JP2000119823A - Electrical steel sheet with low iron loss - Google Patents
Electrical steel sheet with low iron lossInfo
- Publication number
- JP2000119823A JP2000119823A JP10287462A JP28746298A JP2000119823A JP 2000119823 A JP2000119823 A JP 2000119823A JP 10287462 A JP10287462 A JP 10287462A JP 28746298 A JP28746298 A JP 28746298A JP 2000119823 A JP2000119823 A JP 2000119823A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- iron loss
- annealing
- crystal grains
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
(57)【要約】
【課題】 電磁鋼板の結晶粒組織を適正にコントロール
することによって、鉄損特性の一層の向上を図る。
【解決手段】 Si:1.0 〜8.0 wt%を含有する電磁鋼板
において、円相当径で粒径:1mm以下の微細結晶粒を除
外して計算した平均結晶粒径が円相当径で3mm以上で、
かつ鋼板板厚方向の断面において粒径が0.03mm以上、0.
30mm以下である超微細結晶粒の存在頻度が3個/mm2 以
上、 200個/mm2 以下を満足する結晶粒組織とする。
(57) [Summary] [PROBLEMS] To further improve iron loss characteristics by appropriately controlling the crystal grain structure of an electrical steel sheet. SOLUTION: In an electromagnetic steel sheet containing Si: 1.0 to 8.0 wt%, an average crystal grain size calculated by excluding fine crystal grains having a circle equivalent diameter of 1 mm or less is 3 mm or more in circle equivalent diameter,
And in the cross section in the thickness direction of the steel sheet, the grain size is 0.03 mm or more,
The crystal grain structure is such that the frequency of ultra-fine crystal grains of 30 mm or less satisfies 3 / mm 2 or more and 200 / mm 2 or less.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、主として電力用変
圧器あるいは回転機の鉄心材料としての用途に供して好
適な鉄損の低い電磁鋼板に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic steel sheet having a low iron loss and suitable for use as an iron core material of a power transformer or a rotating machine.
【0002】[0002]
【従来の技術】方向性電磁鋼板の製造に際しては、イン
ヒビターと呼ばれる析出物を使用して最終仕上焼鈍中に
二次再結晶を生じさせることが一般的な方法として利用
されている。例えば、代表的な技術として、特公昭40−
15644 号公報にはAlN, MnSを使用する方法が、また特公
昭51−13469 号公報にはMnS, MnSe を使用する方法がそ
れぞれ開示され、いずれも工業的に実用化されている。
これらとは別に、CuSeとBNを添加する技術が特公昭58
−42244 号公報に、またTi,Zr,V等の窒化物を使用す
る方法が特公昭46−40855 号公報に提案されるなど、そ
の他にも数多くの技術が知られている。2. Description of the Related Art In the production of grain-oriented electrical steel sheets, it is a general method to use a precipitate called an inhibitor to cause secondary recrystallization during final finish annealing. For example, as a representative technology,
Japanese Patent Publication No. 15644 discloses a method using AlN and MnS, and Japanese Patent Publication No. 51-13469 discloses a method using MnS and MnSe, both of which are industrially practically used.
Apart from these, the technology of adding CuSe and BN is disclosed in
A number of other techniques are known, for example, a method using a nitride such as Ti, Zr, V, etc. is proposed in Japanese Patent Publication No. 46-40855.
【0003】これらのインヒビターを用いる方法は、安
定して二次再結晶粒を発達させるには有用な方法ではあ
るが、析出物を微細に分散させる必要があるので、熱延
前のスラブ加熱温度を1300℃以上の高温とする必要があ
る。しかしながら、スラブの高温加熱は、設備コストが
嵩むことの他、熱延時に生成するスケール量も増大する
ことから、歩留りが低下するだけでなく、設備のメンテ
ナンスが煩雑になるなど問題も多くなる。[0003] The method using these inhibitors is a useful method for stably developing secondary recrystallized grains. However, since it is necessary to finely disperse the precipitates, the slab heating temperature before hot rolling is required. Must be set to a high temperature of 1300 ° C. or higher. However, high-temperature heating of the slab not only increases the equipment cost, but also increases the amount of scale generated at the time of hot rolling, so that not only the yield is reduced but also the maintenance of the equipment becomes complicated, which causes many problems.
【0004】もう一つのインヒビターを使用する技術の
問題点は、最終仕上焼鈍後にこれらの成分が残存すると
磁気特性の劣化を招くという点である。そのためインヒ
ビター成分である、Al,B,SeおよびS等を鋼中から除
去する目的で、二次再結晶完了に引き続いて1100℃以上
の水素雰囲気中で数時間にわたる純化焼鈍が必要とな
る。しかしながら、このような高温純化焼鈍のために、
鋼板の機械的強度が低下してコイルの下部が座屈し、製
品の歩留りが著しく低下するという問題がある。そこ
で、上記のようなインヒビターを使用しない技術がこう
した問題の解決手段となる。[0004] Another problem with the technique using inhibitors is that if these components remain after the final finish annealing, the magnetic properties are degraded. Therefore, in order to remove Al, B, Se, S, and the like, which are inhibitor components, from the steel, it is necessary to purify the steel for several hours in a hydrogen atmosphere at 1100 ° C. or higher following the completion of the secondary recrystallization. However, due to such high temperature purification annealing,
There is a problem that the mechanical strength of the steel sheet is reduced, the lower part of the coil buckles, and the yield of the product is significantly reduced. Therefore, a technique that does not use an inhibitor as described above is a means for solving such a problem.
【0005】インヒビターを使用しないで方向性電磁鋼
板を製造する方法としては、例えば特開昭64−55339
号、特開平2−57635 号、特開平7−76732 号および特
開平7−197126号各公報に開示の技術が知られている。
これらの技術に共通していることは、表面エネルギーを
駆動力として{110}面を優先的に成長させることを
意図していることである。表面エネルギー差を有効に利
用するためには、表面の寄与を大きくするために板厚を
薄くすることが必然的に要求され、例えば特開昭64−55
339 号公報に開示の技術では板厚が0.2mm以下、また特
開平2−57635 号公報に開示の技術では板厚が0.15mm以
下に制限されている。この点、特開平7−76732 号公報
に開示の技術では板厚は特に制限されていないが、実施
例1によると、板厚が0.30mmの場合には磁束密度はB8
で 1.700T以下と方位集積度は極めて悪い。また、実施
例中で良好な磁束密度が得られる板厚は0.10mmに限られ
ている。同様に、特開平7−197126号公報に開示の技術
でも板厚は制限されていないが、この技術は50〜75%の
三次冷間圧延を施す技術であるので、板厚は必然的に薄
くなり、実施例では0.10mm厚である。現在使用されてい
る方向性電磁鋼板の板厚は0.20mm以上がほとんどである
ので、通常の製品を上記のような表面エネルギーを利用
する方法で得ることは困難である。A method for producing a grain-oriented electrical steel sheet without using an inhibitor is disclosed, for example, in JP-A-64-55339.
The techniques disclosed in Japanese Patent Application Laid-Open Nos. Hei 2-57635, Hei 7-76732 and Hei 7-197126 are known.
What is common to these techniques is that the {110} plane is preferentially grown using surface energy as a driving force. In order to effectively utilize the surface energy difference, it is inevitably required to reduce the plate thickness in order to increase the contribution of the surface.
In the technology disclosed in Japanese Patent Publication No. 339, the thickness is limited to 0.2 mm or less, and in the technology disclosed in Japanese Patent Application Laid-Open No. 2-57635, the thickness is limited to 0.15 mm or less. In this regard, the thickness disclosed in Japanese Patent Application Laid-Open No. 7-76732 is not particularly limited. However, according to the first embodiment, when the thickness is 0.30 mm, the magnetic flux density is B 8.
At 1.700T or less, the degree of azimuth integration is extremely poor. Further, in the examples, the plate thickness at which a good magnetic flux density is obtained is limited to 0.10 mm. Similarly, the thickness disclosed in Japanese Patent Application Laid-Open No. 7-197126 is not limited, but since this technology is a technology of performing tertiary cold rolling of 50 to 75%, the thickness is necessarily thin. In the embodiment, the thickness is 0.10 mm. Since the thickness of the grain-oriented electrical steel sheet currently used is almost 0.20 mm or more, it is difficult to obtain a normal product by the method using surface energy as described above.
【0006】さらに表面エネルギーを利用するために
は、表面酸化物の生成を抑制した状態で高温の最終仕上
焼鈍を行わなければならない。例えば、特開昭64−5533
9 号公報に開示の技術では、1180℃以上の温度で、しか
も焼鈍雰囲気として、真空または不活性ガス、あるいは
水素ガスまたは水素ガスと窒素ガスの混合ガスを使用す
ることが記載されている。また、特開平2−57635 号公
報に開示の技術では、950 〜1100℃の温度で、不活性ガ
ス雰囲気あるいは水素ガスまたは水素ガスと不活性ガス
の混合雰囲気で、しかもこれらを減圧することが推奨さ
れている。さらに、特開平7−197126号公報に開示の技
術では、1000〜1300℃の温度で酸素分圧が0.5 Pa以下の
非酸化性雰囲気中または真空中で最終仕上焼鈍を行うこ
とが記載されている。Further, in order to utilize surface energy, high-temperature final finish annealing must be performed in a state where formation of surface oxides is suppressed. For example, JP-A-64-5553
The technique disclosed in Japanese Patent Application Publication No. 9 describes that a vacuum or an inert gas, or a mixed gas of a hydrogen gas and a nitrogen gas is used as an annealing atmosphere at a temperature of 1180 ° C. or more. In the technique disclosed in Japanese Patent Application Laid-Open No. 2-57635, it is recommended to reduce the pressure in an inert gas atmosphere or a mixed gas of hydrogen gas and inert gas at a temperature of 950 to 1100 ° C. Have been. Further, in the technique disclosed in Japanese Patent Application Laid-Open No. 7-197126, it is described that the final finish annealing is performed in a non-oxidizing atmosphere or a vacuum at a temperature of 1000 to 1300 ° C. and an oxygen partial pressure of 0.5 Pa or less. .
【0007】このように、表面エネルギーを利用して良
好な磁気特性を得ようとすると、最終仕上焼鈍の雰囲気
は不活性ガスや水素が必要とされ、また推奨される条件
として真空とすることが要求されるけれども、高温と真
空の両立は設備的には極めて難しく、またコスト高とも
なる。As described above, in order to obtain good magnetic properties by utilizing surface energy, the atmosphere of the final finish annealing requires an inert gas or hydrogen, and it is recommended that a vacuum be used as a recommended condition. Although required, compatibility between high temperature and vacuum is extremely difficult in terms of equipment, and costs are high.
【0008】さらに、表面エネルギーを利用した場合に
は、原理的には{110}面の選択のみが可能であるに
すぎず、圧延方向に<001>方向が揃ったゴス粒の成
長が選択されるわけではない。方向性電磁鋼板は、圧延
方向に磁化容易軸<001>を揃えてこそ磁気特性が向
上するので、{110}面の選択のみでは原理的に良好
な磁気特性は得られない。そのため、表面エネルギーを
利用する方法で良好な磁気特性を得ることができる圧延
条件や焼鈍条件は極めて限られたものとなり、その結
果、得られる磁気特性は不安定とならざるを得ないFurther, when the surface energy is used, only the {110} plane can be selected in principle, and the growth of goss grains having the <001> direction aligned with the rolling direction is selected. Not necessarily. Since the magnetic properties of a grain-oriented electrical steel sheet are improved only when the easy axis <001> is aligned in the rolling direction, good magnetic properties cannot be obtained in principle only by selecting the {110} plane. Therefore, rolling conditions and annealing conditions that can obtain good magnetic properties by a method utilizing surface energy are extremely limited, and as a result, the obtained magnetic properties must be unstable.
【0009】加えて、表面エネルギーを利用する方法で
は、表面酸化層の形成を抑制して最終仕上焼鈍を行わね
ばならず、例えば MgOのような焼鈍分離剤を塗布焼鈍す
ることができないので、最終仕上焼鈍後に通常の方向性
電磁鋼板と同様な酸化物被膜を形成することはできな
い。例えば、フォルステライト被膜は、焼鈍分離剤とし
てMgO を主成分として塗布した時に形成される被膜であ
るが、この被膜は鋼板表面に張力を与えるだけでなく、
フォルステライト被膜の上にさらに塗布焼き付けるリン
酸塩を主体とする絶縁張力コーティングの密着性を確保
する機能を担っている。従って、フォルステライト被膜
の無い場合には鉄損は大幅に劣化する。In addition, in the method utilizing surface energy, the final finish annealing must be performed while suppressing the formation of a surface oxide layer. For example, an annealing separator such as MgO cannot be applied and annealed. After finish annealing, an oxide film similar to that of a normal grain-oriented electrical steel sheet cannot be formed. For example, a forsterite film is a film formed when MgO is mainly used as an annealing separator, and this film not only gives tension to the steel sheet surface,
It has the function of ensuring the adhesion of the insulating tension coating mainly composed of phosphate, which is further applied and baked on the forsterite film. Therefore, when there is no forsterite film, the iron loss is significantly deteriorated.
【0010】さらに、上述したようなインヒビターを用
いる方法、またはインヒビターを用いない方法によっ
て、二次再結晶の方位をゴス方位に揃えたとしても、必
ずしも製品の鉄損が十分に低下するわけではない。この
理由は、二次再結晶粒が粗大なためである。そこで、こ
の間題を解決するために、二次再結晶粒の平均粒径を小
さくして鉄損を改善する技術が特公昭59−20745 号公報
に、また微細な二次再結晶粒の数と分布を制御して鉄損
を低減する技術が特公平4−19296 号公報において提案
された。しかしながら、これらの二次再結晶粒微細化技
術では、二次再結晶粒の方位集積度が低下するため、得
られる鉄損は十分とはいえなかった。Furthermore, even if the orientation of secondary recrystallization is adjusted to the Goss orientation by the method using an inhibitor or the method not using an inhibitor as described above, the iron loss of a product is not necessarily sufficiently reduced. . This is because the secondary recrystallized grains are coarse. In order to solve this problem, Japanese Patent Publication No. 20720/1984 discloses a technique for improving the core loss by reducing the average grain size of the secondary recrystallized grains. A technique for controlling the distribution to reduce iron loss has been proposed in Japanese Patent Publication No. Hei 4-19296. However, in these secondary recrystallized grain refinement techniques, the degree of orientation accumulation of the secondary recrystallized grains is reduced, so that the obtained iron loss is not sufficient.
【0011】方位集積度の高い粗大な二次再結晶粒の内
部に微細結晶粒が存在する状態は、高い磁束密度と低い
鉄損が得られることが知られている。例えば、局所的に
熱処理を施して2mm径以下の微細結晶粒を 100 mm2当た
り0.25〜5個生成させる技術が特開平10−17931 号公報
に開示されている。また、特開平8−213225号公報に
は、粒径が5〜50mmの粗大結晶粒の粒内に直径が0.05〜
2mmの微細結晶粒を有する二次再結晶組織をもつ方向性
電磁鋼板が開示されている。上記の技術により生成され
る微細結晶粒の大きさに関しては、ゴス方位の二次再結
晶粒である場合には1mm以上であることが多く、ゴス方
位でない一次粒である場合には、ほぼ板厚貫通以上すな
わち粒径:0.30mm以上である。粒径が0.30mm以下の微細
な一次再結晶粒は、高温仕上焼鈍時、特に1100℃を超え
る温度域で行われる純化焼鈍の際に、二次再結晶粒によ
ってほば完全に食われてしまう。It is known that high magnetic flux density and low iron loss can be obtained in a state where fine crystal grains exist inside coarse secondary recrystallized grains having a high degree of orientation integration. For example, Japanese Unexamined Patent Publication No. Hei 10-17931 discloses a technique in which heat treatment is locally performed to produce 0.25 to 5 fine crystal grains having a diameter of 2 mm or less per 100 mm 2 . Japanese Patent Application Laid-Open No. 8-213225 discloses that coarse crystal grains having a particle size of 5 to 50 mm have a diameter of 0.05 to 50 mm.
A grain-oriented electrical steel sheet having a secondary recrystallized structure having fine crystal grains of 2 mm is disclosed. Regarding the size of the fine crystal grains produced by the above technique, the size is often 1 mm or more in the case of secondary recrystallized grains having a Goss orientation, and almost Thickness or more, that is, particle size: 0.30 mm or more. Fine primary recrystallized grains with a grain size of 0.30 mm or less are almost completely eaten by secondary recrystallized grains during high-temperature finish annealing, especially during purification annealing performed in a temperature range exceeding 1100 ° C .
【0012】ところで、板厚貫通するような0.30mm以上
の微細結晶粒は、必然的に磁束密度を低下させる原因と
なるため、特開平10−17931 号公報に開示されている技
術のように、微細結晶粒の発生数を制限し、さらに発生
場所を人為的に狭い範囲に制御しない限りは良好な鉄損
は得られない。また、特開平8−213225号公報に開示さ
れている電磁鋼板では、その成分中にAlを 0.005〜0.06
wt%含むことが必須の条件となっているが、鋼板成分と
してのAlは微量不純物の窒素と結合して析出するので良
好な鉄損は得られない。By the way, since fine crystal grains of 0.30 mm or more that penetrate the plate inevitably cause a reduction in magnetic flux density, as disclosed in Japanese Patent Application Laid-Open No. 10-17931, Good iron loss cannot be obtained unless the number of generation of fine crystal grains is limited and the generation place is artificially controlled within a narrow range. Further, in the electromagnetic steel sheet disclosed in Japanese Patent Application Laid-Open No. 8-213225, Al is contained in its component in an amount of 0.005 to 0.06.
Although it is an essential condition to contain wt%, good iron loss cannot be obtained because Al as a steel sheet component is precipitated by bonding with nitrogen as a trace impurity.
【0013】[0013]
【発明が解決しようとする課題】本発明は、上記の問題
を有利に解決するもので、鋼板の結晶粒組織を適正にコ
ントロールすることによって鉄損特性の一層の向上を実
現した鉄損の低い電磁鋼板を提案することを目的とす
る。DISCLOSURE OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and achieves a further improvement in iron loss characteristics by appropriately controlling the grain structure of a steel sheet. The purpose is to propose an electrical steel sheet.
【0014】[0014]
【課題を解決するための手段】さて、発明者らは、上記
の問題を解決すべく鋭意研究を重ねた結果、素材として
インヒビター成分を含まない鋼片を用い、かかる鋼片中
における不純物を極力低減すると共に、熱処理条件を的
確に制御することによって、粗大二次再結晶粒中に超微
細な結晶粒を適量生成させることができ、その結果、所
期した目的が有利に達成されることの知見を得た。本発
明は、上記の知見に立脚するものである。Means for Solving the Problems Now, the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have used a steel slab containing no inhibitor component as a material and minimized impurities in the steel slab. By appropriately controlling the heat treatment conditions while reducing the amount, it is possible to generate an appropriate amount of ultrafine crystal grains in the coarse secondary recrystallized grains, and as a result, the intended purpose is advantageously achieved. Obtained knowledge. The present invention is based on the above findings.
【0015】すなわち、本発明は、Si:1.0 〜8.0 wt%
を含有し、しかも結晶粒組織が、円相当径で粒径:1mm
以下の微細結晶粒を除外して計算した平均結晶粒径が円
相当径で3mm以上で、かつ鋼板板厚方向の断面において
粒径が0.03mm以上、0.30mm以下である超微細結晶粒の存
在頻度が3個/mm2 以上、 200個/mm2 以下であること
を特徴とする鉄損の低い電磁鋼板である。That is, according to the present invention, Si: 1.0 to 8.0 wt%
And the grain structure is equivalent to a circle with a particle size of 1 mm
Existence of ultra-fine crystal grains whose average crystal grain diameter calculated excluding the following fine crystal grains is 3 mm or more in circle equivalent diameter and 0.03 mm or more and 0.30 mm or less in the cross section in the thickness direction of the steel sheet An electromagnetic steel sheet having a low iron loss, wherein the frequency is 3 pieces / mm 2 or more and 200 pieces / mm 2 or less.
【0016】本発明において、製品板におけるC,O,
Al,B,V,Nb,Se,S等の不純物成分は50 ppm以下好
ましくは30ppm 以下に低減することが望ましい。In the present invention, C, O,
Impurity components such as Al, B, V, Nb, Se, and S are desirably reduced to 50 ppm or less, preferably 30 ppm or less.
【0017】[0017]
【発明の実施の形態】以下、この発明の解明経緯につい
て説明する。さて、発明者らは、インヒビター成分を含
まない素材を用いて、次のような実験を行い鉄損の改善
を試みた。C:0.070 wt%,Si:3.22wt%,Mn 0.070wt
%を含有し、特にAl,N,OについてはそれぞれAl:30
ppm,N:10 ppm,O:15 ppmに抑制すると共に、他の
不純物についても各々30ppm 以下に抑制した組成になる
鋼スラブを、連続鋳造にて製造したのち、1100℃に加熱
後、熱間圧延により2.6 mm厚に仕上げた。ついで、窒素
雰囲気中にて1000℃,1分間の熱延板焼鈍後、急冷した
のち、冷間圧延を行って0.35mmの最終坂厚とした。つい
で、水素:75%、窒素:25%で、露点:65℃の雰囲気中
で 840℃, 120秒の脱炭焼鈍を行い鋼中C量を0.0020wt
%まで低減した。その後、MgO を主成分とする焼鈍分離
剤を塗布してから、最終仕上焼鈍を行った。最終仕上焼
鈍は窒素中で行い、昇温速度と到達温度を変更する実験
を行った。DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the invention will be described below. By the way, the present inventors have tried to improve iron loss by performing the following experiment using a material containing no inhibitor component. C: 0.070 wt%, Si: 3.22 wt%, Mn 0.070 wt
%, Especially for Al, N and O, respectively:
A steel slab with the composition controlled to 10 ppm, N: 10 ppm, O: 15 ppm and other impurities to 30 ppm or less is manufactured by continuous casting, then heated to 1100 ° C, It was finished to a thickness of 2.6 mm by rolling. Then, after annealing the hot-rolled sheet at 1000 ° C. for 1 minute in a nitrogen atmosphere, it was quenched and then cold-rolled to a final slope thickness of 0.35 mm. Then, decarburizing annealing was performed at 840 ° C for 120 seconds in an atmosphere of hydrogen: 75%, nitrogen: 25% and dew point: 65 ° C to reduce the C content in the steel to 0.0020 wt.
%. Thereafter, an annealing separator containing MgO as a main component was applied, followed by final finish annealing. The final finish annealing was performed in nitrogen, and an experiment was performed in which the heating rate and the ultimate temperature were changed.
【0018】図1に、製品板の鉄損と最終仕上焼鈍にお
ける最高到達温度との関係について調べた結果を示す。
同図から明らかなように、最高到達温度が1100℃以下の
場合には良好な鉄損が得られていることが分かる。FIG. 1 shows the results of a study on the relationship between the iron loss of a product sheet and the maximum temperature reached in the final finish annealing.
As is apparent from the figure, when the maximum temperature is 1100 ° C. or lower, good iron loss is obtained.
【0019】さらに、発明者らは、上記の実験の過程
で、製品板の鉄損は、二次再結晶粒中に存在する粒径が
0.03mm以上、0.30mm以下の超微細結晶粒の存在頻度と特
筆すべき関係があることを見い出した。その結果を図2
に示すが、粗大な二次再結晶粒中に存在する粒径が0.03
mm以上、0.30mm以下の超微細結晶粒の個数が3個/mm2
から 200個/mm2 とくに5個/mm2 から 100個/mm2 の
範囲で良好な鉄損が得られることが分かった。Further, the inventors have found that, in the course of the above experiment, the iron loss of the product sheet is determined by the particle size existing in the secondary recrystallized grains.
It has been found that there is a remarkable relationship with the frequency of ultrafine crystal grains of 0.03 mm or more and 0.30 mm or less. Figure 2 shows the result.
As shown in the figure, the particle size existing in the coarse secondary recrystallized grains is 0.03
The number of ultra-fine crystal grains of not less than mm and not more than 0.30 mm is 3 / mm 2
It has been found that good iron loss can be obtained in the range of from 200 pieces / mm 2, particularly from 5 pieces / mm 2 to 100 pieces / mm 2 .
【0020】また、このような微細粒の配置は最終仕上
焼鈍における到達温度が1120℃以下の場合に実現される
ことも分かった。この理由は、最終仕上焼鈍温度が1120
℃を超えると、粒径が0.03mm以上、0.30mm以下の超微細
結晶粒は粗大二次再結晶粒によって蚕食されるからと考
えられる。It has also been found that such an arrangement of fine grains is realized when the ultimate temperature in the final finish annealing is 1120 ° C. or less. This is because the final annealing temperature is 1120
It is considered that when the temperature exceeds ℃, ultrafine crystal grains having a particle size of 0.03 mm or more and 0.30 mm or less are eaten by coarse secondary recrystallized grains.
【0021】なお、最終仕上焼鈍を終えた鋼板表面に
は、焼鈍分離剤としてMgO を塗布した場合にはフォルス
テライトを主体とした酸化物の下地被膜が形成され、か
かる被膜にも張力付与効果はあるが、一般にはかような
下地被膜に重ねてコロイダルシリカを含むリン酸塩系の
張力被膜を被成することによって、より一層鉄損を低減
することができる。In the case where MgO is applied as an annealing separator, an oxide base coat mainly composed of forsterite is formed on the steel sheet surface after the final finish annealing. However, in general, by forming a phosphate-based tension coating containing colloidal silica on the undercoat, iron loss can be further reduced.
【0022】[0022]
【作用】本発明によって低鉄損が得られる理由について
は、必ずしも明確に解明されたわけではないが、発明者
らは次のように考えている。すなわち、粗大な二次再結
晶粒の内部に微細結晶粒を残存させると、粗大二次再結
晶粒と微細結晶粒との粒界に磁極が生成し、この効果に
よって磁区が細分化され、鉄損が低減するものと考えら
れる。特に本発明で注目する粒径が0.03〜0.30mmの範囲
の超微細結晶粒は、粒径が0.30mmを超える粒の場合に比
べて、磁束の流れを分断することなく磁極を生成させ得
ることから、磁束密度を低下させることなしに、鉄損を
改善できるものと考えている。The reason why low iron loss can be obtained by the present invention has not always been clearly elucidated, but the inventors consider as follows. That is, when the fine crystal grains are left inside the coarse secondary recrystallized grains, a magnetic pole is generated at the grain boundary between the coarse secondary recrystallized grains and the fine crystal grains, and the magnetic domain is subdivided by this effect, and iron It is considered that the loss is reduced. In particular, the ultra-fine crystal grains having a grain size in the range of 0.03 to 0.30 mm, which are noted in the present invention, can generate magnetic poles without breaking the flow of magnetic flux, as compared with grains having a grain size exceeding 0.30 mm. Therefore, it is considered that iron loss can be improved without lowering the magnetic flux density.
【0023】このような電磁鋼板の製造には、インヒビ
ターを使用しない高純度素材を用いて、1120℃以下の温
度で高温仕上焼鈍を完了することが好適である。インヒ
ビターを用いる場合、この温度域で焼鈍を終了すると鋼
中からのインヒビター成分の除去が不完全となり、粗大
二次再結晶粒内に好適な微細結晶粒を配置させることが
難しくなる。For the production of such an electromagnetic steel sheet, it is preferable to complete the high-temperature finish annealing at a temperature of 1120 ° C. or less using a high-purity material without using an inhibitor. In the case where an inhibitor is used, when the annealing is completed in this temperature range, the removal of the inhibitor component from the steel becomes incomplete, and it becomes difficult to arrange suitable fine crystal grains in the coarse secondary recrystallized grains.
【0024】このように、インヒビターを使用する場
合、それを使用しない場合に比べると特性的には幾分劣
るけれども、インヒビターを使用する場合には、短時間
の連続焼鈍で二次再結晶が可能になるので製造コストの
面では極めて有利であり、従ってその場合に鉄損を改善
するために、本発明で規定する範囲の微細結晶粒を生成
させることは極めて有効である。As described above, when an inhibitor is used, its properties are somewhat inferior to those when no inhibitor is used. However, when an inhibitor is used, secondary recrystallization can be performed by short-time continuous annealing. Therefore, it is extremely advantageous in terms of manufacturing cost, and in that case, in order to improve iron loss, it is extremely effective to form fine crystal grains within the range specified in the present invention.
【0025】次に、本発明の構成用件の限定理由につい
て述べる。本発明の電磁鋼板の成分としては、Siを含有
させて、電気抵抗を増大させ鉄損を低減する必要があ
る。そのためには少なくとも 1.0wt%の添加が必要であ
るが、 8.0wt%を超えると磁束密度が低下するだけでな
く、製品の二次加工性が著しく劣化するので、Si含有量
は 1.0〜8.0 wt%の範囲に限定した。特に好適なSi量の
範囲は 2.0〜4.5 wt%である。Next, the reasons for limiting the configuration requirements of the present invention will be described. It is necessary to contain Si as a component of the magnetic steel sheet of the present invention to increase electric resistance and reduce iron loss. For this purpose, at least 1.0 wt% must be added, but if it exceeds 8.0 wt%, not only does the magnetic flux density decrease, but also the secondary workability of the product deteriorates significantly. %. A particularly preferable range of the amount of Si is 2.0 to 4.5 wt%.
【0026】製品板の結晶粒径は、円相当径で粒径:1
mm以下の結晶粒を除外して計算した平均結晶粒径が円相
当径で3mm以上とする必要がある。というのは、結晶粒
径が3mmに満たないと磁束密度が低下してしまうからで
ある。粒径の上限は、鉄損特性に影響を与えないので特
に定めない。ここに、円相当径(D)とは、単位面積
(S)当たりの結晶粒の個数をnとして、次式 D=2(S/nπ)1/2 で与えられる。なお、この結晶粒径の規定に際して、粒
径が1mm以下の結晶粒を除外した理由は、かかる微細粒
の個数は通常の1mm以上の二次再結晶粒よりも多いた
め、かような微細粒まで含めると平均粒径の値が大きく
変動するからである。The crystal grain size of the product plate is equivalent to a circle, and the grain size is 1
It is necessary that the average crystal grain diameter calculated excluding crystal grains of less than mm is 3 mm or more in circle equivalent diameter. This is because if the crystal grain size is less than 3 mm, the magnetic flux density decreases. The upper limit of the particle size is not particularly defined because it does not affect the iron loss characteristics. Here, the equivalent circle diameter (D) is given by the following formula D = 2 (S / nπ) 1/2, where n is the number of crystal grains per unit area (S). In defining the crystal grain size, crystal grains having a grain size of 1 mm or less were excluded because the number of such fine grains was larger than that of secondary recrystallized grains of 1 mm or more. This is because the value of the average particle diameter greatly changes when the average particle size is included.
【0027】また、板厚方向断面において、粒径が0.03
mm以上、0.30mm以下の超微細結晶粒を3個/mm2 以上20
0 個/mm2 以下存在させることが、本技術で最も重要な
点である。ここに、微細粒の粒径が0.03mm未満では磁極
の生成効果に乏しいので鉄損が向上せず、一方粒径が0.
30mmを超えると磁束密度が低下するので、微細粒の粒径
は0.03mm以上、0.30mm以下に制限した。また、前掲図2
にも示したとおり、かかる微細粒の存在頻度が3個/mm
2 未満では磁極の生成量が少ないため鉄損の改善が十分
でなく、一方 200個/mm2 を超えると磁束密度が低下す
るので、存在頻度は3個/mm2 以上、200 個/m2以下の
範囲に制限した。特に好ましい存在頻度は、5個/mm2
以上、100 個/m2以下である。In the cross section in the thickness direction, the grain size is 0.03
3 ultra-fine crystal grains of not less than 0.30 mm and not less than 3 mm / mm 2 and not less than 20
It is the most important point in the present technology that there are 0 or less pieces / mm 2 . Here, when the particle size of the fine particles is less than 0.03 mm, the effect of forming the magnetic pole is poor, so that the iron loss is not improved, while the particle size is 0.
When the diameter exceeds 30 mm, the magnetic flux density decreases. Therefore, the particle diameter of the fine particles is limited to 0.03 mm or more and 0.30 mm or less. Also, FIG.
As shown in FIG.
Is not sufficient improvement of iron loss for small production amount of the magnetic poles is less than 2, whereas since 200 / mm 2 by weight, the magnetic flux density decreases, the occurrence frequency is 3 / mm 2 or more, 200 / m 2 It was limited to the following range. A particularly preferred presence frequency is 5 / mm 2
As mentioned above, it is 100 pieces / m 2 or less.
【0028】さらに、本発明において、鉄損を効果的に
低減するためには、鋼板中の微量成分を極力低減するこ
とが好ましい。すなわち、酸化物被膜を含まない鋼中に
おいて、C,O,B,V,Nb,Se,S等の含有量はそれ
ぞれ 50ppm以下とすることが望ましい。Further, in the present invention, in order to effectively reduce iron loss, it is preferable to reduce trace components in the steel sheet as much as possible. That is, it is desirable that the content of C, O, B, V, Nb, Se, S, etc. in the steel not containing the oxide film be 50 ppm or less, respectively.
【0029】次に、本発明の電磁鋼板を製造する際に好
適な成分範囲について述べる。まず、インヒビターを用
いない場合の成分について述べる。インヒビターを用い
ない場合には、比較的長時間の最終仕上焼鈍が必要であ
るが、高温純化焼鈍を行わなくても良好な鉄損が得られ
るので、本発明の素材として好適である。Next, the range of components suitable for producing the magnetic steel sheet of the present invention will be described. First, components in the case where no inhibitor is used will be described. When an inhibitor is not used, a relatively long final finish annealing is required, but a good iron loss can be obtained without performing high-temperature purification annealing, so that it is suitable as a material of the present invention.
【0030】Cは、組織改善により磁気特性を向上させ
る有用元素であるが、含有量が0.12wt%を超えると脱炭
焼鈍で除去するのが困難になるので、上限を0.12wt%程
度とする。下限に関しては、Cを含まない素材でも二次
再結晶が可能であるので特に設けない。特にCを素材段
階から30ppm 以下に低減しておくと脱炭焼鈍の省略が可
能であり、生産コストの面で有利となるので、低級品の
製造の場合にはCを低減した素材を用いることが有利で
ある。C is a useful element for improving magnetic properties by improving the structure. However, if the content exceeds 0.12 wt%, it becomes difficult to remove it by decarburizing annealing. Therefore, the upper limit is set to about 0.12 wt%. . The lower limit is not particularly set, since secondary recrystallization is possible even with a material containing no C. In particular, if C is reduced to 30 ppm or less from the material stage, decarburization annealing can be omitted, which is advantageous in terms of production cost. Therefore, when manufacturing low-grade products, use a material with reduced C. Is advantageous.
【0031】Oは、二次再結晶の発現を大きく阻害し、
後工程では除去が難しいので、溶鋼段階で30 ppm以下に
低減することが望ましい。その他の元素ついても極力低
減することが望ましく、特に二次再結晶粒の発生に対し
て有害なだけでなく、地鉄中に残存して鉄損を劣化させ
るB,V,Nb,S,Se等の各元素については以後の工程
で除去が困難なこともあるので、素材段階で30 ppm以
下、またAlに関しては70 ppm以下に低減しておくことが
望ましい。O greatly inhibits the appearance of secondary recrystallization,
Since it is difficult to remove in the post-process, it is desirable to reduce it to 30 ppm or less in the molten steel stage. It is desirable to reduce other elements as much as possible. In particular, B, V, Nb, S, and Se that are not only harmful to the generation of secondary recrystallized grains but also remain in the base iron and deteriorate iron loss. Since it may be difficult to remove each element such as in the subsequent steps, it is desirable to reduce the content to 30 ppm or less at the raw material stage and to 70 ppm or less for Al.
【0032】次に、インヒビターを用いる場合について
述べる。インヒビターを用いる場合は、短時間の連続焼
鈍によって二次再結晶が可能であるので、生産コストを
低減できる利点があるけれども、十分な純化が望めない
ので特性的には幾分劣る。なお、インヒビターについて
は特に制限されることはないが、通常用いられるMnSe,
MnS, AlN等が好適である。Next, the case where an inhibitor is used will be described. When an inhibitor is used, secondary recrystallization can be performed by continuous annealing for a short time, so that there is an advantage that the production cost can be reduced. However, since purification cannot be sufficiently performed, characteristics are somewhat inferior. The inhibitor is not particularly limited, but MnSe, which is usually used,
MnS, AlN and the like are preferred.
【0033】MnSe,MnSをインヒビターとして用いる場
合 Mn量が0.05wt%に満たないと析出物の形成量が不足し、
多すぎると分散状態が悪化するので、Mn量は0.05〜0.15
wt%程度とするのが好ましい。また、SおよびSeは、Mn
S またはMnSeを析出させるために、単独および併用いず
れの場合においても0.01〜0.04wt%程度含有させるのが
好適である。When MnSe or MnS is used as an inhibitor If the amount of Mn is less than 0.05% by weight, the amount of precipitate formed is insufficient,
If too much, the dispersion state deteriorates, so the Mn content is 0.05 to 0.15
It is preferred to be about wt%. S and Se are Mn
In order to precipitate S or MnSe, it is preferable to contain about 0.01 to 0.04% by weight in both cases of single use and combined use.
【0034】AlN をインヒビターとして用いる場合 酸可溶性AlおよびNは、AlN として二次再結晶前に微細
に分散し、一次再結晶粒の成長に対し強い抑制作用を及
ぼす。このためには、Alは0.0050〜0.040 wt%、Nは0.
0010〜0.0150wt%程度とするのが好ましい。この範囲を
超えると析出物が粗大化して抑制力が低下し、これ未満
だとAlN 量として不十分となる。なお、Alは、Nb,B,
V,Tiなどの別の窒化物生成元素と代替または併用する
ことができる。好適な分散状態を実現し良好な磁気特性
を得るためには、Nbは0.01〜0.40wt%,Bは0.002 〜0.
02wt%,Vは0.01〜00.03wt%,Tiは0.01〜0.04wt%程
度の範囲で添加することが好ましい。When AlN is used as an inhibitor Acid-soluble Al and N are finely dispersed as AlN before secondary recrystallization and exert a strong inhibitory effect on the growth of primary recrystallized grains. For this purpose, Al is 0.0050-0.040 wt%, and N is 0.
It is preferred to be about 0010 to 0.0150 wt%. If the amount exceeds this range, the precipitates become coarse and the suppressing power decreases. If the amount is less than this, the amount of AlN becomes insufficient. In addition, Al is Nb, B,
It can be used in place of or in combination with another nitride forming element such as V or Ti. In order to realize a suitable dispersion state and obtain good magnetic characteristics, Nb is 0.01 to 0.40 wt%, and B is 0.002 to 0.2%.
It is preferable to add 02 wt%, V in the range of 0.01 to 0.03 wt%, and Ti in the range of about 0.01 to 0.04 wt%.
【0035】さらに、インヒビター補強成分であるSbを
添加することによりさらに磁気特性が良好な材料を得る
ことができる。添加によりSbが粒界に偏析し、仕上焼鈍
中に一次粒成長の抑制力を補うことにより磁気特性をさ
らに改善させるものと考えられる。ただし多すぎると加
工が困難になるので 0.005〜0.20wt%程度とするのが好
ましい。Sbの他に、Cu:0.02〜0.20wt%、Sn:0.02〜0.
30wt%、Ni:0.02〜0.50wt%およびMo:0.01〜0.05wt%
を複合して添加することも磁気特性を改善する上で有利
である。Further, by adding Sb, which is an inhibitor reinforcing component, a material having better magnetic properties can be obtained. It is considered that the addition causes Sb to segregate at the grain boundaries and further improve the magnetic properties by compensating for the suppression of primary grain growth during finish annealing. However, if it is too large, processing becomes difficult, so it is preferable to set the content to about 0.005 to 0.20 wt%. In addition to Sb, Cu: 0.02 to 0.20 wt%, Sn: 0.02 to 0.
30wt%, Ni: 0.02-0.50wt% and Mo: 0.01-0.05wt%
Is also advantageous in improving magnetic properties.
【0036】次に、本発明の製造工程について説明す
る。まず、上記の好適成分組成に調整した溶鋼から、ス
ラブを製造するが、かかるスラブは、通常の造塊−分塊
法、連続鋳造法で製造しても良いし、また 100mm以下の
厚さの薄鋳片を直接鋳造法で製造しても良い。スラブ
は、通常、加熱して熱間圧延するが、鋳造後、加熱せず
に直ちに熱延しても良い。また、薄鋳片の場合には、熱
間圧延を省略してそのまま以後の工程に供給しても良
い。Next, the manufacturing process of the present invention will be described. First, a slab is manufactured from molten steel adjusted to the above preferable component composition, and such a slab may be manufactured by a normal ingot-bulking method, a continuous casting method, or may have a thickness of 100 mm or less. A thin cast piece may be manufactured by a direct casting method. The slab is usually hot-rolled by heating, but may be hot-rolled immediately after casting without heating. In the case of a thin cast slab, the hot rolling may be omitted and supplied directly to the subsequent steps.
【0037】ついで、必要に応じて熱延板焼鈍を施した
のち、1回または中間焼鈍を挟む2回以上の冷間圧延を
施し、ついで必要に応じて脱炭焼鈍を施し、さらに必要
に応じてMgO を主体とする焼鈍分離剤を塗布してから、
最終仕上焼鈍を施す。ここに、熱延板焼鈍を施すことに
よって、磁気特性を向上させることが可能である。ま
た、中間焼鈍を冷間圧延の間に挟むことも磁気特性の安
定化に有用である。しかしながら、いずれも生産コスト
を上昇させることになるので、経済的観点から熱延板焼
鈍や中間焼鈍の取捨選択が決定される。なお、熱延板焼
鈍および中間焼鈍の好適温度範囲は 700℃以上、1200℃
以下である。というのは、焼鈍温度が 700℃に満たない
と焼鈍時の再結晶が進行しないため効果が薄く、一方12
00℃を超えると鋼板の機械強度が低下してライン通板が
困難になるからである。Next, after hot-rolled sheet annealing is performed, if necessary, cold rolling is performed once or twice or more with intermediate annealing, then decarburization annealing is performed as necessary, and further, if necessary. After applying an annealing separator mainly composed of MgO,
A final finish annealing is performed. Here, the magnetic properties can be improved by performing hot-rolled sheet annealing. Further, sandwiching the intermediate annealing between the cold rolling is also useful for stabilizing the magnetic properties. However, since all of them increase production costs, it is determined from the economical point of view whether hot rolled sheet annealing or intermediate annealing is to be selected. The preferred temperature range for hot-rolled sheet annealing and intermediate annealing is 700 ° C or more and 1200 ° C.
It is as follows. This is because if the annealing temperature is lower than 700 ° C, recrystallization during annealing does not progress, and the effect is weak.
If the temperature exceeds 00 ° C., the mechanical strength of the steel sheet decreases, and it becomes difficult to pass through the line.
【0038】脱炭焼鈍は、Cを含有しない素材を用いる
場合には特に必要ない。また、鋼板表面の酸化は最終仕
上焼鈍時に焼鈍分離剤中の酸化物、水酸化物によってな
されるので、必ずしも最終仕上げ焼鈍前の酸化が必要と
は限らない。さらに、最終仕上焼鈍に先立って浸珪法に
よって冷間圧延終了後にSi量を増加させる技術を併用し
てもよい。The decarburization annealing is not particularly necessary when a material containing no C is used. In addition, since oxidation of the steel sheet surface is performed by oxides and hydroxides in the annealing separator at the time of final finish annealing, it is not always necessary to oxidize before the final finish annealing. Further, prior to the final finish annealing, a technique of increasing the amount of Si after cold rolling by a siliconizing method may be used in combination.
【0039】ついで、最終仕上焼鈍を施すわけである
が、本発明で所期した電磁鋼板を得るためには、最高到
達温度を1120℃以下とすることが肝要である。というの
は、到達温度が1120℃を超えると粒径0.03mm以上0.30mm
以下の起微細結晶粒は粗大二次再結晶粒に食われて低減
してしまい、鉄損の改善が不十分となるからである。ま
た、焼鈍焼鈍雰囲気については、特に制限されることは
ないが、鋼板の過度な酸化を防止するために、窒素ある
いは水素のような非酸化性雰囲気とすることが好まし
い。Next, the final finish annealing is performed. In order to obtain the desired magnetic steel sheet according to the present invention, it is important that the maximum temperature is 1120 ° C. or lower. That is, if the ultimate temperature exceeds 1120 ° C, the particle size is 0.03 mm or more and 0.30 mm
This is because the following fine crystal grains are reduced by being eaten by the coarse secondary recrystallized grains, and the improvement of iron loss becomes insufficient. The annealing atmosphere is not particularly limited, but is preferably a non-oxidizing atmosphere such as nitrogen or hydrogen to prevent excessive oxidation of the steel sheet.
【0040】なお、鉄損をさらに改善するためには、鋼
板表面に張力被膜を生成させることが有効である。この
目的のためには2種類以上の被膜からなる多層膜構造と
しても良い。また用途に応じて、樹脂等を混合させたコ
ーティングを施しても良い。さらに、良好な鉄損を得る
ために、磁区細分化技術を用いることができる。ここ
に、磁区細分化方法としては、特公昭57−2252号公報記
載のパルスレーザーを製品板に照射する方法、特開昭62
−96617 号公報記載の製品板にプラズマ炎を照射する方
法、特公平3−69968 号公報に開示の脱炭焼鈍前にエッ
チングにより溝を付与する方法等が有効である。In order to further improve iron loss, it is effective to form a tension coating on the surface of the steel sheet. For this purpose, a multilayer structure composed of two or more kinds of films may be used. Further, depending on the application, a coating in which a resin or the like is mixed may be applied. Furthermore, a magnetic domain refinement technique can be used to obtain good iron loss. Here, as a method for refining magnetic domains, a method of irradiating a product plate with a pulse laser described in JP-B-57-2252,
The method of irradiating a product plate with a plasma flame described in Japanese Patent Application No. 9-96617 and the method of providing grooves by etching before decarburizing annealing disclosed in Japanese Patent Publication No. 3-69968 are effective.
【0041】[0041]
【実施例】実施例1 C:0.005 wt%,Si:3.45wt%,Mn:0.15 wt%,Ni:0.
30wt%,Al:50 ppm,N:15 ppmおよびO:10 ppmを含
有し、残部は実質的にFeの組成になる鋼スラブを、連続
鋳造にて製造したのち、1050℃で20分間加熱後、熱間圧
延によって2.5mm厚の熱延板とした。ついで、1000℃, 6
0秒間の熱延板焼鈍後、冷間圧延によって0.34mmの最終
板厚に仕上げた。ついで、水素:75%、 窒素:25%で、
露点:40℃の雰囲気中にて 900℃, 10秒間の脱炭焼鈍を
施して鋼中Cを0.0020wt%まで低減したのち、MgO を主
成分とする焼鈍分離剤を塗布してから、最終仕上焼鈍を
施した。なお、最終仕上焼鈍は、表1に示す条件で行っ
た。EXAMPLES Example 1 C: 0.005 wt%, Si: 3.45 wt%, Mn: 0.15 wt%, Ni: 0.
A steel slab containing 30 wt%, Al: 50 ppm, N: 15 ppm and O: 10 ppm, with the balance being substantially Fe, was manufactured by continuous casting and then heated at 1050 ° C for 20 minutes. Then, a hot-rolled sheet having a thickness of 2.5 mm was formed by hot rolling. Then 1000 ℃, 6
After annealing the hot-rolled sheet for 0 seconds, the sheet was finished to a final sheet thickness of 0.34 mm by cold rolling. Then, hydrogen: 75%, nitrogen: 25%,
Dew point: Decarburizing annealing at 900 ° C for 10 seconds in an atmosphere of 40 ° C to reduce C in steel to 0.0020wt%, then apply an annealing separator mainly composed of MgO, and then finish Annealed. The final finish annealing was performed under the conditions shown in Table 1.
【0042】かくして得られた製品版の磁束密度B8 お
よび鉄損W17/50 を測定した。また、粒径:1mm以下の
結晶粒を除外して計算した二次再結晶粒の平均結晶粒
径、および板厚方向断面に存在する粒径が0.03mm以上、
0.30mm以下の超徹細結晶粒の存在頻度についても調査し
た。得られた結果を表1に併記する。The magnetic flux density B 8 and iron loss W 17/50 of the product plate thus obtained were measured. Further, the average grain size of the secondary recrystallized grains calculated by excluding the grain size of 1 mm or less, and the grain size present in the cross section in the thickness direction is 0.03 mm or more,
The existence frequency of ultra-fine crystal grains of 0.30 mm or less was also investigated. Table 1 also shows the obtained results.
【0043】[0043]
【表1】 [Table 1]
【0044】同表から明らかなように、二次再結晶粒の
平均結晶粒径が円相当径で3mm以上で、しかも板厚方向
断面における粒径が0.03mm以上、0.30mm以下の超微細結
晶粒の存在頻度が5個/mm2 以上100 個/mm2 以下の範
囲において良好な鉄損特性が得られている。As is clear from the table, the average crystal grain size of the secondary recrystallized grains is 3 mm or more in circle equivalent diameter, and the grain size in the cross section in the thickness direction is 0.03 mm or more and 0.30 mm or less. Good iron loss characteristics are obtained when the presence frequency of the grains is in the range of 5 / mm 2 or more and 100 / mm 2 or less.
【0045】実施例2 C:0.08wt%,Si:3.4 wt%,N:59 ppm,O:10 pp
m,Al: 200 ppm,B:30 ppm,V:10 ppm,Nb:10 pp
m,Se:180ppm, S:10 ppmおよびP:20 ppmを含有
し、残部は実質的にFeの組成になる板厚:2.5 mmの薄ス
ラブを、連続薄鋳造法で製造した。ついで、冷間圧延で
0.34mmの最終板厚に仕上げたのち、水素:75%、窒素:
25%で、露点:60℃の雰囲気中にて 830℃, 120秒間の
脱炭焼鈍を施して鋼中Cを0.0020wt%まで低減した。つ
いで、表2に示す条件で短時間の連続焼鈍による最終仕
上焼鈍を施した。Example 2 C: 0.08 wt%, Si: 3.4 wt%, N: 59 ppm, O: 10 pp
m, Al: 200 ppm, B: 30 ppm, V: 10 ppm, Nb: 10 pp
A thin slab containing m, Se: 180 ppm, S: 10 ppm and P: 20 ppm, and the balance being substantially Fe, was produced by a continuous thin casting method with a thickness of 2.5 mm. Then, in cold rolling
After finishing to a final thickness of 0.34 mm, hydrogen: 75%, nitrogen:
Decarburization annealing was performed at 830 ° C for 120 seconds in an atmosphere with a dew point of 60 ° C at 25% to reduce C in steel to 0.0020 wt%. Then, final finish annealing was performed by short-time continuous annealing under the conditions shown in Table 2.
【0046】かくして得られた製品版について、磁気特
性、粒径:1mm以下の結晶粒を除外して計算した二次再
結晶粒の平均結晶粒径および板厚方向断面における粒径
が0.03mm以上、0.30mm以下の超微細結晶粒の断面におけ
る存在頻度を求めた結果を、表2に併記する。With respect to the product plate thus obtained, the magnetic characteristics, the average crystal grain size of the secondary recrystallized grains calculated by excluding the crystal grains having a grain size of 1 mm or less and the grain size in the cross section in the thickness direction are 0.03 mm or more. Table 2 also shows the results of the determination of the frequency of existence of ultra-fine crystal grains of 0.30 mm or less in the cross section.
【0047】[0047]
【表2】 [Table 2]
【0048】同表に示したとおり、インヒビターを使用
した場合においても、本発明の要件を満足させることに
よって、良好な鉄損の製品を得ることができた。しか
も、この場合には、最終仕上焼鈍として短時間の連続焼
鈍を利用することができた。As shown in the table, even when an inhibitor was used, a product having good iron loss could be obtained by satisfying the requirements of the present invention. Moreover, in this case, short-time continuous annealing could be used as the final finish annealing.
【0049】[0049]
【発明の効果】かくして、本発明に従い、電磁鋼板の結
晶粒組織を、円相当径で粒径:1mm以下の結晶粒を除外
して計算した平均結晶粒径が円相当径で3mm以上で、か
つ板厚方向断面における粒径が0.03mm以上、0.30mm以下
の超微細結晶粒の存在頻度が3個/mm2 以上、200 個/
mm2 以下とすることにより、良好な鉄損特性を得ること
ができる。そして、特に素材としてインヒビター成分を
含まない高純度材を用いた場合には、より優れた鉄損特
性を得ることができ、一方素材としてインヒビター成分
を含む材料を用いた場合には、特性的には高純度材を用
いた場合に比べると幾分劣るけれども、最終仕上焼鈍時
に短時間の連続焼鈍を活用して製造コストを大幅に低減
することができる。Thus, according to the present invention, the average grain size of the grain structure of the electrical steel sheet calculated by excluding the grain having a circle equivalent diameter of 1 mm or less is 3 mm or more in circle equivalent diameter. In addition, the presence frequency of ultra-fine crystal grains having a grain size of 0.03 mm or more and 0.30 mm or less in the cross section in the thickness direction is 3 grains / mm 2 or more, and 200 grains /
By setting it to not more than mm 2 , good iron loss characteristics can be obtained. In particular, when a high-purity material containing no inhibitor component is used as a material, more excellent iron loss characteristics can be obtained.On the other hand, when a material containing an inhibitor component is used as a material, characteristics Although is somewhat inferior to the case of using a high-purity material, the production cost can be significantly reduced by utilizing short-time continuous annealing at the time of final finish annealing.
【図1】最終仕上焼鈍における最高到達温度と製品板の
鉄損との関係を示したグラフである。FIG. 1 is a graph showing the relationship between the highest attained temperature in final finish annealing and iron loss of a product sheet.
【図2】二次再結晶粒中に存在する粒径が0.03mm以上、
0.30mm以下である超微細結晶粒の存在頻度と製品板の鉄
損との関係を示したグラフである。[Fig. 2] The particle size present in the secondary recrystallized grains is 0.03 mm or more,
4 is a graph showing the relationship between the frequency of ultra-fine crystal grains of 0.30 mm or less and iron loss of a product sheet.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒沢 光正 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 小松原 道郎 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 5E041 AA02 AA11 CA02 CA04 NN01 NN06 NN17 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mitsumasa Kurosawa 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. Chome (without address) Kawasaki Steel Corporation Mizushima Works F-term (reference) 5E041 AA02 AA11 CA02 CA04 NN01 NN06 NN17
Claims (1)
晶粒組織が、円相当径で粒径:1mm以下の微細結晶粒を
除外して計算した平均結晶粒径が円相当径で3mm以上
で、かつ鋼板板厚方向の断面において粒径が0.03mm以
上、0.30mm以下である超微細結晶粒の存在頻度が3個/
mm2 以上、 200個/mm2 以下であることを特徴とする鉄
損の低い電磁鋼板。An average crystal grain size calculated by excluding fine crystal grains having a diameter of a circle and a grain diameter of 1 mm or less, which is 1.0 to 8.0 wt% of Si: The presence frequency of ultra-fine crystal grains having a grain size of 0.03 mm or more and 0.30 mm or less in the cross section in the thickness direction of the steel sheet of 3 mm or more is 3 /
An electromagnetic steel sheet with low iron loss, characterized in that the thickness is not less than mm 2 and not more than 200 pieces / mm 2 .
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28746298A JP3928275B2 (en) | 1998-10-09 | 1998-10-09 | Electrical steel sheet |
US09/412,541 US6309473B1 (en) | 1998-10-09 | 1999-10-05 | Method of making grain-oriented magnetic steel sheet having low iron loss |
EP99119849A EP1004680B1 (en) | 1998-10-09 | 1999-10-07 | Method of making grain-oriented magnetic steel sheet having low iron loss |
DE69918037T DE69918037T2 (en) | 1998-10-09 | 1999-10-07 | Process for the production of grain-oriented magnetic steel sheets with low iron losses |
KR1019990043223A KR100635848B1 (en) | 1998-10-09 | 1999-10-07 | Method of making grain-oriented magnetic steel sheet having low iron loss |
CA002286495A CA2286495C (en) | 1998-10-09 | 1999-10-07 | Method of making grain-oriented magnetic steel sheet having low iron loss |
CN99125435A CN1109112C (en) | 1998-10-09 | 1999-10-08 | Process for production of grain orientational electromagnetic steel plate |
US09/800,050 US6423157B2 (en) | 1998-10-09 | 2001-03-05 | Method of making grain-oriented magnetic steel sheet having low iron loss |
US10/263,573 USRE39482E1 (en) | 1998-10-09 | 2002-10-03 | Method of making grain-oriented magnetic steel sheet having low iron loss |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28746298A JP3928275B2 (en) | 1998-10-09 | 1998-10-09 | Electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000119823A true JP2000119823A (en) | 2000-04-25 |
JP3928275B2 JP3928275B2 (en) | 2007-06-13 |
Family
ID=17717657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28746298A Expired - Fee Related JP3928275B2 (en) | 1998-10-09 | 1998-10-09 | Electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3928275B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007302999A (en) * | 2007-06-07 | 2007-11-22 | Jfe Steel Kk | Oriented electrical steel sheet for EI core |
US7371291B2 (en) | 2001-01-19 | 2008-05-13 | Jfe Steel Corporation | Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics |
JP2012102344A (en) * | 2010-11-05 | 2012-05-31 | Jfe Steel Corp | Grain-oriented electromagnetic steel sheet |
WO2019131974A1 (en) * | 2017-12-28 | 2019-07-04 | Jfeスチール株式会社 | Oriented electromagnetic steel sheet |
CN113366125A (en) * | 2019-01-31 | 2021-09-07 | 杰富意钢铁株式会社 | Grain-oriented electromagnetic steel sheet and iron core using same |
-
1998
- 1998-10-09 JP JP28746298A patent/JP3928275B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7371291B2 (en) | 2001-01-19 | 2008-05-13 | Jfe Steel Corporation | Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics |
JP2007302999A (en) * | 2007-06-07 | 2007-11-22 | Jfe Steel Kk | Oriented electrical steel sheet for EI core |
JP2012102344A (en) * | 2010-11-05 | 2012-05-31 | Jfe Steel Corp | Grain-oriented electromagnetic steel sheet |
WO2019131974A1 (en) * | 2017-12-28 | 2019-07-04 | Jfeスチール株式会社 | Oriented electromagnetic steel sheet |
JPWO2019131974A1 (en) * | 2017-12-28 | 2019-12-26 | Jfeスチール株式会社 | Grain-oriented electrical steel sheets |
US11525174B2 (en) | 2017-12-28 | 2022-12-13 | Jfe Steel Corporation | Grain-oriented electrical steel sheet |
CN113366125A (en) * | 2019-01-31 | 2021-09-07 | 杰富意钢铁株式会社 | Grain-oriented electromagnetic steel sheet and iron core using same |
CN113366125B (en) * | 2019-01-31 | 2023-01-20 | 杰富意钢铁株式会社 | Grain-oriented electromagnetic steel sheet and iron core using same |
US11959149B2 (en) | 2019-01-31 | 2024-04-16 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and iron core using same |
Also Published As
Publication number | Publication date |
---|---|
JP3928275B2 (en) | 2007-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012021229A (en) | Oriented electromagnetic steel plate production method | |
JP6191826B2 (en) | Method for producing grain-oriented electrical steel sheet with excellent magnetic properties | |
CN111417737B (en) | Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same | |
JP6160649B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2008063655A (en) | Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction | |
JP5839172B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2003253341A (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP2003171718A (en) | Method for producing electrical steel sheet with excellent average magnetic properties in the rolling plane | |
JP3392664B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3846064B2 (en) | Oriented electrical steel sheet | |
JP4123629B2 (en) | Electrical steel sheet and manufacturing method thereof | |
JP3386742B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP3928275B2 (en) | Electrical steel sheet | |
JP4258156B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP3357602B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP3743707B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JP3369443B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JP2746631B2 (en) | High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same | |
JPH0784615B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent magnetic flux density | |
JP3474741B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP2000129354A (en) | Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density | |
JP7486436B2 (en) | Manufacturing method for grain-oriented electrical steel sheet | |
KR100940719B1 (en) | Method for manufacturing non-oriented electrical steel sheet having excellent magnetic flux density characteristics after stress relief annealing | |
JPH07268471A (en) | Method for manufacturing grain-oriented electrical steel sheet with high magnetic flux density | |
JP4277529B2 (en) | Method for producing grain-oriented electrical steel sheet having no undercoat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050328 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060718 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060801 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061024 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061221 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070226 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100316 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110316 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120316 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130316 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130316 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140316 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |