JP3743707B2 - Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet - Google Patents
Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet Download PDFInfo
- Publication number
- JP3743707B2 JP3743707B2 JP2001280365A JP2001280365A JP3743707B2 JP 3743707 B2 JP3743707 B2 JP 3743707B2 JP 2001280365 A JP2001280365 A JP 2001280365A JP 2001280365 A JP2001280365 A JP 2001280365A JP 3743707 B2 JP3743707 B2 JP 3743707B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- cold rolling
- steel sheet
- flux density
- electrical steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、主として変圧器その他の電気機器等の鉄心として利用される方向性電磁鋼板の製造方法に関するものである。特に、仕上冷延前焼鈍温度及び脱炭焼鈍の昇温速度を制御することにより、極めて高い磁束密度をコイル長手方向に安定して有する一方向性電磁鋼板の製造方法を提供する。
【0002】
【従来の技術】
多くの電気機器に磁気鉄心として用いられる方向性電磁鋼板は、通常Siを2〜7%含有し、製品の結晶組織を{110}<001>方位に高度に集積させた鋼板である。方向性電磁鋼板の製品特性は鉄損特性と励磁特性の両方で評価される。鉄損を少なくすることは、電気機器として使用する際に熱エネルギーとして奪われる損失を少なくするため、省エネルギーの点で有効である。
【0003】
一方、励磁特性を高めることは電気機器の設計磁束密度を高めることが可能となり、機器の小型化に有効である。製品の結晶組織を{110}<001>方位に集積することは、励磁特性を高め鉄損低減にも有効であるため、近年多くの研究が重ねられ、様々な製造技術が開発されてきた。
【0004】
磁束密度向上のための典型的な技術のひとつに、特公昭40−15644号公報に開示されている製造方法が挙げられる。これは、AlNとMnSをインヒビターとして機能させ、最終冷延工程における圧下率を80%を超える強圧下とする製造方法である。この方法により、{110}<001>方位に結晶粒の方位が集積し、B8 (800A/mにおける磁束密度)が1.870T以上の高磁束密度を有する方向性電磁鋼板が得られる。
【0005】
しかし、この製造方法に基づく磁束密度B8 は1.88Tから高々1.95T程度であり、3%珪素鋼の飽和磁束密度2.03Tの95%程度の値を示しているに過ぎない。然るに、近年省エネルギー・省資源への社会的要求は益々厳しくなり、方向性電磁鋼板の鉄損低減、磁化特性改善への要求も熾烈になってきており、更なる磁束密度の向上が強く望まれている。
【0006】
一方、鉄損低減の方法として、特公昭57−2252号公報に開示されている鋼板にレーザー処理を施す方法、さらに特公昭58−2569号公報に鋼板に機械的な歪を導入する方法等、磁区を細分化する様々な方法が開示されている。上記の手法により磁区細分化される場合には、磁束密度が高くなれば高くなるほど鉄損は低減する傾向にある。従って、従来の方向性電磁鋼板の磁束密度B8 を更に高め、3%珪素鋼の飽和磁束密度2.03Tに近づける手段の出現が待たれているのが現状である。
【0007】
また、一般的に方向性電磁鋼板の鉄損はJIS C2553でW17/50 (B8 1.7T、50Hzの励磁条件下でのエネルギー損失)で評価されてグレード分けされているが、近年では、トランスの小型化を図るために、励磁磁束密度を1.7T以上とする場合や、1.7Tであってもトランスの鉄心の局部的には1.7T以上の磁束密度となることが明らかとなっており、高磁場(例えばW19/50 )での鉄損が少ない鋼板が求められている。
【0008】
高磁場鉄損の優れた方向性電磁鋼板として、特開2000−345306号公報に鋼板の結晶方位を{110}<001>の理想方位に対して、平均値で5度以下のずれとし、鋼板の180℃磁区幅の平均が0.26超〜0.30mm以下、または、鋼板の磁区幅の0.4mm超の面積率を3%超〜20%以下とするものが開示されているが、得られた高磁場鉄損は最も低いものでW19/50 =1.13W/kgであり、更なる高磁場低鉄損を有する方向性電磁鋼板が望まれている。
【0009】
磁束密度を向上させる技術として、特公昭58−50295号公報では温度勾配焼鈍法を提案している。この方法で初めて安定してB8 が1.95T以上の製品が得られるようになった。しかし、この方法は工場サイズの重量で実施する場合、コイルの一端面から加熱し、他端部は温度勾配をつけるため冷却するという非常に熱エネルギー損失を伴うため、工業生産としては問題があった。
【0010】
そこで、特開平6−88171号公報では、溶鋼に100〜5000g/T のBiを添加する方法が開示され、B8 が1.95T以上の製品が得られるようになった。Biの作用は、特開平6−207216号公報などに開示されるようにインヒビターであるMnSやAlNなどの微細析出を促進するためインヒビター強度が上がり、理想的な{110}<001>方位からずれの少ない結晶粒を選択成長させるのに有利であるためと考えられている。
【0011】
特に、インヒビターとなるAlNの析出制御には、これまで熱延板焼鈍、予備冷延後仕上冷延前焼鈍、あるいは中間焼鈍を含む複数冷延のうちの仕上冷延前焼鈍温度が深く依存していることがよく知られていたために、温度の適正化が行われてきた。
【0012】
Biを素材に含有する場合は、特開平6−212265号公報では、熱延板焼鈍、または中間焼鈍を含む複数冷延のうちの仕上冷延前焼鈍を850℃〜1100℃の範囲で30秒から30分施す方法が、特開平8−253815号公報では鋼中の過剰Al量により仕上げ冷延前の焼鈍温度を調整する方法や、特開平11−124627号公報では熱延板の平均冷却速度を制御すると共に、最終冷延に先立つ焼鈍温度をBi含有量に応じて2400×Bi量(wt%)+875℃〜2400×Bi量(wt%)+1025℃の範囲に制御する方法が開示されている。いずれも、仕上冷延前焼鈍温度の適正範囲はBiを添加しない場合よりも低温とすることが特徴である。
【0013】
しかし、一般的に仕上冷延前焼鈍はBi含有材専用設備でないため、Bi含有材を低温化すると、Bi含有材と非含有材との間で温度変更をしなければならず、温度変更部で二次再結晶不良や二次再結晶しても磁束密度が低い磁気特性不良が生じることがあった。また、温度変更を温度調整用コイルを用いて実施することがあるが、生産性を阻害するため好ましくない。
【0014】
また特開平8−188824号公報で、素材の組成成分にBi:0.0005〜0.05%を含有させ脱炭焼鈍する前に、P H2 O /P H2 を0.4以下の雰囲気中で、700℃以上の温度域へ100℃/s以上の加熱速度で加熱処理してSiO2 量を制御し、仕上焼鈍での吸脱窒素挙動を安定化させてコイル内で均一に高磁束密度を得る技術が開示されている。かかる加熱処理は誘導加熱あるいは通電加熱等の電気設備を擁して施されるのが一般的であるため、防爆の観点からH2 濃度は4%以下とするのが一般的である。
【0015】
従ってP H2 O /P H2 を0.4以下の雰囲気とするためには、低露点で操業を安定化することが必要であり、除湿設備などの設置が必要であり設備コストがかかる。さらに僅かな水素濃度変動にも対応できるように露点を制御しなければならず、操業自由度が極めて少なくなるという問題が生じる。
それゆえ、コイルで焼鈍した際に長手方向で二次再結晶不良や二次再結晶しても磁束密度が低い磁気特性不良が生じることがあり、いまだ安定的に工業生産に至っていない。
【0016】
【発明が解決しようとする課題】
上記のような問題に鑑み本発明は、B8 ≧1.94Tの極めて高い磁束密度を有する方向性電磁鋼板において、操業自由度が高く安定的に工業生産する方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明の特徴とするところは以下の通りである。
(1)質量で
C :0.10%以下、 Si:2〜7%、 Mn:0.02〜0.30%、
SおよびSeのうちから選んだ1種または2種の合計:0.001〜0.040%、
酸可溶性Al:0.010〜0.065%、 N:0.0030〜0.0150%、
Bi:0.0005〜0.05%
を基本成分とし、残余はFeおよび不可避的不純物よりなる一方向性電磁鋼熱延板に、必要に応じて焼鈍を施し、1回あるいは2回以上または中間焼鈍を挟む2回以上の冷間圧延を行い、脱炭焼鈍後、焼鈍分離剤を塗布、乾燥し仕上げ焼鈍を行う方向性電磁鋼板の製造方法において、仕上げ冷延前焼鈍の最高到達温度をBi含有量に応じて下記式の範囲に制御すると共に最終板厚まで冷延された鋼板を700℃以上へ10秒以内あるいは100℃/秒以上の加熱速度、及びPH 2 O/PH 2 を0.6〜0.8の雰囲気で加熱し、直ちに700℃以上で5〜20秒間保持して鋼板表層部にSiO2 を形成させる予備焼鈍を施した後に脱炭焼鈍を行うことを特徴とするB8 ≧1.94Tの超高磁束密度で高磁場鉄損に優れる一方向性電磁鋼板の製造方法。
−10×ln(A)+1100≦B≦−10×ln(A)+1220
ここで A:Bi含有量(ppm)
B:仕上冷延前焼鈍温度(℃)
(2)仕上げ冷延前焼鈍の最高到達温度をBi含有量に応じて下記の範囲に制御することを特徴とする前項(1)記載のB8 ≧1.94Tの超高磁束密度で高磁場鉄損に優れる一方向性電磁鋼板の製造方法。
−10×ln(A)+1130≦B≦−10×ln(A)+1220
ここで A:Bi含有量(ppm)
B:仕上冷延前焼鈍温度(℃)
【0018】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明者らは、いわゆる超高磁束密度一方向性電磁鋼鈑をさらに安定して得るために、種々の研究を鋭意重ねた結果、一次再結晶焼鈍の昇温速度を100℃/秒以上とする場合、仕上げ冷間圧延前焼鈍温度とBi含有量が磁気特性に極めて影響を及ぼすことを以下の実験より見出した。
【0019】
本発明の範囲にある質量でC:0.075%、Si:3.25%、Mn:0.08%、S:0.025%、酸可溶性Al:0.026%、N:0.008%を含有し、かつBi:0.0001〜0.03%で種々変更した一方向性電磁鋼鈑用スラブを出発材として1400℃で加熱した後、熱延して2.3mmの熱延板とした。
引き続き、熱延板焼鈍の最高到達温度を950〜1230℃の範囲で種々変更した後に、酸洗し、冷間圧延を行って0.22mm厚の鋼板に仕上げた。その後P H2 O /P H2 :0.6の雰囲気中で850℃まで500℃/秒の速度で昇温した後、800℃で湿潤雰囲気中で脱炭焼鈍を行った。更に、MgOを主成分とする焼鈍分離剤を塗布してから、1200℃で20時間の仕上げ焼鈍を施した。
この焼鈍済み鋼板に燐酸塩とコロイダルシリカを主成分とする絶縁皮膜を焼き付け、レーザー照射による磁区制御を行った。レーザー照射条件は、照射列間隔6.5mm、照射点間隔0.6mm、照射エネルギー0.8 mJ/mm2 である。その後磁気測定を行った。
【0020】
図1及び図2にBi含有量と仕上げ冷延前焼鈍温度が磁束密度B8 及び鉄損に及ぼす影響を示す。Bi含有量を増加させるに従い、高磁束密度及び低鉄損が得られる仕上冷延前焼鈍温度は低下する傾向にあり、B8 ≧1.94T及びW19/50 ≦1.20w/kgが得られるのはBi含有量をA(ppm) とすると、
−10×ln(A)+1100≦仕上冷延前温度(℃)≦−10×ln(A)+1220
の範囲であり、特に優れた磁気特性が得られたのが、
−10×ln(A)+1130≦仕上冷延前温度(℃)≦−10×ln(A)+1220
の範囲内であった。
【0021】
上述の実験では1回の冷間圧延による方法について説明したが、中間焼鈍を挟む2回の冷間圧延した場合にも同様の結果が得られた。
【0022】
従来は、Biを素材に含有すると特開平11−124627号公報に開示されているように一次再結晶粒径が粗大化する傾向にあり、仕上げ冷延前の焼鈍温度を低温化させてAlN等の析出分散型インヒビターを微細化させて、一次再結晶粒径の粗大化を抑制することが必須となっていた。このため、Bi非含有材との間で仕上げ冷延前の焼鈍温度変動が生じるため、長手方向で安定した磁気特性が得られていなかった。
【0023】
しかし、図1に示すように、一次再結晶焼鈍あるいは脱炭焼鈍の昇温速度を100℃/秒以上に急速昇温した場合は、従来のBi含有材に比べて仕上冷延前焼鈍温度の適正範囲が高温化されている。例えば前述したように、特開平6−212265号公報では仕上げ冷延前焼鈍を850〜1100℃の範囲としているが、本発明ではこれよりも高温化している。これは急速昇温により一次再結晶核発生頻度を高くして一次再結晶粒径を小粒径化させることにより、仕上げ冷延前の焼鈍温度を従来よりも高温化することが可能となり、温度変動抑制が可能となった。
【0024】
また、Bi添加量の増加に従い仕上げ冷延前の適正温度範囲が低温化するが、これはBi添加量の増加により一次再結晶粒径が粗大化するため、仕上げ冷延前温度を低温化して一次再結晶粒径調整を行うものである。
【0025】
さらに、Biを添加した場合は、急速に昇温した後で脱炭焼鈍前に適度に予備焼鈍を行った方が高磁場鉄損に優れた一方向性電磁鋼板が得られることを見出した。これは、Biを素材に含有した場合は、二次再結晶粒が粗大化して磁区幅が広くなるため高磁場鉄損が劣化する。ところが予備焼鈍を施すことにより、二次被膜塗布後に得られる被膜の張力付与効果が十分に得られ、磁区細分化されて高磁場鉄損が良好となるものと考えられる。
【0026】
予備焼鈍により、被膜張力が向上する理由は定かではないが、加熱直後に保持する予備焼鈍時間により、鋼板表層部のSiO2 量が変化する。このSiO2 量は表層部のSiO2 の被覆率を表していると推定され、このSiO2 被覆率を適正化することにより、引き続く脱炭焼鈍板での内部酸化層構造を最適化するものと考えられ、その後の仕上焼鈍中で一次被膜と地鉄界面を入り組んだ構造として被膜密着性が向上し、被膜張力が高くなると考えられる。
【0027】
次に本発明の成分条件について説明する。
Cは、0.10%を超えると、冷延後の脱炭焼鈍において脱炭時間が長時間必要となり経済的でないばかりでなく、脱炭が不完全となりやすく、製品での磁気時効と呼ばれる磁性不良を起こすので好ましくない。
【0028】
Siは鋼の電気抵抗を高めて鉄損の一部を構成する渦電流損失を低減するのに極めて有効な元素であるが、2%未満では製品の渦電流損失を抑制できない。また、7.0%を超えた場合では、加工性が著しく劣化して常温での冷延が困難になるので好ましくない。
【0029】
Mnは二次再結晶を左右するインヒビターと呼ばれるMnS及び、またはMnSeを形成する重要な元素である。0.02%未満では、二次再結晶を生じさせるのに必要なMnS、MnSeの絶対量が不足するので好ましくない。また、0.3%を超えた場合は、スラブ加熱時の固溶が困難になるばかりでなく、熱延時の析出サイズが粗大化しやすくインヒビターとしての最適サイズ分布が損なわれて好ましくない。
【0030】
S及び、またはSeは上述したMnとMnSおよび、またはMnSeを形成する重要な元素である。上記範囲を逸脱すると充分なインヒビター効果が得られないので、0.001〜0.040%に限定する必要がある。
【0031】
酸可溶性Alは、高磁束密度一方向性電磁鋼板のための主要インヒビター構成元素であり、0.010%未満では、量的に不足してインヒビター強度が不足するので好ましくない。一方0.065%を超えるとインヒビターとして析出させるAlNが粗大化し、結果としてインヒビター強度を低下させるので好ましくない。
【0032】
Nは上述した酸可溶性AlとAlNを形成する重要な元素である。上記範囲を逸脱すると充分なインヒビター効果が得られないので、0.0030〜0.0150%に限定する必要がある。
【0033】
さらに、Snについては薄手製品の二次再結晶を安定して得る元素として有効であり、また二次再結晶粒径を小さくする作用もあるため、必要に応じ添加しても良い。この効果を得るためには、0.05%以上の添加が必要であり、0.50%を超えた場合にはその作用が飽和するので、コストアップの点から0.50%以下の添加がよい。
【0034】
CuについてはSn添加鋼の一次被膜形成安定化元素として有効であり、必要により添加する。0.01%未満では効果が少なく、0.40%を超えると製品の磁束密度が低下するので好ましくない。
【0035】
Sbおよび、またはMoについては薄手製品の二次再結晶を安定して得る元素として有効であるため、必要に応じ添加しても良い。この場合、この効果を得るためには、0.0030%以上の添加が必要であり、0.30%を超えた場合にはその作用が飽和するのでコストアップの点から0.30%以下に限定する。
【0036】
Biは本発明であるB8 ≧1.94Tの超高磁束密度一方向性電磁鋼板の安定製造において、そのスラブ中に含有する必須の元素であり、磁束密度向上効果を有する。0.0005%未満ではその効果が充分に得られず、また0.05%を超えた場合は磁束密度向上効果が飽和するだけでなく、熱延コイルの端部に割れが発生するので好ましくない。
【0037】
次に本発明である超高磁束密度材の安定製造方法について説明する。
上記のごとく成分を調整した超高磁束密度方向性電磁鋼板製造用溶鋼は、通常の方法で鋳造される。特に鋳造方法に限定はない。次いで通常の熱間圧延によって熱延コイルに圧延される。
引き続いて、熱延板焼鈍後仕上げ冷延、あるいは中間焼鈍を含む複数回の冷延、あるいは熱延板焼鈍後中間焼鈍を含む複数回の冷延によって製品板厚に仕上げるわけであるが、仕上げ冷延前の焼鈍では結晶組織の均質化と、AlNの析出制御を行う。
【0038】
本発明の特徴とするところは、以下の範囲に仕上冷延前焼鈍温度を制御することである。
−10×ln(A)+1100≦B≦−10×ln(A)+1220
ここで A:Bi含有量(ppm) 、B:仕上冷延前焼鈍温度(℃)
この温度が低すぎる場合は、AlNが過剰に微細析出するため一次再結晶粒径が小粒径化して、磁束密度が低下するため、−10×ln(A)+1100℃以上としければならない。一方で、この温度が高い場合は、一次再結晶粒径が粗大化して二次再結晶が不安定となるため、−10×ln(A)+1220℃を上限とする。
【0039】
以上最終製品厚まで圧延されたストリップに、脱炭焼鈍を施す。最終板厚まで冷延された鋼板を脱炭焼鈍する前に、700℃以上の温度域へ100℃/秒以上の加熱速度により加熱する。この加熱速度については、20〜700℃以上の最高到達温度までの平均加熱速度を示すが、特に300℃〜700℃までの加熱速度が重要であり、この部分の平均加熱速度が100℃/秒より遅い場合は、二次再結晶核となる{110}<001>粒が増加しないため、二次再結晶が不安定となる。最高到達温度が700℃以下の場合も{110}<001>粒が増加しないため700℃を下限とする。
このような、高い昇温速度を達成するための加熱方法として、誘導加熱や通電加熱を採用するのがよい。
【0040】
また、急速昇温を施した後、700℃以上の予備焼鈍を5〜20秒間を施すと高磁場鉄損が良好となるので好ましい。予備焼鈍温度が700℃未満の場合適正なSiO2 が形成されないため、700℃以上とする。
予備焼鈍時間が20秒超では、SiO2 量が十分確保されるが、脱炭不良が生じる。一方で、予備焼鈍時間が5秒未満のときは適正なSiO2 が確保できないために、脱Biが促進されずに界面にBiが濃化し過ぎ、被膜密着性を劣化させる。
【0041】
次に脱炭焼鈍を行うが、上記加熱処理を昇温に組み込んでも構わない。
上記均熱後に引き続く脱炭焼鈍の雰囲気は通常と同様である。すなわちH2 とH2 OもしくはH2 とH2 Oと不活性ガスの混合雰囲気とし、P H2 O/P H2 を0.15から0.65の範囲とする。尚、脱炭焼鈍後の残留炭素量は、通常の場合と同様に50ppm以下とする必要がある。AlNのみをインヒビターとして用いる場合には、脱炭焼鈍後にアンモニア含有雰囲気中で焼鈍することにより鋼板を窒化し、この段階でインヒビター形成を行ってもよい。
【0042】
脱炭焼鈍後、鋼板にMgOを主体とする焼鈍分離剤を塗布乾燥するが、この際MgO中にTiO2 を1〜40%程度添加しても良く、好ましくは塗布量を片面あたり5g/m2 以上とする。
【0043】
さらに、一次被膜形成、二次再結晶、純化を目的として1100℃以上の最終仕上焼鈍を行う。多くの場合、最終仕上焼鈍後、一次被膜の上にさらに絶縁皮膜を施す。特に燐酸塩とコロイダルシリカを主体とするコーティング液を焼き付けることによって得られる絶縁被膜は、鋼板に対する付与聴力が大きく、更なる鉄損改善に有効である。
さらに、上記一方向性電磁鋼板に、レーザー照射、プラズマ照射、歯型ロールやエッチングによる溝加工等のいわゆる磁区細分化処理を施しても構わない。
【0044】
[実施例1]
質量でC:0.080%、Si:3.30%、Mn:0.080%、S:0.025%、酸可溶性Al:0.026%、N:0.0082%を含有し、かつBi:0、0.0030、0.0150、0.0380%を含有するすスラブを、1350℃で加熱した後、2.3mm厚にまで熱間圧延させた熱延板を1000、1070、1140、1210℃の4水準で1分間焼鈍を施した。この後、冷間圧延により最終板厚0.22mmにまで圧延した。
【0045】
さらに、得られたストリップを脱炭焼鈍する際、300℃〜850℃までの昇温速度を400℃/秒で850℃まで昇温した後、直ちにP H2 O /PH 2 =0.8の雰囲気中で850℃×5秒間の予備焼鈍を施し、更に840℃の均一温度、湿潤水素中で脱炭焼鈍した。
【0046】
その後、MgOを主成分とする焼鈍分離剤を塗布して、最高到達温度1200℃で20時間、水素ガス雰囲気中で高温焼鈍を施した。得られた鋼板の余剰MgOを除去し、形成されたフォルステライト被膜上にコロイダルシリカと燐酸塩を主体とする絶縁皮膜を形成して製品とした後、レーザー照射による磁区制御を行った。レーザー照射条件は、照射列間隔6.5mm、照射点間隔0.6mm、照射エネルギー0.8 mJ/mm2 である。この時の製造条件と磁気特性を表1に示す。
本発明条件を満足する条件で製造されたコイルは、鉄損特性に優れた方向性電磁鋼板となっている。
【0047】
【表1】
【0048】
[実施例2]
質量でC:0.075%、Si:3.35%、Mn:0.080%、S:0.025%、酸可溶性Al:0.025%、N:0.0085%、Sn:0.0140%、Cu:0.08%を含有し、かつBi:0.0015、0.0230%を含有するすスラブを、1350℃で加熱した後、直ちに圧延して2.4mm厚の熱延コイルとした。熱延コイルを冷間圧延して1.8mmとし、1050℃、1150℃、1250℃の3水準で1分間の焼鈍を施した。この後、冷間圧延により最終板厚0.22mmにまで圧延した。その後は実施例1と同様に処理して製品としたコイルの製造条件と磁気特性を表2に示す。
【0049】
【表2】
【0050】
[実施例3]
実施例2で得られた、A1、A2、B1、B2について、通板方向に対して直角方向とのなす角が12゜の方向に、5mm間隔で深さ15μm、幅90μmの溝を形成したときの磁区制御前後の鉄損値を表3に示す。本発明条件を満足する条件で製造されたコイルは、鉄損特性に優れた方向性電磁鋼板となっている。
【0051】
【表3】
【0052】
[実施例4]
質量でC:0.070%、Si:3.25%、Mn:0.070%、Se:0.018%、酸可溶性Al:0.025%、N:0.0084%、Sb:0.025%、Mo:0.014%を含有し、かつBi:0.035%を含有するすスラブを、1400℃で加熱した後、直ちに圧延して2.5mm厚の熱延コイルとした。熱延コイルに1000℃で焼鈍を施した後1.7mmまで冷間圧延したコイルを1000〜1200℃の間で50℃毎に5水準とって1分間の焼鈍を施した。この後、冷間圧延により最終板厚0.22mmにまで圧延した。その後は実施例1と同様に処理して製品としたコイルの製造条件と磁気特性を表4に示す。
本発明条件を満足する条件で製造されたコイルは、鉄損特性に優れた方向性電磁鋼板となっている。
【0053】
【表4】
【0054】
【発明の効果】
本発明により、Biを鋼中に含有する高磁束密度一方向性電磁鋼板の製造において、操業自由度が高く、安定製造可能な方法を提供することができる。
【図面の簡単な説明】
【図1】磁束密度B8 に及ぼすBi含有量と仕上冷延前温度の影響を示す図。
【図2】鉄損に及ぼすBi含有量と仕上冷延前温度の影響を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet that is mainly used as an iron core of a transformer or other electrical equipment. In particular, the present invention provides a method for producing a unidirectional electrical steel sheet having an extremely high magnetic flux density stably in the longitudinal direction of the coil by controlling the annealing temperature before finish cold rolling and the heating rate of decarburization annealing.
[0002]
[Prior art]
A grain-oriented electrical steel sheet used as a magnetic iron core in many electrical devices is usually a steel sheet containing 2 to 7% of Si and having a product crystal structure highly integrated in the {110} <001> orientation. The product characteristics of grain-oriented electrical steel sheets are evaluated by both iron loss characteristics and excitation characteristics. Reducing iron loss is effective in terms of energy saving because it reduces the loss of heat energy when used as an electrical device.
[0003]
On the other hand, increasing the excitation characteristics makes it possible to increase the design magnetic flux density of an electric device, which is effective for reducing the size of the device. Accumulating the crystal structure of the product in the {110} <001> orientation is effective in enhancing the excitation characteristics and reducing the iron loss. Therefore, many studies have been repeated in recent years, and various manufacturing techniques have been developed.
[0004]
One of typical techniques for improving the magnetic flux density is a manufacturing method disclosed in Japanese Patent Publication No. 40-15644. This is a production method in which AlN and MnS function as inhibitors and the rolling reduction in the final cold rolling step is a strong rolling exceeding 80%. By this method, a grain-oriented electrical steel sheet having a high magnetic flux density of B870 (magnetic flux density at 800 A / m) of 1.870 T or more is obtained by accumulating crystal grain orientations in the {110} <001> orientation.
[0005]
However, the magnetic flux density B8 based on this manufacturing method is from 1.88T to 1.95T at most, and shows only a value of about 95% of the saturation magnetic flux density 2.03T of 3% silicon steel. However, in recent years, social demands for energy and resource saving have become increasingly severe, and demands for reducing iron loss and improving magnetic properties of grain-oriented electrical steel sheets have become intense, and further improvements in magnetic flux density are strongly desired. ing.
[0006]
On the other hand, as a method of reducing iron loss, a method of performing laser treatment on a steel sheet disclosed in Japanese Patent Publication No. 57-2252, a method of introducing mechanical strain into a steel sheet in Japanese Patent Publication No. 58-2569, and the like, Various methods for subdividing the magnetic domains have been disclosed. When the magnetic domain is subdivided by the above method, the iron loss tends to decrease as the magnetic flux density increases. Therefore, the present situation is waiting for the emergence of means for further increasing the magnetic flux density B8 of the conventional grain-oriented electrical steel sheet and bringing it closer to the saturation magnetic flux density 2.03T of 3% silicon steel.
[0007]
In general, the iron loss of grain-oriented electrical steel sheets is graded according to JIS C2553 as W17 / 50 (energy loss under B8 1.7T, 50 Hz excitation conditions). In order to reduce the size of the transformer, when the excitation magnetic flux density is set to 1.7 T or higher, or even 1.7 T, the magnetic flux density of 1.7 T or higher is obtained locally in the transformer core. Therefore, there is a demand for a steel sheet with low iron loss in a high magnetic field (for example, W19 / 50).
[0008]
As a grain-oriented electrical steel sheet excellent in high magnetic field iron loss, Japanese Patent Application Laid-Open No. 2000-345306 discloses that the steel sheet has a crystal orientation of 5 degrees or less on average with respect to the ideal orientation of {110} <001>. Although the average of 180 ° C. magnetic domain width is more than 0.26 to 0.30 mm or less, or the area ratio of more than 0.4 mm of the magnetic domain width of the steel sheet is disclosed to be more than 3% to 20%, The obtained high magnetic field iron loss is the lowest, W19 / 50 = 1.13 W / kg, and a grain-oriented electrical steel sheet having further high magnetic field low iron loss is desired.
[0009]
As a technique for improving the magnetic flux density, Japanese Patent Publication No. 58-50295 proposes a temperature gradient annealing method. For the first time with this method, a product having a B8 of 1.95 T or more can be obtained. However, when this method is carried out at a factory-sized weight, there is a problem in industrial production because it involves heating energy from one end of the coil and cooling the other end to create a temperature gradient. It was.
[0010]
Japanese Patent Application Laid-Open No. 6-88171 discloses a method of adding 100 to 5000 g / T Bi to molten steel, and a product having B8 of 1.95 T or more can be obtained. The action of Bi increases the inhibitor strength to promote fine precipitation of inhibitors such as MnS and AlN, as disclosed in JP-A-6-207216, and deviates from the ideal {110} <001> orientation. This is considered to be advantageous for the selective growth of crystal grains having a small amount.
[0011]
In particular, the precipitation control of AlN, which is an inhibitor, has been deeply dependent on the annealing temperature before finish cold rolling of multiple cold rolling including hot-rolled sheet annealing, pre-cold rolling and pre-cold rolling, or intermediate annealing. Because it was well known that the temperature has been optimized.
[0012]
When Bi is contained in the raw material, in Japanese Patent Application Laid-Open No. Hei 6-212265, annealing before finish cold rolling of a plurality of cold rollings including hot-rolled sheet annealing or intermediate annealing is performed in a range of 850 ° C. to 1100 ° C. for 30 seconds. In JP-A-8-253815, the method of adjusting the annealing temperature before finish cold rolling by the excess Al amount in the steel, and in JP-A-11-124627, the average cooling rate of the hot-rolled sheet is used. And a method of controlling the annealing temperature prior to the final cold rolling to a range of 2400 × Bi amount (wt%) + 875 ° C. to 2400 × Bi amount (wt%) + 1025 ° C. according to the Bi content is disclosed. Yes. In any case, the proper range of the annealing temperature before finish cold rolling is characterized by a lower temperature than when Bi is not added.
[0013]
However, generally, annealing before finish cold rolling is not dedicated equipment for Bi-containing materials, so when the temperature of Bi-containing materials is lowered, the temperature must be changed between Bi-containing materials and non-containing materials. In some cases, however, a secondary recrystallization failure or a magnetic property failure having a low magnetic flux density may occur even after secondary recrystallization. Moreover, although temperature change may be implemented using the coil for temperature adjustment, since productivity is inhibited, it is unpreferable.
[0014]
Further, in JP-A-8-188824, Bi: 0.0005 to 0.05% is contained in the composition component of the material, and before decarburization annealing, an atmosphere in which P H 2 O / P H 2 is 0.4 or less is used. Among them, heat treatment is performed at a heating rate of 100 ° C./s or higher to a temperature range of 700 ° C. or higher to control the amount of SiO 2 , stabilize the adsorption / desorption nitrogen behavior in finish annealing, and uniformly increase the magnetic flux in the coil. Techniques for obtaining density are disclosed. Since such heat treatment is generally performed with electric equipment such as induction heating or current heating, the H 2 concentration is generally 4% or less from the viewpoint of explosion prevention.
[0015]
Therefore, in order to set the P H 2 O / P H 2 to an atmosphere of 0.4 or less, it is necessary to stabilize the operation at a low dew point, and it is necessary to install a dehumidifying equipment or the like, which requires equipment costs. Furthermore, the dew point must be controlled so as to be able to cope with slight fluctuations in the hydrogen concentration, resulting in a problem that the degree of freedom in operation becomes extremely small.
Therefore, secondary recrystallization failure in the longitudinal direction when annealing with a coil or magnetic property failure with low magnetic flux density may occur even if secondary recrystallization occurs, and stable industrial production has not yet been achieved.
[0016]
[Problems to be solved by the invention]
In view of the above problems, an object of the present invention is to provide a method of stably producing industrially with a high degree of freedom in operation in a grain-oriented electrical steel sheet having a very high magnetic flux density of B8 ≧ 1.94T.
[0017]
[Means for Solving the Problems]
The features of the present invention are as follows.
(1) By mass: C: 0.10% or less, Si: 2-7%, Mn: 0.02-0.30%,
Total of one or two selected from S and Se: 0.001 to 0.040%,
Acid-soluble Al: 0.010-0.065%, N: 0.0030-0.0150%,
Bi: 0.0005 to 0.05%
Is applied to the unidirectional electrical steel hot-rolled sheet composed of Fe and inevitable impurities, and the cold rolling is performed once or twice or more times with intermediate annealing between them. In the method for producing a grain-oriented electrical steel sheet, after applying decarburization annealing, applying an annealing separator, drying, and performing finish annealing, the maximum ultimate temperature of annealing before finish cold rolling falls within the range of the following formula according to the Bi content: The steel plate that is controlled and cold-rolled to the final thickness is heated to 700 ° C. or higher within 10 seconds or 100 ° C./second or higher , and PH 2 O / PH 2 is heated in an atmosphere of 0.6 to 0.8. Immediately after holding for 5 to 20 seconds at 700 ° C. or higher and performing pre-annealing to form SiO 2 on the surface layer of the steel sheet, decarburization annealing is performed, and B8 ≧ 1.94T, which has a very high magnetic flux density and high Production of unidirectional electrical steel sheet with excellent magnetic iron loss Method.
−10 × ln (A) + 1100 ≦ B ≦ −10 × ln (A) +1220
Where A: Bi content (ppm)
B: Annealing temperature before finish cold rolling (° C)
(2) The highest ultimate temperature of annealing before finish cold rolling is controlled within the following range according to the Bi content, and high magnetic field iron with an ultrahigh magnetic flux density of B8 ≧ 1.94T as described in (1) above A method for producing a unidirectional electrical steel sheet excellent in loss.
−10 × ln (A) + 1130 ≦ B ≦ −10 × ln (A) +1220
Where A: Bi content (ppm)
B: Annealing temperature before finish cold rolling (° C)
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In order to obtain a so-called ultra-high magnetic flux density unidirectional electromagnetic steel sheet more stably, the present inventors have conducted various studies, and as a result, the temperature increase rate of primary recrystallization annealing is set to 100 ° C./second or more. In this case, it was found from the following experiment that the annealing temperature before finish cold rolling and the Bi content have a great influence on the magnetic properties.
[0019]
C: 0.075%, Si: 3.25%, Mn: 0.08%, S: 0.025%, acid-soluble Al: 0.026%, N: 0.008 by mass within the scope of the present invention. %, And Bi: 0.0001 to 0.03%, and variously modified slabs for unidirectional electromagnetic steel plates were heated at 1400 ° C. as a starting material and then hot rolled to a 2.3 mm hot rolled sheet It was.
Subsequently, various changes were made to the maximum temperature reached in hot-rolled sheet annealing in the range of 950 to 1230 ° C., followed by pickling and cold rolling to finish a steel sheet having a thickness of 0.22 mm. Thereafter, the temperature was raised to 850 ° C. at a rate of 500 ° C./second in an atmosphere of P H 2 O / P H 2 : 0.6, and then decarburization annealing was performed at 800 ° C. in a humid atmosphere. Further, after applying an annealing separator mainly composed of MgO, finish annealing was performed at 1200 ° C. for 20 hours.
This annealed steel sheet was baked with an insulating film composed mainly of phosphate and colloidal silica, and the magnetic domain was controlled by laser irradiation. The laser irradiation conditions are an irradiation row interval of 6.5 mm, an irradiation point interval of 0.6 mm, and an irradiation energy of 0.8 mJ / mm 2 . Thereafter, magnetic measurement was performed.
[0020]
1 and 2 show the effects of the Bi content and the annealing temperature before finish cold rolling on the magnetic flux density B8 and iron loss. As the Bi content is increased, the annealing temperature before finish cold rolling, which provides high magnetic flux density and low iron loss, tends to decrease, and B8 ≧ 1.94 T and W19 / 50 ≦ 1.20 w / kg can be obtained. If the Bi content is A (ppm),
−10 × ln (A) + 1100 ≦ temperature before finish cold rolling (° C.) ≦ −10 × ln (A) +1220
In particular, excellent magnetic properties were obtained.
−10 × ln (A) + 1130 ≦ temperature before finishing cold rolling (° C.) ≦ −10 × ln (A) +1220
It was in the range.
[0021]
In the above experiment, the method by one cold rolling was explained, but the same result was obtained when cold rolling was performed twice with intermediate annealing.
[0022]
Conventionally, when Bi is contained in the material, the primary recrystallized grain size tends to be coarse as disclosed in JP-A-11-124627, and the annealing temperature before finish cold rolling is lowered to reduce AlN or the like. Therefore, it has been essential to refine the precipitation-dispersed inhibitor in order to suppress the coarsening of the primary recrystallized grain size. For this reason, since the annealing temperature fluctuation | variation before finish cold rolling arises between Bi non-containing materials, the magnetic characteristic stable in the longitudinal direction was not acquired.
[0023]
However, as shown in FIG. 1, when the temperature increase rate of primary recrystallization annealing or decarburization annealing is rapidly increased to 100 ° C./second or more, the annealing temperature before finish cold rolling is higher than that of the conventional Bi-containing material. The proper range is heated. For example, as described above, in JP-A-6-212265, annealing before finish cold rolling is set to a range of 850 to 1100 ° C., but in the present invention, the temperature is higher than this. By increasing the frequency of primary recrystallization nuclei by rapid temperature increase and reducing the primary recrystallized grain size, the annealing temperature before finish cold rolling can be made higher than before. Fluctuation suppression became possible.
[0024]
In addition, as the Bi addition amount increases, the appropriate temperature range before the finish cold rolling is lowered, but since the primary recrystallized grain size becomes coarse due to the increase in Bi addition amount, the temperature before the finish cold rolling is lowered. The primary recrystallized grain size is adjusted.
[0025]
Furthermore, when Bi was added, it discovered that the direction-oriented electrical steel sheet excellent in the high magnetic field iron loss was obtained by carrying out moderate preheating before decarburization annealing after heating up rapidly. This is because, when Bi is contained in the material, the secondary recrystallized grains are coarsened and the magnetic domain width is widened, so that the high magnetic field iron loss is deteriorated. However, it is considered that the pre-annealing sufficiently provides the effect of imparting the tension of the coating obtained after the secondary coating is applied, and the magnetic field is subdivided to improve the high magnetic field iron loss.
[0026]
The reason why the film tension is improved by the pre-annealing is not clear, but the amount of SiO 2 in the surface layer portion of the steel sheet changes depending on the pre-annealing time held immediately after heating. The SiO 2 content is estimated to represent the SiO 2 coating of the surface layer portion, by optimizing the SiO 2 coverage, as to optimize the internal oxide layer structure on subsequent decarburization annealed sheets It is considered that the film adhesion is improved and the film tension is increased as a structure in which the primary film and the base iron interface are complicated during the subsequent finish annealing.
[0027]
Next, the component conditions of this invention are demonstrated.
If C exceeds 0.10%, decarburization annealing after cold rolling requires a long time for decarburization, which is not economical, and decarburization tends to be incomplete, which is called magnetic aging in products. Since it causes a defect, it is not preferable.
[0028]
Si is an extremely effective element for increasing the electrical resistance of steel and reducing the eddy current loss that constitutes part of the iron loss, but if it is less than 2%, the eddy current loss of the product cannot be suppressed. On the other hand, if it exceeds 7.0%, the workability is remarkably deteriorated and cold rolling at room temperature becomes difficult, which is not preferable.
[0029]
Mn is an important element forming MnS and / or MnSe called an inhibitor that influences secondary recrystallization. If it is less than 0.02%, the absolute amount of MnS and MnSe necessary for causing secondary recrystallization is insufficient, which is not preferable. On the other hand, if it exceeds 0.3%, not only the solid solution during slab heating becomes difficult, but also the precipitation size during hot rolling tends to become coarse, and the optimum size distribution as an inhibitor is impaired.
[0030]
S and / or Se are important elements for forming the above-described Mn and MnS and / or MnSe. If the amount deviates from the above range, a sufficient inhibitor effect cannot be obtained, so it is necessary to limit it to 0.001 to 0.040%.
[0031]
Acid-soluble Al is a main inhibitor constituent element for a high magnetic flux density unidirectional electrical steel sheet. If it is less than 0.010%, it is not preferable because it is insufficient in quantity and insufficient in inhibitor strength. On the other hand, if it exceeds 0.065%, AlN precipitated as an inhibitor becomes coarse, and as a result, the strength of the inhibitor is lowered, which is not preferable.
[0032]
N is an important element for forming the acid-soluble Al and AlN described above. If the above range is exceeded, a sufficient inhibitor effect cannot be obtained, so it is necessary to limit the content to 0.0030 to 0.0150%.
[0033]
Furthermore, Sn is effective as an element for stably obtaining secondary recrystallization of a thin product, and also has an effect of reducing the secondary recrystallization particle size, and therefore may be added as necessary. In order to obtain this effect, addition of 0.05% or more is necessary, and when it exceeds 0.50%, the action is saturated, so addition of 0.50% or less is necessary from the viewpoint of cost increase. Good.
[0034]
Cu is effective as a primary film formation stabilizing element for Sn-added steel, and is added if necessary. If it is less than 0.01%, the effect is small, and if it exceeds 0.40%, the magnetic flux density of the product is lowered, which is not preferable.
[0035]
Sb and / or Mo are effective as an element for stably obtaining secondary recrystallization of a thin product, and may be added as necessary. In this case, in order to obtain this effect, addition of 0.0030% or more is necessary, and when it exceeds 0.30%, the action is saturated, so that it is 0.30% or less from the viewpoint of cost increase. limit.
[0036]
Bi is an essential element contained in the slab in the stable production of the ultrahigh magnetic flux density unidirectional electrical steel sheet of B8 ≧ 1.94T according to the present invention, and has an effect of improving the magnetic flux density. If it is less than 0.0005%, the effect cannot be sufficiently obtained, and if it exceeds 0.05%, not only the effect of improving the magnetic flux density is saturated but also cracking occurs at the end of the hot rolled coil, which is not preferable. .
[0037]
Next, the stable manufacturing method of the ultrahigh magnetic flux density material according to the present invention will be described.
The molten steel for producing an ultra high magnetic flux density grain-oriented electrical steel sheet with the components adjusted as described above is cast by an ordinary method. There is no particular limitation on the casting method. Then, it is rolled into a hot rolled coil by ordinary hot rolling.
Subsequently, finish cold rolling after hot-rolled sheet annealing, or multiple times of cold rolling including intermediate annealing, or multiple times of cold rolling including intermediate annealing after hot-rolled sheet annealing, finish the product sheet thickness. In the annealing before cold rolling, the crystal structure is homogenized and AlN precipitation is controlled.
[0038]
The feature of the present invention is to control the annealing temperature before finish cold rolling within the following range.
−10 × ln (A) + 1100 ≦ B ≦ −10 × ln (A) +1220
Where A: Bi content (ppm), B: Annealing temperature before finish cold rolling (° C)
When this temperature is too low, AlN is excessively finely precipitated, so that the primary recrystallization grain size is reduced and the magnetic flux density is lowered. Therefore, the temperature must be −10 × ln (A) + 1100 ° C. or more. On the other hand, when this temperature is high, the primary recrystallization grain size becomes coarse and secondary recrystallization becomes unstable, so that the upper limit is −10 × ln (A) + 1220 ° C.
[0039]
The strips rolled to the final product thickness are decarburized and annealed. Before decarburizing and annealing the steel sheet cold-rolled to the final thickness, it is heated to a temperature range of 700 ° C. or higher at a heating rate of 100 ° C./second or higher. As for this heating rate, an average heating rate up to the highest temperature of 20 to 700 ° C. or higher is shown. Particularly, a heating rate from 300 ° C. to 700 ° C. is important, and the average heating rate of this part is 100 ° C./second. When it is slower, the {110} <001> grains serving as secondary recrystallization nuclei do not increase, and secondary recrystallization becomes unstable. Even when the maximum temperature reached 700 ° C. or lower, {110} <001> grains do not increase, so 700 ° C. is the lower limit.
As a heating method for achieving such a high heating rate, induction heating or current heating is preferably employed.
[0040]
In addition, it is preferable to perform pre-annealing at 700 ° C. or higher for 5 to 20 seconds after rapid heating, since the high magnetic field iron loss is improved. When the pre-annealing temperature is lower than 700 ° C., appropriate SiO 2 is not formed.
If the pre-annealing time exceeds 20 seconds, a sufficient amount of SiO 2 is secured, but poor decarburization occurs. On the other hand, when the pre-annealing time is less than 5 seconds, an appropriate SiO 2 cannot be ensured, so that Bi is not concentrated and Bi is excessively concentrated at the interface, and the film adhesion is deteriorated.
[0041]
Next, decarburization annealing is performed, but the above heat treatment may be incorporated into the temperature increase.
The atmosphere of decarburization annealing that continues after the soaking is the same as usual. That is, a mixed atmosphere of H 2 and H 2 O or H 2 , H 2 O and an inert gas is set, and P H 2 O / P H 2 is set in a range of 0.15 to 0.65. In addition, the amount of residual carbon after decarburization annealing needs to be 50 ppm or less similarly to the normal case. When only AlN is used as an inhibitor, the steel sheet may be nitrided by annealing in an ammonia-containing atmosphere after decarburization annealing, and inhibitor formation may be performed at this stage.
[0042]
After decarburization annealing, an annealing separator mainly composed of MgO is applied to the steel sheet and dried. At this time, about 1 to 40% of TiO 2 may be added to MgO, and preferably the coating amount is 5 g / m per side. 2 or more.
[0043]
Further, a final finish annealing at 1100 ° C. or higher is performed for the purpose of primary film formation, secondary recrystallization, and purification. In many cases, after the final finish annealing, an insulating film is further applied on the primary film. In particular, an insulating film obtained by baking a coating liquid mainly composed of phosphate and colloidal silica has a large applied hearing ability to the steel sheet, and is effective for further improving iron loss.
Further, the unidirectional electrical steel sheet may be subjected to so-called magnetic domain subdivision processing such as laser irradiation, plasma irradiation, groove processing by tooth roll or etching.
[0044]
[Example 1]
C: 0.080% by mass, Si: 3.30%, Mn: 0.080%, S: 0.025%, acid-soluble Al: 0.026%, N: 0.0082%, and Bi: 0, 0.0030, 0.0150, 0.0380% soot slab was heated at 1350 ° C. and then hot rolled to a thickness of 2.3 mm. , Annealing was performed at 4 levels of 1210 ° C. for 1 minute. Thereafter, it was rolled to a final thickness of 0.22 mm by cold rolling.
[0045]
Further, when the obtained strip was decarburized and annealed, the temperature increase rate from 300 ° C. to 850 ° C. was increased to 850 ° C. at 400 ° C./second, and immediately after that, P H 2 O / PH 2 = 0.8. Pre-annealing was performed at 850 ° C. for 5 seconds in an atmosphere, and decarburization annealing was performed in a uniform temperature of 840 ° C. and wet hydrogen.
[0046]
Thereafter, an annealing separator containing MgO as a main component was applied, and high temperature annealing was performed in a hydrogen gas atmosphere at a maximum temperature of 1200 ° C. for 20 hours. After removing excess MgO from the obtained steel sheet and forming an insulating film mainly composed of colloidal silica and phosphate on the formed forsterite film, a magnetic domain was controlled by laser irradiation. The laser irradiation conditions are an irradiation row interval of 6.5 mm, an irradiation point interval of 0.6 mm, and an irradiation energy of 0.8 mJ / mm 2 . The manufacturing conditions and magnetic characteristics at this time are shown in Table 1.
The coil manufactured under the conditions satisfying the conditions of the present invention is a grain-oriented electrical steel sheet having excellent iron loss characteristics.
[0047]
[Table 1]
[0048]
[Example 2]
By mass: C: 0.075%, Si: 3.35%, Mn: 0.080%, S: 0.025%, acid-soluble Al: 0.025%, N: 0.0085%, Sn: 0.00. A slab containing 0140%, Cu: 0.08% and Bi: 0.0015, 0.0230% was heated at 1350 ° C. and immediately rolled to a 2.4 mm thick hot rolled coil It was. The hot-rolled coil was cold-rolled to 1.8 mm and annealed at three levels of 1050 ° C., 1150 ° C., and 1250 ° C. for 1 minute. Thereafter, it was rolled to a final thickness of 0.22 mm by cold rolling. Table 2 shows the manufacturing conditions and magnetic characteristics of the coil processed as a product after that in the same manner as in Example 1.
[0049]
[Table 2]
[0050]
[Example 3]
For A1, A2, B1, and B2 obtained in Example 2, grooves having a depth of 15 μm and a width of 90 μm were formed at intervals of 5 mm in an angle of 12 ° with the direction perpendicular to the sheet passing direction. Table 3 shows iron loss values before and after magnetic domain control. The coil manufactured under the conditions satisfying the conditions of the present invention is a grain-oriented electrical steel sheet having excellent iron loss characteristics.
[0051]
[Table 3]
[0052]
[Example 4]
By mass: C: 0.070%, Si: 3.25%, Mn: 0.070%, Se: 0.018%, acid-soluble Al: 0.025%, N: 0.0084%, Sb: 0.00. A slab containing 025%, Mo: 0.014% and Bi: 0.035% was heated at 1400 ° C. and then immediately rolled into a 2.5 mm thick hot rolled coil. The hot-rolled coil was annealed at 1000 ° C. and then cold-rolled to 1.7 mm. The coil was annealed for 1 minute at 1000 to 1200 ° C. at 5 levels every 50 ° C. Thereafter, it was rolled to a final thickness of 0.22 mm by cold rolling. Table 4 shows the manufacturing conditions and magnetic characteristics of the coil processed as a product after that in the same manner as in Example 1.
The coil manufactured under the conditions satisfying the conditions of the present invention is a grain-oriented electrical steel sheet having excellent iron loss characteristics.
[0053]
[Table 4]
[0054]
【The invention's effect】
According to the present invention, in the production of a high magnetic flux density unidirectional electrical steel sheet containing Bi in steel, it is possible to provide a method having a high degree of freedom in operation and capable of stable production.
[Brief description of the drawings]
FIG. 1 is a graph showing the effects of Bi content and temperature before finish cold rolling on magnetic flux density B8.
FIG. 2 is a graph showing the effects of Bi content and temperature before finish cold rolling on iron loss.
Claims (2)
C :0.10%以下、
Si:2〜7%、
Mn:0.02〜0.30%、
SおよびSeのうちから選んだ1種または2種の合計:0.001〜0.040%、 酸可溶性Al:0.010〜0.065%、
N :0.0030〜0.0150%、
Bi:0.0005〜0.05%
を基本成分とし、残余はFeおよび不可避的不純物よりなる一方向性電磁鋼熱延板に、必要に応じて焼鈍を施し、1回あるいは2回以上または中間焼鈍を挟む2回以上の冷間圧延を行い、脱炭焼鈍後、焼鈍分離剤を塗布、乾燥し仕上げ焼鈍を行う方向性電磁鋼板の製造方法において、仕上げ冷延前焼鈍の最高到達温度をBi含有量に応じて下記式の範囲に制御すると共に最終板厚まで冷延された鋼板を700℃以上へ10秒以内あるいは100℃/秒以上の加熱速度、及びPH 2 O/PH 2 を0.6〜0.8の雰囲気で加熱し、直ちに700℃以上で5〜20秒間保持して鋼板表層部にSiO2 を形成させる予備焼鈍を施した後に脱炭焼鈍を行うことを特徴とするB8 ≧1.94Tの超高磁束密度で高磁場鉄損に優れる一方向性電磁鋼板の製造方法。
−10×ln(A)+1100≦B≦−10×ln(A)+1220
ここで A:Bi含有量(ppm)
B:仕上冷延前焼鈍温度(℃)C: 0.10% or less by mass,
Si: 2 to 7%,
Mn: 0.02 to 0.30%,
Total of one or two selected from S and Se: 0.001 to 0.040%, acid-soluble Al: 0.010 to 0.065%,
N: 0.0030 to 0.0150%,
Bi: 0.0005 to 0.05%
Is applied to the unidirectional electrical steel hot-rolled sheet composed of Fe and inevitable impurities, and the cold rolling is performed once or twice or more times with intermediate annealing between them. In the method for producing a grain-oriented electrical steel sheet, after applying decarburization annealing, applying an annealing separator, drying, and performing finish annealing, the maximum ultimate temperature of annealing before finish cold rolling falls within the range of the following formula according to the Bi content: The steel plate that is controlled and cold-rolled to the final thickness is heated to 700 ° C. or higher within 10 seconds or 100 ° C./second or higher , and PH 2 O / PH 2 is heated in an atmosphere of 0.6 to 0.8. Immediately after holding for 5 to 20 seconds at 700 ° C. or higher and performing pre-annealing to form SiO 2 on the surface layer of the steel sheet, decarburization annealing is performed, and B8 ≧ 1.94T, which has a very high magnetic flux density and high Production of unidirectional electrical steel sheet with excellent magnetic iron loss Method.
−10 × ln (A) + 1100 ≦ B ≦ −10 × ln (A) +1220
Where A: Bi content (ppm)
B: Annealing temperature before finish cold rolling (° C)
−10×ln(A)+1130≦B≦−10×ln(A)+1220
ここで A:Bi含有量(ppm)
B:仕上冷延前焼鈍温度(℃)The maximum attained temperature of annealing before finish cold rolling is controlled within the following range in accordance with the Bi content, and the super high magnetic flux density of B8 ≥ 1.94T according to claim 1, which is excellent in high magnetic field iron loss. A method for producing grain-oriented electrical steel sheets.
−10 × ln (A) + 1130 ≦ B ≦ −10 × ln (A) +1220
Where A: Bi content (ppm)
B: Annealing temperature before finish cold rolling (° C)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001280365A JP3743707B2 (en) | 2001-09-14 | 2001-09-14 | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet |
US10/484,347 US7399369B2 (en) | 2001-07-16 | 2002-07-16 | Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same |
CNB02814192XA CN1321215C (en) | 2001-07-16 | 2002-07-16 | Ultra-high magnetic fiux density unidirectional electrical steel sheet excellent in high magnetic field iron loss and coating characteristic and production method thereof |
PCT/JP2002/007229 WO2003008654A1 (en) | 2001-07-16 | 2002-07-16 | Ultra-high magnetic flux density unidirectional electrical sheet excellent in high magnetic field iron loss and coating characteristics and production method therefor |
EP02746105A EP1411139B1 (en) | 2001-07-16 | 2002-07-16 | Ultra-high magnetic flux density unidirectional electrical sheet excellent in high magnetic field iron loss and coating characteristics and production method therefor |
KR1020047000761A KR100586440B1 (en) | 2001-07-16 | 2002-07-16 | Ultra high magnetic flux density unidirectional electrical steel sheet with excellent magnetic field loss and coating |
US12/215,540 US7981223B2 (en) | 2001-07-16 | 2008-06-27 | Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001280365A JP3743707B2 (en) | 2001-09-14 | 2001-09-14 | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003089821A JP2003089821A (en) | 2003-03-28 |
JP3743707B2 true JP3743707B2 (en) | 2006-02-08 |
Family
ID=19104375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001280365A Expired - Lifetime JP3743707B2 (en) | 2001-07-16 | 2001-09-14 | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3743707B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4669515B2 (en) * | 2005-07-28 | 2011-04-13 | オムロン株式会社 | Electrical steel sheet component and method for manufacturing the same |
JP6004183B2 (en) * | 2013-02-28 | 2016-10-05 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
US10669600B2 (en) | 2015-04-02 | 2020-06-02 | Nippon Steel Corporation | Method of manufacturing grain-oriented electrical steel sheet |
CN105525087B (en) * | 2015-10-10 | 2017-05-10 | 广东盈泉高新材料有限公司 | Method for improving quality of bottom layer of oriented silicon steel |
JP7159595B2 (en) * | 2018-03-30 | 2022-10-25 | 日本製鉄株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
-
2001
- 2001-09-14 JP JP2001280365A patent/JP3743707B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003089821A (en) | 2003-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003096520A (en) | Method of producing high magnetic flux density grain oriented silicon steel sheet having excellent film property and high magnetic field core loss | |
JP6436316B2 (en) | Method for producing grain-oriented electrical steel sheet | |
CN111417737A (en) | Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same | |
JP3392669B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP5854234B2 (en) | Method for producing grain-oriented electrical steel sheet | |
CN113272456A (en) | Method for producing grain-oriented electromagnetic steel sheet | |
JP2003253341A (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP3392664B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3743707B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JP4205816B2 (en) | Method for producing unidirectional electrical steel sheet with high magnetic flux density | |
JP3392579B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3928275B2 (en) | Electrical steel sheet | |
JP3456860B2 (en) | Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics | |
JP7486436B2 (en) | Manufacturing method for grain-oriented electrical steel sheet | |
JPH10273727A (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JPH08269561A (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JPH07305116A (en) | High magnetic flux density grain-oriented electrical steel sheet manufacturing method | |
JPH0762437A (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JPH075975B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP3392699B2 (en) | Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics | |
JP3392695B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics | |
KR20030052139A (en) | Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing | |
WO2022210503A1 (en) | Production method for grain-oriented electrical steel sheet | |
JP3561323B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JP3061515B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030128 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050927 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051111 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3743707 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081125 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091125 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101125 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101125 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111125 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111125 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121125 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121125 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131125 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131125 Year of fee payment: 8 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131125 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |