[go: up one dir, main page]

JP2000209846A - Power conversion device - Google Patents

Power conversion device

Info

Publication number
JP2000209846A
JP2000209846A JP11004182A JP418299A JP2000209846A JP 2000209846 A JP2000209846 A JP 2000209846A JP 11004182 A JP11004182 A JP 11004182A JP 418299 A JP418299 A JP 418299A JP 2000209846 A JP2000209846 A JP 2000209846A
Authority
JP
Japan
Prior art keywords
emitter
collector
type semiconductor
beam lead
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11004182A
Other languages
Japanese (ja)
Inventor
Nobumitsu Tada
伸光 田多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11004182A priority Critical patent/JP2000209846A/en
Publication of JP2000209846A publication Critical patent/JP2000209846A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve utilization of an element and aim at cost reduction and miniaturization by equalizing share of current for each element uniform. SOLUTION: In this conversion device in each module type semiconductor element 201 are formed a planar beam lead 50 which connects electrically a penetrating part 26a of an envelope 26 with an IGBT chip 24 of a reference which is most distant from the penetrating part, and bypass parts 52a, 52b which connect the beam lead with IGBT chips 24a, 24b which are out of reference are formed. The bypass parts 52a, 52b branch from branching parts 51a, 51b, so as to have substantially the same inductance as a closed circuit which reaches the IGBT chips 24a, 24b which are out of reference from the branching parts 51a, 51b of the beam lead positioned above the out-of-reference IGBT chips, passing the IGBT chip 24s of reference. Thereby the inductances between the IGBT chips 24s, 24a, 24b are adjusted to be substantially identical in this power converting device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、IGBT(insulat
ed gate bipolar transistor) 又はIEGT(injection
enhanced gate transistor)等の複数の電力用スイッチ
ング素子からなるモジュール型半導体素子を備えた電力
変換装置に関する。
The present invention relates to an IGBT (insulat).
ed gate bipolar transistor) or IEGT (injection
The present invention relates to a power converter including a modular semiconductor element including a plurality of power switching elements such as an enhanced gate transistor.

【0002】[0002]

【従来の技術】一般に、IGBTやIEGTなどの電力
用スイッチング素子は、複数の素子チップが並列接続さ
れて複数のモジュールに収容され、これら各モジュール
が適宜スナバ回路等に接続されて電力変換装置が構成さ
れている。図7はこの種の電力変換装置における主回路
の構成図であり、図8はその電力変換装置の概略構成を
示す斜視図であって、図9は各IGBTモジュールの概
略構成を示す斜視図である。図7〜図9において、放熱
用の冷却装置10上に各IGBTモジュール20がボル
ト等により固着されている。各IGBTモジュール20
は、冷却装置10上に固定された金属板21(熱伝導ベ
ース)の主領域上に絶縁板22を介して平面電極23を
有し、この平面電極23上にIGBTチップ24及び還
流ダイオードチップ25(図9では省略)が配置されて
いる。また、金属板21の周囲部上には、外囲器26が
取付けられ、この外囲器26が各IGBTチップ24、
平面電極23及び絶縁板22を収納している。
2. Description of the Related Art Generally, a power switching element such as an IGBT or an IEGT is accommodated in a plurality of modules by connecting a plurality of element chips in parallel, and these modules are appropriately connected to a snubber circuit or the like to implement a power converter. It is configured. 7 is a configuration diagram of a main circuit in this type of power converter, FIG. 8 is a perspective view showing a schematic configuration of the power converter, and FIG. 9 is a perspective view showing a schematic configuration of each IGBT module. is there. 7 to 9, each IGBT module 20 is fixed on a cooling device 10 for heat radiation with bolts or the like. Each IGBT module 20
Has a flat electrode 23 on a main region of a metal plate 21 (heat conduction base) fixed on the cooling device 10 via an insulating plate 22, and an IGBT chip 24 and a freewheel diode chip 25 on the flat electrode 23. (Omitted in FIG. 9). An envelope 26 is mounted on the periphery of the metal plate 21. The envelope 26 is attached to each of the IGBT chips 24,
The flat electrode 23 and the insulating plate 22 are housed.

【0003】各IGBTモジュール20は、内部の各I
GBTチップ24のエミッタパッドEpが矩形波断面形
状の平板状のビームリード27を介して外部の銅等の配
線導体31に電気的に接続され、同様に、各IGBTチ
ップ24のコレクタパッドCpが平面電極23及び平板
状のビームリード28を介して外部の銅等の配線導体3
2に電気的に接続されている。
Each IGBT module 20 has an internal I
The emitter pad Ep of the GBT chip 24 is electrically connected to an external wiring conductor 31 such as copper via a flat beam lead 27 having a rectangular wave cross section. Similarly, the collector pad Cp of each IGBT chip 24 is flat. An external wiring conductor 3 such as copper through an electrode 23 and a flat beam lead 28
2 are electrically connected.

【0004】また、この配線導体31,32は、各IG
BTモジュール20を電気的に並列に接続すると共に、
スナバダイオード33を外囲器34に収納したダイオー
ドモジュールとスナバコンデンサ35からなるスナバ回
路を接続している。
The wiring conductors 31 and 32 are connected to each IG.
While electrically connecting the BT modules 20 in parallel,
A snubber circuit including a snubber capacitor 35 and a diode module in which a snubber diode 33 is housed in an envelope 34 are connected.

【0005】また、各IGBTモジュール20には、各
IGBTチップ24にゲート信号を供給するゲート回路
41と、電圧や電流などを検出して保護動作を行う保護
回路42とが電線を介して接続されている。
[0005] Each IGBT module 20 is connected via a wire to a gate circuit 41 for supplying a gate signal to each IGBT chip 24 and a protection circuit 42 for detecting a voltage or current to perform a protection operation. ing.

【0006】[0006]

【発明が解決しようとする課題】しかしながら以上のよ
うな電力変換装置では、ターンオフの際に、回路上の寄
生インダクタンスL及び寄生抵抗Rのため、並列接続さ
れた各IGBTチップ20間において、不均等な電流分
担と、大きなサージ電圧とが発生し易くなっている。
However, in the above-described power converter, when turning off, due to the parasitic inductance L and the parasitic resistance R on the circuit, the IGBT chips 20 connected in parallel are not equal. Current sharing and a large surge voltage are likely to occur.

【0007】このため、IGBTチップ20における1
個当りの通電電流の最大値は、全チップ20中で大電流
の偏って流れるIGBTチップ20を標準とし、設計上
限値よりも低い値に設定される。一方、不均等な電流分
担は、IGBTチップ20の並列数の増加に伴い、増大
する傾向にある。
For this reason, 1 in the IGBT chip 20
The maximum value of the energizing current per unit is set to a value lower than the design upper limit value with the IGBT chip 20 in which a large current flows unevenly in all the chips 20 as a standard. On the other hand, uneven current sharing tends to increase as the number of parallel IGBT chips 20 increases.

【0008】従って、大容量化に伴い、IGBTチップ
20の並列数を増加したとき、小電流の流れる標準外の
IGBTチップ20では、通電電流の最大値が設計上限
値よりも相当に低い値となり、利用率を低下させてしま
う。また、利用率の低下に伴い、全体の性能に見合った
大きさよりもモジュールを大型化させるので、不必要に
コストの増大を招いてしまう。
Therefore, when the number of parallel IGBT chips 20 is increased with the increase in capacity, the maximum value of the conduction current becomes considerably lower than the design upper limit value in the non-standard IGBT chip 20 through which a small current flows. , Reducing the utilization rate. Further, as the utilization rate decreases, the size of the module becomes larger than the size corresponding to the overall performance, so that the cost is unnecessarily increased.

【0009】本発明は上記実情を考慮してなされたもの
で、各素子間の電流分担を均等化して素子の利用率を向
上でき、低コスト化並びに小形化を図り得る電力変換装
置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a power conversion device capable of improving the utilization rate of elements by equalizing the current sharing among the elements and reducing the cost and size. The purpose is to:

【0010】[0010]

【課題を解決するための手段】請求項1に対応する発明
は、互いに接続された複数のモジュール型半導体素子を
有する電力変換装置であって、前記各モジュール型半導
体素子としては、平板状の熱伝導ベースと、前記熱伝導
ベースの一面の中央部上に取付けられた絶縁性基板と、
前記絶縁性基板上に貼付けられた平面電極と、前記平面
電極上に接合された複数の素子チップと、前記熱伝導ベ
ースの周囲部上に前記絶縁性基板、前記平面電極及び前
記各素子チップを囲うように取付けられた外囲器と、前
記外囲器を貫通して設けられ、前記外囲器の貫通部と前
記貫通部から最も離れた基準の素子チップとを電気的に
接続する平板状のビームリードと、前記ビームリードと
基準外の素子チップとの間を、前記基準外の素子チップ
上方に位置したビームリードの分岐部から前記基準の素
子チップを通って当該基準外の素子チップに至る閉回路
と略同一のインダクタンスを有するように、前記分岐部
から分岐して接続するバイパス部とを備えた電力変換装
置である。
The invention corresponding to claim 1 is a power converter having a plurality of module-type semiconductor elements connected to each other, wherein each of the module-type semiconductor elements has a plate-like shape. A conductive base, an insulating substrate mounted on a central portion of one surface of the heat conductive base,
A planar electrode attached on the insulating substrate, a plurality of element chips bonded on the planar electrode, and the insulating substrate, the planar electrode and the element chips on a peripheral portion of the heat conduction base. An envelope mounted so as to surround, and a flat plate provided to penetrate the envelope and electrically connecting a penetrating portion of the envelope and a reference element chip farthest from the penetrating portion. Between the beam lead and the beam lead and the non-standard element chip, from the branch portion of the beam lead located above the non-standard element chip to the non-standard element chip through the standard element chip. The power converter includes a bypass section branched from the branch section and connected so as to have substantially the same inductance as a closed circuit.

【0011】また、請求項2に対応する発明は、請求項
1に対応する電力変換装置において、前記バイパス部と
しては、前記ビームリードを貫通して基準外の素子チッ
プ上に接続された導電性ブロック部と、前記導電性ブロ
ック部の上部を収容し且つ前記導電性ブロック部の上端
部と前記ビームリードとを接続する略U字断面形状の凸
部とを備えた電力変換装置である。
According to a second aspect of the present invention, in the power converter according to the first aspect, the bypass portion is a conductive member connected to a non-standard element chip through the beam lead. A power converter including a block portion and a convex portion having a substantially U-shaped cross section that accommodates an upper portion of the conductive block portion and connects an upper end portion of the conductive block portion and the beam lead.

【0012】さらに、請求項3に対応する発明は、請求
項1に対応する電力変換装置において、前記バイパス部
としては、コイル形状を備えた電力変換装置である。
Further, the invention according to claim 3 is the power conversion device according to claim 1, wherein the bypass unit has a coil shape.

【0013】また、請求項4に対応する発明は、請求項
1に対応する電力変換装置において、前記ビームリード
部としては、前記貫通部から前記基準の素子チップに向
かうに従って高さが低くなる斜面部を有し、前記バイパ
ス部としては、前記斜面部と基準外の素子チップとの間
を接続する導電性ブロック部を備えた電力変換装置であ
る。
According to a fourth aspect of the present invention, in the power converter according to the first aspect, the beam lead portion has a slope whose height decreases from the through portion toward the reference element chip. A power conversion device including a conductive block portion that connects the slope portion and a non-standard element chip as the bypass portion.

【0014】さらに、請求項5に対応する発明は、請求
項4に対応する電力変換装置において、前記ビームリー
ド部としては、前記斜面部に代えて、階段状の階段部を
備えた電力変換装置である。
According to a fifth aspect of the present invention, in the power converter of the fourth aspect, the beam lead portion has a step-like step portion instead of the slope portion. It is.

【0015】また、請求項6に対応する発明は、互いに
接続された複数のモジュール型半導体素子を有する電力
変換装置であって、電源側のエミッタ接続端子と前記エ
ミッタ接続端子から最も離れた基準のモジュール型半導
体素子のエミッタ電極との間を、前記エミッタ接続端子
から前記基準のモジュール型半導体素子に向かうに従っ
て高さが低くなるエミッタ側斜面部を介して接続する平
板形状のエミッタ側母線と、前記エミッタ側母線に平行
に配置され、前記電源側のコレクタ接続端子と前記基準
のモジュール型半導体素子のコレクタ電極の間を、前記
コレクタ接続端子から前記基準のモジュール型半導体素
子に向かうに従って高さが低くなるコレクタ側斜面部を
介して接続する平板形状のコレクタ側母線と、前記エミ
ッタ側斜面部と基準外のモジュール型半導体素子のエミ
ッタ電極との間を、前記基準外のエミッタ電極上方に位
置したエミッタ側斜面部の分岐部から前記基準のモジュ
ール型半導体素子のエミッタ電極に至る経路と略同一の
インダクタンスを有するように、前記エミッタ側斜面部
の分岐部から分岐して接続する平板形状のエミッタ側バ
イパス部と、前記コレクタ側斜面部と基準外のモジュー
ル型半導体素子のコレクタ電極との間を、前記基準外の
コレクタ電極上方に位置したコレクタ側斜面部の分岐部
から前記基準のモジュール型半導体素子のコレクタ電極
に至る経路と略同一のインダクタンスを有するように、
前記コレクタ側斜面部の分岐部から分岐して接続する平
板形状のコレクタ側バイパス部とを備えた電力変換装置
である。 (作用)従って、請求項1に対応する発明は以上のよう
な手段を備えたことにより、電力変換装置の各モジュー
ル型半導体素子内において、外囲器の貫通部と貫通部か
ら最も離れた基準の素子チップとを電気的に接続する平
板状のビームリードと、ビームリードと基準外の素子チ
ップとの間を、基準外の素子チップ上方に位置したビー
ムリードの分岐部から基準の素子チップを通って当該基
準外の素子チップに至る閉回路と略同一のインダクタン
スを有するように、分岐部から分岐して接続するバイパ
ス部とを備えたことにより、各素子チップ間のインダク
タンスを略同一に調整するので、各素子間の電流分担を
均等化して素子の利用率を向上でき、低コスト化並びに
小形化を図ることができる。
According to a sixth aspect of the present invention, there is provided a power converter having a plurality of module-type semiconductor elements connected to each other, wherein a power supply side emitter connection terminal and a reference terminal farthest from the emitter connection terminal. A flat-plate-shaped emitter-side bus connected between the emitter electrode of the module-type semiconductor element via an emitter-side slope portion whose height decreases from the emitter connection terminal toward the reference module-type semiconductor element; Arranged in parallel with the emitter-side bus, the height between the collector connection terminal on the power supply side and the collector electrode of the reference module type semiconductor element decreases from the collector connection terminal toward the reference module type semiconductor element. A collector bus having a flat plate shape connected through a collector-side slope portion, and An inductance substantially the same as a path from the branch portion of the slope on the emitter side located above the non-reference emitter electrode to the emitter electrode of the reference module type semiconductor device, between the emitter electrode of the outside modular semiconductor device and the emitter electrode of the outside reference semiconductor device. So as to have a flat-plate-shaped emitter-side bypass portion branched from the branch portion of the emitter-side slope portion and connected, and between the collector-side slope portion and the collector electrode of the non-standard module-type semiconductor element. To have substantially the same inductance as the path from the branch portion of the collector-side slope portion located above the non-reference collector electrode to the collector electrode of the reference module type semiconductor element,
A power converter comprising: a collector-side bypass portion having a flat plate shape that is branched from a branch portion of the collector-side slope portion and connected. (Operation) Therefore, the invention corresponding to claim 1 is provided with the means as described above, so that the through portion of the envelope and the reference farthest from the through portion in each modular semiconductor element of the power converter. A flat plate-shaped beam lead for electrically connecting the element chip and a reference element chip from a branch portion of the beam lead located above the non-reference element chip between the beam lead and the non-reference element chip. By providing a bypass portion branched from the branch portion and connected so as to have substantially the same inductance as the closed circuit that reaches the non-standard element chip through the same, the inductance between each device chip is adjusted to be substantially the same. Therefore, the current sharing among the elements can be equalized, the utilization rate of the elements can be improved, and the cost and size can be reduced.

【0016】また、請求項2に対応する発明は、バイパ
ス部としては、ビームリードを貫通して基準外の素子チ
ップ上に接続された導電性ブロック部と、導電性ブロッ
ク部の上部を収容し且つ導電性ブロック部の上端部とビ
ームリードとを接続する略U字断面形状の凸部とを備え
たので、請求項1に対応する作用に加え、横方向の占有
面積を縮小させることができる。
According to a second aspect of the present invention, as the bypass portion, the conductive block portion penetrating the beam lead and connected to the non-standard element chip and the upper portion of the conductive block portion are accommodated. In addition, since a projection having a substantially U-shaped cross section for connecting the upper end of the conductive block portion and the beam lead is provided, the area occupied in the lateral direction can be reduced in addition to the action corresponding to claim 1. .

【0017】さらに、請求項3に対応する発明は、バイ
パス部がコイル形状を備えたので、請求項1に対応する
作用と同様の作用を奏することができる。
Further, according to the invention corresponding to claim 3, since the bypass portion has a coil shape, the same operation as the operation corresponding to claim 1 can be achieved.

【0018】また、請求項4に対応する発明は、ビーム
リード部としては、貫通部から基準の素子チップに向か
うに従って高さが低くなる斜面部を有し、バイパス部と
しては、斜面部と基準外の素子チップとの間を接続する
導電性ブロック部を備えたので、請求項1に対応する作
用と同様の作用を奏することができ、また、請求項2に
対応する作用と同様に横方向の占有面積を縮小でき、さ
らに、請求項2に対応する発明と比べ、インダクタンス
を増加させるものの、形状を簡素化することができる。
According to a fourth aspect of the present invention, the beam lead portion has a slope portion whose height decreases from the penetrating portion toward the reference element chip, and the bypass portion has a slope portion and the reference portion. Since the conductive block portion for connecting with the outside element chip is provided, the same operation as the operation according to the first aspect can be achieved, and the lateral direction can be achieved similarly to the operation according to the second aspect. Occupied area can be reduced, and the inductance can be increased, but the shape can be simplified as compared with the invention corresponding to claim 2.

【0019】さらに、請求項5に対応する発明は、ビー
ムリード部としては、斜面部に代えて、階段状の階段部
を備えたので、請求項4に対応する作用と同様の作用を
奏することができる。
Further, in the invention according to claim 5, the beam lead portion has a step-like step portion instead of the slope portion, so that the same effect as that of claim 4 can be obtained. Can be.

【0020】また、請求項6に対応する発明は、各母線
並びに各バイパス部が各モジュール型半導体素子間のイ
ンダクタンスを略同一に調整しているので、ターンオフ
の際に、各モジュール型半導体素子間の電流分担を均等
化して素子の利用率を向上でき、低コスト化並びに小形
化を図ることができる。
According to a sixth aspect of the present invention, since each bus and each bypass adjust the inductance between the module-type semiconductor elements to be substantially the same, the turn-off between the module-type semiconductor elements is prevented. Current sharing can be equalized, the utilization rate of the element can be improved, and the cost and size can be reduced.

【0021】[0021]

【発明の実施の形態】以下、本発明の各実施形態につい
て図面を参照して説明する。 (第1の実施形態)図1は本発明の第1の実施形態に係
る電力変換装置に適用されるモジュール型半導体素子の
構成を示す模式図であり、図7〜図9と同一要素には同
一符号を付してその詳しい説明を省略し、ここでは異な
る部分について主に説明する。なお、以下の各実施形態
も同様にして重複した説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 is a schematic diagram showing a configuration of a modular semiconductor element applied to a power converter according to a first embodiment of the present invention. The same reference numerals are given and the detailed description is omitted, and different portions are mainly described here. In the following respective embodiments, the duplicated description will be omitted in the same manner.

【0022】すなわち、本実施形態に係るモジュール型
半導体素子20は、インダクタンスL及び抵抗Rの均
一化を図るものであり、具体的には図1(a),(b)
に示すように、外囲器26を貫通して設けられ、外囲器
26の貫通部26aと貫通部26aから最も離れた基準
のIGBTチップ24sとを電気的に接続する平板状の
ビームリード50と、ビームリード50と基準外のIG
BTチップ24a,24bとの間を、基準外のIGBT
チップ24a,24b上方に位置したビームリード50
の分岐部51a,51bから基準のIGBTチップ24
sを通って当該基準外のIGBTチップ24a,24b
に至る閉回路と略同一のインダクタンスL及び抵抗Rを
有するように、分岐部51a,51bから分岐して接続
するバイパス部52a,52bとを備えている。
[0022] That is, a semiconductor device module 20 1 according to the present embodiment is to achieve uniform inductance L and resistance R, in particular FIG. 1 (a), (b)
As shown in FIG. 7, a flat beam lead 50 is provided penetrating through the envelope 26, and electrically connects the penetrating portion 26a of the envelope 26 and the reference IGBT chip 24s farthest from the penetrating portion 26a. , Beam lead 50 and non-standard IG
Non-standard IGBT between BT chips 24a and 24b
Beam lead 50 located above chips 24a and 24b
IGBT chip 24 from branch portions 51a and 51b of
IGBT chips 24a, 24b outside the reference
Are provided with bypass portions 52a and 52b that are branched from the branch portions 51a and 51b and connected so as to have substantially the same inductance L and resistance R as the closed circuit reaching.

【0023】ここで、バイパス部52a,52bは、例
えば3つのIGBTチップ24s,24a,24bが貫
通部26aから順次離れる方向に配置された場合、図1
(b)に示すように、貫通部26aに最も近いIGBT
チップ24bとの間で最大の抵抗及びインダクタンス
(4L+4R)を有し、中央のIGBTチップ24aと
の間で中位の抵抗及びインダクタンス(2L+2R)を
有するように、幅、厚さ、長さ、材質及び形状等が設計
されている。但し、閉回路の合計のインダクタンス及び
抵抗(6L+6R)は、各IGBTチップ24s,24
a,24b間で略同一となっている。
Here, for example, when three IGBT chips 24s, 24a, 24b are arranged in a direction in which the three IGBT chips 24s, 24a, 24b are sequentially separated from the penetrating portion 26a, the bypass portions 52a, 52b are shown in FIG.
As shown in (b), the IGBT closest to the penetrating portion 26a
The width, thickness, length, and material are set so as to have the maximum resistance and inductance (4L + 4R) with the chip 24b and the medium resistance and inductance (2L + 2R) with the center IGBT chip 24a. And the shape and the like are designed. However, the total inductance and resistance (6L + 6R) of the closed circuit are equal to the respective IGBT chips 24s and 24s.
a and 24b are substantially the same.

【0024】以上のような構成によれば、バイパス部5
2a,52bが各IGBTチップ24s,24a,24
b間のインダクタンスL及び抵抗Rを略同一に調整して
いるので、ターンオフの際に、各IGBTチップ間の電
流分担を均等化して素子チップの利用率を向上でき、低
コスト化並びに小形化を図ることができる。 (第2の実施形態)図2は本発明の第2の実施形態に係
る電力変換装置に適用されるモジュール型半導体素子の
構成を示す模式図である。
According to the above configuration, the bypass unit 5
2a, 52b are IGBT chips 24s, 24a, 24
Since the inductance L and the resistance R between b are adjusted to be substantially the same, the current sharing between the respective IGBT chips can be equalized at the time of turn-off, and the utilization rate of the element chips can be improved, and the cost and size can be reduced. Can be planned. (Second Embodiment) FIG. 2 is a schematic diagram showing a configuration of a modular semiconductor element applied to a power converter according to a second embodiment of the present invention.

【0025】本実施形態に係るモジュール型半導体素子
20は、第1の実施形態の変形形態であり、バイパス
部を上下方向に沿って設けたものであって、具体的には
図2に示すように、ビームリード50を貫通して基準外
のIGBTチップ24a,24bのエミッタパッドEp
上に接続された金属ブロック部53a,53bと、この
金属ブロック部53a,53bの上部を収容し且つ金属
ブロック部53a,53bの上端部とビームリード50
とを接続する略U字断面形状の凸部54a,54bとを
バイパス部として備えている。
The module type semiconductor device 20 2 according to the present embodiment is a variant of the first embodiment, there is provided along the bypass section in the vertical direction, specifically shown in FIG. 2 As described above, the emitter pads Ep of the IGBT chips 24a and 24b outside the standard penetrate through the beam lead 50.
The metal blocks 53a, 53b connected above, the upper portions of the metal blocks 53a, 53b are accommodated, and the upper ends of the metal blocks 53a, 53b and the beam lead 50 are connected.
And a convex portion 54a, 54b having a substantially U-shaped cross-section for connecting the two.

【0026】ここで、金属ブロック部53a,53b及
び凸部54a,54bは、基準外の各IGBT24a,
24bの配置に基づいて高さ(長さ)を変えてあり、前
述同様に、閉回路の合計のインダクタンスLや抵抗Rを
各IGBTチップ24s,24a,24b間で略同一と
するように、種々の寸法、材質及び形状等が設計されて
いる。
Here, the metal block portions 53a and 53b and the convex portions 54a and 54b are formed by the non-standard IGBTs 24a and
The height (length) is changed based on the arrangement of the IGBT chips 24s, 24a and 24b, and the height (length) is changed based on the arrangement of the IGBT chips 24s, 24a and 24b. Dimensions, materials, shapes, etc. are designed.

【0027】以上のような構成によれば、第1の実施形
態の効果に加え、横方向の占有面積を縮小させることが
できる。 (第3の実施形態)図3は本発明の第3の実施形態に係
る電力変換装置に適用されるモジュール型半導体素子の
構成を示す模式図である。
According to the above configuration, in addition to the effects of the first embodiment, the occupied area in the horizontal direction can be reduced. (Third Embodiment) FIG. 3 is a schematic diagram showing a configuration of a modular semiconductor element applied to a power converter according to a third embodiment of the present invention.

【0028】本実施形態に係るモジュール型半導体素子
20は、第2の実施形態の変形形態であり、バイパス
部をコイル状電極55a,55bで形成したものであっ
て、具体的には、ビームリード50と基準以外の各IG
BTチップ24a,24bとの間に両者を個別に接続す
るためのコイル状電極55a,55bを備えている。
The module type semiconductor device 20 3 according to the present embodiment is a modification of the second embodiment, the bypass portion be those formed coiled electrode 55a, at 55b, specifically, beam Lead 50 and each IG other than the standard
Coiled electrodes 55a and 55b are provided between the BT chips 24a and 24b to individually connect them.

【0029】ここで、コイル状電極55a,55bは、
各IGBTチップ24a,24bの配置に基づいてコイ
ルの巻数や巻径などを変えてあり、前述同様に、閉回路
の合計のインダクタンスLや抵抗Rを各IGBTチップ
24s,24a,24b間で略同一とするように形成さ
れている。
Here, the coiled electrodes 55a and 55b are
The number of turns and the diameter of the coil are changed based on the arrangement of the IGBT chips 24a and 24b. As described above, the total inductance L and resistance R of the closed circuit are substantially the same between the IGBT chips 24s, 24a and 24b. It is formed as follows.

【0030】以上のような構成により、第2の実施形態
と同様の効果を得ることができる。なお、本実施形態
は、圧接型パッケージに適用しても、同様の効果を得る
ことができる。 (第4の実施形態)図4は本発明の第4の実施形態に係
る電力変換装置に適用されるモジュール型半導体素子の
構成を示す模式図である。
With the above configuration, the same effects as in the second embodiment can be obtained. Note that the same effects can be obtained even when the present embodiment is applied to a pressure contact type package. (Fourth Embodiment) FIG. 4 is a schematic diagram showing a configuration of a modular semiconductor device applied to a power converter according to a fourth embodiment of the present invention.

【0031】本実施形態に係るモジュール型半導体素子
20は、第2の実施形態の変形形態であり、バイパス
部の凸部54a,54bを省略したものであって、具体
的には、斜面部55を有するビームリード50aと基準
以外の各IGBTチップ24a,24bとの間に両者を
接続するための複数の金属ブロック部56a,56bを
備えている。
The semiconductor device module 20 4 according to the present embodiment is a modification of the second embodiment, the convex portion 54a of the bypass portion, there is omitted the 54b, specifically, the inclined surface portion A plurality of metal block portions 56a and 56b are provided between the beam lead 50a having the 55 and the IGBT chips 24a and 24b other than the reference to connect them.

【0032】ここで、各金属ブロック部56a,56b
及びビームリード50aの斜面部55は、各IGBT2
4a,24bの配置に基づいて高さを変えてあり、前述
同様に、閉回路の合計のインダクタンスLや抵抗Rを各
IGBTチップ24s,24a,24b間で略同一とす
るように寸法、材質及び形状等が設計されている。
Here, each of the metal block portions 56a, 56b
And the slope portion 55 of the beam lead 50a is connected to each IGBT 2
The heights are changed based on the layout of the IGBT chips 24s, 24a, and 24b. The shape and the like are designed.

【0033】以上のような構成により、第2の実施形態
と同様の効果を得ることができ、さらにインダクタンス
は増加するが、形状を簡素化することができる。なお、
本実施形態は、ビームリード50aの斜面部55に代え
て、図5に示すように、階段形状の階段部57を有する
ビームリード50bを備えたモジュール型半導体素子2
に変形しても、同様の効果を得ることができるのは
言うまでもない。 (第5の実施形態)図6は本発明の第5の実施形態に係
る電力変換装置の部分構成を示す模式図である。
With the above configuration, the same effects as those of the second embodiment can be obtained, and the inductance can be increased, but the shape can be simplified. In addition,
In the present embodiment, as shown in FIG. 5, a modular semiconductor element 2 having a beam lead 50b having a step portion 57 having a step shape instead of the slope portion 55 of the beam lead 50a.
Be modified to 0 5, it is needless to say it is possible to obtain the same effect. (Fifth Embodiment) FIG. 6 is a schematic diagram showing a partial configuration of a power converter according to a fifth embodiment of the present invention.

【0034】本実施形態は、前述した各実施形態とは異
なり、各モジュール型半導体素子の接続構造を示すもの
であり、具体的には図6に示すように、電源(例えば平
滑コンデンサ等)側のエミッタ接続端子60eとエミッ
タ接続端子60eから最も離れた基準のモジュール型半
導体素子20sのエミッタ電極20sEとの間を、エミ
ッタ接続端子60eから基準のモジュール型半導体素子
20sに向かうに従って高さが低くなるエミッタ側斜面
部61eを介して接続する平板形状のエミッタ側母線(b
us-bar) 62eと、エミッタ側母線62eに平行に配置
され、電源側のコレクタ接続端子60cと基準のモジュ
ール型半導体素子20sのコレクタ電極20sCの間
を、コレクタ接続端子60cから基準のモジュール型半
導体素子20sに向かうに従って高さが低くなるコレク
タ側斜面部61cを介して接続する平板形状のコレクタ
側母線62cと、エミッタ側斜面部61eと基準外のモ
ジュール型半導体素子20a,20bのエミッタ電極2
0aE,20bEとの間を、基準外のエミッタ電極20
aE,20bE上方に位置したエミッタ側斜面部61e
の分岐部63a,63bから基準のモジュール型半導体
素子20sのエミッタ電極20sEに至る経路と略同一
のインダクタンスLを有するように、エミッタ側斜面部
61eの分岐部63a,63bから分岐して接続する平
板形状のエミッタ側バイパス部64a,64bと、コレ
クタ側斜面部61cと基準外のモジュール型半導体素子
20a,20bのコレクタ電極20aC,20bCとの
間を、基準外のコレクタ電極20aC,20bC上方に
位置したコレクタ側斜面部61cの分岐部65a,65
bから基準のモジュール型半導体素子20sのコレクタ
電極20sCに至る経路と略同一のインダクタンスLを
有するように、コレクタ側斜面部61cの分岐部65
a,65bから分岐して接続する平板形状のコレクタ側
バイパス部66a,66bとを備えている。
This embodiment is different from the above-described embodiments, and shows a connection structure of each module type semiconductor element. Specifically, as shown in FIG. 6, a power supply (for example, a smoothing capacitor or the like) side is used. Between the emitter connection terminal 60e and the emitter electrode 20sE of the reference module type semiconductor device 20s farthest from the emitter connection terminal 60e, the height decreases from the emitter connection terminal 60e toward the reference module type semiconductor device 20s. A flat emitter-side bus (b) connected via an emitter-side slope 61e
us-bar) 62e and the collector-side terminal 62c, and the collector-side terminal 60c between the power supply-side collector connection terminal 60c and the collector electrode 20sC of the reference module-type semiconductor element 20s. A flat-plate-shaped collector-side bus 62c connected via a collector-side slope 61c whose height decreases toward the element 20s, the emitter-side slope 61e and the emitter electrodes 2 of the non-standard modular semiconductor elements 20a and 20b.
0aE and 20bE, the non-standard emitter electrode 20
emitter side slope 61e located above aE, 20bE
A flat plate that is branched from the branch portions 63a and 63b of the emitter-side inclined portion 61e and connected so as to have substantially the same inductance L as the path from the branch portions 63a and 63b to the emitter electrode 20sE of the reference modular semiconductor element 20s. The emitter-side bypass portions 64a, 64b having a shape and the collector-side slope portions 61c and the collector electrodes 20aC, 20bC of the non-standard module type semiconductor elements 20a, 20b are located above the non-standard collector electrodes 20aC, 20bC. Branch portions 65a, 65 of collector-side slope portion 61c
b of the collector-side slope portion 61c so as to have substantially the same inductance L as the path from the base electrode b to the collector electrode 20sC of the reference modular semiconductor device 20s.
a, and a collector side bypass portion 66a, 66b having a flat plate shape and branched from and connected to the collector side.

【0035】ここで、エミッタ側母線62e並びにエミ
ッタ側バイパス部64a,64bと、コレクタ側母線6
2c並びにコレクタ側バイパス部66a,66bとは、
互いに平行平板形状を有している。
Here, the emitter-side bus 62e, the emitter-side bypass portions 64a and 64b, and the collector-side bus 6
2c and the collector-side bypass sections 66a, 66b
They have parallel plate shapes.

【0036】これら母線62e,62c及びバイパス部
64a〜b,66a〜bは、前述同様に、エミッタ接続
端子60eとコレクタ接続端子60cとの間の閉回路に
おける合計のインダクタンスLや抵抗Rを各モジュール
型半導体素子20s,20a,20b間で略同一とする
ように、幅、厚さ、長さ、材質及び形状等が設計されて
いる。
As described above, the buses 62e and 62c and the bypass portions 64a-b and 66a-b connect the total inductance L and resistance R in the closed circuit between the emitter connection terminal 60e and the collector connection terminal 60c to each module. The width, thickness, length, material, shape, and the like are designed to be substantially the same among the mold semiconductor elements 20s, 20a, and 20b.

【0037】以上のような構成によれば、各母線62
e,62c及び各バイパス部64a〜b,66a〜bが
各モジュール型半導体素子20s,20a,20b間の
インダクタンスL及び抵抗Rを略同一に調整しているの
で、ターンオフの際に、各モジュール型半導体素子間の
電流分担を均等化して素子の利用率を向上でき、低コス
ト化並びに小形化を図ることができる。
According to the above configuration, each bus 62
e, 62c and the bypass portions 64a-b, 66a-b adjust the inductance L and the resistance R between the module-type semiconductor elements 20s, 20a, 20b to be substantially the same, so that each module-type semiconductor element is turned off. The current sharing between the semiconductor elements can be equalized, the utilization rate of the elements can be improved, and the cost and size can be reduced.

【0038】また、エミッタ側母線62e並びにエミッ
タ側バイパス部64a,64bと、コレクタ側母線62
c並びにコレクタ側バイパス部66a,66bとは、互
いに平行平板形状を有し、互いに逆方向に電流が流れる
ので、エミッタ側母線62e・バイパス部64a〜b
と、コレクタ側母線62c・バイパス部66a〜bとの
間の相互インダクタンスを低減でき、もって、サージ電
圧の低減を期待することができる。
The emitter-side bus 62e and the emitter-side bypass portions 64a and 64b, and the collector-side bus 62
c and the collector-side bypass sections 66a and 66b have a parallel plate shape and current flow in opposite directions. Therefore, the emitter-side bus 62e and the bypass sections 64a to 64b
, And the mutual inductance between the collector-side bus 62c and the bypass portions 66a and 66b can be reduced, so that a reduction in surge voltage can be expected.

【0039】また、本実施形態は、適宜、第1乃至第4
の実施形態のいずれかと組合せた構成に変形しても、本
実施形態とその適用させた実施形態との両者の効果を奏
することができる。その他、本発明はその要旨を逸脱し
ない範囲で種々変形して実施できる。
In this embodiment, first to fourth
Even if the configuration is modified to be combined with any one of the embodiments, the effects of both the present embodiment and the applied embodiment can be obtained. In addition, the present invention can be implemented with various modifications without departing from the scope of the invention.

【0040】[0040]

【発明の効果】以上説明したように本発明によれば、各
素子間の電流分担を均等化して素子の利用率を向上で
き、低コスト化並びに小形化を図ることができる電力変
換装置を提供できる。
As described above, according to the present invention, there is provided a power conversion device capable of improving the utilization rate of the elements by equalizing the current sharing among the elements, reducing the cost and reducing the size. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る電力変換装置に
適用されるモジュール型半導体素子の構成を示す模式図
FIG. 1 is a schematic diagram showing a configuration of a modular semiconductor element applied to a power converter according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態に係る電力変換装置に
適用されるモジュール型半導体素子の構成を示す模式図
FIG. 2 is a schematic diagram showing a configuration of a modular semiconductor element applied to a power converter according to a second embodiment of the present invention.

【図3】本発明の第3の実施形態に係る電力変換装置に
適用されるモジュール型半導体素子の構成を示す模式図
FIG. 3 is a schematic diagram showing a configuration of a modular semiconductor element applied to a power converter according to a third embodiment of the present invention.

【図4】本発明の第4の実施形態に係る電力変換装置に
適用されるモジュール型半導体素子の構成を示す模式図
FIG. 4 is a schematic diagram showing a configuration of a modular semiconductor element applied to a power converter according to a fourth embodiment of the present invention.

【図5】同実施形態における変形構成を示す模式図FIG. 5 is a schematic view showing a modified configuration in the embodiment.

【図6】本発明の第5の実施形態に係る電力変換装置の
部分構成を示す模式図
FIG. 6 is a schematic diagram showing a partial configuration of a power conversion device according to a fifth embodiment of the present invention.

【図7】従来の電力変換装置における主回路の構成図FIG. 7 is a configuration diagram of a main circuit in a conventional power converter.

【図8】従来の電力変換装置の概略構成を示す斜視図FIG. 8 is a perspective view showing a schematic configuration of a conventional power converter.

【図9】従来の各IGBTモジュールの概略構成を示す
斜視図
FIG. 9 is a perspective view showing a schematic configuration of each conventional IGBT module.

【符号の説明】[Explanation of symbols]

20〜20,20s,20a,20b…モジュール
型半導体素子 L…インダクタンス R…抵抗 26…外囲器 26a…貫通部 24s,24a,24b…IGBTチップ 50,50a,50b…ビームリード 51a,51b…分岐部 52a,52b…バイパス部 53a,53b,56a,56b…金属ブロック部 54a,54b…凸部 55…斜面部 57…階段部
20 1 ~20 5, 20s, 20a , 20b ... semiconductor device module L ... inductance R ... resistance 26 ... envelope 26a ... through portion 24s, 24a, 24b ... IGBT chips 50, 50a, 50b ... beam leads 51a, 51b ... Branch portions 52a, 52b. Bypass portions 53a, 53b, 56a, 56b .... Metal block portions 54a, 54b .. Protrusion portions 55.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 互いに接続された複数のモジュール型半
導体素子を有する電力変換装置であって、 前記各モジュール型半導体素子は、 平板状の熱伝導ベースと、 前記熱伝導ベースの一面の中央部上に取付けられた絶縁
性基板と、 前記絶縁性基板上に貼付けられた平面電極と、 前記平面電極上に接合された複数の素子チップと、 前記熱伝導ベースの周囲部上に前記絶縁性基板、前記平
面電極及び前記各素子チップを囲うように取付けられた
外囲器と、 前記外囲器を貫通して設けられ、前記外囲器の貫通部と
前記貫通部から最も離れた基準の素子チップとを電気的
に接続する平板状のビームリードと、 前記ビームリードと基準外の素子チップとの間を、前記
基準外の素子チップ上方に位置したビームリードの分岐
部から前記基準の素子チップを通って当該基準外の素子
チップに至る閉回路と略同一のインダクタンスを有する
ように、前記分岐部から分岐して接続するバイパス部と
を備えたことを特徴とする電力変換装置。
1. A power converter having a plurality of module-type semiconductor elements connected to each other, wherein each of the module-type semiconductor elements has a plate-like heat conduction base and a central part on one surface of the heat conduction base. An insulating substrate attached to the; a planar electrode stuck on the insulating substrate; a plurality of element chips bonded on the planar electrode; and the insulating substrate on a peripheral portion of the heat conductive base; An envelope attached so as to surround the planar electrode and each of the element chips; and a reference element chip which is provided through the envelope and which is the farthest from the penetrating portion of the envelope and the penetrating portion. A flat beam lead electrically connecting the reference chip and the reference element chip from a branch portion of the beam lead positioned above the non-reference element chip between the beam lead and the non-reference element chip. Through so as to have a closed circuit and substantially the same inductance leading to the reference outside of the element chip, the power conversion device characterized by comprising a bypass unit that connects branched from the branch portion.
【請求項2】 請求項1に記載の電力変換装置におい
て、 前記バイパス部は、前記ビームリードを貫通して基準外
の素子チップ上に接続された導電性ブロック部と、前記
導電性ブロック部の上部を収容し且つ前記導電性ブロッ
ク部の上端部と前記ビームリードとを接続する略U字断
面形状の凸部とを備えたことを特徴とする電力変換装
置。
2. The power conversion device according to claim 1, wherein the bypass unit includes a conductive block connected to a non-standard element chip through the beam lead, and a conductive block connected to the conductive block. A power conversion device, comprising: a projection having a substantially U-shaped cross section that accommodates an upper portion and connects an upper end portion of the conductive block portion and the beam lead.
【請求項3】 請求項1に記載の電力変換装置におい
て、 前記バイパス部は、コイル形状を備えたことを特徴とす
る電力変換装置。
3. The power converter according to claim 1, wherein the bypass unit has a coil shape.
【請求項4】 請求項1に記載の電力変換装置におい
て、 前記ビームリード部は、前記貫通部から前記基準の素子
チップに向かうに従って高さが低くなる斜面部を有し、 前記バイパス部は、前記斜面部と基準外の素子チップと
の間を接続する導電性ブロック部を備えたことを特徴と
する電力変換装置。
4. The power conversion device according to claim 1, wherein the beam lead portion has a slope portion whose height decreases from the penetrating portion toward the reference element chip. A power converter, comprising: a conductive block portion that connects between the slope portion and a non-standard element chip.
【請求項5】 請求項4に記載の電力変換装置におい
て、 前記ビームリード部は、前記斜面部に代えて、階段状の
階段部を備えたことを特徴とする電力変換装置。
5. The power conversion device according to claim 4, wherein the beam lead portion has a step-like step portion instead of the slope portion.
【請求項6】 互いに接続された複数のモジュール型半
導体素子を有する電力変換装置であって、 電源側のエミッタ接続端子と前記エミッタ接続端子から
最も離れた基準のモジュール型半導体素子のエミッタ電
極との間を、前記エミッタ接続端子から前記基準のモジ
ュール型半導体素子に向かうに従って高さが低くなるエ
ミッタ側斜面部を介して接続する平板形状のエミッタ側
母線と、 前記エミッタ側母線に平行に配置され、前記電源側のコ
レクタ接続端子と前記基準のモジュール型半導体素子の
コレクタ電極の間を、前記コレクタ接続端子から前記基
準のモジュール型半導体素子に向かうに従って高さが低
くなるコレクタ側斜面部を介して接続する平板形状のコ
レクタ側母線と、 前記エミッタ側斜面部と基準外のモジュール型半導体素
子のエミッタ電極との間を、前記基準外のエミッタ電極
上方に位置したエミッタ側斜面部の分岐部から前記基準
のモジュール型半導体素子のエミッタ電極に至る経路と
略同一のインダクタンスを有するように、前記エミッタ
側斜面部の分岐部から分岐して接続する平板形状のエミ
ッタ側バイパス部と、 前記コレクタ側斜面部と基準外のモジュール型半導体素
子のコレクタ電極との間を、前記基準外のコレクタ電極
上方に位置したコレクタ側斜面部の分岐部から前記基準
のモジュール型半導体素子のコレクタ電極に至る経路と
略同一のインダクタンスを有するように、前記コレクタ
側斜面部の分岐部から分岐して接続する平板形状のコレ
クタ側バイパス部とを備えたことを特徴とする電力変換
装置。
6. A power converter having a plurality of module-type semiconductor elements connected to each other, comprising: an emitter connection terminal on a power supply side; and an emitter electrode of a reference module-type semiconductor element furthest from the emitter connection terminal. A flat-plate-shaped emitter-side bus connected between the emitter connection terminals via an emitter-side slope portion whose height decreases from the emitter connection terminal toward the reference module-type semiconductor element, and arranged in parallel with the emitter-side bus; A connection is made between the collector connection terminal on the power supply side and the collector electrode of the reference module type semiconductor device via a collector side slope portion whose height decreases from the collector connection terminal toward the reference module type semiconductor device. A flat-plate-shaped collector-side bus, and the emitter-side slope and the non-standard module type semiconductor element. Between the emitter electrode and the emitter electrode, the emitter has a substantially same inductance as a path from a branch portion of the slope on the emitter side located above the non-reference emitter electrode to an emitter electrode of the reference module type semiconductor element. A flat plate-shaped emitter-side bypass portion branched from the branch portion of the side slope portion and connected to the collector-side bypass portion between the collector-side slope portion and the collector electrode of the non-standard module type semiconductor element; A flat plate-shaped branch connected from the branch portion of the collector-side slope portion so as to have substantially the same inductance as the path from the branch portion of the located collector-side slope portion to the collector electrode of the reference modular semiconductor device. A power converter comprising: a collector-side bypass unit.
JP11004182A 1999-01-11 1999-01-11 Power conversion device Pending JP2000209846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11004182A JP2000209846A (en) 1999-01-11 1999-01-11 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11004182A JP2000209846A (en) 1999-01-11 1999-01-11 Power conversion device

Publications (1)

Publication Number Publication Date
JP2000209846A true JP2000209846A (en) 2000-07-28

Family

ID=11577572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11004182A Pending JP2000209846A (en) 1999-01-11 1999-01-11 Power conversion device

Country Status (1)

Country Link
JP (1) JP2000209846A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230187A (en) * 2005-01-21 2006-08-31 Hitachi Ltd Power supply device, power supply system using the same, and electronic device
JP2009105267A (en) * 2007-10-24 2009-05-14 Fuji Electric Device Technology Co Ltd Semiconductor device and manufacturing method thereof
JP2009146933A (en) * 2007-12-11 2009-07-02 Denso Corp Bus bar and semiconductor device provided with the same
JP2010193714A (en) * 2010-05-31 2010-09-02 Hitachi Automotive Systems Ltd Inverter device and vehicle drive device using the same
KR20160045477A (en) 2014-10-17 2016-04-27 삼성전기주식회사 Power module and manufacturing method thereof
US9881906B2 (en) 2014-08-19 2018-01-30 Kabushiki Kaisha Toshiba Semiconductor module
DE112017004776T5 (en) 2016-09-23 2019-06-19 Mitsubishi Electric Corporation POWER SEMICONDUCTOR MODULE AND POWER SEMICONDUCTOR ARRANGEMENT
DE112018004893T5 (en) 2017-09-04 2020-06-10 Mitsubishi Electric Corporation Semiconductor module and power converter device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230187A (en) * 2005-01-21 2006-08-31 Hitachi Ltd Power supply device, power supply system using the same, and electronic device
JP2009105267A (en) * 2007-10-24 2009-05-14 Fuji Electric Device Technology Co Ltd Semiconductor device and manufacturing method thereof
JP2009146933A (en) * 2007-12-11 2009-07-02 Denso Corp Bus bar and semiconductor device provided with the same
JP2010193714A (en) * 2010-05-31 2010-09-02 Hitachi Automotive Systems Ltd Inverter device and vehicle drive device using the same
US9881906B2 (en) 2014-08-19 2018-01-30 Kabushiki Kaisha Toshiba Semiconductor module
KR20160045477A (en) 2014-10-17 2016-04-27 삼성전기주식회사 Power module and manufacturing method thereof
DE112017004776T5 (en) 2016-09-23 2019-06-19 Mitsubishi Electric Corporation POWER SEMICONDUCTOR MODULE AND POWER SEMICONDUCTOR ARRANGEMENT
US10727213B2 (en) 2016-09-23 2020-07-28 Mitsubishi Electric Corporation Power semiconductor module and power semiconductor device
DE112017004776B4 (en) 2016-09-23 2022-10-13 Mitsubishi Electric Corporation POWER SEMICONDUCTOR MODULE AND POWER SEMICONDUCTOR ARRANGEMENT
DE112018004893T5 (en) 2017-09-04 2020-06-10 Mitsubishi Electric Corporation Semiconductor module and power converter device
US11063025B2 (en) 2017-09-04 2021-07-13 Mitsubishi Electric Corporation Semiconductor module and power conversion device

Similar Documents

Publication Publication Date Title
JP7036221B2 (en) Semiconductor device
JP2004080993A (en) Low-inductance circuit arrangement for power semiconductor module
US7148562B2 (en) Power semiconductor device and power semiconductor module
JP3796529B2 (en) Low inductance circuit device
EP0237932B1 (en) Wiring layout for bipolar and unipolar insulated gate transistors
JP3677519B2 (en) Power semiconductor module
EP3598490A1 (en) Power module
US6566750B1 (en) Semiconductor module
JP2000209846A (en) Power conversion device
JPH0878620A (en) Power semiconductor device
US20240297113A1 (en) Semiconductor power module, electric motor controller and vehicle
JP2001308265A (en) Semiconductor device
JPH0671063B2 (en) High power semiconductor device
JP2000058820A (en) Power semiconductor device and power module
CN111384036B (en) Power module
US20020011350A1 (en) Semiconductor apparatus
JP3525823B2 (en) Mounting structure of complementary IGBT
JP4479365B2 (en) Semiconductor device
JP7139799B2 (en) semiconductor equipment
JP2004311901A (en) Semiconductor device
JPH0878619A (en) Power semiconductor device
JP4243043B2 (en) Semiconductor module
US11923265B2 (en) Power module
CN221327716U (en) Power semiconductor module packaging structure
JP7511506B2 (en) Semiconductor Device