JP2000189756A - Treatment method of combustion exhaust gas - Google Patents
Treatment method of combustion exhaust gasInfo
- Publication number
- JP2000189756A JP2000189756A JP11295644A JP29564499A JP2000189756A JP 2000189756 A JP2000189756 A JP 2000189756A JP 11295644 A JP11295644 A JP 11295644A JP 29564499 A JP29564499 A JP 29564499A JP 2000189756 A JP2000189756 A JP 2000189756A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- ammonia
- combustion exhaust
- oxidation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
(57)【要約】
【課題】塩素化有機化合物の分解の観点から要求される
250℃以下の分解温度を採用し、酸性硫酸アンモニウ
ムの触媒表面への析出を防止し得る様に改良された燃焼
排ガスの処理方法を提供する。
【解決手段】次の(a)〜(d)の条件を満足する。
(a)触媒としてSO2の酸化転化率が1.3%以下の低
酸化性能触媒(X)と3.0%以上の高酸化性能触媒
(Y)との2種類を使用する。
(b)燃焼排ガスと各触媒との接触工程を任意の順序で
且つ100〜250℃の温度範囲で行う。
(c)触媒(X)との接触工程を先行させる場合、触媒
(X)との接触工程に流入する燃焼排ガス中にアンモニ
アを導入するが、その量は当該工程から流出する燃焼排
ガス中のアンモニア濃度が20ppm以下となる量に調
節する。
(d)触媒(Y)との接触工程を先行させる場合、触媒
(X)との接触工程に流入する燃焼排ガス中にアンモニ
アを導入する(57) [Summary] A combustion exhaust gas improved to adopt a decomposition temperature of 250 ° C. or lower required from the viewpoint of decomposition of chlorinated organic compounds and to prevent precipitation of acidic ammonium sulfate on the catalyst surface. Is provided. SOLUTION: The following conditions (a) to (d) are satisfied. (A) Two types of catalysts, a low oxidation performance catalyst (X) having an SO 2 oxidation conversion of 1.3% or less and a high oxidation performance catalyst (Y) having a conversion of 3.0% or more, are used. (B) The step of contacting the combustion exhaust gas with each catalyst is performed in any order and at a temperature in the range of 100 to 250 ° C. (C) In the case where the step of contacting with the catalyst (X) is preceded, ammonia is introduced into the flue gas flowing into the step of contacting with the catalyst (X). The concentration is adjusted to be 20 ppm or less. (D) When prior to the contacting step with the catalyst (Y), the catalyst
Introduce ammonia into the flue gas flowing into the contact step with (X)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、燃焼排ガスの処理
方法に関するものであり、詳しくは、塩素化有機化合物
および窒素酸化物を除去するための燃焼排ガスの処理方
法に関するものである。The present invention relates to a method for treating flue gas, and more particularly, to a method for treating flue gas for removing chlorinated organic compounds and nitrogen oxides.
【0002】[0002]
【従来の技術】都市ゴミや産業廃棄物を処理する焼却炉
などから排出される燃焼排ガスは、各種の有害成分を含
有しているが、毒性の強いダイオキシンとその前駆体で
ある芳香族塩素化合物などの塩素化有機化合物および光
化学スモッグの原因物質である窒素酸化物の除去は、特
に重要である。2. Description of the Related Art Combustion exhaust gas discharged from incinerators for treating municipal garbage and industrial waste contains various harmful components, but is highly toxic dioxin and its precursor, an aromatic chlorine compound. Of particular importance is the removal of chlorinated organic compounds such as nitrogen oxides, which are the causative agents of photochemical smog.
【0003】燃焼排ガス中の塩素化有機化合物の除去方
法としては、各種の方法が知られているが、特に接触分
解法は、500℃以下の条件で塩素化有機化合物を分解
する優れた方法である。ところで、塩素化有機化合物の
接触分解は、300℃以上の分解温度では一旦分解され
たダイオキシン等が再生成するため、250℃以下の温
度で行うことが要求されている。Various methods are known for removing chlorinated organic compounds from combustion exhaust gas. Particularly, the catalytic cracking method is an excellent method for decomposing chlorinated organic compounds at 500 ° C. or lower. is there. By the way, the catalytic decomposition of chlorinated organic compounds is required to be performed at a temperature of 250 ° C. or less because once decomposed dioxin and the like are regenerated at a decomposition temperature of 300 ° C. or more.
【0004】一方、燃焼排ガス中の窒素酸化物の除去方
法としては、還元剤であるアンモニアの存在下に接触分
解する方法が知られている。ところで、通常、燃焼排ガ
ス中には二酸化イオウが含有されているため、分解温度
が300℃以下の場合は、アンモニアとの反応により生
成した酸性硫酸アンモニウムが触媒表面に析出して触媒
性能を低下させる問題がある。On the other hand, as a method for removing nitrogen oxides from combustion exhaust gas, there is known a method for catalytic decomposition in the presence of ammonia as a reducing agent. By the way, normally, since sulfur dioxide is contained in the combustion exhaust gas, when the decomposition temperature is 300 ° C. or lower, there is a problem that ammonium ammonium sulfate generated by the reaction with ammonia precipitates on the catalyst surface and deteriorates the catalyst performance. There is.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記実情に
鑑みなされたものであり、その目的は、塩素化有機化合
物および窒素酸化物を除去するための燃焼排ガスの処理
方法であって、塩素化有機化合物の分解の観点から要求
される250℃以下の分解温度を採用し、しかも、窒素
酸化物の分解のために排ガス中に導入されたアンモニア
と排ガス中の二酸化イオウとによって生成する酸性硫酸
アンモニウムの触媒表面への析出を防止し得る様に改良
された燃焼排ガスの処理方法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a method for treating combustion exhaust gas for removing chlorinated organic compounds and nitrogen oxides, which comprises: Ammonium sulfate produced by the ammonia introduced into the exhaust gas for the decomposition of nitrogen oxides and the sulfur dioxide in the exhaust gas, adopting a decomposition temperature of 250 ° C. or less required from the viewpoint of the decomposition of the fluorinated organic compound It is an object of the present invention to provide a method for treating combustion exhaust gas which is improved so as to prevent the deposition on the catalyst surface.
【0006】[0006]
【課題を解決するための手段】本発明者は、種々検討を
重ねた結果、特定性能の2種類の触媒を特定条件下に使
用するならば、上記の目的を容易に達成し得るとの知見
を得、本発明の完成に至った。As a result of various studies, the present inventors have found that the above object can be easily achieved if two types of catalysts having specific performance are used under specific conditions. To complete the present invention.
【0007】すなわち、本発明の要旨は、塩素化有機化
合物、二酸化イオウ及び窒素酸化物を含有する燃焼排ガ
スの処理方法であって、次の(a)〜(d)の条件を満
足することを特徴とする燃焼排ガスの処理方法に存す
る。That is, the gist of the present invention is a method for treating a combustion exhaust gas containing a chlorinated organic compound, sulfur dioxide and nitrogen oxide, which satisfies the following conditions (a) to (d). The present invention resides in a method for treating combustion exhaust gas.
【0008】(a)触媒として、塩素化有機化合物分解
能とアンモニア存在下における窒素酸化物分解能とを有
し且つ以下に規定する二酸化イオウの酸化転化率が1.
3%以下の低酸化性能触媒(X)と塩素化有機化合物分
解能を有し且つ以下に規定する二酸化イオウの酸化転化
率が3.0%以上の高酸化性能触媒(Y)との2種類を
使用する。(A) The catalyst has the ability to degrade chlorinated organic compounds and the ability to decompose nitrogen oxides in the presence of ammonia, and has an oxidation conversion of sulfur dioxide of 1.
A low oxidation performance catalyst (X) of 3% or less and a high oxidation performance catalyst (Y) having a chlorinated organic compound decomposability and an oxidation conversion of sulfur dioxide of 3.0% or more as defined below. use.
【0009】<二酸化イオウの酸化転化率> 圧力:常圧、温度:250℃、SV(空間速度):18
50Hr-1、触媒量:450mlの条件下、O210乾
体積%,SO2500ppm,H2O:10体積%,N2バ
ランス量の組成のガスを触媒が充填された反応管に供給
し、反応管出口のSO3濃度とトータルSOXの濃度を求
め、次式により二酸化イオウの酸化転化率(%)を算出
する。<Oxidation conversion of sulfur dioxide> Pressure: normal pressure, temperature: 250 ° C., SV (space velocity): 18
Under the conditions of 50 Hr -1 and a catalyst amount of 450 ml, a gas having a composition of O 2 10 vol%, SO 2 500 ppm, H 2 O: 10 vol%, and N 2 balance amount is supplied to the reaction tube filled with the catalyst. Then, the SO 3 concentration and the total SO X concentration at the outlet of the reaction tube are obtained, and the oxidation conversion (%) of sulfur dioxide is calculated by the following equation.
【0010】[0010]
【数2】(出口SO3濃度/出口トータルSOX)×10
0## EQU2 ## (Outlet SO 3 concentration / Outlet total SO X ) × 10
0
【0011】(b)燃焼排ガスと低酸化性能触媒および
高酸化性能触媒との各接触工程を任意の順序で且つ10
0〜250℃の温度範囲で行う。(B) The contacting steps between the combustion exhaust gas and the low-oxidizing catalyst and the high-oxidizing catalyst are performed in an arbitrary order in 10
It is performed in a temperature range of 0 to 250 ° C.
【0012】(c)低酸化性能触媒との接触工程を先行
させる場合、低酸化性能触媒との接触工程に流入する燃
焼排ガス中にアンモニアを導入するが、その量は当該工
程から流出する燃焼排ガス中のアンモニア濃度が20p
pm以下となる量に調節する。(C) In the case where the step of contacting with the catalyst having low oxidation performance is preceded, ammonia is introduced into the flue gas flowing into the step of contacting with catalyst having low oxidation performance, and the amount of ammonia is introduced. Ammonia concentration is 20p
pm or less.
【0013】(d)高酸化性能触媒との接触工程を先行
させる場合、低酸化性能触媒との接触工程に流入する燃
焼排ガス中にアンモニアを導入する。(D) In the case where the step of contacting with the catalyst having a high oxidation performance is preceded, ammonia is introduced into the combustion exhaust gas flowing into the step of contacting with the catalyst having a low oxidation performance.
【0014】[0014]
【発明の実施の形態】先ず、本発明において使用する触
媒について説明する。本発明においては、触媒として、
塩素化有機化合物分解能とアンモニア存在下における窒
素酸化物分解能とを有し且つ以下に規定する二酸化イオ
ウの酸化転化率が1.3%以下の低酸化性能触媒(X)
と塩素化有機化合物分解能を有し且つ以下に規定する二
酸化イオウの酸化転化率が3.0%以上の高酸化性能触
媒(Y)との2種類を使用する。DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the catalyst used in the present invention will be described. In the present invention, as a catalyst,
Low oxidation performance catalyst (X) having a chlorinated organic compound resolution and a nitrogen oxide resolution in the presence of ammonia, and having an oxidation conversion of sulfur dioxide of 1.3% or less as defined below (X)
And a high oxidation performance catalyst (Y) which has the ability to degrade chlorinated organic compounds and has an oxidation conversion of sulfur dioxide of 3.0% or more as defined below.
【0015】<二酸化イオウの酸化転化率> 圧力:常圧、温度:250℃、SV(空間速度):18
50Hr-1、触媒量:450mlの条件下、O210乾
体積%,SO2500ppm,H2O:10体積%,N2バ
ランス量の組成のガスを触媒が充填された反応管に供給
し、反応管出口のSO3濃度とトータルSOXの濃度を求
め、次式により二酸化イオウの酸化転化率(%)を算出
する。<Oxidation conversion of sulfur dioxide> Pressure: normal pressure, temperature: 250 ° C., SV (space velocity): 18
Under the conditions of 50 Hr -1 and a catalyst amount of 450 ml, a gas having a composition of O 2 10 vol%, SO 2 500 ppm, H 2 O: 10 vol%, and N 2 balance amount is supplied to the reaction tube filled with the catalyst. Then, the SO 3 concentration and the total SO X concentration at the outlet of the reaction tube are obtained, and the oxidation conversion (%) of sulfur dioxide is calculated by the following equation.
【0016】[0016]
【数3】(出口SO3濃度/出口トータルSOX)×10
0(Equation 3) (Outlet SO 3 concentration / Outlet total SO X ) × 10
0
【0017】上記の様に規定された低酸化性能触媒
(X)は、排ガス中にアンモニアと二酸化イオウ(実際
は硫黄酸化物SOXとH2O)が存在する場合において、
SO2やSO3が物理的に吸着することはあっても、酸性
硫酸アンモニウムを殆ど生成しない特徴を有する。とこ
ろで、通常、二酸化イオウの酸化転化率が低い触媒は、
塩素化有機化合物の分解性能が低い。従って、低酸化性
能触媒(X)のみを使用した場合は、大量の触媒が塩素
化有機化合物の高い除去率のために必要となり、効率が
悪くなる。The low oxidizing performance catalyst (X) defined as described above can be used in a case where ammonia and sulfur dioxide (actually, sulfur oxides SO X and H 2 O) are present in the exhaust gas.
Although SO 2 and SO 3 are physically adsorbed, they have a characteristic that they hardly generate ammonium ammonium sulfate. By the way, usually, a catalyst having a low oxidation conversion of sulfur dioxide is
Decomposition performance of chlorinated organic compounds is low. Therefore, when only the low oxidation performance catalyst (X) is used, a large amount of the catalyst is required for a high removal rate of the chlorinated organic compound, and the efficiency is deteriorated.
【0018】そこで、本発明においては、上記の様に規
定された高酸化性能触媒(Y)、すなわち、塩素化有機
化合物の分解性能が高い触媒を使用することにより、ト
ータルとして比較的少量の触媒量で塩素化有機化合物の
高い除去率を達成している。そして、高酸化性能触媒
(Y)の場合は、排ガス中にアンモニアと二酸化イオウ
が存在すると、100〜250℃の温度において、酸性
硫酸アンモニウムが生成して触媒表面に付着して性能低
下を惹起する。従って、高酸化性能触媒(Y)は、後述
する通り、燃焼排ガス中のアンモニア濃度が20ppm
以下の条件で使用される。Therefore, in the present invention, by using the high oxidation performance catalyst (Y) defined above, that is, a catalyst having a high decomposition performance of chlorinated organic compounds, a relatively small amount of catalyst in total is used. High removal rates of chlorinated organic compounds are achieved by volume. In the case of the high oxidation performance catalyst (Y), when ammonia and sulfur dioxide are present in the exhaust gas, at a temperature of 100 to 250 ° C., acidic ammonium sulfate is generated and adheres to the catalyst surface to cause a decrease in performance. Therefore, as described later, the high oxidation performance catalyst (Y) has an ammonia concentration of 20 ppm in the combustion exhaust gas.
Used under the following conditions:
【0019】低酸化性能触媒(X)の二酸化イオウの酸
化転化率は、酸性硫酸アンモニウムの生成を一層確実に
防止する観点から0.8%以下が好ましく、高酸化性能
触媒(Y)の二酸化イオウの酸化転化率は、塩素化有機
化合物の除去率を一層高める観点から、5%以上が好ま
しく、6%以上が更に好ましい。The oxidation conversion of sulfur dioxide of the low oxidation catalyst (X) is preferably 0.8% or less from the viewpoint of more reliably preventing the formation of ammonium acid sulfate. The oxidative conversion rate is preferably 5% or more, and more preferably 6% or more, from the viewpoint of further increasing the removal rate of the chlorinated organic compound.
【0020】上記の二酸化イオウの異なる酸化転化率
は、組成や種類の異なる触媒を使用する他、触媒の使用
量を変更することにより達成することが出来る。触媒の
活性成分としては、バナジウム、銅、鉄、クロム、マン
ガン等の遷移金属の酸化物、貴金属、ゼオライト等が挙
げられる。これらの内、バナジウム酸化物、銅酸化物、
鉄酸化物および金が好ましい。更に、バナジウム酸化物
を含有する触媒は、安価であり、塩素化有機化合物の分
解率が高く、しかも、アンモニアの存在下に窒素酸化物
が分解できるため、特に好ましい。The above-mentioned different oxidation conversions of sulfur dioxide can be achieved by using catalysts having different compositions and types, and by changing the amount of the catalyst used. Examples of the active component of the catalyst include oxides of transition metals such as vanadium, copper, iron, chromium, and manganese, noble metals, zeolites, and the like. Of these, vanadium oxide, copper oxide,
Iron oxide and gold are preferred. Further, a catalyst containing vanadium oxide is particularly preferable because it is inexpensive, has a high decomposition rate of a chlorinated organic compound, and can decompose nitrogen oxide in the presence of ammonia.
【0021】上記の金属活性成分を使用する場合、活性
成分の水溶液と担体とをよく混合して成形した後に焼成
するか、成形した担体基材に活性成分の水溶液を含浸さ
せた後に焼成する方法により、触媒を調製する。そし
て、例えば銅を使用する場合は、硝酸銅を水に溶解して
活性成分の水溶液を調製する。担体に含有させる遷移金
属酸化物の量は、触媒の使用方法によって異なるが、通
常は0.1〜40重量%、好ましくは1〜30重量%で
ある。斯かる範囲から所望される酸化転化率が達成され
る様に選択され、例えば、銅酸化物(CuO)含有量が
5.0%以下の場合は低酸化性能触媒(X)、8.5%
以上の場合は高酸化性能触媒(Y)が得られる。When the above-mentioned metal active ingredient is used, a method of baking after mixing the aqueous solution of the active ingredient and the carrier well and then molding, or impregnating the molded carrier substrate with the aqueous solution of the active ingredient, followed by firing. To prepare a catalyst. When copper is used, for example, copper nitrate is dissolved in water to prepare an aqueous solution of the active ingredient. The amount of the transition metal oxide contained in the support varies depending on the method of using the catalyst, but is usually 0.1 to 40% by weight, preferably 1 to 30% by weight. From such a range, it is selected so as to achieve a desired oxidation conversion. For example, when the copper oxide (CuO) content is 5.0% or less, the low oxidation performance catalyst (X), 8.5%
In the case described above, a high oxidation performance catalyst (Y) is obtained.
【0022】また、バナジウム酸化物の原料としては、
特に制限されないが、五酸化バナジウム(V2O5)又は
メタバナジン酸アンモニウムが好適に使用される。これ
らの原料は、通常、シュウ酸水溶液またはモノエタノー
ルアミン水溶液に溶解して原料液として使用される。Further, as a raw material of the vanadium oxide,
Although not particularly limited, vanadium pentoxide (V 2 O 5 ) or ammonium metavanadate is preferably used. These raw materials are usually used as a raw material liquid by dissolving in an oxalic acid aqueous solution or a monoethanolamine aqueous solution.
【0023】バナジウム酸化物の含有量は、活性成分と
して単独使用する他、触媒の使用方法などによって異な
るが、通常は0.1〜50重量%、好ましくは0.1〜
40重量%である。そして、斯かる範囲から、所望の酸
化転化率が達成される様に選択され、V2O5含有量が
2.5重量%以下の場合は低酸化性能触媒(X)、3.
5重量%以上の場合は高酸化性能触媒(Y)が得られ
る。The content of the vanadium oxide varies depending on the method of using the catalyst, besides using it alone as an active ingredient, but it is usually 0.1 to 50% by weight, preferably 0.1 to 50% by weight.
40% by weight. Then, the catalyst is selected from such a range so as to achieve a desired oxidation conversion rate, and when the V 2 O 5 content is 2.5% by weight or less, the low oxidation performance catalyst (X);
When the content is 5% by weight or more, a high oxidation performance catalyst (Y) can be obtained.
【0024】前記の各触媒は、通常、担体に担持して使
用される。担体としては、特に制限されないが、SOX
含有燃焼排ガスを処理する観点から、耐酸性に優れるチ
タニアが好適に使用される。チタニアとしては、TiO
2−SiO2、TiO2−SiO2−ZrO2、TiO2−W
O3−SiO2等の複合酸化物であってもよい。バナジウ
ム酸化物の担持量は、上記と同様に、通常は0.1〜5
0重量%、好ましくは0.1〜40重量%である。Each of the above catalysts is usually used by being supported on a carrier. Although the carrier is not particularly limited, SO X
From the viewpoint of treating the contained combustion exhaust gas, titania having excellent acid resistance is preferably used. As titania, TiO
2- SiO 2 , TiO 2 -SiO 2 -ZrO 2 , TiO 2 -W
A composite oxide such as O 3 —SiO 2 may be used. The amount of vanadium oxide supported is usually 0.1 to 5 as described above.
0% by weight, preferably 0.1 to 40% by weight.
【0025】また、前記の各触媒の形状および大きさ
は、燃焼排ガス中におけるダストの有無、処理ガス量、
反応器の大きさ等により、適宜選択される。触媒の形状
としては、ハニカム状、円柱状、球状、板状などが挙げ
られる。The shape and size of each of the catalysts are determined by the presence or absence of dust in the combustion exhaust gas, the amount of processing gas,
It is appropriately selected depending on the size of the reactor and the like. Examples of the shape of the catalyst include a honeycomb shape, a column shape, a spherical shape, and a plate shape.
【0026】担体に担持されたハニカム形状の触媒を製
造する方法として、(a)担体成分と触媒成分またはそ
の原料を成形助剤と共に混練した後に、押出成形法など
によりハニカム状の形状に賦形する方法、(b)ハニ
カム形状の基材上にチタニア等の担体成分および触媒成
分を含浸・担持する方法を挙げることが出来る。上述の
製造方法(a)の1例として、以下の方法が例示され
る。As a method for producing a honeycomb-shaped catalyst supported on a carrier, (a) a carrier component and a catalyst component or a raw material thereof are kneaded together with a forming aid, and then formed into a honeycomb shape by an extrusion molding method or the like. And (b) a method of impregnating and supporting a carrier component such as titania and a catalyst component on a honeycomb-shaped substrate. As an example of the above-mentioned manufacturing method (a), the following method is exemplified.
【0027】(1)メタバナジン酸アンモニウムとパラ
タングステン酸アンモニウムを約10重量%モノエタノ
ールアミン水溶液に溶解する。(1) Ammonium metavanadate and ammonium paratungstate are dissolved in an aqueous solution of about 10% by weight of monoethanolamine.
【0028】(2)パラモリブデン酸アンモニウムを水
または約10%重量モノエタノールアミン水溶液に溶解
する。(2) Dissolve ammonium paramolybdate in water or an aqueous solution of about 10% by weight monoethanolamine.
【0029】(3)粉末状のチタニアと上述の(1)及
び(2)で調製した水溶液とをニーダーで混練する。(3) Powdery titania and the aqueous solution prepared in the above (1) and (2) are kneaded with a kneader.
【0030】(4)(i)更に成形助材を加えて混練し
た混練物を押出成形し、50〜150℃の温度で3〜5
0時間乾燥した後、SV100〜2000Hr-1の空気
気流中、450〜650℃の温度で焼成する、または
( ii )混練物を50〜150℃の温度で3〜50時間
乾燥し、450〜650℃の温度で焼成した後、成形助
材を加えて成形する。(4) (i) The kneaded material obtained by further kneading with the addition of a molding aid is extruded, and is extruded at a temperature of 50 to 150 ° C. for 3 to 5 minutes.
After drying for 0 hour, the mixture is calcined at a temperature of 450 to 650 ° C. in an air stream of SV 100 to 2000 Hr −1 , or (ii) the kneaded material is dried at a temperature of 50 to 150 ° C. for 3 to 50 hours. After baking at a temperature of ° C., a molding aid is added and molded.
【0031】また、上述の製造方法(b)の1例とし
て、次の方法が例示される。すなわち、円柱状、球状、
ハニカム状、板状など 、所望の形状の基材上に担体成
分をコーティングし、上述の(1)、(2)で調製した
水溶液を塗布して触媒成分を含浸させ、次いで450〜
650℃の温度で焼成する。As an example of the above-mentioned manufacturing method (b), the following method is exemplified. That is, cylindrical, spherical,
A carrier component is coated on a substrate having a desired shape such as a honeycomb shape or a plate shape, and the aqueous solution prepared in the above (1) or (2) is applied to impregnate the catalyst component.
Baking at a temperature of 650 ° C.
【0032】基材上に形成された触媒の場合、担体成分
としてはチタニアの他に、シリカ(SiO2)やアルミ
ナ(Al2O3)等を併用してもよい。その際、チタニア
の量は、担体成分および触媒成分の合計量に対し、通常
30重量%以上、好ましくは40〜97重量%である。
また、担体成分および触媒成分の合計量は、基材、担体
成分および触媒成分の総量に対し、通常5〜70重量
%、好ましくは10〜50重量%である。In the case of a catalyst formed on a substrate, silica (SiO 2 ), alumina (Al 2 O 3 ), or the like may be used in addition to titania as a carrier component. At that time, the amount of titania is usually 30% by weight or more, preferably 40 to 97% by weight, based on the total amount of the carrier component and the catalyst component.
The total amount of the carrier component and the catalyst component is usually 5 to 70% by weight, preferably 10 to 50% by weight, based on the total amount of the base material, the carrier component and the catalyst component.
【0033】混練・成形方法の様に添加した原料が全て
触媒成分となる場合は、それぞれの金属塩など の原料
成分が対応する金属酸化物に変化したものとして、触媒
組成は添加量から推算する。また、含浸方法で製造され
た場合は、触媒をフッ化水素酸で処理した後、硫酸アン
モニウムで融解してプラズマ発光分析法(ICP−AE
S分析法)により触媒組成を測定する。When the raw materials added as in the kneading / forming method are all catalyst components, the catalyst composition is estimated from the added amount on the assumption that the raw material components such as metal salts have changed into the corresponding metal oxides. . When the catalyst is manufactured by the impregnation method, the catalyst is treated with hydrofluoric acid, then melted with ammonium sulfate, and plasma emission spectrometry (ICP-AE) is performed.
S analysis) to determine the catalyst composition.
【0034】次に、本発明の燃焼排ガスの処理方法につ
いて説明する。本発明においては、燃焼排ガスと低酸化
性能触媒および高酸化性能触媒との各接触工程を任意の
順序で且つ100〜250℃の温度範囲で行う。接触温
度250℃以下の条件は、前述の様に分解されたダイオ
キシン等の再生成を防止する観点から規定された条件で
あり、接触温度100℃以上の条件は、装置の運転に支
障を来す結露を確実に防止する観点から規定された条件
である。接触処理中の圧力は、ゲージ圧で通常−0.0
3〜9kg/cm2、好ましくは0.01〜5kg/c
m2である。また、SVは、通常100〜50000H
r-1、好ましくは1000〜20000Hr-1である。Next, the method for treating combustion exhaust gas of the present invention will be described. In the present invention, each contacting step between the combustion exhaust gas and the low oxidizing performance catalyst and the high oxidizing performance catalyst is performed in an arbitrary order and in a temperature range of 100 to 250 ° C. The condition at a contact temperature of 250 ° C. or less is a condition defined from the viewpoint of preventing regeneration of decomposed dioxin and the like as described above, and the condition at a contact temperature of 100 ° C. or more hinders the operation of the apparatus. This is a condition specified from the viewpoint of reliably preventing dew condensation. The pressure during the contact treatment is usually -0.0
3 to 9 kg / cm 2 , preferably 0.01 to 5 kg / c
m 2 . SV is usually 100 to 50,000H
r −1 , preferably 1000 to 20000 Hr −1 .
【0035】本発明の処理方法が対象とする燃焼排ガス
としては、塩素化有機化合物、通常0.1ppm以上の
NOx、通常0.1ppm以上のSOxを含有する排ガ
ス、例えば都市ごみや産業廃棄物などを燃焼した際の排
ガス等が挙げられる。この様な燃焼排ガスには、通常、
2,3,7,8−テトラクロロジベンゾダイオキシン、
2,3,4,7,8−ペンタクロロジベンゾフランで代
表されるダイオキシン類が10〜200ng/Nm
3(毒性等価換算値)含まれている。更に、これらダイ
オキシン類の前駆体であるモノクロロベンゼン、ジクロ
ロベンゼン又は o−クロロフェノール、クロロベンゾ
フラン等の塩素化有機化合物も含まれている。As the combustion exhaust gas to be treated by the treatment method of the present invention, an exhaust gas containing a chlorinated organic compound, usually 0.1 ppm or more of NO x , usually 0.1 ppm or more of SO x , such as municipal waste or industrial waste Exhaust gas and the like when a substance or the like is burned. Such flue gas usually contains
2,3,7,8-tetrachlorodibenzodioxin,
Dioxins represented by 2,3,4,7,8-pentachlorodibenzofuran are 10 to 200 ng / Nm
3 (Equivalent value of toxicity) is included. Furthermore, chlorinated organic compounds such as monochlorobenzene, dichlorobenzene or o-chlorophenol or chlorobenzofuran, which are precursors of these dioxins, are also included.
【0036】上記の燃焼排ガスは、通常、バッグフィル
ターに通じて粉塵や重金属などを除去した後に接触工程
に導入される。また、必要に応じ、バッグフィルターで
処理する前にアルカリ洗浄塔で処理して酸性ガスを除去
してもよい。The above combustion exhaust gas is usually introduced into a contact step after passing through a bag filter to remove dust and heavy metals. If necessary, an acidic gas may be removed by treating with an alkali washing tower before treating with a bag filter.
【0037】本発明において、低酸化性能触媒との接触
工程を先行させる場合、低酸化性能触媒との接触工程に
流入する燃焼排ガス中にアンモニアを導入するが、その
量は当該工程から流出する燃焼排ガス中のアンモニア濃
度が20ppm以下となる量に調節する。In the present invention, when the step of contacting with the catalyst having a low oxidation performance is preceded, ammonia is introduced into the flue gas flowing into the step of contacting with the catalyst having a low oxidation performance. The amount is adjusted so that the ammonia concentration in the exhaust gas becomes 20 ppm or less.
【0038】すなわち、上記の場合、第1工程である低
酸化性能触媒との接触工程は、窒素酸化物の分解のた
め、アンモニアの存在下に行う。この際、酸性硫酸アン
モニウムは、触媒が低酸化性であるため、殆ど生成しな
い。従って、窒素酸化物の分解と同時に、塩素化有機化
合物は、低酸化性能触媒の能力に応じた高い水準で分解
される。燃焼排ガス中へのアンモニアの導入量は、上記
の条件下、窒素酸化物を高分解し得る様に決定される。
なお、燃焼排ガス中でのアンモニアの消費量は、燃焼排
ガスの温度および処理量、触媒の使用量およびガス接触
面積などで決定される。上記の第1工程から流出する燃
焼排ガス中に残存する塩素化有機化合物は、第2工程で
ある高酸化性能触媒との接触工程によって分解される。
この際、酸性硫酸アンモニウムは、燃焼排ガス中のアン
モニア濃度が20ppm以下に抑えられているため、殆
ど生成しない。That is, in the above case, the first step of contacting with the catalyst having a low oxidation performance is performed in the presence of ammonia to decompose nitrogen oxides. At this time, ammonium acid sulfate is hardly generated because the catalyst has low oxidizing property. Therefore, at the same time as the decomposition of the nitrogen oxides, the chlorinated organic compounds are decomposed at a high level corresponding to the capacity of the low oxidation performance catalyst. The amount of ammonia introduced into the combustion exhaust gas is determined so that nitrogen oxides can be highly decomposed under the above conditions.
The amount of consumption of ammonia in the flue gas is determined by the temperature and the amount of the flue gas, the amount of the catalyst used, the gas contact area, and the like. The chlorinated organic compound remaining in the combustion exhaust gas flowing out of the first step is decomposed in the second step, a step of contacting with a high oxidation performance catalyst.
At this time, almost no ammonium ammonium sulfate is generated because the ammonia concentration in the combustion exhaust gas is suppressed to 20 ppm or less.
【0039】一方、本発明において、高酸化性能触媒と
の接触工程を先行させる場合、低酸化性能触媒との接触
工程に流入する燃焼排ガス中にアンモニアを導入する。On the other hand, in the present invention, when the step of contacting with the catalyst having a high oxidizing performance is preceded, ammonia is introduced into the combustion exhaust gas flowing into the step of contacting with the catalyst having a low oxidizing performance.
【0040】すなわち、上記の場合、第1工程である高
酸化性能触媒との接触工程は、塩素化有機化合物の分解
を行い、実質的に窒素酸化物の分解を行わないためアン
モニアの不存在下に行う。なお、窒素酸化物の一部分解
のため焼却炉内にアンモニアを導入している場合は、燃
焼排ガス中のアンモニア濃度が20ppm以下となる様
に焼却炉内に導入するアンモニア量を調節する。上記の
第1工程から流出する燃焼排ガス中の窒素酸化物は、第
2工程である低酸化性能触媒との接触工程によって分解
される。この際、酸性硫酸アンモニウムは、触媒が低酸
化性であるため、殆ど生成しない。従って、低酸化性能
触媒との接触工程に流入する燃焼排ガス(上記の第1工
程からの流出ガス)中に導入されるアンモニアの量は、
窒素酸化物を高分解し得る様に任意に決定される。That is, in the above case, the first step, the step of contacting with the catalyst having a high oxidation performance, decomposes the chlorinated organic compound and does not substantially decompose nitrogen oxides, so that the step To do. When ammonia is introduced into the incinerator for partial decomposition of nitrogen oxides, the amount of ammonia introduced into the incinerator is adjusted so that the ammonia concentration in the combustion exhaust gas becomes 20 ppm or less. Nitrogen oxides in the combustion exhaust gas flowing out of the first step are decomposed in the second step, a step of contacting with a low oxidation performance catalyst. At this time, ammonium acid sulfate is hardly generated because the catalyst has low oxidizing property. Therefore, the amount of ammonia introduced into the combustion exhaust gas (outflow gas from the above-mentioned first step) flowing into the contact step with the low oxidation performance catalyst is:
It is arbitrarily determined so that nitrogen oxides can be highly decomposed.
【0041】上記の各接触工程における反応器の大きさ
及び形状は、本発明の目的を逸脱しない限り、任意に選
択することが出来る。また、各触媒は、別々の反応器に
充填しても、同一の反応器に異なる層として充填しても
よい。The size and shape of the reactor in each of the above contacting steps can be arbitrarily selected without departing from the object of the present invention. Further, each catalyst may be charged in a separate reactor or may be charged in the same reactor as different layers.
【0042】[0042]
【実施例】以下、本発明を実施例により詳細に説明する
が、本発明はその要旨を超えない限り、以下の実施例に
より限定されるものではない。なお、以下の諸例で使用
した触媒(A)〜(E)は次の様に調製した。EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. The catalysts (A) to (E) used in the following examples were prepared as follows.
【0043】<触媒(A)の調製>メタバナジン酸アン
モニウム129gとパラタングステン酸アンモニウム1
081gを80℃に加温した10重量%モノエタノール
アミン水溶液6000gに溶解して原料液(1)を調製
した。別に、パラモリブデン酸アンモニウム73.6g
を水600gに溶解して原料液(2)を調製した。原料
液(1)及び原料液(2)とチタニア粉末7880gと
成形助材1000gとを双腕型ニーダーで2時間混練
し、得られた混練物を押出機により口径5mmのハニカ
ム構造に成形した。得られた成形物を130℃の温度で
一夜(約10時間)乾燥し、次いでSV100Hr-1、
温度600℃の条件下で3時間焼成し、触媒(A)を得
た。触媒(A)の組成およびその物性を表1に示す。<Preparation of Catalyst (A)> 129 g of ammonium metavanadate and ammonium paratungstate 1
081 g was dissolved in 6000 g of a 10% by weight aqueous solution of monoethanolamine heated to 80 ° C. to prepare a raw material liquid (1). Separately, 73.6 g of ammonium paramolybdate
Was dissolved in 600 g of water to prepare a raw material liquid (2). The raw material liquid (1), the raw material liquid (2), 7,880 g of titania powder, and 1000 g of a forming aid were kneaded with a double-arm kneader for 2 hours, and the obtained kneaded product was formed into a honeycomb structure having a diameter of 5 mm by an extruder. The obtained molding is dried at a temperature of 130 ° C. overnight (about 10 hours), and then SV100Hr −1 ,
The mixture was calcined at a temperature of 600 ° C. for 3 hours to obtain a catalyst (A). Table 1 shows the composition of the catalyst (A) and its physical properties.
【0044】<触媒(B)の調製>上記の触媒(A)の
調製において、メタバナジン酸アンモニウムの使用量を
643g、チタニア粉末の使用量を7480gに変更し
た以外は、触媒(A)の調製と同様にして触媒(B)を
調製した。触媒(B)の組成およびその物性を表1に示
す。<Preparation of catalyst (B)> The preparation of catalyst (A) was the same as that of catalyst (A) except that the amount of ammonium metavanadate used was changed to 643 g and the amount of titania powder used was changed to 7480 g. Similarly, a catalyst (B) was prepared. Table 1 shows the composition of the catalyst (B) and the physical properties thereof.
【0045】<触媒(C)の調製>上記の触媒(A)の
調製において、メタバナジン酸アンモニウムの使用量を
516g、チタニア粉末の使用量を7580gに変更し
た以外は、触媒(A)の調製と同様にして触媒(C)を
調製した。触媒(C)の組成およびその物性を表1に示
す。<Preparation of catalyst (C)> The preparation of catalyst (A) was the same as that of catalyst (A) except that the amount of ammonium metavanadate used was changed to 516 g and the amount of titania powder used was changed to 7580 g. Similarly, a catalyst (C) was prepared. Table 1 shows the composition of the catalyst (C) and its physical properties.
【0046】<触媒(D)の調製>上記の触媒(A)の
調製において、原料液(2)を使用せず、原料液(1)
として硝酸銅1519gを水6000gに溶解して調製
した水溶液を使用し、チタニア粉末の使用量を8500
gに変更した以外は、触媒(A)の調製と同様にして触
媒(D)を調製した。触媒(D)の組成およびその物性
を表1に示す。<Preparation of Catalyst (D)> In the preparation of the catalyst (A), the raw material liquid (1) was used without using the raw material liquid (2).
An aqueous solution prepared by dissolving 1519 g of copper nitrate in 6000 g of water was used, and the used amount of titania powder was 8500.
Except having changed to g, catalyst (D) was prepared similarly to preparation of catalyst (A). Table 1 shows the composition of the catalyst (D) and the physical properties thereof.
【0047】<触媒(E)の調製>上記の触媒(A)の
調製において、原料液(2)を使用せず、原料液(1)
として硝酸銅2852gを水6000gに溶解して調製
した水溶液を使用し、チタニア粉末の使用量を8150
gに変更した以外は、触媒(A)の調製と同様にして触
媒(E)を調製した。触媒(E)の組成およびその物性
を表1に示す。<Preparation of Catalyst (E)> In the preparation of the catalyst (A), the raw material liquid (1) was used without using the raw material liquid (2).
An aqueous solution prepared by dissolving 2852 g of copper nitrate in 6000 g of water was used, and the used amount of titania powder was 8150 g.
Except having changed to g, catalyst (E) was prepared similarly to preparation of catalyst (A). Table 1 shows the composition of the catalyst (E) and its physical properties.
【0048】<二酸化イオウ酸化転化率の測定>前記の
触媒(A)〜(E)をそれぞれ450ml(縦および横
方向に夫々6個の孔を有し且つ高さが300mmのハニ
カム構造)のサンプルに加工して石英ガラス製の反応管
に充填した。次いで、管状型電気炉に反応管を入れ、窒
素ガスと酸素ガスを所定量流通させながら触媒の温度を
250℃に保持した。次いで、所定濃度となる様にH2
OとSO2ガスを添加した。ガス組成は、O210乾体積
%,SO2500ppm,H2O10体積%,N2バランス
量であり、ガス調製量(速度)は835NL/Hrとし
た。<Measurement of Sulfur Dioxide Oxidation Conversion> A sample of each of the above catalysts (A) to (E) was 450 ml (a honeycomb structure having six holes in each of the vertical and horizontal directions and a height of 300 mm). And filled into a reaction tube made of quartz glass. Next, the reaction tube was placed in a tubular electric furnace, and the temperature of the catalyst was maintained at 250 ° C. while flowing a predetermined amount of nitrogen gas and oxygen gas. Next, H 2 is adjusted to a predetermined concentration.
O and SO 2 gas were added. The gas composition is O 2 10 dry volume
%, SO 2 500 ppm, H 2 O 10 volume%, N 2 balance amount, and the gas preparation amount (rate) was 835 NL / Hr.
【0049】前記の反応管に上記のガスを70時間通過
させ、その後、反応管の出口のガスをサンプリングしS
O3濃度を測定した。次いで、再度、反応管の出口のガ
スをサンプリングしトータルSOX濃度を測定した。S
O3のサンプリングはスパイラル管式捕集管を使用して
SOXの内SO3のみを捕集することによって行った。そ
して、捕集したSO3は、水で洗い採り、JIS K
0103の沈殿滴定法にて分析した。トータルSOXの
サンプリング及び分析は、JIS K 0103の方法
によって行った。二酸化イオウの酸化転化率は次式によ
り求めた。The above-mentioned gas was passed through the reaction tube for 70 hours.
The O 3 concentration was measured. Next, the gas at the outlet of the reaction tube was sampled again to measure the total SO X concentration. S
Sampling of O 3 was performed by collecting only SO 3 of SO X using a spiral tube type collection tube. Then, the collected SO 3 is washed out with water, and JIS K
The sample was analyzed by the precipitation titration method of No. 103. Sampling and analysis of total SO X were performed according to the method of JIS K0103. The oxidation conversion of sulfur dioxide was determined by the following equation.
【0050】[0050]
【数4】(出口SO3濃度/出口トータルSOX)×10
0## EQU4 ## (Outlet SO 3 concentration / Outlet total SO X ) × 10
0
【0051】実施例1 縦内径45cm、横内径45cm、高さ5mの反応塔に
15cm×15cm×70cmのハニカム構造の触媒を
1段に3本×3本(合計9本)の割合で全段5段に積み
上げ、前3段に触媒(A)、後2段にに触媒(B)を充
填し、常圧固定床流通反応装置を組み立てた。そして、
この装置を使用し、都市ゴミ焼却炉のモデル排ガスの処
理試験を次の要領で行った。Example 1 A catalyst having a honeycomb structure of 15 cm × 15 cm × 70 cm was placed in a reaction tower having a vertical inner diameter of 45 cm, a horizontal inner diameter of 45 cm, and a height of 5 m at a ratio of 3 × 3 (total 9) in one stage. Five stages were stacked, the first three stages were filled with the catalyst (A), and the second two stages were filled with the catalyst (B), and an atmospheric pressure fixed bed flow reactor was assembled. And
Using this apparatus, a treatment test of a model exhaust gas from a municipal waste incinerator was performed as follows.
【0052】温度200℃、SV3000Hr-1の条件
下、平均濃度80ppmのアンモニアを添加しながら、
上記の装置に、平均濃度0.3ng−TEQ/Nm3の
ダイオキシン類と平均濃度20ppmのSO2と平均濃
度100ppmのNOxを含有するガスを通過させた。
アンモニアの添加量は、触媒(B)の直前(前段3段直
後)のアンモニア濃度を測定し、その値が20ppm以
下となる様に調節した。At a temperature of 200 ° C. and an SV of 3000 Hr −1 , while adding ammonia having an average concentration of 80 ppm,
The above device, was passed through a gas containing NO x of dioxins mean concentration 0.3ng-TEQ / Nm 3 and the average concentration 20ppm of SO 2 Mean concentration 100 ppm.
The amount of added ammonia was measured by measuring the ammonia concentration immediately before the catalyst (B) (immediately after the first three stages) and adjusting the value to 20 ppm or less.
【0053】処理後の排ガスの分析は、ガスクロマトグ
ラフィー質量分析法で「廃棄物処理におけるダイオキシ
ン類標準測定分析マニュアル」(厚生省生活衛生局水道
環境部環境整備課(平成9年2月))に準じて行った。
分析は通ガス後2週間後と4ヶ月後に行った。評価結果
を表2に示す。The exhaust gas after treatment was analyzed by gas chromatography mass spectrometry in "Manual for Standard Measurement and Analysis of Dioxins in Waste Disposal" (Environmental Improvement Division, Water Environment Department, Ministry of Health and Welfare, Ministry of Health and Welfare, February 1997). I went according to.
The analysis was performed two weeks and four months after passing the gas. Table 2 shows the evaluation results.
【0054】実施例2 実施例1において、常圧固定床流通反応装置を組み立て
る際、前2段に触媒(B)、後3段に触媒(A)を充填
した。そして、アンモニアの添加位置を触媒(A)の直
前(前段2段の直後)とし、アンモニア添加量を平均N
Ox濃度に対し、モル比(NOx/NH3)で1とし、分
析を1週間後と3ヶ月に行った以外は、実施例1と同様
にして都市ゴミ焼却炉のモデル排ガスの処理試験を行っ
た。評価結果を表3に示す。Example 2 In Example 1, when assembling a normal-pressure fixed-bed flow reactor, the first two stages were filled with the catalyst (B) and the third three stages were filled with the catalyst (A). Then, the ammonia addition position is set immediately before the catalyst (A) (immediately after the first two stages), and the ammonia addition amount is set to an average N
A treatment test of a model exhaust gas from a municipal waste incinerator in the same manner as in Example 1 except that the molar ratio (NO x / NH 3 ) was set to 1 with respect to the O x concentration, and the analysis was performed one week and three months later. Was done. Table 3 shows the evaluation results.
【0055】実施例3 3cm×3cm×50cmのハニカム構造の触媒を充填
した内径5cm、長さ60cmのガラス製反応器を3本
直列に接続し、縦内径80cm、横内径80cm、高さ
1.5mの恒温槽内に設置した。前2本の反応器に触媒
(D)、後1本の反応器に触媒(E)を充填して常圧固
定床流通反応装置を組み立てた。そして、この装置を使
用し、都市ゴミ焼却炉のモデル排ガスの処理試験を次の
要領で行った。Example 3 Three glass reactors each having an inner diameter of 5 cm and a length of 60 cm filled with a catalyst having a honeycomb structure of 3 cm × 3 cm × 50 cm were connected in series, and a vertical inner diameter of 80 cm, a horizontal inner diameter of 80 cm and a height of 1. It was installed in a 5 m constant temperature bath. The catalyst (D) was charged into the first two reactors and the catalyst (E) was charged into the second reactor, and a normal pressure fixed bed flow reactor was assembled. Using this apparatus, a treatment test of a model exhaust gas from a municipal waste incinerator was performed as follows.
【0056】温度200℃、SV1000Hr-1の条件
下、平均濃度60ppmのアンモニアを添加しながら、
上記の装置に、平均濃度1ng−TEQ/Nm3のダイ
オキシン類と平均濃度5ppmのSO2と平均濃度75
ppmのNOxを含有するガスを通過させた。アンモニ
アの添加量は、触媒(E)の直前(前2本の反応器の直
後)のアンモニア濃度を測定し、その値が20ppm以
下となる様に調節した。処理後の排ガスの分析は実施例
1と同じ方法で行った。評価結果を表4に示す。At a temperature of 200 ° C. and an SV of 1000 Hr −1 , while adding ammonia having an average concentration of 60 ppm,
Dioxins having an average concentration of 1 ng-TEQ / Nm 3 , SO 2 having an average concentration of 5 ppm, and an average concentration of 75
A gas containing ppm NO x was passed. The addition amount of ammonia was measured by measuring the ammonia concentration immediately before the catalyst (E) (immediately after the previous two reactors) and adjusting the value to 20 ppm or less. The exhaust gas after the treatment was analyzed in the same manner as in Example 1. Table 4 shows the evaluation results.
【0057】比較例1 実施例1において、ハニカム構造の全段5段に触媒
(C)を充填して組み立てた常圧固定床流通反応装置を
使用し、前段3段直後のアンモニア濃度の測定結果に基
づくアンモニア添加量の調節を行わなかったこと以外
は、実施例1と同様な方法でモデル排ガスの処理試験を
行った。評価結果を表5に示す。COMPARATIVE EXAMPLE 1 In Example 1, the measurement result of the ammonia concentration immediately after the first three stages was obtained by using a normal pressure fixed bed flow reactor assembled by filling the catalyst (C) into all five stages of the honeycomb structure. A model exhaust gas treatment test was performed in the same manner as in Example 1 except that the amount of added ammonia was not adjusted based on the above. Table 5 shows the evaluation results.
【0058】[0058]
【表1】 [Table 1]
【0059】[0059]
【表2】 [Table 2]
【0060】[0060]
【表3】 [Table 3]
【0061】[0061]
【表4】 [Table 4]
【0062】[0062]
【表5】 [Table 5]
【0063】[0063]
【発明の効果】以上説明した本発明によれば、硫黄酸化
物から生成する酸性硫酸アンモニウムを極力少なくする
ことにより、触媒の経時的性能劣化が抑制されるため、
燃焼排ガス中のダイオキシン等の塩素化有機化合物およ
び窒素酸化物を高効率で除去することが出来る。また、
本発明によれば、一旦分解されたダイオキシン等が再生
成することがない。According to the present invention described above, deterioration of the catalyst over time can be suppressed by minimizing the amount of acidic ammonium sulfate generated from the sulfur oxide.
Chlorinated organic compounds such as dioxins and nitrogen oxides in flue gas can be removed with high efficiency. Also,
According to the present invention, once decomposed dioxin or the like does not regenerate.
【手続補正書】[Procedure amendment]
【提出日】平成12年1月21日(2000.1.2
1)[Submission date] January 21, 2000 (2000.1.2
1)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0048[Correction target item name] 0048
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0048】<二酸化イオウ酸化転化率の測定>前記の
触媒(A)〜(E)をそれぞれ450ml(縦および横
方向に夫々6個の孔を有し且つ高さが500mmのハニ
カム構造)のサンプルに加工して石英ガラス製の反応管
に充填した。次いで、管状型電気炉に反応管を入れ、窒
素ガスと酸素ガスを所定量流通させながら触媒の温度を
250℃に保持した。次いで、所定濃度となる様にH2
OとSO2ガスを添加した。ガス組成は、O210乾体積
%,SO2500ppm,H2O10体積%,N2バランス
量であり、ガス調製量(速度)は835NL/Hrとし
た。<Measurement of Sulfur Dioxide Oxidation Conversion> Each of the catalysts (A) to (E) was prepared in a volume of 450 ml (a honeycomb structure having six holes in each of the vertical and horizontal directions and a height of 500 mm). The sample was processed and filled in a quartz glass reaction tube. Next, the reaction tube was placed in a tubular electric furnace, and the temperature of the catalyst was maintained at 250 ° C. while flowing a predetermined amount of nitrogen gas and oxygen gas. Next, H 2 is adjusted to a predetermined concentration.
O and SO 2 gas were added. The gas composition is O 2 10 dry volume
%, SO 2 500 ppm, H 2 O 10 volume%, N 2 balance amount, and the gas preparation amount (rate) was 835 NL / Hr.
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0062[Correction target item name] 0062
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0062】[0062]
【表5】 [Table 5]
───────────────────────────────────────────────────── フロントページの続き (72)発明者 清野 健一 三重県四日市市東邦町1番地 三菱化学株 式会社四日市事業所内 (72)発明者 内田 雅昭 福岡県北九州市若松区北湊町13番2号 触 媒化成工業株式会社若松工場内 (72)発明者 長野 清 福岡県北九州市若松区北湊町13番2号 触 媒化成工業株式会社若松工場内 (72)発明者 杉野 重久 東京都港区芝五丁目34番6号 三菱化学エ ンジニアリング株式会社内 (72)発明者 山内 章弘 東京都港区芝五丁目34番6号 三菱化学エ ンジニアリング株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kenichi Seino 1 Toho-cho, Yokkaichi-shi, Mie Mitsubishi Chemical Corporation Yokkaichi Office (72) Inventor Masaaki Uchida 13-2 Kitaminato-machi, Wakamatsu-ku, Kitakyushu-shi, Fukuoka (72) Inventor Kiyoshi Nagano 13-2 Kitaminato-machi, Wakamatsu-ku, Kitakyushu-city, Fukuoka Prefecture Inventor Shigeru Sugino 5-72 Shiba, Minato-ku, Tokyo 34-6 Mitsubishi Chemical Engineering Corporation (72) Inventor Akihiro Yamauchi 5-34-6 Shiba, Minato-ku, Tokyo Mitsubishi Chemical Engineering Corporation
Claims (4)
素酸化物を含有する燃焼排ガスの処理方法であって、次
の(a)〜(d)の条件を満足することを特徴とする燃
焼排ガスの処理方法。 (a)触媒として、塩素化有機化合物分解能とアンモニ
ア存在下における窒素酸化物分解能とを有し且つ以下に
規定する二酸化イオウの酸化転化率が1.3%以下の低
酸化性能触媒(X)と塩素化有機化合物分解能を有し且
つ以下に規定する二酸化イオウの酸化転化率が3.0%
以上の高酸化性能触媒(Y)との2種類を使用する。 <二酸化イオウの酸化転化率> 圧力:常圧、温度:250℃、SV(空間速度):18
50Hr-1、触媒量:450mlの条件下、O210乾
体積%,SO2500ppm,H2O:10体積%,N2バ
ランス量の組成のガスを触媒が充填された反応管に供給
し、反応管出口のSO3濃度とトータルSOXの濃度を求
め、次式により二酸化イオウの酸化転化率(%)を算出
する。 【数1】(出口SO3濃度/出口トータルSOX)×10
0 (b)燃焼排ガスと低酸化性能触媒および高酸化性能触
媒との各接触工程を任意の順序で且つ100〜250℃
の温度範囲で行う。 (c)低酸化性能触媒との接触工程を先行させる場合、
低酸化性能触媒との接触工程に流入する燃焼排ガス中に
アンモニアを導入するが、その量は当該工程から流出す
る燃焼排ガス中のアンモニア濃度が20ppm以下とな
る量に調節する。 (d)高酸化性能触媒との接触工程を先行させる場合、
低酸化性能触媒との接触工程に流入する燃焼排ガス中に
アンモニアを導入する。1. A method for treating a combustion exhaust gas containing a chlorinated organic compound, sulfur dioxide and nitrogen oxide, wherein the method satisfies the following conditions (a) to (d): Processing method. (A) a low oxidation performance catalyst (X) having a chlorinated organic compound resolution and a nitrogen oxide resolution in the presence of ammonia and having an oxidation conversion of sulfur dioxide of 1.3% or less as defined below. It has the ability to degrade chlorinated organic compounds and has an oxidation conversion of sulfur dioxide of 3.0% as defined below.
Two kinds of the above-mentioned high oxidation performance catalysts (Y) are used. <Oxidation conversion of sulfur dioxide> Pressure: normal pressure, temperature: 250 ° C, SV (space velocity): 18
Under the conditions of 50 Hr -1 and a catalyst amount of 450 ml, a gas having a composition of O 2 10 vol%, SO 2 500 ppm, H 2 O: 10 vol%, and N 2 balance amount is supplied to the reaction tube filled with the catalyst. Then, the SO 3 concentration and the total SO X concentration at the outlet of the reaction tube are obtained, and the oxidation conversion (%) of sulfur dioxide is calculated by the following equation. ## EQU1 ## (Outlet SO 3 concentration / Outlet total SO X ) × 10
0 (b) The contacting steps between the combustion exhaust gas and the low oxidizing performance catalyst and the high oxidizing performance catalyst are performed in an arbitrary order at 100 to 250 ° C.
The temperature range is as follows. (C) When prior to the contacting step with the low oxidation performance catalyst,
Ammonia is introduced into the flue gas flowing into the contact step with the low oxidation performance catalyst, and the amount is adjusted so that the ammonia concentration in the flue gas flowing out from the step becomes 20 ppm or less. (D) When prior to the contacting step with the high oxidation performance catalyst,
Ammonia is introduced into the combustion exhaust gas flowing into the contact step with the low oxidation performance catalyst.
以上である請求項1に記載の処理方法。2. The oxidation conversion rate of the high oxidation performance catalyst is 4.2%.
The processing method according to claim 1, which is as described above.
銅酸化物を含有する触媒である請求項1又は2に記載の
処理方法。3. The treatment method according to claim 1, wherein each of the catalysts is a catalyst containing vanadium oxide or copper oxide.
る触媒である請求項1〜3の何れかに記載の処理方法。4. The treatment method according to claim 1, wherein each of the catalysts is a catalyst supported on titania.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11295644A JP2000189756A (en) | 1998-10-23 | 1999-10-18 | Treatment method of combustion exhaust gas |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30268798 | 1998-10-23 | ||
JP10-302687 | 1998-10-23 | ||
JP11295644A JP2000189756A (en) | 1998-10-23 | 1999-10-18 | Treatment method of combustion exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000189756A true JP2000189756A (en) | 2000-07-11 |
Family
ID=26560349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11295644A Pending JP2000189756A (en) | 1998-10-23 | 1999-10-18 | Treatment method of combustion exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000189756A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014073066A1 (en) * | 2012-11-08 | 2014-05-15 | イビデン株式会社 | Honeycomb structure and manufacturing method thereof |
WO2014073067A1 (en) * | 2012-11-08 | 2014-05-15 | イビデン株式会社 | Honeycomb structure |
WO2014073065A1 (en) * | 2012-11-08 | 2014-05-15 | イビデン株式会社 | Honeycomb structure and manufacturing method thereof |
-
1999
- 1999-10-18 JP JP11295644A patent/JP2000189756A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014073066A1 (en) * | 2012-11-08 | 2014-05-15 | イビデン株式会社 | Honeycomb structure and manufacturing method thereof |
WO2014073067A1 (en) * | 2012-11-08 | 2014-05-15 | イビデン株式会社 | Honeycomb structure |
WO2014073065A1 (en) * | 2012-11-08 | 2014-05-15 | イビデン株式会社 | Honeycomb structure and manufacturing method thereof |
CN104797333A (en) * | 2012-11-08 | 2015-07-22 | 揖斐电株式会社 | honeycomb structure |
JPWO2014073066A1 (en) * | 2012-11-08 | 2016-09-08 | イビデン株式会社 | Honeycomb structure and manufacturing method thereof |
JPWO2014073067A1 (en) * | 2012-11-08 | 2016-09-08 | イビデン株式会社 | Honeycomb structure |
JPWO2014073065A1 (en) * | 2012-11-08 | 2016-09-08 | イビデン株式会社 | Honeycomb structure and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0547226B1 (en) | Method of oxidative decomposition of organic halogen compound | |
JP3480596B2 (en) | Dry desulfurization denitrification process | |
EP0528982A1 (en) | CATALYSTS FOR DEGRADING HALOGENED ORGANIC SUBSTANCES. | |
JP3021420B2 (en) | Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus | |
JP2000189756A (en) | Treatment method of combustion exhaust gas | |
JPH1057760A (en) | Decomposition method of chlorinated organic compounds | |
JP2000015106A (en) | Catalyst for treatment of waste gas, treatment of waste gas and treating apparatus | |
JP3457917B2 (en) | Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus | |
JP2001286734A (en) | Method for decomposing chlorinated organic compounds and method for treating combustion exhaust gas | |
JP2000042409A (en) | Catalyst for decomposing chlorinated organic compounds and method for treating combustion exhaust gas | |
JP2001286733A (en) | Method for decomposing chlorinated organic compounds and method for treating combustion exhaust gas | |
JP3538984B2 (en) | Decomposition method of chlorinated organic compounds | |
JP2916259B2 (en) | Method for oxidative decomposition of organic halogen compounds | |
JP2000024500A (en) | Catalyst for exhaust gas treatment, exhaust gas treatment and treatment apparatus | |
JP3510541B2 (en) | Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus | |
JPH1099646A (en) | Decomposition method of chlorinated organic compounds | |
JP3790943B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP3509286B2 (en) | Decomposition method of chlorinated organic compounds | |
JP4182697B2 (en) | Catalyst for decomposing chlorinated organic compounds and process for producing the same | |
JP2001286730A (en) | Method for decomposing chlorinated organic compounds and method for treating combustion exhaust gas | |
KR100502853B1 (en) | Cr·W·TiO2 CATALYST AND METHOD FOR THE REMOVAL OF DIOXINS | |
JPH1085559A (en) | Decomposition method of chlorinated organic compounds | |
JPH1066829A (en) | Decomposition method of chlorinated organic compounds | |
JP2005034677A (en) | Exhaust gas treatment catalyst and exhaust gas treatment method | |
JP2002136870A (en) | Catalyst for treating exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060301 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060629 |