompatibility is relatively poor. On the other hand, when the high-concentration alkali titanate layer was as thick as 2.5 μm or more as in Sample Nos. 7 and 8, cracks were generated on the bone substitute material surface. On the other hand, it can be seen that the samples of Sample Nos. 3 to 6 had good hydroxyapatite formation without cracks in the bone substitute material and good biocompatibility.
【0055】尚高濃度アルカリチタン酸塩層の厚みは、
上記の様にアルカリ水溶液の濃度を変えることによっ
て、またアルカリ水溶液の温度や浸漬時間を変えること
によって調整できる。The thickness of the high concentration alkali titanate layer is
It can be adjusted by changing the concentration of the alkaline aqueous solution as described above, and by changing the temperature and the immersion time of the alkaline aqueous solution.
【0056】<実験2>直径20mm,長さ13mmのチタン合
金(Ti・6Al・2Nb・1Ta)製円盤形基材に、
純チタン粉末及び純チタン粉粒体をプラズマ溶射し、厚
さ0.7mm の凹凸を形成した。このうち試料No. 10〜1
7について表2に示す様々な濃度の水酸化ナトリウム水
溶液中に48時間浸漬し、その後超音波洗浄機を用いて
純水により洗浄した。次いで乾燥した後、焼成炉を用い
て600 〜650 ℃で1時間熱処理を行った。試料No. 18
についてはアルカリ処理を行わず、そのままとした。ま
た試料No. 19についてもアルカリ処理を行わず、上記
の様に凹凸を形成した後、この基材凹凸表面にAWガラ
スを塗布し、1000℃で熱処理を行った。<Experiment 2> A disk-shaped substrate made of a titanium alloy (Ti.6Al.2Nb.1Ta) having a diameter of 20 mm and a length of 13 mm was prepared.
Pure titanium powder and pure titanium powder were plasma-sprayed to form irregularities having a thickness of 0.7 mm. Sample No. 10-1
7 was immersed in aqueous sodium hydroxide solutions having various concentrations shown in Table 2 for 48 hours, and then washed with pure water using an ultrasonic cleaner. Then, after drying, heat treatment was performed at 600 to 650 ° C. for 1 hour using a firing furnace. Sample No. 18
Was not subjected to alkali treatment, and was left as it was. Sample No. 19 was also not subjected to the alkali treatment, and after forming the irregularities as described above, AW glass was applied to the irregular surface of the substrate and heat-treated at 1000 ° C.
【0057】試料No. 10〜17の高濃度アルカリチタ
ン酸塩層の厚みは下記表2に示す通りである。The thicknesses of the high-concentration alkali titanate layers of Sample Nos. 10 to 17 are as shown in Table 2 below.
【0058】また上記各試料No. 10〜19について剪
断強度を測定した。測定法としては、凹凸の無いチタン
合金(Ti・6Al・2Nb・1Ta)製対向試験片と
上記各試料No. 10〜19を、それぞれ接合剤(Ti・
15Ni・15Cu)を用いて接合し、これら対向試験
片と上記試料との接合面をズラす様にして力を加え、凹
凸部分の剪断強度を測定した。この結果を表2に併せて
示す。The shear strength of each of Samples 10 to 19 was measured. As a measuring method, an opposing test piece made of a titanium alloy (Ti · 6Al · 2Nb · 1Ta) having no unevenness and each of the above sample Nos. 10 to 19 were respectively bonded to a bonding agent (Ti ·
(15Ni.15Cu), and a force was applied so as to shift the joint surface between the opposing test piece and the sample, and the shear strength of the uneven portion was measured. The results are shown in Table 2.
【0059】[0059]
【表2】 [Table 2]
【0060】表2から分かる様に試料No. 10〜15の
骨代替材料は、80MPa 以上の良好な剪断強度を示した。As can be seen from Table 2, the bone substitute materials of Sample Nos. 10 to 15 exhibited a good shear strength of 80 MPa or more.
【0061】[0061]
【発明の効果】以上の様に本発明に係る骨代替材料は、
簡単な方法で、良好な生体親和性を示す層が基材凹凸表
面に万遍なく形成され、これにより優れた生体親和性を
示し、且つ十分な剪断強度を有するという効果がある。As described above, the bone substitute material according to the present invention is
By a simple method, layers exhibiting good biocompatibility are uniformly formed on the uneven surface of the base material, thereby exhibiting excellent biocompatibility and having sufficient shear strength.
【図1】本発明に係る骨代替材料の表面部分を示す概略
断面図。FIG. 1 is a schematic sectional view showing a surface portion of a bone substitute material according to the present invention.
【図2】本発明に係る骨代替材料の最表面の一例を示す
電子顕微鏡写真[5000倍](アルカリ水溶液処理さ
れた凹凸部の微細網目構造)。FIG. 2 is an electron micrograph [5000 times] showing an example of the outermost surface of a bone replacement material according to the present invention (fine network structure of uneven portions treated with an alkaline aqueous solution).
【図3】本発明に係る骨代替材料の実施例である試料N
o. 4についてのオージェ電子分光分析結果を示すグラ
フ。FIG. 3 shows a sample N which is an embodiment of the bone substitute material according to the present invention.
o. Graph showing the results of Auger electron spectroscopy analysis for o.
【図4】本発明に係る骨代替材料の実施例である試料N
o. 4に関して各サイズの凹部の発生頻度を示すグラ
フ。FIG. 4 shows a sample N which is an embodiment of the bone substitute material according to the present invention.
o. Graph showing the frequency of occurrence of concave portions of each size for o.
【図5】本発明に係る骨代替材料の実施例である試料N
o. 4について表面の走査型電子顕微鏡写真[1000
倍](アルカリ水溶液処理された凹凸部の表面構造)。FIG. 5 shows a sample N which is an embodiment of the bone substitute material according to the present invention.
o. Scanning electron micrograph of the surface for 4 [1000
Times] (Surface structure of uneven portion treated with alkaline aqueous solution).
【図6】ヒドロキシアパタイトを形成した試料No. 4に
ついて表面の走査型電子顕微鏡写真[1000倍]。FIG. 6 is a scanning electron micrograph (× 1000) of the surface of sample No. 4 on which hydroxyapatite was formed.
【図7】問題を説明するための骨代替材料表面の断面
図。FIG. 7 is a cross-sectional view of a bone replacement material surface for explaining a problem.
11 アルカリチタン酸塩層 12 チタン或いはチタン合金部分 21 高濃度アルカリチタン酸塩層 22 低濃度アルカリチタン酸塩層 11 Alkali titanate layer 12 Titanium or titanium alloy part 21 High concentration alkaline titanate layer 22 Low concentration alkaline titanate layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 佳男 神戸市中央区脇浜町1丁目3番18号 株式 会社神戸製鋼所神戸本社内 (72)発明者 松下 富春 神戸市中央区脇浜町1丁目3番18号 株式 会社神戸製鋼所神戸本社内 Fターム(参考) 4C081 AB03 AB05 AB06 BA13 CG02 CG03 DB07 DC03 DC04 DC05 DC06 4C097 AA01 AA03 AA30 BB10 CC02 CC03 DD10 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshio Sasaki 1-3-18 Wakihama-cho, Chuo-ku, Kobe Kobe Steel, Ltd. No. 3-18 Kobe Steel Ltd. Kobe Head Office F-term (reference) 4C081 AB03 AB05 AB06 BA13 CG02 CG03 DB07 DC03 DC04 DC05 DC06 4C097 AA01 AA03 AA30 BB10 CC02 CC03 DD10
Claims (2)
あって生体組織との結合面に凹凸が形成された骨代替材
料において、 前記凹凸の凸部根元径が平均40μm 以上であり、 前記凹凸は0.5〜2μm の深さに亘って、酸素濃度3
5原子%以上のアルカリチタン酸塩層が形成されたもの
であることを特徴とする生体親和性に優れた骨代替材
料。1. A bone substitute material having a surface of a titanium or titanium alloy substrate having irregularities formed on a bonding surface with a living tissue, wherein the irregularities have an average root diameter of 40 μm or more; Has an oxygen concentration of 3-2 over a depth of 0.5-2 μm.
A bone substitute material having excellent biocompatibility, characterized in that an alkali titanate layer of 5 atomic% or more is formed.
する請求項1に記載の生体親和性に優れた骨代替材料。 (200〜300μm の大きさの凹部数)/(100〜500μm の大きさの 凹部数)≧0.3 …(1)2. The bone substitute material having excellent biocompatibility according to claim 1, wherein the concave portions in the concave and convex portions satisfy the following expression (1). (The number of concave portions having a size of 200 to 300 μm) / (the number of concave portions having a size of 100 to 500 μm) ≧ 0.3 (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11012301A JP2000210313A (en) | 1999-01-20 | 1999-01-20 | Bone substitutive material having excellent bioaffinity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11012301A JP2000210313A (en) | 1999-01-20 | 1999-01-20 | Bone substitutive material having excellent bioaffinity |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000210313A true JP2000210313A (en) | 2000-08-02 |
Family
ID=11801512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11012301A Pending JP2000210313A (en) | 1999-01-20 | 1999-01-20 | Bone substitutive material having excellent bioaffinity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000210313A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004062705A1 (en) * | 2003-01-10 | 2004-07-29 | Kansai Technology Licensing Organization Co., Ltd. | Artificial bone capable of inducing natural bone and method for preparation thereof |
JP2005526541A (en) * | 2002-01-21 | 2005-09-08 | ストラウマン ホールディング アクチェンゲゼルシャフト | Surface modified implant |
WO2007069532A1 (en) * | 2005-12-12 | 2007-06-21 | Nakashima Propeller Co., Ltd. | Bone-compatible implant and method of producing the same |
JP2010536451A (en) * | 2007-08-20 | 2010-12-02 | スミス アンド ネフュー ピーエルシー | Bioactive material |
CN102208460A (en) * | 2010-03-08 | 2011-10-05 | 住友重机械工业株式会社 | Film formation substrate, manufacturing method for film formation substrate and film formation device |
EP2517737A3 (en) * | 2011-04-21 | 2013-12-18 | ZL Microdent-Attachment GmbH & Co. KG | Implant and method for producing an implant surface |
AU2014268254B2 (en) * | 2007-08-20 | 2015-11-05 | Smith & Nephew Plc | Bioactive material |
JP2016525415A (en) * | 2013-07-24 | 2016-08-25 | レノビス サージカル テクノロジーズ,インコーポレイテッド | Surgical implant device incorporating a porous surface |
JP2018164734A (en) * | 2017-03-28 | 2018-10-25 | デピュイ・シンセス・プロダクツ・インコーポレイテッド | Orthopedic implant having crystalline gallium-containing hydroxyapatite coating and methods for producing the same |
US11793910B2 (en) | 2017-03-28 | 2023-10-24 | DePuy Synthes Products, Inc. | Orthopedic implant having a crystalline calcium phosphate coating and methods for making the same |
-
1999
- 1999-01-20 JP JP11012301A patent/JP2000210313A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005526541A (en) * | 2002-01-21 | 2005-09-08 | ストラウマン ホールディング アクチェンゲゼルシャフト | Surface modified implant |
JP4649626B2 (en) * | 2003-01-10 | 2011-03-16 | 大阪冶金興業株式会社 | Living bone induced artificial bone and method for producing the same |
JPWO2004062705A1 (en) * | 2003-01-10 | 2006-05-18 | 関西ティー・エル・オー株式会社 | Living bone induced artificial bone and method for producing the same |
EP1584337A4 (en) * | 2003-01-10 | 2011-04-06 | Osaka Yakin Kogyo Co Ltd | Artificial bone capable of inducing natural bone and method for preparation thereof |
WO2004062705A1 (en) * | 2003-01-10 | 2004-07-29 | Kansai Technology Licensing Organization Co., Ltd. | Artificial bone capable of inducing natural bone and method for preparation thereof |
JP2007159685A (en) * | 2005-12-12 | 2007-06-28 | Okayama Univ | Bone-compatible implant and method for producing the same |
WO2007069532A1 (en) * | 2005-12-12 | 2007-06-21 | Nakashima Propeller Co., Ltd. | Bone-compatible implant and method of producing the same |
US8257445B2 (en) | 2005-12-12 | 2012-09-04 | Nakashima Medical Co., Ltd. | Bone-compatible implant and method of producing the same |
JP2016190092A (en) * | 2007-08-20 | 2016-11-10 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | Bioactive material |
JP2010536451A (en) * | 2007-08-20 | 2010-12-02 | スミス アンド ネフュー ピーエルシー | Bioactive material |
US8980425B2 (en) | 2007-08-20 | 2015-03-17 | Smith & Nephew Plc | Bioactive material |
AU2014268254B2 (en) * | 2007-08-20 | 2015-11-05 | Smith & Nephew Plc | Bioactive material |
US20110059312A1 (en) * | 2007-08-20 | 2011-03-10 | Howling Graeme | Bioactive material |
CN102208460A (en) * | 2010-03-08 | 2011-10-05 | 住友重机械工业株式会社 | Film formation substrate, manufacturing method for film formation substrate and film formation device |
EP2517737A3 (en) * | 2011-04-21 | 2013-12-18 | ZL Microdent-Attachment GmbH & Co. KG | Implant and method for producing an implant surface |
JP2016525415A (en) * | 2013-07-24 | 2016-08-25 | レノビス サージカル テクノロジーズ,インコーポレイテッド | Surgical implant device incorporating a porous surface |
JP2018164734A (en) * | 2017-03-28 | 2018-10-25 | デピュイ・シンセス・プロダクツ・インコーポレイテッド | Orthopedic implant having crystalline gallium-containing hydroxyapatite coating and methods for producing the same |
US11793907B2 (en) | 2017-03-28 | 2023-10-24 | DePuy Synthes Products, Inc. | Orthopedic implant having a crystalline gallium-containing hydroxyapatite coating and methods for making the same |
US11793910B2 (en) | 2017-03-28 | 2023-10-24 | DePuy Synthes Products, Inc. | Orthopedic implant having a crystalline calcium phosphate coating and methods for making the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101687062B (en) | A bone tissue implant comprising strontium ions | |
JP6466377B2 (en) | Bioactive material | |
Nguyen et al. | The effect of sol–gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants | |
Liang et al. | Histological and mechanical investigation of the bone-bonding ability of anodically oxidized titanium in rabbits | |
EP3334370B1 (en) | Surface treatment for an implant surface | |
AU725983B2 (en) | Surface modification of medical implants | |
KR101369388B1 (en) | Deposition of discrete nanoparticles on an implant surface | |
EP2143823A2 (en) | Open-celled metal implants with roughened surfaces | |
CN101686861B (en) | Comprise the bone tissue implant of lithium ion | |
JP2011036692A (en) | In-situ oxidation textured surface for prosthesis, and method of manufacturing the same | |
Jiang et al. | Coating of hydroxyapatite on highly porous Al2O3 substrate for bone substitutes | |
Kawai et al. | Bone-bonding properties of Ti metal subjected to acid and heat treatments | |
JP2007512082A (en) | Implant, manufacturing method thereof and implant system | |
JP2000210313A (en) | Bone substitutive material having excellent bioaffinity | |
Yamada et al. | Bone bonding behavior of the hydroxyapatite containing glass–titanium composite prepared by the Cullet method | |
Dantas et al. | Sliding behavior of zirconia porous implant surfaces against bone | |
Perez-Diaz et al. | Evaluation of Fibroblasts cells viability and adhesion on six different titanium surfaces: An in vitro experimental study | |
JP2984118B2 (en) | Biological implant material and its manufacturing method | |
JPH0747117A (en) | Implant and its manufacture | |
JPH0747116A (en) | Manufacture of implant | |
Alves et al. | Journal of the Mechanical Behavior of Biomedical Materials | |
JPH0780014A (en) | Intra-osseous implant | |
Wilk et al. | A quantitative assessment of the influence of voltage on the formation of oxide layers on the surface of titanium by anodization | |
TATIA et al. | COMPARATIVE ANALYSIS OF THE SURFACE PROPERTIES OF DIFFERENT DENTAL IMPLANTS | |
de Viteri et al. | Tribocorrosion and antibacterial behaviour of TiO 2 coatings obtained by PEO technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040804 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060501 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060801 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061002 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061006 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070126 |