JP2000162639A - Liquid crystal display device and its production - Google Patents
Liquid crystal display device and its productionInfo
- Publication number
- JP2000162639A JP2000162639A JP10335678A JP33567898A JP2000162639A JP 2000162639 A JP2000162639 A JP 2000162639A JP 10335678 A JP10335678 A JP 10335678A JP 33567898 A JP33567898 A JP 33567898A JP 2000162639 A JP2000162639 A JP 2000162639A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- exposure
- display device
- crystal display
- boundary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 89
- 238000004519 manufacturing process Methods 0.000 title description 12
- 238000000034 method Methods 0.000 claims abstract description 60
- 230000005684 electric field Effects 0.000 claims description 30
- 230000000007 visual effect Effects 0.000 abstract 2
- 239000010408 film Substances 0.000 description 39
- 239000000758 substrate Substances 0.000 description 17
- 238000003860 storage Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 238000000206 photolithography Methods 0.000 description 14
- 239000003990 capacitor Substances 0.000 description 13
- 239000004065 semiconductor Substances 0.000 description 10
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910052715 tantalum Inorganic materials 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134363—Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/13625—Patterning using multi-mask exposure
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、液晶表示装置お
よびその製造方法、とくにアクティブマトリクス型の液
晶表示装置およびその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display and a method of manufacturing the same, and more particularly to an active matrix type liquid crystal display and a method of manufacturing the same.
【0002】[0002]
【従来の技術および発明が解決しようとする課題】アク
ティブマトリクス型の液晶表示装置において、液晶に印
加する電界の方向を基板に対して平行な方向とする方式
が、主に超広視野角を得る手法として用いられている
(たとえば、特開平8−254712号公報)。この方
式を採用すると、視角方向を変化させた際のコントラス
トの変化、階調レベルの反転がほとんどなくなることが
明らかにされている(たとえば、M.Ohe、他、As
iaDisplay ’95、pp.577−58
0)。2. Description of the Related Art In an active matrix type liquid crystal display device, a system in which the direction of an electric field applied to a liquid crystal is parallel to a substrate mainly provides an ultra-wide viewing angle. It is used as a technique (for example, Japanese Patent Application Laid-Open No. 8-254712). It has been clarified that when this method is adopted, there is almost no change in contrast and no inversion of the gradation level when the viewing angle direction is changed (for example, M. Ohe, et al., As.
iaDisplay '95, pp. 577-58
0).
【0003】この横方向電界方式の液晶表示装置に用い
られる薄膜トランジスタ集積装置(以下、「TFT−L
CD」と略す)の製造工程において、各レイヤーのパタ
ーンを形成する際、フォトレジストを露光する一手法と
して分割露光装置を用いてTFT−LCDパネルをいく
つかの領域に分けて露光する分割露光方式が用いられて
いる。分割露光方式はフォトマスクにレチクルを用いる
ため微細なパターンが比較的精度よく得ることができる
という特徴を有する。[0003] A thin film transistor integrated device (hereinafter referred to as "TFT-L") used in a liquid crystal display device of the lateral electric field type.
In the manufacturing process of "CD", when a pattern of each layer is formed, as one method of exposing a photoresist, a division exposure method is used in which a TFT-LCD panel is divided into several regions and exposed using a division exposure apparatus. Is used. The division exposure method has a feature that a fine pattern can be obtained with relatively high accuracy because a reticle is used for a photomask.
【0004】しかし、分割露光方式は、分割露光領域の
中心部のパターン精度は高いが、周辺部は露光機の光学
系の回転や歪みの影響を受け、比較的パターン精度や重
ね精度が劣るという特徴をもつ。この周辺部のパターン
のばらつきは最大1μm程度と大きく、分割露光境界で
のパターン寸法や重ね寸法の変化が発生した。とくに液
晶に電圧を印加する電極間隔の分割露光境界での寸法変
化は表示上の不良となり歩留りの低下を生じた。以下に
電極間隔変化と表示不良の関係を説明する。However, in the divisional exposure method, the pattern accuracy at the center of the divisional exposure area is high, but the peripheral part is affected by the rotation and distortion of the optical system of the exposure machine, and the pattern accuracy and the overlay accuracy are relatively poor. Has characteristics. The variation of the pattern at the peripheral portion was as large as about 1 μm at the maximum, and the pattern size and the overlap size at the boundary of the divided exposure changed. In particular, a dimensional change at the divisional exposure boundary of the electrode interval for applying a voltage to the liquid crystal caused a display failure, resulting in a decrease in yield. The relationship between the change in the electrode interval and the display failure will be described below.
【0005】液晶に印加する電界の方向を基板に対して
平行な方向とする横方向電界方式液晶表示装置では、液
晶を駆動するために電極間に高い電界が必要である。電
極間隔に最大5Vの電圧を印加できる液晶表示装置の場
合は、液晶材料によって異なるが十分な電界強度を得る
ために4〜6μm程度の電極間隔とする必要がある。こ
のため前述の1μm程度のパターン精度のばらつきは電
極間隔に比較して十分大きく、そのまま表示上の明るさ
のばらつきとなる。このため、このような狭い間隔の電
極を精度よく形成することが重要となり高精度のパター
ニングが要求される。図10に横方向電界方式液晶表示
装置における電極間隔のばらつきと輝度の変化率の関係
を示す。図に示すように露光境界での電極間隔の変化が
大きくなるにしたがい輝度変化が増加する。このため、
横方向電界方式液晶表示装置では分割露光部ごとの電極
間隔が変化することによって分割露光境界での輝度の変
化として視認されてしまう。In a lateral electric field type liquid crystal display device in which the direction of the electric field applied to the liquid crystal is parallel to the substrate, a high electric field is required between the electrodes to drive the liquid crystal. In the case of a liquid crystal display device capable of applying a maximum voltage of 5 V to the electrode interval, the electrode interval needs to be about 4 to 6 μm in order to obtain a sufficient electric field intensity, although it depends on the liquid crystal material. For this reason, the above-described variation in pattern accuracy of about 1 μm is sufficiently large as compared with the electrode interval, and becomes the variation in display brightness as it is. For this reason, it is important to form electrodes with such narrow intervals with high precision, and high-precision patterning is required. FIG. 10 shows the relationship between the variation in electrode spacing and the rate of change in luminance in a lateral electric field type liquid crystal display device. As shown in the figure, the luminance change increases as the change in the electrode interval at the exposure boundary increases. For this reason,
In the lateral electric field type liquid crystal display device, the change in the electrode interval for each divided exposure portion causes a change in brightness at the boundary of the divided exposure to be visually recognized.
【0006】また、2つの電極をそれぞれ別の層で形成
した場合は、製造ばらつきによって層間の重ね合わせの
ずれ量が分割した部分ごとに異なり、電極間隔が変化す
るために分割露光境界で明るさの変化として視認されて
しまうという問題が発生する。When the two electrodes are formed in different layers, the amount of misalignment between layers differs for each divided portion due to manufacturing variations, and the electrode spacing changes. This causes a problem of being visually recognized as a change in
【0007】これらは横方向電界方式液晶表示装置固有
の現象であり、境界が画面表示とは関係のない線として
見えるため、程度によっては不良品となり、歩留り低下
の原因となった。[0007] These are phenomena peculiar to the lateral electric field type liquid crystal display device, and since the boundary is seen as a line irrelevant to the screen display, it becomes defective depending on the degree and causes a reduction in yield.
【0008】これは対向基板とTFT基板の組み立て精
度によって液晶に電圧を印加する電極の間隔が決定する
縦方向電界液晶装置では生じなかった新しい現象であ
る。This is a new phenomenon that has not occurred in a vertical electric field liquid crystal device in which the distance between electrodes for applying a voltage to the liquid crystal is determined by the assembling accuracy of the counter substrate and the TFT substrate.
【0009】縦方向電界液晶装置に関して、露光境界の
寸法精度および重ね精度の変化による露光境界視認を低
減するため、さまざまな手法が提案されており、たとえ
ば、特開平2−143513号公報、特開平2−143
514号公報に開示されている。前記特開平21435
14号公報の特許請求の範囲の請求項2によれば、「微
細パターンが大面積にわたって連続的に配置されてなる
マスクパターンを形成するにあたり、この大面積を複数
の小区画に分割しこの分割した各々の小区画に対応する
小面積マスクパターンを作製し、これをステッパー方式
により大面積基板上で合成し、大面積マスクパターンを
作製する方法において、大面積を複数の小区画に分割す
るに際し、隣接する小区画が境界共有領域を有し、この
共有領域内の個々の微細パターンがより近い方の小区画
に、より大きい確率により属し、かつ乱数配列的に配置
されることを特徴とするマスクパターンの作製方法」が
提案されている。前記先行例によれば、従来の方法にお
けるような境界線に沿った規則的、連続的なズレを生じ
ず、人の目にムラとして認識されることがないとある。
しかし横方向電界方式の液晶表示装置固有の現象である
電極間隔の露光境界での変化による表示不良の低減手法
はしめされていない。Various methods have been proposed for the vertical electric field liquid crystal device in order to reduce the visibility of the exposure boundary due to changes in the dimensional accuracy and overlay accuracy of the exposure boundary. For example, Japanese Patent Application Laid-Open Nos. 2-143
No. 514. JP-A-21435
According to claim 2 of the claims of JP-A No. 14, "When forming a mask pattern in which fine patterns are continuously arranged over a large area, the large area is divided into a plurality of small sections, and the division is performed. A small area mask pattern corresponding to each of the small sections is prepared, and is synthesized on a large area substrate by a stepper method. In a method of manufacturing a large area mask pattern, a large area is divided into a plurality of small sections. The adjacent small section has a boundary shared area, and the individual fine patterns in the shared area belong to the closer small section with a higher probability and are arranged in a random array. Production method of mask pattern "has been proposed. According to the preceding example, there is no occurrence of regular and continuous deviation along the boundary line as in the conventional method, and there is no case where the deviation is recognized as irregularity to human eyes.
However, a method of reducing display defects due to a change in the electrode spacing at the exposure boundary, which is a phenomenon unique to the horizontal electric field type liquid crystal display device, is not disclosed.
【0010】また横方向電界方式の液晶表示装置に関し
ては、特開平10−142633号公報に、絶縁性基板
上に形成する第一層目に、ゲート電極と同時に水平方向
の電界を形成するための2つの電極を形成することによ
り、電極間の重ね合わせのずれをなくし、表示ムラを低
減し、分割露光境界を視認しにくくする手法が開示され
て要る。しかし2つの電極を同層で形成した場合でも重
ねずれによる露光境界での電極間隔の寸法変化がないの
であり、パターン精度の変化による電極間隔の変化は本
質的になくなることはなく分割露光境界視認の要因とな
る。Japanese Patent Application Laid-Open No. H10-142633 discloses a liquid crystal display device of a lateral electric field type, in which a horizontal electric field is formed simultaneously with a gate electrode on a first layer formed on an insulating substrate. There is a need to disclose a method of forming two electrodes to eliminate misalignment between the electrodes, reduce display unevenness, and make it difficult to visually recognize a divided exposure boundary. However, even when two electrodes are formed in the same layer, there is no dimensional change in the electrode interval at the exposure boundary due to misalignment, and the change in the electrode interval due to the change in pattern accuracy does not essentially disappear, and the divided exposure boundary is visually recognized. Is a factor.
【0011】本発明は、超広視野角でかつ露光境界が視
認されにくい良好な表示特性をもち、低コストかつ簡単
な液晶表示装置およびその製造方法、とくに分割露光方
式を用いた横方向電界方式の液晶表示装置およびその製
造方法を提供することを目的とする。The present invention provides a low-cost and simple liquid crystal display device having an excellent display characteristic with an ultra-wide viewing angle and in which the exposure boundary is hard to be visually recognized, and a method of manufacturing the same. And a method for manufacturing the same.
【0012】[0012]
【課題を解決するための手段】本発明の液晶表示装置
は、画面を複数の領域に分割して画素パターンを形成す
る横方向電界方式の液晶表示装置において、隣り合う分
割露光領域が境界共有領域を有し、この境界共有領域に
おいて画素パターンがいずれかの露光領域に属しかつ乱
数配列的に配置されることを特徴としている。According to the liquid crystal display device of the present invention, in a lateral electric field type liquid crystal display device in which a screen is divided into a plurality of regions to form a pixel pattern, adjacent divided exposure regions are bounded by a shared region. In this boundary shared area, the pixel pattern belongs to any of the exposure areas and is arranged in a random number array.
【0013】[0013]
【発明の実施の形態】実施の形態1 本実施の形態による液晶表示装置の画素部平面図を図1
に示し、該装置の製造工程の工程断面図を図2の(a)
〜(c)および図3の(a)および(b)に示す。図
1、図2および図3において、21はガラスなどの絶縁
性物質を用いた絶縁性基板、22はCrなどの金属を用
い基板21上に形成されたゲート配線、16はCrなど
の金属を用い基板21上に形成された保持容量共通配
線、23はゲート配線および保持容量共通配線を覆うよ
うに形成された窒化シリコンなどからなるゲート絶縁
膜、24はゲート絶縁膜23の上部に接するように形成
されたノンドープ非晶質Siなどの半導体膜、25は半
導体膜24に接続して形成されかつその膜の一部である
能動態領域の上部をエッチングなどで取り除いた領域2
6を有するPなどの不純物をSiなどの半導体膜にドー
プしたコンタクト膜、27はCrなどの金属またはIT
O(Indium Tin Oxide)などの透明導
電膜などで形成された液晶にそれが駆動する電圧を印加
するために用いる画素電極、37は保持容量共通配線に
接続され画素電極との間で電界を生じさせるための対向
電極、28はコンタクト膜25に接するように形成され
ソース配線13に接続されたソース電極、29はコンタ
クト膜25に接するように形成されたドレイン電極、1
02はデバイス全体を覆うように窒化シリコン膜などで
形成された層間絶縁膜、103はコンタクトホール、6
0はゲート配線と同一の材料を用い基板21上に形成さ
れた第一の配線、61はソース配線と同一の材料を用い
基板21上に形成された第二の配線、54はコンタクト
ホールを介し第一の配線60と第二の配線61を接続す
る画素電極と同一の材料を用い形成された第三の配線で
ある。Embodiment 1 FIG. 1 is a plan view of a pixel portion of a liquid crystal display device according to the present embodiment.
FIG. 2A is a cross-sectional view of a manufacturing process of the device.
(C) and (a) and (b) of FIG. 1, 2 and 3, reference numeral 21 denotes an insulating substrate using an insulating material such as glass, 22 denotes a gate wiring formed on the substrate 21 using a metal such as Cr, and 16 denotes a metal such as Cr. The storage capacitor common wiring formed on the substrate 21 used, 23 is a gate insulating film made of silicon nitride or the like formed so as to cover the gate wiring and the storage capacitor common wiring, and 24 is in contact with the upper part of the gate insulating film 23. A semiconductor film 25 made of non-doped amorphous Si or the like is formed in a region 2 connected to the semiconductor film 24 and having an upper portion of an active region which is a part of the film removed by etching or the like.
6, a contact film obtained by doping a semiconductor film such as Si with an impurity such as P having P6;
A pixel electrode 37 is used to apply a voltage for driving the liquid crystal formed of a transparent conductive film such as O (Indium Tin Oxide) to the liquid crystal. Reference numeral 37 is connected to a storage capacitor common line and generates an electric field between the pixel electrode and the storage electrode. A counter electrode 28 is formed to be in contact with the contact film 25 and is connected to the source line 13. A drain electrode 29 is formed to be in contact with the contact film 25.
02 is an interlayer insulating film formed of a silicon nitride film or the like so as to cover the entire device, 103 is a contact hole, 6
0 is a first wiring formed on the substrate 21 using the same material as the gate wiring, 61 is a second wiring formed on the substrate 21 using the same material as the source wiring, 54 is a contact wiring This is a third wiring formed using the same material as the pixel electrode that connects the first wiring 60 and the second wiring 61.
【0014】プロセスフローを説明する。まず、図2
(a)に示すように絶縁性基板21上にCr、Al、T
i、Ta、Mo、W、Ni、Cu、Au、Agなどやそ
れらを主成分とする合金やITOなどの透明導電膜、さ
らにそれらの多層膜導電性材料を用いてスパッタ法や蒸
着法などで成膜しついで写真製版・加工によりゲート配
線22、保持容量共通配線16を形成する。ついで図2
(b)に示すように窒化シリコンなどのゲート絶縁膜2
3と非晶質Si、多結晶poly−Siなどの半導体膜
24、n型のTFTの場合はPなどの不純物を高濃度に
ドーピングしたn+非晶質Si、n+多結晶poly−S
iなどのコンタクト膜25を連続的にたとえばプラズマ
CVD、常圧CVD、減圧CVD法で成膜する。つい
で、コンタクト膜25と半導体膜24を島状に加工す
る。Cr、Al、Ti、Ta、Mo、W、Ni、Cu、
Au、Agなどやそれらを主成分とする合金やITOな
どの透明導電膜、さらにそれらの多層膜導電性材料を用
いてスパッタ法や蒸着法などで成膜後写真製版と微細加
工技術によりソース電極28、ドレイン電極29、保持
容量電極101を形成する(図2の(c))。このソー
スおよびドレイン電極と同じ材料で形成されるソース配
線およびドレイン配線もこの時同時に形成される。この
ソース電極28およびドレイン電極29あるいはそれら
を形成したホトレジストをマスクとしてコンタクト層2
5をエッチングしてチャネル領域から取り除く26。つ
いで窒化シリコンや酸化シリコン、無機絶縁膜、有機樹
脂からなる層間絶縁膜102を成膜し、写真製版とそれ
に続くエッチングによりコンタクトホール103を形成
する(図3の(a))。The process flow will be described. First, FIG.
As shown in (a), Cr, Al, T
A transparent conductive film such as i, Ta, Mo, W, Ni, Cu, Au, Ag, or an alloy containing them as a main component, or ITO, and a multilayer conductive material, and a sputtering method or a vapor deposition method. After the film formation, the gate wiring 22 and the storage capacitor common wiring 16 are formed by photolithography and processing. Then Figure 2
(B) gate insulating film 2 such as silicon nitride as shown in FIG.
3, a semiconductor film 24 of amorphous Si, polycrystalline poly-Si, etc .; n + amorphous Si, n + polycrystalline poly-S doped with impurities such as P at a high concentration in the case of an n-type TFT.
A contact film 25 such as i is continuously formed by, for example, plasma CVD, normal pressure CVD, or low pressure CVD. Next, the contact film 25 and the semiconductor film 24 are processed into an island shape. Cr, Al, Ti, Ta, Mo, W, Ni, Cu,
A transparent conductive film such as Au, Ag, or an alloy containing them as a main component, ITO, or a multilayer conductive material thereof is formed by a sputtering method or a vapor deposition method, and then a source electrode is formed by photolithography and fine processing technology. 28, a drain electrode 29, and a storage capacitor electrode 101 are formed (FIG. 2C). A source wiring and a drain wiring made of the same material as the source and drain electrodes are also formed at this time. Using the source electrode 28 and the drain electrode 29 or the photoresist on which they are formed as a mask, the contact layer 2 is formed.
Etch 5 from the channel region 26. Next, an interlayer insulating film 102 made of silicon nitride, silicon oxide, an inorganic insulating film, and an organic resin is formed, and a contact hole 103 is formed by photolithography and subsequent etching (FIG. 3A).
【0015】ここまでの写真製版工程では露光X、Yの
境界を図4に示すように直線としてもよい。In the photolithography process so far, the boundary between the exposures X and Y may be a straight line as shown in FIG.
【0016】最後にCr、Al、Ti、Ta、Mo、
W、Ni、Cu、Au、Agなどやそれらを主成分とす
る合金やITOなどの透明導電膜、さらにそれらの多層
膜導電性材料を成膜後パターニングすることで画素電極
27および対向電極37および配線54を形成する(図
3の(b))。なお、図3の(b)において、Aはゲー
ト/ソース交差部、BはTFT部、Cは保持容量部、D
は対向電極部をそれぞれ示している。Finally, Cr, Al, Ti, Ta, Mo,
A transparent conductive film such as W, Ni, Cu, Au, Ag, or an alloy containing them as a main component or ITO, and a multilayer conductive material thereof are formed and then patterned to form a pixel electrode 27 and a counter electrode 37. The wiring 54 is formed (FIG. 3B). In FIG. 3B, A is a gate / source intersection, B is a TFT, C is a storage capacitor, and D is
Indicates counter electrode portions.
【0017】この画素電極および対向電極を露光する写
真製版工程では図5に示すように露光領域X、Yがオー
バーラップし、オーバーラップした全領域Zにおいてそ
れぞれの露光により形成されるパターン(この工程では
画素電極および対向電極)の割合がほぼ等しくなるよう
にする。また、パターンを乱数配列的配置になるように
してもよい。なお、オーバーラップする幅は1mm未満
でもよいが、1mm以上でよりよい効果が得られる。In the photolithography process for exposing the pixel electrode and the counter electrode, as shown in FIG. 5, the exposure regions X and Y overlap, and a pattern formed by each exposure in the entire overlapped region Z (this process). In this case, the proportions of the pixel electrode and the counter electrode) are made substantially equal. Further, the patterns may be arranged in a random array. The overlapping width may be less than 1 mm, but a better effect can be obtained with 1 mm or more.
【0018】つぎにウェットエッチあるいはドライエッ
チによりパターニングする。Next, patterning is performed by wet etching or dry etching.
【0019】以上により、薄膜トランジスタ集積装置を
作製することができる。さらに、この薄膜トランジスタ
集積装置を対向基板と液晶をはさむようシール材にて接
合する。さらにゲート配線、ソース配線、保持容量共通
配線にそれぞれゲート線駆動回路、ソース線駆動回路、
保持容量共通配線用電源を接続することにより液晶表示
装置を作製する。As described above, a thin film transistor integrated device can be manufactured. Further, this thin film transistor integrated device is joined with a sealing material so as to sandwich the opposing substrate and the liquid crystal. Further, a gate line driving circuit, a source line driving circuit,
A liquid crystal display device is manufactured by connecting a power supply for a storage capacitor common wiring.
【0020】上記方法により製造された液晶表示装置で
は電圧を印加する電極間の距離(画素電極と対向電極間
の距離)の平均値がそれぞれの露光領域の中間の値をも
つ露光境界共有領域が生じる。このため露光境界での電
極間隔変化により生じていた露光境界視認が緩和され、
歩留りおよび表示品位の向上が得られる。In the liquid crystal display device manufactured by the above method, an exposure boundary shared area having an average value of a distance between electrodes to which a voltage is applied (a distance between a pixel electrode and a counter electrode) has an intermediate value between the respective exposure areas. Occurs. Therefore, the visibility of the exposure boundary caused by the change in the electrode interval at the exposure boundary is reduced,
The yield and display quality can be improved.
【0021】なお本実施の形態で述べた効果は、分割露
光方式により作成された横方向電界方式の液晶表示装置
であれば、画素電極および対向電極を形成する写真製版
工程において本実施の形態の手法を用いることで分割露
光領域の数や大小、TFT構造、駆動方式、表示装置の
大小、画素数、液晶の種類を問わず同様の効果を得るこ
とができる。The effect described in the present embodiment is the same as that of the present embodiment in a photoengraving process for forming a pixel electrode and a counter electrode in a horizontal electric field type liquid crystal display device formed by a division exposure method. By using the method, the same effect can be obtained regardless of the number and size of the divided exposure regions, the TFT structure, the driving method, the size of the display device, the number of pixels, and the type of liquid crystal.
【0022】実施の形態2 本実施の形態では画素電極および対向電極を露光する写
真製版工程で図6に示すように露光領域X、Yがオーバ
ーラップし、オーバーラップした領域Zにおいてそれぞ
れの露光により形成されるパターン(この工程では画素
電極および対向電極)がそれぞれの露光領域端になるほ
ど小さい確率で存在するようにする。またパターンを乱
数配列的配置になるようにしてもよい。また、パターン
を乱数配列的配置になるようにしてもよい。なお、オー
バーラップする幅は1mm未満でもよいが、1mm以上
でよりよい効果が得られる。この点以外の構成は実施の
形態1と同一であるので省略する。Embodiment 2 In the present embodiment, as shown in FIG. 6, the exposure regions X and Y overlap in the photolithography process for exposing the pixel electrode and the counter electrode, and the exposure is performed in the overlapped region Z as shown in FIG. The patterns to be formed (the pixel electrode and the counter electrode in this step) are to be present with a smaller probability toward the end of each exposure area. The patterns may be arranged in a random array. Further, the patterns may be arranged in a random array. The overlapping width may be less than 1 mm, but a better effect can be obtained with 1 mm or more. The configuration other than this point is the same as that of the first embodiment, and a description thereof will be omitted.
【0023】上記方法により製造された液晶表示装置で
は電圧を印加する電極間の距離(画素電極と対向電極間
の距離)の平均値が露光境界共有領域で連続的に変化し
急峻な電極間距離の平均値変化が生じない。このため露
光境界での電極間隔変化による露光境界視認を低減する
ことができ、歩留りおよび表示品位の向上が得られる。In the liquid crystal display device manufactured by the above method, the average value of the distance between the electrodes to which a voltage is applied (the distance between the pixel electrode and the counter electrode) changes continuously in the exposure boundary shared area, and the steep interelectrode distance is obtained. Does not change. Therefore, the visibility of the exposure boundary due to a change in the electrode interval at the exposure boundary can be reduced, and the yield and display quality can be improved.
【0024】また露光境界共有領域と通常露光領域の境
界部での電極間隔の平均値の変化が小さいため、露光境
界共有領域と通常露光領域の境界視認が低減できる。Further, since the change in the average value of the electrode spacing at the boundary between the shared exposure boundary area and the normal exposure area is small, the visibility of the boundary between the shared exposure boundary area and the normal exposure area can be reduced.
【0025】なお本実施の形態で述べた効果は、分割露
光方式により作成された横方向電界方式の液晶表示装置
であれば、画素電極および対向電極を形成する写真製版
工程において本実施の形態の手法を用いることで分割露
光領域の数や大小、TFT構造、駆動方式、表示装置の
大小、画素数、液晶の種類を問わず同様の効果を得るこ
とができる。The effect described in the present embodiment is the same as that of the present embodiment in a photoengraving process for forming a pixel electrode and a counter electrode in a lateral electric field type liquid crystal display device formed by a division exposure method. By using the method, the same effect can be obtained regardless of the number and size of the divided exposure regions, the TFT structure, the driving method, the size of the display device, the number of pixels, and the type of liquid crystal.
【0026】実施の形態3 本実施の形態による液晶表示装置の画素部平面図を図8
に示す。図8において、22はCr等の金属を用い絶縁
基板に形成されたゲート配線、16はCr等の金属を用
い絶縁基板上に形成された保持容量共通配線、24はノ
ンドープ非晶質Si等の半導体を用いた半導体膜、27
はCr等の金属またはITO(Indium Tin
Oxide)等の透明導電膜等で形成された液晶にそれ
が駆動する電圧を印加するために用いる画素電極、37
は共通配線に接続され画素電極との間で電界を生じさせ
るための対向電極、29はドレイン電極である。Embodiment 3 FIG. 8 is a plan view of a pixel portion of a liquid crystal display device according to this embodiment.
Shown in 8, reference numeral 22 denotes a gate wiring formed on an insulating substrate using a metal such as Cr, 16 denotes a storage capacitor common wiring formed on an insulating substrate using a metal such as Cr, and 24 denotes a non-doped amorphous Si or the like. Semiconductor film using semiconductor, 27
Is a metal such as Cr or ITO (Indium Tin).
A pixel electrode 37 used to apply a voltage for driving liquid crystal formed of a transparent conductive film such as Oxide) to the liquid crystal;
Is a counter electrode connected to the common wiring for generating an electric field with the pixel electrode, and 29 is a drain electrode.
【0027】プロセスフローを説明する。まず絶縁基板
上にCr、Al、Ti、Ta、Mo、W、Ni、Cu、
Au、Ag等やそれらを主成分とする合金やITO等の
透明導電膜、さらにそれらの多層膜導電性材料を用いて
スパッタ法や蒸着法などで成膜しついで写真製版・加工
によりゲート配線22、保持容量共通配線16および対
向電極37を形成する。ついで窒化シリコンなどのゲー
ト絶縁膜と非晶質Si、多結晶poly−Siなどの半
導体膜24、n型のTFTの場合はPなどの不純物を高
濃度にドーピングしたn+非晶質Si、n+多結晶pol
y−Siなどのコンタクト膜を連続的にたとえばプラズ
マCVD、常圧CVD、減圧CVD法で成膜する。つい
で、コンタクト膜と半導体膜24を島状に加工する。C
r、Al、Ti、Ta、Mo、W、Ni、Cu、Au、
Ag等やそれらを主成分とする合金やITO等の透明導
電膜、さらにそれらの多層膜導電性材料をスパッタ法や
蒸着法で成膜後写真製版と微細加工技術によりソース配
線13、ソース電極28、ドレイン電極29、画素電極
27、保持容量電極101を形成する。このソース電極
28およびドレイン電極29あるいはそれらを形成した
ホトレジストをマスクとしてコンタクト層をエッチング
してチャネル領域が取り除く。ついで窒化シリコンや酸
化シリコン、無機絶縁膜、有機樹脂からなる層間絶縁膜
を成膜し、写真製版とそれに続くエッチングにより端子
部を形成する。The process flow will be described. First, Cr, Al, Ti, Ta, Mo, W, Ni, Cu,
A transparent conductive film such as Au, Ag, an alloy containing them as a main component, ITO or the like, and a multilayer conductive material thereof is formed into a film by a sputtering method or a vapor deposition method, and then the gate wiring 22 is formed by photolithography and processing. Then, the storage capacitor common line 16 and the counter electrode 37 are formed. Next, a gate insulating film such as silicon nitride, a semiconductor film 24 such as amorphous Si and polycrystalline poly-Si, and n + amorphous Si or n + + Polycrystalline pol
A contact film such as y-Si is continuously formed by, for example, plasma CVD, normal pressure CVD, or low pressure CVD. Next, the contact film and the semiconductor film 24 are processed into an island shape. C
r, Al, Ti, Ta, Mo, W, Ni, Cu, Au,
A transparent conductive film such as Ag or an alloy containing them as a main component, ITO or the like, and a multilayer conductive material thereof is formed by a sputtering method or a vapor deposition method, and then the source wiring 13 and the source electrode 28 are formed by photolithography and fine processing technology. , A drain electrode 29, a pixel electrode 27, and a storage capacitor electrode 101 are formed. Using the source electrode 28 and the drain electrode 29 or the photoresist on which they are formed as a mask, the contact layer is etched to remove the channel region. Next, an interlayer insulating film made of silicon nitride, silicon oxide, an inorganic insulating film, and an organic resin is formed, and a terminal portion is formed by photolithography and subsequent etching.
【0028】以上により、薄膜トランジスタ集積装置を
作製することができる。さらに、この薄膜トランジスタ
集積装置を対向基板と液晶をはさむようにシール材にて
接合する。さらにゲート配線、ソース配線、保持容量共
通配線にそれぞれゲート線駆動回路、ソース線駆動回
路、保持容量共通配線用電源を接続することにより液晶
表示装置を作製する。As described above, a thin film transistor integrated device can be manufactured. Further, this thin film transistor integrated device is joined with a sealing material so as to sandwich the opposing substrate and the liquid crystal. Further, a liquid crystal display device is manufactured by connecting a gate line driving circuit, a source line driving circuit, and a power supply for a common storage capacitor wiring to the gate wiring, the source wiring, and the common storage capacitor wiring, respectively.
【0029】なお画素電極および対向電極を露光する写
真製版工程では図5に示すように露光領域X、Yがオー
バーラップし、オーバーラップした全領域Zにおいてそ
れぞれの露光により形成されるパターン(この工程では
画素電極および対向電極)の割合がほぼ等しくなるよう
にする。なお、オーバーラップする幅は1mm未満でも
よいが、1mm以上でよりよい効果が得られる。また、
パターンを乱数配列的配置になるようにしてもよい。In the photolithography process for exposing the pixel electrode and the counter electrode, as shown in FIG. 5, the exposure regions X and Y overlap, and a pattern formed by the respective exposures in the entire overlapping region Z (see FIG. 5). In this case, the proportions of the pixel electrode and the counter electrode) are made substantially equal. The overlapping width may be less than 1 mm, but a better effect can be obtained with 1 mm or more. Also,
The pattern may be arranged in a random array.
【0030】以上により、薄膜トランジスタ集積装置を
作製することができる。さらに、この薄膜トランジスタ
集積装置を対向基板と液晶をはさむようシール材にて接
合する。さらにゲート配線、ソース配線、保持容量共通
配線にそれぞれゲート線駆動回路、ソース線駆動回路、
保持容量共通配線用電源を接続することにより液晶表示
装置を作製する。As described above, a thin film transistor integrated device can be manufactured. Further, this thin film transistor integrated device is joined with a sealing material so as to sandwich the opposing substrate and the liquid crystal. Further, a gate line driving circuit, a source line driving circuit,
A liquid crystal display device is manufactured by connecting a power supply for a storage capacitor common wiring.
【0031】上記方法により製造された液晶表示装置で
は電圧を印加する電極間の距離(画素電極と対向電極間
の距離)の平均値がそれぞれの露光領域の中間の値をも
つ露光境界共有領域が生じる。このため露光境界での電
極間隔変化により生じていた露光境界視認が緩和され、
歩留りおよび表示品位の向上が得られる。In the liquid crystal display device manufactured by the above method, an exposure boundary shared area having an average value of a distance between electrodes to which a voltage is applied (a distance between a pixel electrode and a counter electrode) has an intermediate value between the respective exposure areas. Occurs. Therefore, the visibility of the exposure boundary caused by the change in the electrode interval at the exposure boundary is reduced,
The yield and display quality can be improved.
【0032】また重ね合わせずれ量が分割露光境界で変
化することにより生じていた電極間隔変動も、その平均
値がそれぞれの露光領域の中間の値をもつ領域が生じる
ため、露光境界共有領域分割露光境界視認が低減する。Also, the electrode gap fluctuation caused by the change of the overlay shift amount at the division exposure boundary has a region whose average value is an intermediate value between the respective exposure regions. Boundary visibility is reduced.
【0033】なお本実施の形態で述べた効果は、分割露
光方式により作成された横方向電界方式の液晶表示装置
であれば、画素電極および対向電極を形成する写真製版
工程において本実施の形態の手法を用いることで分割露
光領域の数や大小、TFT構造、駆動方式、表示装置の
大小、画素数、液晶の種類を問わず同様の効果を得るこ
とができる。The effect described in the present embodiment is the same as that of the present embodiment in a photolithography process for forming a pixel electrode and a counter electrode in a horizontal electric field type liquid crystal display device formed by a division exposure method. By using the method, the same effect can be obtained regardless of the number and size of the divided exposure regions, the TFT structure, the driving method, the size of the display device, the number of pixels, and the type of liquid crystal.
【0034】実施の形態4 本実施の形態では画素電極および対向電極を露光する写
真製版工程で図6に示すように露光領域X、Yがオーバ
ーラップし、オーバーラップした領域Zにおいてそれぞ
れの露光により形成されるパターン(少なくとも画素電
極または対向電極のいずれか一方)がそれぞれの露光領
域端になるほど小さい確率で存在するようまたパターン
を乱数配列的配置になるようにしてもよい。またオーバ
ーラップする幅は1mm以上でよい。この点以外の構成
は実施の形態3と同一であるので省略する。Embodiment 4 In this embodiment, as shown in FIG. 6, the exposure regions X and Y overlap in the photolithography process for exposing the pixel electrode and the counter electrode, and in the overlapped region Z, each exposure is performed. The patterns to be formed (at least one of the pixel electrode and the counter electrode) may be present with a smaller probability toward the end of each exposure area, and the patterns may be arranged in a random arrangement. The width of the overlap may be 1 mm or more. The configuration other than this point is the same as that of the third embodiment, and will not be described.
【0035】上記方法により製造された液晶表示装置で
は電圧を印加する電極間の距離(画素電極と対向電極間
の距離)の平均値が露光境界共有領域で連続的に変化し
急峻な電極間距離の平均値変化が生じない。このため露
光境界での電極間隔変化による露光境界視認を低減する
ことができ、歩留りおよび表示品位の向上が得られる。In the liquid crystal display device manufactured by the above method, the average value of the distance between the electrodes to which the voltage is applied (the distance between the pixel electrode and the counter electrode) changes continuously in the exposure boundary shared area, and the steep distance between the electrodes is obtained. Does not change. Therefore, the visibility of the exposure boundary due to a change in the electrode interval at the exposure boundary can be reduced, and the yield and display quality can be improved.
【0036】なお実施の形態で述べた効果は、分割露光
方式により作成された横方向電界方式の液晶表示装置で
あれば、画素電極および対向電極を形成する写真製版工
程において本実施の形態の手法を用いることで分割露光
領域の数や大小、TFT構造、駆動方式、表示装置の大
小、画素数、液晶の種類を問わず同様の効果を得ること
ができる。The effect described in the embodiment is the same as the method of the present embodiment in the photoengraving process for forming the pixel electrode and the counter electrode in the case of a horizontal electric field type liquid crystal display device formed by the division exposure method. The same effect can be obtained regardless of the number and size of the divided exposure regions, the TFT structure, the driving method, the size of the display device, the number of pixels, and the type of liquid crystal.
【0037】実施の形態5 本実施の形態では画素電極および対向電極を露光する写
真製版工程で図7(a)および(b)に示すように画素
電極と対向電極で露光X1、X2およびY1およびY2の境
界共有領域の位置が異なるようにする。図7では露光境
界共有領域が重ならない例を示しているが一部重なって
もよい。この点以外の構成は実施の形態3あるいは4と
同一であるので省略する。Fifth Embodiment In this embodiment, as shown in FIGS. 7A and 7B, exposure X 1 , X 2 and X 3 are performed with the pixel electrode and the counter electrode in the photolithography process of exposing the pixel electrode and the counter electrode. The positions of the boundary sharing areas of Y 1 and Y 2 are made different. FIG. 7 shows an example in which the exposure boundary shared areas do not overlap, but may partially overlap. The configuration other than this point is the same as that of the third or fourth embodiment, and therefore will not be described.
【0038】なお図7の(a)は画素電極露光時の境界
共有領域位置を示し、図7の(b)は対向電極露光時の
境界共有領域位置を示している。FIG. 7 (a) shows the position of the boundary sharing area when exposing the pixel electrode, and FIG. 7 (b) shows the position of the boundary sharing area when exposing the counter electrode.
【0039】上記方法により製造された液晶表示装置で
は電圧を印加する電極間の距離(画素電極と対向電極間
の距離)の平均値が露光境界共有領域で連続的に変化し
急峻な電極間距離の平均値変化が生じない。また画素電
極と対向電極の重ね合わせずれによる電極間隔変化を抑
えることができる。このため露光境界での電極間隔変化
による露光境界視認を低減することができ、歩留まりお
よび表示品位の向上が得られる。In the liquid crystal display device manufactured by the above method, the average value of the distance between the electrodes to which a voltage is applied (the distance between the pixel electrode and the counter electrode) changes continuously in the exposure boundary shared area, and the steep interelectrode distance is obtained. Does not change. Further, it is possible to suppress a change in the electrode interval due to a misalignment of the pixel electrode and the counter electrode. Therefore, the visibility of the exposure boundary due to a change in the electrode interval at the exposure boundary can be reduced, and the yield and display quality can be improved.
【0040】また重ね合わせずれ量が分割露光境界で変
化することにより生じていた電極間隔変動も、画素電極
と対向電極がそれぞれ別の位置で重ね合わせずれが生じ
るため、露光境界共有領域分割露光境界視認が低減す
る。Also, the electrode gap fluctuation caused by the change in the overlay displacement amount at the division exposure boundary causes the overlay displacement at different positions of the pixel electrode and the counter electrode. Recognition is reduced.
【0041】なお本実施の形態で述べた効果は、分割露
光方式により作成された横方向電界方式の液晶表示装置
であれば、画素電極および対向電極を形成する写真製版
工程において本実施の形態の手法を用いることで分割露
光領域の数や大小、TFT構造、駆動方式、表示装置の
大小、画素数、液晶の種類を問わず同様の効果を得るこ
とができる。The effect described in the present embodiment is the same as that of the present embodiment in a photoengraving process for forming a pixel electrode and a counter electrode in a horizontal electric field type liquid crystal display device formed by a division exposure method. By using the method, the same effect can be obtained regardless of the number and size of the divided exposure regions, the TFT structure, the driving method, the size of the display device, the number of pixels, and the type of liquid crystal.
【0042】実施の形態6 本実施の形態では画素電極および対向電極を露光する写
真製版工程で図9に示すように画素電極と対向電極で露
光XおよびYの境界共有領域Zのパターン配置が異なる
ようにする。この点以外の構成は実施の形態3あるいは
4と同一であるので省略する。Embodiment 6 In this embodiment, in the photolithography process for exposing the pixel electrode and the counter electrode, the pattern arrangement of the boundary shared area Z between the exposure X and Y differs between the pixel electrode and the counter electrode as shown in FIG. To do. The configuration other than this point is the same as that of the third or fourth embodiment, and therefore will not be described.
【0043】なお、図9の(b)は画素電極露光時のパ
ターン配置例を示しており、図9の(c)は対向電極露
光時のパターン配置例を示している。FIG. 9B shows an example of pattern arrangement at the time of exposing a pixel electrode, and FIG. 9C shows an example of pattern arrangement at the time of exposure of a counter electrode.
【0044】上記方法により製造された液晶表示装置で
は電圧を印加する電極間の距離(画素電極と対向電極間
の距離)の平均値が露光XおよびYの境界共有領域Zで
連続的に変化し急峻な電極間距離の平均値変化が生じな
い。また画素電極と対向電極の重ね合せずれによる電極
間隔変化を抑えることができる。このため露光境界での
電極間隔変化による露光境界視認を低減することがで
き、歩留りおよび表示品位の向上が得られる。In the liquid crystal display device manufactured by the above method, the average value of the distance between the electrodes to which the voltage is applied (the distance between the pixel electrode and the counter electrode) changes continuously in the boundary shared area Z between the exposures X and Y. No sharp change in the average value of the inter-electrode distance occurs. In addition, it is possible to suppress a change in electrode interval due to misalignment of the pixel electrode and the counter electrode. Therefore, the visibility of the exposure boundary due to a change in the electrode interval at the exposure boundary can be reduced, and the yield and display quality can be improved.
【0045】また重ね合わせずれ量が分割露光境界で変
化することにより生じていた電極間隔変動も、その平均
値がそれぞれの露光領域の中間の値をもつ領域が生じる
ため、露光境界共有領域分割露光境界視認が低減する。Also, the electrode gap variation caused by the overlay displacement at the divisional exposure boundary has a region whose average value is an intermediate value between the respective exposure regions. Boundary visibility is reduced.
【0046】なお本実施の形態で述べた効果は、分割露
光方式により作成された横方向電界方式の液晶表示装置
であれば、画素電極および対向電極を形成する写真製版
工程において本実施の形態の手法を用いることで分割露
光領域の数や大小、TFT構造、駆動方式、表示装置の
大小、画素数、液晶の種類を問わず同様の効果を得るこ
とができる。The effect described in the present embodiment is the same as that of the present embodiment in a photoengraving process for forming a pixel electrode and a counter electrode in a horizontal electric field type liquid crystal display device formed by a division exposure method. By using the method, the same effect can be obtained regardless of the number and size of the divided exposure regions, the TFT structure, the driving method, the size of the display device, the number of pixels, and the type of liquid crystal.
【0047】[0047]
【発明の効果】本発明の請求項1および2にかかわる液
晶表示装置によれば、上記方法により製造された液晶表
示装置では電圧を印加する電極間の距離(画素電極と対
向電極間の距離)の平均値がそれぞれの露光領域の中間
の値をもつ露光境界共有領域が生じる。このため露光境
界での電極間隔変化により生じていた露光境界視認が緩
和され、歩留りおよび表示品位の向上が得られる。According to the liquid crystal display device according to the first and second aspects of the present invention, in the liquid crystal display device manufactured by the above method, the distance between the electrodes to which a voltage is applied (the distance between the pixel electrode and the counter electrode). An exposure boundary shared area having an average value of the intermediate values of the respective exposure areas is generated. Therefore, the visibility of the exposure boundary caused by a change in the electrode interval at the exposure boundary is reduced, and the yield and the display quality are improved.
【0048】本発明の請求項3にかかわる液晶表示装置
によれば、露光境界共有領域と通常露光領域の境界部で
の電極間隔の平均値の変化が小さいため、露光境界共有
領域と通常露光領域の境界視認が低減できる。According to the liquid crystal display device of the third aspect of the present invention, since the change in the average value of the electrode spacing at the boundary between the common exposure boundary area and the normal exposure area is small, the common exposure boundary area and the normal exposure area Can be reduced.
【0049】本発明の請求項8、11および12にかか
わる液晶表示装置によれば、また重ね合わせずれ量が分
割露光境界で変化することにより生じていた電極間隔変
動も、その平均値がそれぞれの露光領域の中間の値をも
つ領域が生じるため、露光境界共有領域分割露光境界視
認が低減する。According to the liquid crystal display device according to the eighth, eleventh and twelfth aspects of the present invention, the average value of the electrode spacing fluctuation caused by the change of the overlay displacement at the boundary of the divided exposure is also reduced. Since an area having an intermediate value between the exposure areas is generated, the visibility of the exposure boundary shared area divided exposure boundary is reduced.
【図1】本発明の一実施の形態にかかわる液晶表示装置
の画素部の一例を示す平面図である。FIG. 1 is a plan view illustrating an example of a pixel portion of a liquid crystal display device according to an embodiment of the present invention.
【図2】図1の液晶表示装置の製造工程を示す工程断面
図である。FIG. 2 is a process cross-sectional view showing a manufacturing process of the liquid crystal display device of FIG.
【図3】図1の液晶表示装置の製造工程を示す工程断面
図である。FIG. 3 is a process sectional view showing a manufacturing process of the liquid crystal display device of FIG. 1;
【図4】本発明の一実施の形態にかかわる液晶表示装置
の露光Xと露光Yとの間の境界領域を示す説明図であ
る。FIG. 4 is an explanatory diagram showing a boundary region between exposure X and exposure Y of the liquid crystal display device according to one embodiment of the present invention.
【図5】本発明の一実施の形態にかかわる液晶表示装置
の露光Xと露光Yとの間の境界領域を示す説明図であ
る。FIG. 5 is an explanatory diagram showing a boundary region between exposure X and exposure Y of the liquid crystal display device according to one embodiment of the present invention.
【図6】本発明の一実施の形態にかかわる液晶表示装置
の露光Xと露光Yとの間の境界領域を示す説明図であ
る。FIG. 6 is an explanatory diagram showing a boundary region between exposure X and exposure Y of the liquid crystal display device according to one embodiment of the present invention.
【図7】本発明の一実施の形態にかかわる液晶表示装置
の露光X1、X2と露光Y1、Y2との間の境界領域を示す
説明図である。FIG. 7 is an explanatory diagram showing a boundary region between exposures X 1 and X 2 and exposures Y 1 and Y 2 of the liquid crystal display device according to one embodiment of the present invention.
【図8】本発明の他の実施の形態にかかわる液晶表示装
置の画素部の一例を示す平面図である。FIG. 8 is a plan view illustrating an example of a pixel portion of a liquid crystal display device according to another embodiment of the present invention.
【図9】本発明の一実施の形態にかかわる液晶表示装置
の露光Xと露光Yとの間の境界領域を示す説明図であ
る。FIG. 9 is an explanatory diagram showing a boundary region between exposure X and exposure Y of the liquid crystal display device according to one embodiment of the present invention.
【図10】従来の液晶表示装置における電極間隔のばら
つきと輝度の変化率との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the variation in electrode spacing and the rate of change in luminance in a conventional liquid crystal display device.
16 保持容量共通配線 21 絶縁性基板 22 ゲート配線 23 ゲート絶縁膜 24 半導体膜 25 コンタクト膜 27 画素電極 28 ソース電極 29 ドレイン電極 37 対向電極 54 第三の配線 60 第一の配線 61 第二の配線 101 保持容量電極 102 層間絶縁膜 103 コンタクトホール DESCRIPTION OF SYMBOLS 16 Storage capacitance common wiring 21 Insulating substrate 22 Gate wiring 23 Gate insulating film 24 Semiconductor film 25 Contact film 27 Pixel electrode 28 Source electrode 29 Drain electrode 37 Counter electrode 54 Third wiring 60 First wiring 61 Second wiring 101 Storage capacitance electrode 102 Interlayer insulating film 103 Contact hole
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H092 GA14 JB24 JB69 KA05 KA10 KA12 KA18 KB04 KB25 MA04 MA05 MA07 MA08 MA16 MA18 MA19 MA37 NA01 NA29 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H092 GA14 JB24 JB69 KA05 KA10 KA12 KA18 KB04 KB25 MA04 MA05 MA07 MA08 MA16 MA18 MA19 MA37 NA01 NA29
Claims (13)
ンを形成する横方向電界方式の液晶表示装置において、
隣り合う分割露光領域が境界共有領域を有し、この境界
共有領域において画素パターンがいずれかの露光領域に
属すように配置されることを特徴とする液晶表示装置。1. A lateral electric field type liquid crystal display device which divides a screen into a plurality of regions to form a pixel pattern,
A liquid crystal display device, wherein adjacent divided exposure regions have a shared border region, and in this shared border region, pixel patterns are arranged so as to belong to one of the exposed regions.
乱数配列的に配置されることを特徴とする請求項1記載
の液晶表示装置。2. The liquid crystal display device according to claim 1, wherein predetermined patterns in the boundary sharing area are arranged in a random array.
それぞれの露光領域端になるほど小さい確率で存在する
よう配置されたことを特徴とする請求項1または2記載
の液晶表示装置。3. The liquid crystal display device according to claim 1, wherein a predetermined pattern in the boundary sharing area is arranged so as to be present with a smaller probability toward an end of each exposure area.
成されるパターンが少なくとも液晶に電界を印加するた
めの電極を含むことを特徴とする請求項1〜3記載の液
晶表示装置。4. The liquid crystal display device according to claim 1, wherein the pattern formed by the exposure having the boundary sharing region includes at least an electrode for applying an electric field to the liquid crystal.
で形成され、少なくともその液晶に電界を印加するため
の電極パターンを複数の領域に分割して形成する横方向
電界方式の液晶表示装置において、隣り合う分割露光境
界が境界共有領域を有し、この境界共有領域において画
素パターンがいずれかの露光領域に属すように配置され
ることを特徴とする液晶表示装置。5. A lateral electric field type liquid crystal display in which electrodes for applying an electric field to the liquid crystal are formed in the same layer, and at least an electrode pattern for applying the electric field to the liquid crystal is divided into a plurality of regions. 2. A liquid crystal display device according to claim 1, wherein adjacent divided exposure boundaries have a boundary sharing region, and a pixel pattern is arranged in the boundary sharing region so as to belong to any one of the exposure regions.
数配列的に配置されることを特徴とする請求項5記載の
液晶表示装置。6. The liquid crystal display device according to claim 5, wherein the predetermined patterns in the boundary sharing area are arranged in a random number array.
それぞれの露光領域端になるほど小さい確率で存在する
よう配置されたことを特徴とする請求項6または7記載
の液晶表示装置。7. The liquid crystal display device according to claim 6, wherein a predetermined pattern in the boundary sharing region is arranged so as to be present with a smaller probability toward an end of each exposure region.
で形成され、少なくとも一方の電極パターンを複数の領
域に分割して形成する横方向の電界方式の液晶表示装置
において、隣り合う分割露光境界が境界共有領域を有
し、この境界共有領域において画素パターンがいずれか
の露光領域に属すように配置されることを特徴とする液
晶表示装置。8. In a lateral electric field type liquid crystal display device in which an electrode for applying an electric field to the liquid crystal is formed in a separate layer and at least one electrode pattern is divided into a plurality of regions, adjacent divisions are provided. A liquid crystal display device wherein an exposure boundary has a shared boundary region, and a pixel pattern is arranged in the shared boundary region so as to belong to one of the exposure regions.
乱数配列的に配置されることを特徴とする請求項8記載
の液晶表示装置。9. The liquid crystal display device according to claim 8, wherein predetermined patterns in the boundary sharing area are arranged in a random array.
がそれぞれの露光領域端になるほど小さい確率で存在す
るよう配置されたことを特徴とする請求項8または9記
載の液晶表示装置。10. The liquid crystal display device according to claim 8, wherein a predetermined pattern in the boundary sharing area is arranged so as to be present with a smaller probability toward an end of each exposure area.
ンを構成する層によって異なることを特徴とする請求項
1〜10記載の液晶表示装置。11. The liquid crystal display device according to claim 1, wherein the position of the boundary sharing area differs depending on a layer forming a pixel pattern.
の配置が層によって異なることを特徴とする請求項1〜
10記載の液晶表示装置。12. The method according to claim 1, wherein an arrangement of a predetermined pattern in the boundary sharing area is different depending on a layer.
11. The liquid crystal display device according to 10.
ことを特徴とする請求項1〜10記載の液晶表示装置。13. The liquid crystal display device according to claim 1, wherein the width of the boundary sharing area is 1 mm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33567898A JP3577625B2 (en) | 1998-11-26 | 1998-11-26 | Manufacturing method of liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33567898A JP3577625B2 (en) | 1998-11-26 | 1998-11-26 | Manufacturing method of liquid crystal display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000162639A true JP2000162639A (en) | 2000-06-16 |
JP3577625B2 JP3577625B2 (en) | 2004-10-13 |
Family
ID=18291290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33567898A Expired - Lifetime JP3577625B2 (en) | 1998-11-26 | 1998-11-26 | Manufacturing method of liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3577625B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003222903A (en) * | 2002-01-30 | 2003-08-08 | Nec Corp | Liquid crystal display device |
JP2004012731A (en) * | 2002-06-06 | 2004-01-15 | Hitachi Displays Ltd | Liquid crystal display |
US7136120B2 (en) | 2002-11-19 | 2006-11-14 | Nec Lcd Technologies, Ltd. | Liquid crystal display device and method of fabricating the same |
JP2007171938A (en) * | 2005-11-24 | 2007-07-05 | Seiko Epson Corp | Liquid crystal devices and electronic equipment |
KR100740935B1 (en) * | 2001-04-27 | 2007-07-19 | 삼성전자주식회사 | Method of manufacturing thin film transistor substrate |
KR100796802B1 (en) * | 2001-05-25 | 2008-01-22 | 삼성전자주식회사 | Manufacturing method of thin film transistor substrate for liquid crystal display device |
JP2008065214A (en) * | 2006-09-11 | 2008-03-21 | Epson Imaging Devices Corp | Manufacturing method of liquid crystal device |
JP2011053720A (en) * | 2010-12-14 | 2011-03-17 | Toshiba Mobile Display Co Ltd | Liquid crystal display device |
JP2013020189A (en) * | 2011-07-13 | 2013-01-31 | Japan Display Central Co Ltd | Liquid crystal display device |
US8421977B2 (en) | 2008-02-14 | 2013-04-16 | Japan Display Central Inc. | Liquid crystal display device with pixel electrode having trapezoidal shape |
JP7534572B1 (en) | 2005-12-26 | 2024-08-14 | 株式会社半導体エネルギー研究所 | Liquid crystal display device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104503170B (en) * | 2014-12-12 | 2017-02-22 | 深圳市华星光电技术有限公司 | Array substrate and liquid crystal display panel |
-
1998
- 1998-11-26 JP JP33567898A patent/JP3577625B2/en not_active Expired - Lifetime
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100740935B1 (en) * | 2001-04-27 | 2007-07-19 | 삼성전자주식회사 | Method of manufacturing thin film transistor substrate |
KR100796802B1 (en) * | 2001-05-25 | 2008-01-22 | 삼성전자주식회사 | Manufacturing method of thin film transistor substrate for liquid crystal display device |
US6888601B2 (en) | 2002-01-30 | 2005-05-03 | Nec Lcd Technologies, Ltd. | Lateral electric field liquid crystal display device |
JP2003222903A (en) * | 2002-01-30 | 2003-08-08 | Nec Corp | Liquid crystal display device |
JP2004012731A (en) * | 2002-06-06 | 2004-01-15 | Hitachi Displays Ltd | Liquid crystal display |
US7136120B2 (en) | 2002-11-19 | 2006-11-14 | Nec Lcd Technologies, Ltd. | Liquid crystal display device and method of fabricating the same |
US7151587B2 (en) | 2002-11-19 | 2006-12-19 | Nec Lcd Technologies Ltd. | Liquid crystal display device and method of fabricating the same |
US7388644B2 (en) | 2002-11-19 | 2008-06-17 | Nec Lcd Technologies, Ltd. | Liquid crystal display device and method of fabricating the same |
US7405782B2 (en) | 2002-11-19 | 2008-07-29 | Nec Lcd Technologies, Ltd. | Liquid crystal display device and method fabricating the same |
JP2007171938A (en) * | 2005-11-24 | 2007-07-05 | Seiko Epson Corp | Liquid crystal devices and electronic equipment |
JP7534572B1 (en) | 2005-12-26 | 2024-08-14 | 株式会社半導体エネルギー研究所 | Liquid crystal display device |
JP2008065214A (en) * | 2006-09-11 | 2008-03-21 | Epson Imaging Devices Corp | Manufacturing method of liquid crystal device |
US8421977B2 (en) | 2008-02-14 | 2013-04-16 | Japan Display Central Inc. | Liquid crystal display device with pixel electrode having trapezoidal shape |
US8497969B2 (en) | 2008-02-14 | 2013-07-30 | Japan Display Central Inc. | Liquid crystal display device having particular electrodes |
US8867007B2 (en) | 2008-02-14 | 2014-10-21 | Japan Display Inc. | Liquid crystal display device having a strip-shaped electrode |
JP2011053720A (en) * | 2010-12-14 | 2011-03-17 | Toshiba Mobile Display Co Ltd | Liquid crystal display device |
JP2013020189A (en) * | 2011-07-13 | 2013-01-31 | Japan Display Central Co Ltd | Liquid crystal display device |
Also Published As
Publication number | Publication date |
---|---|
JP3577625B2 (en) | 2004-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3267011B2 (en) | Liquid crystal display | |
CN100435012C (en) | Liquid crystal display device and manufacturing method thereof | |
KR100675631B1 (en) | Transverse electric field liquid crystal display device and manufacturing method thereof | |
JP4385993B2 (en) | Liquid crystal display device and manufacturing method thereof | |
JPH0814669B2 (en) | Matrix type display device | |
JPH11133450A (en) | Liquid crystal display device and its production | |
JP4401551B2 (en) | Method for manufacturing liquid crystal display device, method for manufacturing display device, and liquid crystal display device | |
JP3957277B2 (en) | Liquid crystal display device and manufacturing method thereof | |
US6917392B2 (en) | Liquid crystal display apparatus of a lateral direction electric field drive type | |
US6459464B1 (en) | Liquid crystal display device with reduced weighting trace defects | |
JP2003273365A (en) | Display device | |
JP2003307748A (en) | Liquid crystal display device and manufacturing method thereof | |
KR100322968B1 (en) | Method for manufacturing fringe field switching mode lcd | |
KR20010098542A (en) | Display device and manufacturing method thereof | |
US7615782B2 (en) | Thin film transistor substrate and liquid crystal display panel having sub-pixels | |
JP3577625B2 (en) | Manufacturing method of liquid crystal display device | |
KR20000022726A (en) | Liquid crystal display and manufacturing method thereof | |
KR19980041737A (en) | LCD Display Device and Manufacturing Method Thereof | |
JP3808107B2 (en) | Liquid crystal display device and manufacturing method thereof | |
KR100356113B1 (en) | Method of manufacturing a liquid crystal display | |
JP3669082B2 (en) | Thin film transistor array for liquid crystal display elements | |
JP3905436B2 (en) | Liquid crystal display | |
JPH09101541A (en) | Array substrate for display device and its production | |
JP4316909B2 (en) | Liquid crystal display | |
KR20020011574A (en) | array panel for liquid crystal display and fabricating method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040615 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040630 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070723 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080723 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080723 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090723 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100723 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100723 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110723 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110723 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120723 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120723 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |