JP3790943B2 - Exhaust gas purification catalyst and exhaust gas purification method - Google Patents
Exhaust gas purification catalyst and exhaust gas purification method Download PDFInfo
- Publication number
- JP3790943B2 JP3790943B2 JP20445297A JP20445297A JP3790943B2 JP 3790943 B2 JP3790943 B2 JP 3790943B2 JP 20445297 A JP20445297 A JP 20445297A JP 20445297 A JP20445297 A JP 20445297A JP 3790943 B2 JP3790943 B2 JP 3790943B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- catalyst
- oxide
- gas purification
- purifying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、排ガス中に有害成分として含有しているポリ塩化ジベンゾダイオキシン(以下「PCDD」とも表記)やポリ塩化ジベンゾフラン(以下「PCDF」とも表記)或いはクロロベンゼン等の有機塩素化合物、窒素酸化物、炭化水素や一酸化炭素等の可燃性ガスなどの除去を促進する排ガス浄化用触媒及びこれを用いた排ガス浄化方法に関するものである。
【0002】
【従来の技術】
都市ごみや産業廃棄物、下水汚泥等を処理する焼却施設等から発生する排ガス中には窒素酸化物(以下「NOx」とも云う)、炭化水素及び一酸化炭素と共に微量ではあるが極めて毒性の強いダイオキシン類等の有機塩素化合物が含まれており、これら排ガス中の有機塩素化合物、NOx、炭化水素及び一酸化炭素等を除去して浄化することは環境保全の上で非常に重要である。
【0003】
排ガス中の芳香族系有機塩素化合物を触媒で分解するものとして、例えば特開平2−35914号公報には、排ガス温度を150℃以上に高め、その後、酸化チタン、酸化バナジウム、酸化タングステン、白金、パラジウムの中から選ばれた少なくとも一種の金属含有成分を含む触媒と前記排ガスと接触させることにより、排ガス中の芳香族系有機塩素化合物を分解するものが開示されている。
【0004】
又、排ガス中の窒素酸化物、有機塩素化合物及び一酸化炭素を除去するものとして、例えば特開平5−245343号にA成分としてチタン(Ti)、シリカ(Si)、ジルコニア(Zr)、アルミニウム(Al)及びバナジウム(V)から選択され、Vを必ず含む一種の金属の単独金属系酸化物又は2種以上の金属の複合多元系酸化物群から選ばれる1種以上と、B成分として白金(Pt)、パラジウム(Pd)、ルテニウム(Ru)等よりなる群から選択される少なくとも一種の金属又はその酸化物を含んでなる触媒を用いることにより焼却炉排ガス等に含まれる窒素酸化物及び有機塩素化合物を除去することが示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の排ガス浄化用触媒及びこれを用いた排ガス浄化方法では必ずしもその性能が十分とは云えず、除去率を向上させるために触媒量を増加させる等の措置や温度を上げる等の方策を実施する必要があった。しかし前者の措置では設備が大型化し、触媒のコストが上昇する問題があった。一方、後者の方策では排ガス加熱に要するエネルギーが大きくなると云う不具合が生じ、エネルギー的に効率よく有機塩素化合物、窒素酸化物、炭化水素、一酸化炭素等を除去することが出来なかった。
【0006】
更に、従来の排ガス浄化用触媒及びこれを用いた排ガス浄化方法は、活性成分として含まれる元素に以下の問題点があった。即ち、Pt、Pd、Ruは、後述の実施例で示されるように塩素化の作用があり、例えば塩素数が一つの2−MCDD(モノクロロジベンゾジオキシン)から、より毒性の高い塩素数が四つの2、3、7、8−TCDD(テトラクロロジベンゾジオキシン)を生成する怖れがあった。
【0007】
又、Cu、Feはその塩化物がダイオキシン生成触媒になる可能性があると云われており問題がある。
【0008】
本発明の課題は、排ガス中に含まれる有害成分である有機塩素化合物、窒素酸化物及び可燃性ガス等を除去し浄化促進する排ガス浄化用触媒及びこれを用いた排ガス浄化方法において、これら有害成分を容易に分解出来、経済的に長期間に渡って効率良く、しかも有害な副生成物を発生させずに除去し、排ガスを浄化することである。
【0009】
【課題を解決するための手段】
本発明者等は上記課題を解決すべく鋭意研究を重ねた結果、触媒を用いて焼却炉等から排出された排ガス中に含有されている、有害な有機塩素化合物、窒素酸化物及び可燃性ガスである炭化水素、一酸化炭素等を経済的に、効率良く除去し、更に有害な副生成物を発生させずに排ガスを浄化し得ることを見い出した。
【0010】
即ち、この発明は、有害成分である有機塩素化合物、窒素酸化物及び可燃性ガスの少なくとも一つを含む排ガスを浄化促進する排ガス浄化用触媒において、前記排ガス中の有害成分の酸化分解を活性化する金属の酸化物を含むことである。排ガス中の有機塩素化合物、窒素酸化物及び可燃性ガスの酸化分解を金属の酸化物を含む触媒により活性化させることにより、これら有害物質を容易に分解出来、効率的、経済的に、しかも有害な副生成物を発生させずに除去し、排ガスを浄化し得る。そして、排ガス中に酸素を含むことにより、或いは酸化剤を加えることにより上記酸化分解の活性は一層促進される。
【0011】
更に、上記排ガス浄化用触媒において、前記金属の酸化物として、Ti、Vの酸化物を必ず含み、更にCe、Mnから選ばれた少なくと一つを酸化物の形態で含むことである。Tiの酸化物は、耐SOx性とVの分散性を高め、且つ担体としての役目も果たす。Vの酸化物は、ダイオキシン等の有機塩素化合物の酸化分解を活性化する。Ce、Mnは酸素をVに渡す役目をし、雰囲気中のO2濃度によってこれらの酸化物の価数が変化する。例えば、CeO3→Ce2O3となり酸化還元電位が小さい方が良い。Mnについても同様である。更に、耐SOx性能向上のためにMoを加えても良い。従って、Ti、Vの酸化物を必ず含み、更にCe、Mnから選ばれた少なくと一つを酸化物の形態で含むことによって、上記効果が一層確実になる。この場合、上記成分に加えて更にAl、Si、Zn、Zrから選ばれた少なくとも一つの金属又はその酸化物を含んでなる触媒組成物とすることで一層の除去効率を高めると共に、これらの酸化物は担体としての働きも担う。
【0012】
更に、上記排ガス浄化用触媒において、更にWの酸化物を含むことである。Wの酸化物は、上記Ti−V−Ceが持つ活性を維持したまま耐SOx性を高め、触媒の長寿命化を可能とする。
【0013】
更に、上記排ガス浄化用触媒のいずれかにおいて、前記金属の酸化物は、原子比で、Ti:75〜95%、V:2〜10%、Ce:0〜10%、Mn:0〜10%、W:0〜20%である。
【0014】
排ガス浄化用触媒に含まれるVの含有量を活性成分の原子比で2〜10%とすることで有機塩素化合物及び可燃性ガスの高い除去効率に加え、窒素酸化物についても高い除去効率を長期に渡って維持出来る。Vの含有量が10%を超えるとTi上でVが高分散しにくくなり、上述した触媒による効果的な分解除去が出来ない。更に、排ガス浄化用触媒に含まれるCe又はMnの含有量を活性成分の原子比で0%〜10%、好ましくは1〜8%とすることで高い除去効率を得ることが出来、有機塩素化合物及び可燃性ガスの除去に加え、窒素酸化物の除去効率を長期に渡って維持出来、特に有機塩素化合物の高い除去効果を発揮出来る。Ce、Mnの含有量が10%より高いと活性成分であるVをCe、Mnが覆ってしまいやはり効率的な分解除去がしにくい。
【0015】
Wを活性成分の原子比で20%以下の範囲で含むようにするとTi−V−Ceが持つ活性を維持したまま耐SOx性が高まり、排ガス浄化用触媒の長寿命化が可能となる。更に、ハニカム形状に成形する成形性も良くなる。この場合、Wの含有量が20%を超えると、Wが触媒表面上の活性点を覆ってしまい、上述した触媒による効率的な分解除去が出来ない。
【0016】
更に、上記排ガス浄化用触媒のいずれかにおいて、前記排ガス浄化用触媒全体の97%(重量比)以上がTi、V、Ce、Mn及びWからなる群から選ばれた元素の酸化物のみからなることである。Ti、V、Ce、Mn及びW等から選ばれた元素の酸化物が重量比で97%であることは、前記排ガスの有害成分を確実に触媒上の上記元素の酸化物と接触させ、酸化分解を促進させる。
【0017】
更に、上記排ガス浄化用触媒のいずれかにおいて、前記有機塩素化合物は、芳香族有機塩素化合物である。芳香族有機塩素化合物は、従来除去率が十分で無く浄化が困難な化合物であったが、本排ガス浄化用触媒によって確実に除去し、浄化出来る。
【0018】
更に、上記排ガス浄化用触媒のいずれかにおいて、前記有機塩素化合物は、ポリ塩化ジベンゾダイオキシン又はポリ塩化ジベンゾフランである。有機塩素化合物としてのポリ塩化ジベンゾダイオキシン又はポリ塩化ジベンゾフランは、微量でも有毒であり、本排ガス浄化用触媒によって確実に除去し、浄化出来る
そして、上記排ガス浄化用触媒のいずれかにおいて、前記排ガスは、下水汚泥処理施設又はごみ焼却炉から排出されたものである。下水汚泥処理施設又はごみ焼却炉から排出された排ガスには、有機塩素化合物、窒素酸化物及び可燃性ガス等が含まれており、本排ガス浄化用触媒によってこれらの有害成分を確実に除去し浄化出来る。
【0019】
又、有害成分である有機塩素化合物、窒素酸化物及び可燃性ガスの少なくとも一つを含む排ガスを浄化する排ガス浄化方法において、前記排ガスを上記いずれかに記載の排ガス浄化用触媒に接触させて前記排ガス中の有害成分を除去し浄化することである。上記いずれかに記載の排ガス浄化用触媒を用いて、排ガス中の有害成分を容易に分解出来、経済的に長期間に渡って効率良く、しかも有害な副生成物を発生させずに除去し、排ガスを浄化する
更に、上記排ガス浄化方法において、前記排ガスを150℃から550℃の温度範囲で前記排ガス浄化用触媒に接触させることである。排ガスと本発明の触媒を接触させる反応時の温度は、150〜550℃、好ましくは150〜300℃の低温域において有機塩素化合物、窒素酸化物、可燃性ガスを長時間安定且つ高い効率で除去し得る画期的な性能を有する。この触媒による副生成物も無く、又分解率の経時変化も無い。本発明の触媒の出現により、排ガス中の有機塩素化合物、窒素酸化物、可燃性ガスの除去が、工業的にも有利な方法として提供されるものである。
【0020】
そして、上記いずれかの排ガス浄化方法において、前記排ガスに前記窒素酸化物の還元剤を添加した後、前記排ガス浄化用触媒に接触させることである。窒素酸化物の還元剤を添加することにより、排ガス中の窒素酸化物は、この還元剤と触媒によって速やかに分解され、排ガスは浄化される。
【0021】
本発明の排ガス浄化用触媒は、上記のように極めて高い性能を有しているが、製造には特に困難な点は無く、通常、触媒の製造に常用される沈殿法、酸化物混合法、混練法、担持法、含浸法等により容易に製造し得る。更に、最終的な触媒の成型法としても通常の押出成型法、打錠成形法、転動造粒法等の目的に応じた任意の成形法を採用し得る。触媒の形状は、円柱状、円筒状、板状、リボン状、ハニカム状、ペレット状、その他一体成形された任意の形状のものを選ぶことが出来る。特に板状、ハニカム状の触媒を用いれば、排ガス中に存在するダストが触媒に付着することを低減出来、その結果ダストの付着による圧力損失の増大や性能の低下等が生せずに、安定した操業を行なうことが出来る。
【0022】
又、触媒成分の少量をシリコン、アルミナ、ジルコニア等の担体に担持したり、シリカ、アルミナ、マグネシア、ジルコニア、酸性白土、活性白土、ケイソウ土等の担体成分と触媒成分とを十分に混練する等の方法で触媒に混ぜて使用することも可能である。又それら担体成分の水溶性塩から触媒成分と同時に共沈させたり、又それら担体成分の水酸化物を混練して使用しても良い。特に、上記の担体又は担体成分の使用は触媒価格を低下せしめる点からも好ましいものであり、又同様に成型時中空円筒状に成形することも同一体積当たりの触媒成分の減量の利益と共に反応上からも極めて好ましいものである。
【0023】
本発明の触媒を調製するバナジウム原料としては各種の酸化バナジウム、メタバナジン酸塩及び硫酸バナジン、ハロゲン化バナジウム等が使用される。セリウム原料としては、各種の酸化セリウム、酢酸セリウム、硝酸セリウム、硝酸セリウムアンモニウム、硫酸セリウムアンモニウム、炭酸セリウム、塩化セリウム、水酸化セリウム、蓚酸セリウム等が使用される。
【0024】
マンガン原料としては、各種の酸化マンガン、酢酸マンガン、硝酸マンガン、硫酸マンガン、炭酸マンガン、塩化マンガン、りん酸マンガン、蓚酸マンガン等が使用される。
【0025】
チタン原料としては、酸化チタン、又は加熱により酸化チタンを生成する各種の化合物、例えばチタン酸、水酸化チタン、硫酸チタン等を使用し得る。更に、触媒調製時に汎用される各種のチタン化合物、例えばハロゲン化チタン、硫酸チタン等を水、アンモニア水、カ性アルカリ、炭酸アルカリ等で沈殿させ、水酸化物となした後加熱分解により酸化物を生成する方法も好ましい方法である。
【0026】
ここで、排ガス浄化用触媒の調製法の一例を挙げて、より具体的にその内容を説明する。
【0027】
所定量の酸化チタン(TiO2)、メタバナジン酸アンモニウム(NH4VO3)、硝酸セリウム(Ce(NO2)3・6H2O)に蒸留水を加え、この混合物を十分に混練する。次に得られたペースト状の混合物を乾燥させた後、最終的に300℃から800℃の温度で1〜10時間程度焼成し、反応に供する。又、TiO2とメタバナジン酸アンモニウムの(NH4VO3)の焼成品を上記と同様な方法で調製し、更にその後、硝酸セリウムを加え、上記と同様な方法で混練、焼成して調製しても良い。
【0028】
以上の触媒調製法は、あくまでもその一例であり、このほか通常汎用される各種の方法により得られた触媒においても良好な触媒が得られることはいうまでもない。
【0029】
本発明の触媒を用いる有機塩素化合物系の除去反応の適用対象としてはクロロベンゼン、クロロフェノール、PCDD、PCDF、ポリ塩化テトラクロロエチレン等の塩素を含む有機物であり、特に芳香族塩素化合物が好ましい対象である。
【0030】
本発明の触媒を使用して有機塩素化合物、窒素酸化物、可燃性ガスの除去を実施する場合、触媒上を通過させる排ガスの空間速度は、100,000/h以下、好ましくは1,000/h以上50,000/h以下に設定する。更に、先に記したように、触媒での反応時の温度は150〜550℃、好ましくは150〜300℃の温度範囲である。又、触媒での反応時の圧力については特に限定はなく、減圧状態から10kgf/cm2或いはそれ以上の圧力範囲でも良好な結果が期待し得る。
【0031】
窒素酸化物の還元剤として添加される物質としては、アンモニア、尿素、一酸化炭素、水素、炭化水素等が考えられる。
【0032】
本発明の排ガス浄化用触媒を使用して有機塩素化合物、窒素酸化物、可燃性ガスの除去反応を実施する反応器の形式としては、基本的には通常の固定床、移動床、流動床等固体触媒に使用する各種の反応器形状が使用出来る。
【0033】
【発明の実施の形態】
次に、この発明の実施の形態を実施例により比較例と対比しながら詳細に説明する。
【0034】
実施例1
酸化チタン(TiO2)20gにメタバナジン酸アンモニウム(NH4VO3)2.20g及び硝酸セリウム(Ce(NO2)3・6H2O)3.27gを加える。更に蒸留水30mlを加え、この混合物を十分に混練する。得られたペースト状の混合物を120℃で2時間乾燥させた後、更に500℃で2時間焼成した。かくして得られた触媒は原子比でTi:Ce:V=100:3:7.5の組成を有する。更に硝酸セリウムの代わりに硝酸マンガンを用いて上記と同様な方法で原子比でTi:Mn:V=100:3:7.5の組成を有する触媒Ti−Mn−Vを調製した。又、比較例としてCe及びMnを含まない触媒Ti−Vを調製した。更に、他の比較例として上記と同様な調製方法により硝酸セリウムの代わりに、硝酸銀、又は硝酸カリウムを用い、Ti−Ag−V、Ti−K−Vを調製した。各触媒の原子比はTi:Ag:V=100:3:7.5、Ti:K:V=100:3:7.5とした。
【0035】
触媒の活性試験装置は通常の常圧流通式であり、反応管は内径16mmのパイレックスガラス製で内部に外径5mmのパイレックスガラス製の熱電対保護管を有している。この反応管を電気炉で加熱して反応温度を設定する。反応管の中央部に10〜20メッシュに整粒した触媒4.5mlを充填し、下記組成のガスを空間速度(以下「SV」と略す)10,000/hで触媒層に流通して、触媒層入口と出口の有機塩素化合物の濃度を測定し、有機塩素化合物の分解率を求めた。反応温度は150〜300℃とした。有機塩素化合物として、クロロベンゼンを用いた。
【0036】
O2 10%
H2O 20%
クロロベンゼン 約1000ppm
NO 200ppm
NH3 160ppm
N2 balance
図1は、各種触媒の温度とクロロベンゼン分解率との関係を示す曲線図である。この図から明らかなように、Ti−Ce−V、Ti−Mn−Vは、それぞれCe、Mnを含まない比較例Ti−V、Ti−Ag−V及びTi−K−Vと比較してクロロベンゼン分解率が向上している。
【0037】
実施例2
実施例1と同様な方法でTi−Ce−V、Ti−Mn−Vを、それぞれTiとCe、TiとMnの組成比を変えて調製し、210℃付近におけるクロロベンゼン分解率を調べた。測定方法、SV、ガス組成は実施例1と同じである。
【0038】
図2は、210℃付近における二つの触媒であるTi−V−Ce、Ti−V−MnのTiに対するCe、Mnの原子比とクロロベンゼン分解率との関係を示す曲線図である。図2から明らかなように、Ti−V−Ce、Ti−V−Mnは、触媒中のCe又はMnの含有量がTiに対して1〜7.5%(原子比)の時、Ce又はMnを含まない比較例Ti−V(図1の210℃におけるクロロベンゼン分解率30%)と比較して有機塩素化合物が向上しており、特に1.5〜5%の間で向上が著しい。
【0039】
実施例3
実施例1と同様な方法で調製したTi−V−Ce、Ti−V−Mn(組成比Ti:V:Ce=100:7.5:3、Ti:V:Mn=100:7.5:3)のo−ジクロロベンゼン、o−クロロフェノールの分解率を調べた。比較例として実施例1と同様な方法で調製したTi−V(組成比Ti:V=100:7.5)の分解率も測定した。測定方法、SVは実施例1と同じであり、ガス組成は以下のように設定した。
【0040】
図3は、各種触媒の温度とo−クロロフェノール分解率及びo−ジクロロベンゼン分解率との関係を示す曲線図である。図3から明らかなように、o−クロロフェノール、o−ジクロロベンゼンのどちらについても、Ti−V−Ce及びTi−V−Mnは、それぞれCe、Mnを含まない比較例Ti−Vと比較して分解活性が向上している。
【0041】
実施例4
実施例1と同様な方法で調製したTi−Ce−V−W(組成比Ti:Ce:V:W=100:15:7.5:5.7)の、SOxによる加速劣化試験を行なった。比較例としてTi−V(組成比Ti:V=100:7.5)についても試験を行なった。測定方法、SVは実施例1と同じである。ガス組成は以下のように設定した。
【0042】
O2 10%
H2O 20%
クロロベンゼン 約1000ppm
NO 200ppm
NH3 160ppm
SO2 200ppm
N2 balance
図4は、二つの触媒の新品と50h後のクロロベンゼン分解率を示す棒線図である。図4に示すとおり、Ti−Ce−V−Wの耐SO2性能は比較例Ti−Vよりも高く、長時間安定であることは明らかである。
【0043】
実施例5
実施例1と同様な原料を用いて調製したTi−Mn−V(組成比Ti:Mn:V=100:3:7.5)のハニカム状及び板状の触媒を調製した。比較例として実施例1と同様な原料を用いて調製したTi−W−V(組成比Ti:W:V=100:13.1:7.5)のハニカム状及び板状の触媒も調製した。上記触媒のPCDD、PCDFの分解率を下記ガス条件で測定した。SV=10,000/h、反応温度は150〜300℃とした。
【0044】
NO 100〜250ppm
NH3 160ppm
ポリ塩化ジベンゾダイオキシン 10〜500ng/Nm3
ポリ塩化ジベンゾフラン 10〜500ng/Nm3
図5は、Ti−Mn−V及び比較例としてTi−W−Vの二つの触媒の形状(ハニカム状、板状)の違いに対する温度とPCDD+PCDF分解率との関係を示す曲線図である。図5の結果より、Mnを含むことにより、ハニカム状の触媒、板状の触媒ともにPCDD、PCDFの分解率が向上していることは明らかである。
【0045】
実施例6
実施例1と同様な方法で調製したTi−Ce−V、Ti−Mn−V(組成比Ti:Ce:V=100:3:7.5、Ti:Mn:V=100:3:7.5)のNOx分解率を測定した。比較例として実施例1と同様な方法で調製したTi−V(組成比Ti:V=100:7.5)のNOx分解率も測定した。測定方法、SVは実施例1と同様であり、ガス組成は以下の通りである。
【0046】
O2 10%
H2O 20%
クロロベンゼン 約1000ppm
NO 200ppm
NH3 240ppm
N2 balance
図6は、触媒Ti−Ce−V、Ti−Mn−Vの温度とNOx除去率との関係を示す曲線図である。同図には比較例としてNOx除去触媒として実用に供せられているTi−VのNOx分解率も示した。図6から明らかなように、Ti−Mn−VのNOx分解率は実用NOx除去触媒Ti−VのNOx分解率とほぼ同程度である。Ti−Ce−VのNOx分解率は向上している。この実施例により排ガス中にクロロベンゼン等の有機塩素化合物が存在していてもNOx除去率には影響せず、Ti−Ce−V、Ti−Mn−Vを用いて有機塩素化合物、NOxの除去を高効率で同時に出来ることは明らかである。
【0047】
実施例7
実施例1と同様な方法で調製したTi−Ce−V、Ti−Mn−V(組成比Ti:Ce:V=100:3:7.5、Ti:Mn:V=100:3:7.5)のC3H8分解率を測定した。比較例として実施例1と同様な方法で調製したTi−V(組成比Ti:V=100:7.5)、Ti−W−V(組成比Ti:W:V=100:13.1:7.5)のC3H8分解率も測定した。測定方法は実施例1と同様であり、SV=20,000/hである。ガス組成は以下の通りである。
【0048】
O2 10%
H2O 20%
C3H8 150ppm
N2 balance
図7は、触媒Ti−Ce−V、Ti−Mn−Vの温度とC3H8分解率との関係を示す曲線図である。同図には比較例としてTi−V、Ti−W−VのC3H8分解率も示した。図7から明らかなように、Ti−Ce−V、Ti−Mn−VのC3H8分解率はTi−V、Ti−W−Vより活性が向上している。この実施例により排ガス中に炭化水素、一酸化炭素等の可燃性ガスが存在している場合、Ti−Ce−V、Ti−Mn−Vを用いて上記炭化水素、一酸化炭素等の可燃性ガスを高効率で除去出来ることは明らかである。
【0049】
実施例8
実施例1と同様な方法で調製したTi−Ce−V(組成比Ti:Ce:V=100:3:7.5)を30gとり、これに硝酸パラジウム溶液(Pd含有量4.439wt%)35.6gを加え、この混合物を十分に混練する。得られたペースト状の混合物を120℃で2時間乾燥させた後、更に500℃で2時間焼成した。かくして得られた触媒Ti−V−Ce−Pdは重量比で(TiO2−V2O5−CeO2):Pd=95:5の組成を有する。このTi−V−Ce−Pdのo−ジクロロベンゼンの分解活性を、測定方法、SVを実施例1と同様に設定し、ガス組成を以下のように設定し、測定したところ、反応管下部に白色の針状結晶の析出が見られた。
【0050】
O2 10%
H2O 20%
o−ジクロロベンゼン 約1000ppm
NO 200ppm
NH3 160ppm
N2 balance
図8は、副生成物のGC−MSピークを示すデータである。上記結晶をGC−MSで分析したところ図8に見られるように、トリクロロベンゼン、テトラクロロベンゼン、ペンタクロロベンゼン、ヘキサクロロベンゼンで構成されていることが判った。以上の結果は、触媒としてTi−V−Ce以外にPdを用いた場合、例えば塩素数が一つの2−MCDD(モノクロロジベンゾジオキシン)から、より毒性の高い塩素数が四つの2、3、7、8−TCDD(テトラクロロジベンゾジオキシン)を生成する可能性があることを示唆している。一方、Pdを含まないTi−V−Ceでは上記のような副生成物は観測されず、有害な副生成物を発生させずに排ガスを浄化出来ることは明らかである。
【0051】
【発明の効果】
本発明の排ガス浄化用触媒及びこれを用いた排ガス浄化方法によれば、排ガス中に含まれる有害成分である有機塩素化合物、窒素酸化物及び可燃性ガス等を、容易に分解出来、経済的に長期間に渡って効率良く、しかも有害な副生成物を発生させずに除去し、排ガスを浄化することが出来る。
【図面の簡単な説明】
【図1】各種触媒の温度とクロロベンゼン分解率との関係を示す曲線図である。
【図2】二つの触媒のTiに対するCe、Mnの原子比とクロロベンゼン分解率との関係を示す曲線図である。
【図3】各種触媒の温度とo−クロロフェノール分解率及びo−ジクロロベンゼン分解率との関係を示す曲線図である。
【図4】二つの触媒の新品と50h後のクロロベンゼン分解率を示す棒線図である。
【図5】二つの触媒の形状の違いに対する温度とPCDD+PCDF分解率との関係を示す曲線図である。
【図6】各種触媒の温度とNOx除去率との関係を示す曲線図である。
【図7】各種触媒の温度とC3H8分解率との関係を示す曲線図である。
【図8】副生成物のGC−MSピークを示すデータである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to polychlorinated dibenzodioxins (hereinafter also referred to as “PCDD”), polychlorinated dibenzofurans (hereinafter also referred to as “PCDF”) or organic chlorine compounds such as chlorobenzene, nitrogen oxides, which are contained as harmful components in exhaust gas. The present invention relates to an exhaust gas purification catalyst that promotes removal of flammable gases such as hydrocarbons and carbon monoxide, and an exhaust gas purification method using the same.
[0002]
[Prior art]
Exhaust gas generated from incineration facilities that treat municipal waste, industrial waste, sewage sludge, etc., along with nitrogen oxides (hereinafter also referred to as “NOx”), hydrocarbons, and carbon monoxide, is very toxic but is extremely toxic. Organic chlorine compounds such as dioxins are contained, and it is very important for environmental protection to remove and purify organic chlorine compounds, NOx, hydrocarbons, carbon monoxide and the like in these exhaust gases.
[0003]
As a method for decomposing aromatic organic chlorine compounds in exhaust gas with a catalyst, for example, JP-A-2-35914 discloses that the exhaust gas temperature is increased to 150 ° C. or higher, and then titanium oxide, vanadium oxide, tungsten oxide, platinum, A catalyst that decomposes an aromatic organic chlorine compound in exhaust gas by bringing the exhaust gas into contact with a catalyst containing at least one metal-containing component selected from palladium is disclosed.
[0004]
Further, for removing nitrogen oxides, organochlorine compounds and carbon monoxide in exhaust gas, for example, JP-A-5-245343 discloses titanium (Ti), silica (Si), zirconia (Zr), aluminum (A) as component A. Al) and vanadium (V), one or more kinds selected from a single metal oxide of a kind of metal that necessarily contains V or a composite multi-element oxide group of two or more kinds of metals, and platinum ( Nitrogen oxides and organic chlorine contained in incinerator exhaust gas etc. by using a catalyst comprising at least one metal selected from the group consisting of Pt), palladium (Pd), ruthenium (Ru), etc. or an oxide thereof It has been shown to remove the compound.
[0005]
[Problems to be solved by the invention]
However, the conventional exhaust gas purification catalyst and the exhaust gas purification method using the same do not always have sufficient performance, and measures such as increasing the amount of catalyst and increasing the temperature to improve the removal rate. It was necessary to carry out. However, the former measure has a problem that the equipment becomes large and the cost of the catalyst increases. On the other hand, the latter measure has a problem that the energy required for exhaust gas heating increases, and organic chlorine compounds, nitrogen oxides, hydrocarbons, carbon monoxide and the like cannot be removed efficiently in terms of energy.
[0006]
Furthermore, the conventional exhaust gas purification catalyst and the exhaust gas purification method using the same have the following problems in the elements contained as active components. That is, Pt, Pd, and Ru have a chlorination effect as shown in the examples described later. For example, 2-MCDD (monochlorodibenzodioxin) having one chlorine number has four more toxic chlorine numbers. There was fear of producing 2, 3, 7, 8-TCDD (tetrachlorodibenzodioxin).
[0007]
Further, Cu and Fe are problematic because their chlorides are said to be a dioxin production catalyst.
[0008]
An object of the present invention is to remove an exhaust gas purification catalyst that removes organic chlorine compounds, nitrogen oxides, combustible gases, and the like, which are harmful components contained in the exhaust gas, and an exhaust gas purification method using the same. Can be easily decomposed, is economically efficient for a long period of time, is removed without generating harmful by-products, and the exhaust gas is purified.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that harmful organic chlorine compounds, nitrogen oxides and combustible gases contained in exhaust gas discharged from incinerators using catalysts. It has been found that hydrocarbons, carbon monoxide and the like can be removed economically and efficiently, and further, exhaust gas can be purified without generating harmful by-products.
[0010]
That is, the present invention activates the oxidative decomposition of harmful components in the exhaust gas in a catalyst for purifying exhaust gas that promotes purification of exhaust gas containing at least one of organic chlorine compounds, nitrogen oxides and combustible gases that are harmful components. It contains metal oxides. By activating oxidative decomposition of organochlorine compounds, nitrogen oxides and combustible gases in exhaust gas with catalysts containing metal oxides, these harmful substances can be decomposed easily and efficiently, economically and harmfully It can be removed without generating any by-products and the exhaust gas can be purified. And the activity of the oxidative decomposition is further promoted by containing oxygen in the exhaust gas or adding an oxidizing agent.
[0011]
Furthermore, in the exhaust gas purifying catalyst, the metal oxide always includes Ti and V oxides, and further includes at least one selected from Ce and Mn in the form of oxides. The oxide of Ti enhances SOx resistance and V dispersibility, and also serves as a carrier. The oxide of V activates oxidative decomposition of an organic chlorine compound such as dioxin. Ce and Mn serve to pass oxygen to V, and the valences of these oxides change depending on the O 2 concentration in the atmosphere. For example, CeO 3 → Ce 2 O 3 and it is better that the redox potential is smaller. The same applies to Mn. Furthermore, Mo may be added to improve SOx resistance. Therefore, the above effect can be further ensured by always including oxides of Ti and V and further including at least one selected from Ce and Mn in the form of oxides. In this case, in addition to the above components, the catalyst composition further comprises at least one metal selected from Al, Si, Zn, and Zr or an oxide thereof, thereby further improving the removal efficiency and oxidizing these. Things also serve as carriers.
[0012]
Furthermore, the exhaust gas-purifying catalyst further contains an oxide of W. The oxide of W increases the SOx resistance while maintaining the activity of the Ti—V—Ce, and makes it possible to extend the life of the catalyst.
[0013]
Furthermore, in any of the above exhaust gas purifying catalysts, the metal oxides are atomic ratios of Ti: 75 to 95%, V: 2 to 10%, Ce: 0 to 10%, Mn: 0 to 10%. , W: 0 to 20%.
[0014]
In addition to high removal efficiency of organochlorine compounds and flammable gases, the removal efficiency of nitrogen oxides is increased for a long time by setting the V content in the exhaust gas purification catalyst to 2 to 10% in terms of the atomic ratio of the active components. Can be maintained. When the content of V exceeds 10%, V is difficult to be highly dispersed on Ti, and effective decomposition and removal by the catalyst described above cannot be performed. Furthermore, a high removal efficiency can be obtained by setting the content of Ce or Mn contained in the exhaust gas purification catalyst to 0% to 10%, preferably 1 to 8% in terms of the atomic ratio of the active component, and the organic chlorine compound In addition to removal of flammable gas, the removal efficiency of nitrogen oxides can be maintained for a long time, and in particular, a high removal effect of organic chlorine compounds can be exhibited. If the content of Ce and Mn is higher than 10%, the active component V is covered with Ce and Mn, so that it is difficult to efficiently decompose and remove.
[0015]
If W is contained in the range of 20% or less in terms of the atomic ratio of the active component, the SOx resistance increases while maintaining the activity of Ti—V—Ce, and the life of the exhaust gas purifying catalyst can be extended. Further, the formability for forming into a honeycomb shape is improved. In this case, if the W content exceeds 20%, W covers the active sites on the catalyst surface, and efficient decomposition and removal by the catalyst described above cannot be performed.
[0016]
Furthermore, in any one of the exhaust gas purifying catalysts, 97% (weight ratio) or more of the entire exhaust gas purifying catalyst is composed only of an oxide of an element selected from the group consisting of Ti, V, Ce, Mn, and W. That is. The fact that the oxide of the element selected from Ti, V, Ce, Mn, W, etc. is 97% by weight means that the harmful components of the exhaust gas are brought into contact with the oxide of the element on the catalyst and oxidized. Promotes decomposition.
[0017]
Furthermore, in any of the exhaust gas purifying catalysts, the organic chlorine compound is an aromatic organic chlorine compound. Aromatic organochlorine compounds have heretofore been difficult to purify due to insufficient removal rate, but can be reliably removed and purified by the exhaust gas purifying catalyst.
[0018]
Furthermore, in any of the exhaust gas purifying catalysts, the organochlorine compound is polychlorinated dibenzodioxin or polychlorinated dibenzofuran. Polychlorinated dibenzodioxins or polychlorinated dibenzofurans as organochlorine compounds are toxic even in trace amounts, and can be reliably removed and purified by the exhaust gas purifying catalyst, and in any of the exhaust gas purifying catalysts, the exhaust gas is It is discharged from a sewage sludge treatment facility or a waste incinerator. Exhaust gas discharged from sewage sludge treatment facilities or waste incinerators contains organochlorine compounds, nitrogen oxides, and flammable gases. The exhaust gas purification catalyst reliably removes these harmful components and purifies them. I can do it.
[0019]
Further, in an exhaust gas purification method for purifying exhaust gas containing at least one of organic chlorine compounds, nitrogen oxides and combustible gases which are harmful components, the exhaust gas is brought into contact with any one of the above exhaust gas purification catalysts. It is to remove and purify harmful components in the exhaust gas. By using the exhaust gas purifying catalyst described in any of the above, harmful components in the exhaust gas can be easily decomposed, removed economically over a long period of time, and without generating harmful by-products, Further, in the exhaust gas purification method, the exhaust gas is brought into contact with the exhaust gas purification catalyst in a temperature range of 150 ° C. to 550 ° C. The temperature during the reaction in which the exhaust gas is brought into contact with the catalyst of the present invention is 150 to 550 ° C., preferably 150 to 300 ° C., and the organic chlorine compounds, nitrogen oxides, and combustible gases are removed stably for a long time with high efficiency. Have breakthrough performance. There are no by-products due to this catalyst, and there is no change over time in the decomposition rate. With the advent of the catalyst of the present invention, removal of organochlorine compounds, nitrogen oxides, and combustible gases in exhaust gas is provided as an industrially advantageous method.
[0020]
In any one of the above exhaust gas purification methods, the nitrogen oxide reducing agent is added to the exhaust gas and then brought into contact with the exhaust gas purification catalyst. By adding the nitrogen oxide reducing agent, the nitrogen oxide in the exhaust gas is quickly decomposed by the reducing agent and the catalyst, and the exhaust gas is purified.
[0021]
Although the exhaust gas purifying catalyst of the present invention has extremely high performance as described above, there is no particular difficulty in production, and usually a precipitation method, an oxide mixing method, which are usually used in the production of a catalyst, It can be easily produced by a kneading method, a supporting method, an impregnation method or the like. Furthermore, as a final molding method of the catalyst, any molding method according to the purpose such as a normal extrusion molding method, a tableting molding method, a rolling granulation method or the like can be adopted. As the shape of the catalyst, a columnar shape, a cylindrical shape, a plate shape, a ribbon shape, a honeycomb shape, a pellet shape, or any other integrally formed shape can be selected. In particular, if a plate-like or honeycomb-like catalyst is used, the dust present in the exhaust gas can be reduced from adhering to the catalyst, and as a result, there is no increase in pressure loss due to the adhesion of dust or a decrease in performance. Can be performed.
[0022]
In addition, a small amount of the catalyst component is supported on a carrier such as silicon, alumina, zirconia, or the carrier component such as silica, alumina, magnesia, zirconia, acidic clay, activated clay, diatomaceous earth, and the catalyst component are sufficiently kneaded. It is also possible to use it mixed with the catalyst by the method described above. Further, the carrier component may be coprecipitated simultaneously with the catalyst component from the water-soluble salt, or the carrier component hydroxide may be kneaded. In particular, the use of the above-mentioned carrier or carrier component is preferable from the viewpoint of lowering the catalyst price. Similarly, the formation of a hollow cylinder at the time of molding is also effective from the viewpoint of reducing the amount of catalyst component per volume. Therefore, it is extremely preferable.
[0023]
As the vanadium raw material for preparing the catalyst of the present invention, various vanadium oxides, metavanadates, vanadium sulfates, vanadium halides and the like are used. As the cerium raw material, various cerium oxides, cerium acetate, cerium nitrate, cerium ammonium nitrate, cerium ammonium sulfate, cerium carbonate, cerium chloride, cerium hydroxide, cerium oxalate and the like are used.
[0024]
As the manganese raw material, various kinds of manganese oxide, manganese acetate, manganese nitrate, manganese sulfate, manganese carbonate, manganese chloride, manganese phosphate, manganese oxalate and the like are used.
[0025]
As the titanium raw material, titanium oxide or various compounds that generate titanium oxide by heating, such as titanic acid, titanium hydroxide, titanium sulfate, and the like can be used. Furthermore, various titanium compounds widely used at the time of catalyst preparation, such as titanium halide, titanium sulfate, etc., are precipitated with water, aqueous ammonia, caustic alkali, alkali carbonate, etc. to form hydroxides and then oxides by thermal decomposition. The method of generating is also a preferred method.
[0026]
Here, an example of the preparation method of the exhaust gas purifying catalyst will be given and the contents will be described more specifically.
[0027]
Distilled water is added to a predetermined amount of titanium oxide (TiO 2 ), ammonium metavanadate (NH 4 VO 3 ), and cerium nitrate (Ce (NO 2 ) 3 .6H 2 O), and this mixture is sufficiently kneaded. Next, after the obtained paste-like mixture is dried, it is finally fired at a temperature of 300 ° C. to 800 ° C. for about 1 to 10 hours to be subjected to the reaction. A baked product of (NH 4 VO 3 ) of TiO 2 and ammonium metavanadate is prepared by the same method as described above, and then cerium nitrate is added and kneaded and baked by the same method as described above. Also good.
[0028]
The above-described catalyst preparation method is merely an example, and it goes without saying that a good catalyst can be obtained from various other commonly used methods.
[0029]
The application target of the organic chlorine compound-based removal reaction using the catalyst of the present invention is an organic substance containing chlorine such as chlorobenzene, chlorophenol, PCDD, PCDF, polychlorinated tetrachloroethylene, and an aromatic chlorine compound is particularly preferable.
[0030]
When removing the organic chlorine compound, nitrogen oxide, and combustible gas using the catalyst of the present invention, the space velocity of the exhaust gas passing over the catalyst is 100,000 / h or less, preferably 1,000 / h to 50,000 / h or less. Furthermore, as described above, the temperature during the reaction with the catalyst is 150 to 550 ° C., preferably 150 to 300 ° C. The pressure at the time of reaction with the catalyst is not particularly limited, and good results can be expected even in a pressure range of 10 kgf / cm 2 or more from a reduced pressure state.
[0031]
As the substance added as a nitrogen oxide reducing agent, ammonia, urea, carbon monoxide, hydrogen, hydrocarbons, and the like are conceivable.
[0032]
As a reactor type for carrying out the removal reaction of organochlorine compounds, nitrogen oxides, and flammable gases using the exhaust gas purifying catalyst of the present invention, basically a normal fixed bed, moving bed, fluidized bed, etc. Various reactor shapes used for solid catalysts can be used.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Next, the embodiment of the present invention will be described in detail by way of comparison with a comparative example.
[0034]
Example 1
2.20 g of ammonium metavanadate (NH 4 VO 3 ) and 3.27 g of cerium nitrate (Ce (NO 2 ) 3 .6H 2 O) are added to 20 g of titanium oxide (TiO 2 ). Further, 30 ml of distilled water is added, and this mixture is sufficiently kneaded. The obtained paste-like mixture was dried at 120 ° C. for 2 hours and then baked at 500 ° C. for 2 hours. The catalyst thus obtained has a composition of Ti: Ce: V = 100: 3: 7.5 in atomic ratio. Further, a catalyst Ti—Mn—V having a composition of Ti: Mn: V = 100: 3: 7.5 was prepared in the same manner as described above by using manganese nitrate instead of cerium nitrate. As a comparative example, a catalyst Ti-V not containing Ce and Mn was prepared. Furthermore, as another comparative example, Ti-Ag-V and Ti-K-V were prepared using silver nitrate or potassium nitrate instead of cerium nitrate by the same preparation method as described above. The atomic ratio of each catalyst was Ti: Ag: V = 100: 3: 7.5 and Ti: K: V = 100: 3: 7.5.
[0035]
The catalyst activity test apparatus is a normal atmospheric pressure flow type, and the reaction tube is made of Pyrex glass having an inner diameter of 16 mm and has a thermocouple protective tube made of Pyrex glass having an outer diameter of 5 mm inside. The reaction temperature is set by heating the reaction tube in an electric furnace. The center part of the reaction tube is filled with 4.5 ml of a catalyst having a particle size of 10 to 20 mesh, and a gas having the following composition is passed through the catalyst layer at a space velocity (hereinafter abbreviated as “SV”) 10,000 / h, The concentration of the organic chlorine compound at the inlet and outlet of the catalyst layer was measured to determine the decomposition rate of the organic chlorine compound. The reaction temperature was 150 to 300 ° C. Chlorobenzene was used as the organic chlorine compound.
[0036]
H 2 O 20%
About 1000ppm of chlorobenzene
NO 200ppm
NH 3 160ppm
N 2 balance
FIG. 1 is a curve diagram showing the relationship between the temperature of various catalysts and the chlorobenzene decomposition rate. As is apparent from this figure, Ti-Ce-V and Ti-Mn-V are less chlorobenzene than Comparative Examples Ti-V, Ti-Ag-V and Ti-K-V, respectively, which do not contain Ce and Mn. Decomposition rate is improved.
[0037]
Example 2
Ti-Ce-V and Ti-Mn-V were prepared by changing the composition ratio of Ti and Ce and Ti and Mn, respectively, in the same manner as in Example 1, and the decomposition rate of chlorobenzene at around 210 ° C was examined. The measurement method, SV, and gas composition are the same as in Example 1.
[0038]
FIG. 2 is a curve diagram showing the relationship between the atomic ratio of Ce and Mn to Ti of Ti—V—Ce and Ti—V—Mn, which are two catalysts near 210 ° C., and the chlorobenzene decomposition rate. As is clear from FIG. 2, Ti—V—Ce and Ti—V—Mn are such that when the content of Ce or Mn in the catalyst is 1 to 7.5% (atomic ratio) with respect to Ti, Compared with comparative example Ti-V not containing Mn (decomposition rate of chlorobenzene at 210 ° C. in FIG. 1 is 30%), the organochlorine compound is improved, and the improvement is particularly remarkable at 1.5 to 5%.
[0039]
Example 3
Ti-V-Ce, Ti-V-Mn (composition ratio Ti: V: Ce = 100: 7.5: 3, Ti: V: Mn = 100: 7.5: prepared in the same manner as in Example 1) The decomposition rate of o-dichlorobenzene and o-chlorophenol in 3) was examined. As a comparative example, the decomposition rate of Ti-V (composition ratio Ti: V = 100: 7.5) prepared by the same method as in Example 1 was also measured. The measurement method and SV were the same as in Example 1, and the gas composition was set as follows.
[0040]
FIG. 3 is a curve diagram showing the relationship between the temperature of various catalysts, the o-chlorophenol decomposition rate, and the o-dichlorobenzene decomposition rate. As is clear from FIG. 3, for both o-chlorophenol and o-dichlorobenzene, Ti—V—Ce and Ti—V—Mn are respectively compared with Comparative Example Ti—V not containing Ce and Mn. Degradation activity is improved.
[0041]
Example 4
An accelerated deterioration test by SOx of Ti—Ce—VW (composition ratio Ti: Ce: V: W = 100: 15: 7.5: 5.7) prepared by the same method as in Example 1 was performed. . As a comparative example, Ti-V (composition ratio Ti: V = 100: 7.5) was also tested. The measurement method and SV are the same as in Example 1. The gas composition was set as follows.
[0042]
H 2 O 20%
About 1000ppm of chlorobenzene
NO 200ppm
NH 3 160ppm
SO 2 200ppm
N 2 balance
FIG. 4 is a bar diagram showing two new catalysts and the chlorobenzene decomposition rate after 50 hours. As shown in FIG. 4, it is clear that the SO 2 resistance performance of Ti—Ce—V—W is higher than that of Comparative Example Ti—V and is stable for a long time.
[0043]
Example 5
Honeycomb and plate-shaped catalysts of Ti—Mn—V (composition ratio Ti: Mn: V = 100: 3: 7.5) prepared using the same raw materials as in Example 1 were prepared. As comparative examples, honeycomb-like and plate-like catalysts of Ti—W—V (composition ratio Ti: W: V = 100: 13.1: 7.5) prepared using the same raw materials as in Example 1 were also prepared. . The decomposition rate of PCDD and PCDF of the catalyst was measured under the following gas conditions. SV = 10,000 / h, and the reaction temperature was 150 to 300.degree.
[0044]
NO 100-250ppm
NH 3 160ppm
Polychlorinated dibenzodioxins 10-500 ng / Nm 3
Polychlorinated dibenzofuran 10-500 ng / Nm 3
FIG. 5 is a curve diagram showing the relationship between the temperature and the PCDD + PCDF decomposition rate with respect to the difference in the shape (honeycomb shape, plate shape) of two catalysts of Ti—Mn—V and Ti—W—V as a comparative example. From the results of FIG. 5, it is clear that the decomposition rate of PCDD and PCDF is improved in both the honeycomb catalyst and the plate catalyst by containing Mn.
[0045]
Example 6
Ti-Ce-V and Ti-Mn-V prepared by the same method as in Example 1 (composition ratio Ti: Ce: V = 100: 3: 7.5, Ti: Mn: V = 100: 3: 7. The NOx decomposition rate of 5) was measured. As a comparative example, the NOx decomposition rate of Ti-V (composition ratio Ti: V = 100: 7.5) prepared by the same method as in Example 1 was also measured. The measurement method and SV are the same as in Example 1, and the gas composition is as follows.
[0046]
H 2 O 20%
About 1000ppm of chlorobenzene
NO 200ppm
NH 3 240ppm
N 2 balance
FIG. 6 is a curve diagram showing the relationship between the temperature of the catalysts Ti—Ce—V and Ti—Mn—V and the NOx removal rate. As a comparative example, the figure also shows the NOx decomposition rate of Ti-V that is practically used as a NOx removal catalyst. As is apparent from FIG. 6, the NOx decomposition rate of Ti—Mn—V is substantially the same as the NOx decomposition rate of the practical NOx removal catalyst Ti—V. The NOx decomposition rate of Ti—Ce—V is improved. Even if an organic chlorine compound such as chlorobenzene is present in the exhaust gas according to this embodiment, the NOx removal rate is not affected, and the removal of the organic chlorine compound and NOx is performed using Ti-Ce-V and Ti-Mn-V. It is clear that it can be done simultaneously with high efficiency.
[0047]
Example 7
Ti-Ce-V and Ti-Mn-V prepared by the same method as in Example 1 (composition ratio Ti: Ce: V = 100: 3: 7.5, Ti: Mn: V = 100: 3: 7. The C 3 H 8 decomposition rate of 5) was measured. As comparative examples, Ti-V (composition ratio Ti: V = 100: 7.5) and Ti-WV (composition ratio Ti: W: V = 100: 13.1) prepared in the same manner as in Example 1. The C 3 H 8 decomposition rate of 7.5) was also measured. The measurement method is the same as in Example 1, and SV = 20,000 / h. The gas composition is as follows.
[0048]
H 2 O 20%
C 3 H 8 150ppm
N 2 balance
FIG. 7 is a curve diagram showing the relationship between the temperatures of the catalysts Ti—Ce—V and Ti—Mn—V and the C 3 H 8 decomposition rate. The figure also shows the C 3 H 8 decomposition rates of Ti-V and Ti-W-V as comparative examples. As is clear from FIG. 7, the activity of C 3 H 8 decomposition of Ti—Ce—V and Ti—Mn—V is higher than that of Ti—V and Ti—W—V. When flammable gases such as hydrocarbons and carbon monoxide are present in the exhaust gas according to this embodiment, the above-described hydrocarbons and carbon monoxide are flammable using Ti-Ce-V and Ti-Mn-V. Obviously, gas can be removed with high efficiency.
[0049]
Example 8
30 g of Ti—Ce—V (composition ratio Ti: Ce: V = 100: 3: 7.5) prepared by the same method as in Example 1 was taken, and palladium nitrate solution (Pd content 4.439 wt%) was added thereto. 35.6 g is added and the mixture is thoroughly kneaded. The obtained paste-like mixture was dried at 120 ° C. for 2 hours and then baked at 500 ° C. for 2 hours. The catalyst Ti—V—Ce—Pd thus obtained has a composition of (TiO 2 —V 2 O 5 —CeO 2 ): Pd = 95: 5 by weight. The decomposition activity of this Ti—V—Ce—Pd for o-dichlorobenzene was measured, the SV was set in the same manner as in Example 1, the gas composition was set as follows, and measured. Precipitation of white needle crystals was observed.
[0050]
H 2 O 20%
o-Dichlorobenzene about 1000ppm
NO 200ppm
NH 3 160ppm
N 2 balance
FIG. 8 is data showing GC-MS peaks of by-products. Analysis of the crystal by GC-MS revealed that it was composed of trichlorobenzene, tetrachlorobenzene, pentachlorobenzene, and hexachlorobenzene, as can be seen in FIG. The above results show that when Pd is used in addition to Ti-V-Ce as a catalyst, for example, from 2-MCDD (monochlorodibenzodioxin) having one chlorine number, the more toxic chlorine number is four, four, three, seven. , 8-TCDD (tetrachlorodibenzodioxin) may be produced. On the other hand, in the case of Ti—V—Ce not containing Pd, the above-mentioned by-products are not observed, and it is clear that the exhaust gas can be purified without generating harmful by-products.
[0051]
【The invention's effect】
According to the exhaust gas purifying catalyst of the present invention and the exhaust gas purifying method using the same, the organic chlorine compounds, nitrogen oxides and combustible gases, etc., which are harmful components contained in the exhaust gas, can be easily decomposed economically. It can be efficiently removed over a long period of time without removing harmful by-products and the exhaust gas can be purified.
[Brief description of the drawings]
FIG. 1 is a curve diagram showing the relationship between the temperature of various catalysts and the decomposition rate of chlorobenzene.
FIG. 2 is a curve diagram showing the relationship between the atomic ratio of Ce and Mn to Ti and the chlorobenzene decomposition rate of two catalysts.
FIG. 3 is a curve diagram showing the relationship between the temperature of various catalysts, the decomposition rate of o-chlorophenol, and the decomposition rate of o-dichlorobenzene.
FIG. 4 is a bar diagram showing two new catalysts and chlorobenzene decomposition rate after 50 hours.
FIG. 5 is a curve diagram showing the relationship between temperature and PCDD + PCDF decomposition rate with respect to the difference in shape between two catalysts.
FIG. 6 is a curve diagram showing the relationship between the temperature of various catalysts and the NOx removal rate.
FIG. 7 is a curve diagram showing the relationship between the temperature of various catalysts and the C 3 H 8 decomposition rate.
FIG. 8 is data showing a GC-MS peak of a by-product.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20445297A JP3790943B2 (en) | 1997-07-30 | 1997-07-30 | Exhaust gas purification catalyst and exhaust gas purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20445297A JP3790943B2 (en) | 1997-07-30 | 1997-07-30 | Exhaust gas purification catalyst and exhaust gas purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1147592A JPH1147592A (en) | 1999-02-23 |
JP3790943B2 true JP3790943B2 (en) | 2006-06-28 |
Family
ID=16490773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20445297A Expired - Fee Related JP3790943B2 (en) | 1997-07-30 | 1997-07-30 | Exhaust gas purification catalyst and exhaust gas purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3790943B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4499513B2 (en) * | 2004-09-03 | 2010-07-07 | 株式会社日本触媒 | Method for treating exhaust gas containing nitrogen oxides and odor components |
JP4499512B2 (en) * | 2004-09-03 | 2010-07-07 | 株式会社日本触媒 | Method for treating exhaust gas containing odor components |
JP5164821B2 (en) * | 2008-12-16 | 2013-03-21 | テイカ株式会社 | Nitrogen oxide selective catalytic reduction catalyst |
CN108295840A (en) * | 2018-01-24 | 2018-07-20 | 清华大学 | Manganese-based catalyst and its preparation and application of a kind of efficient synergistic purification nitrogen oxides He bioxin |
-
1997
- 1997-07-30 JP JP20445297A patent/JP3790943B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1147592A (en) | 1999-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3138468B2 (en) | Methods to reduce emissions of incompletely burned organic products. | |
WO1992019366A1 (en) | Method of oxidative decomposition of organic halogen compound | |
JP3790943B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
US6858562B1 (en) | Catalyst for decomposing organic harmful substances and method for decomposing organic halides by use thereof | |
JP3021420B2 (en) | Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus | |
JP2000015106A (en) | Catalyst for treatment of waste gas, treatment of waste gas and treating apparatus | |
JPH0947661A (en) | Process and catalyst for purifying exhaust gas | |
JP2609393B2 (en) | Exhaust gas treatment method | |
JP3212577B2 (en) | Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus | |
JP2000093750A (en) | Exhaust gas treatment catalyst, exhaust gas treatment process and treatment device thereof | |
JP2001286734A (en) | Method for decomposing chlorinated organic compounds and method for treating combustion exhaust gas | |
JP2001038206A (en) | Catalyst for treating exhaust gas and method and apparatus for treating exhaust gas | |
JP3702398B2 (en) | Exhaust gas purification catalyst and purification method | |
JP2000024500A (en) | Catalyst for exhaust gas treatment, exhaust gas treatment and treatment apparatus | |
JP3510541B2 (en) | Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus | |
JP3785558B2 (en) | Organochlorine compound removal catalyst and organochlorine compound removal method | |
JPH10216480A (en) | Treatment of waste gas and catalyst for treating waste gas | |
JP2000061305A (en) | Catalyst and method for treating exhaust gas | |
JP2000126601A (en) | Decomposition catalyst for organic halogen compound and decomposition method | |
KR20020032167A (en) | Catalyst for decomposition of toxic pollutants and producing process thereof | |
JP2003053147A (en) | Methods for removing organic chlorine compounds and nitrogen oxides | |
KR20020057941A (en) | Catalyst for removing dioxin and/or nitrogen oxide, and preparation method thereof | |
JP2002001065A (en) | Decomposition catalyst and decomposition method for organic chlorine compounds | |
JP2003053149A (en) | How to remove organic chlorine compounds | |
KR100502852B1 (en) | Cr·W·Ba·TiO2 CATALYST AND METHOD FOR THE REMOVAL OF DIOXINS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050607 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060323 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |