JP2000104131A - High strength and high conductivity copper alloy and its production - Google Patents
High strength and high conductivity copper alloy and its productionInfo
- Publication number
- JP2000104131A JP2000104131A JP27315998A JP27315998A JP2000104131A JP 2000104131 A JP2000104131 A JP 2000104131A JP 27315998 A JP27315998 A JP 27315998A JP 27315998 A JP27315998 A JP 27315998A JP 2000104131 A JP2000104131 A JP 2000104131A
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- strength
- heat treatment
- heating
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000013078 crystal Substances 0.000 claims abstract description 55
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 10
- 239000010949 copper Substances 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims description 105
- 230000032683 aging Effects 0.000 claims description 24
- 238000001953 recrystallisation Methods 0.000 claims description 22
- 238000011282 treatment Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 229910000765 intermetallic Inorganic materials 0.000 claims description 16
- 238000005098 hot rolling Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 238000005482 strain hardening Methods 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 229910052718 tin Inorganic materials 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 230000001376 precipitating effect Effects 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 229910052740 iodine Inorganic materials 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 abstract description 9
- 239000000956 alloy Substances 0.000 abstract description 9
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 24
- 238000001556 precipitation Methods 0.000 description 23
- 238000004080 punching Methods 0.000 description 23
- 238000005452 bending Methods 0.000 description 22
- 238000005097 cold rolling Methods 0.000 description 17
- 238000004513 sizing Methods 0.000 description 13
- 238000007665 sagging Methods 0.000 description 12
- 229910000679 solder Inorganic materials 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 239000002244 precipitate Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 230000035882 stress Effects 0.000 description 10
- 230000007547 defect Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 229910052738 indium Inorganic materials 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 6
- 238000005266 casting Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000010008 shearing Methods 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000005336 cracking Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 102220253765 rs141230910 Human genes 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、Feを含有し、
Fe又は/及びFe−Pに代表されるFe基の金属間化
合物を析出させた高強度・高導電性銅合金板、特に半導
体用リードフレーム、端子、コネクター、ブスバーなど
の電気・電子部品用に用いられる高強度・高導電性銅合
金板とその製造方法に関し、良好なプレス打ち抜き性を
有するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention
High strength and high conductivity copper alloy plate on which Fe-based intermetallic compound represented by Fe and / or Fe-P is deposited, especially for electric and electronic parts such as semiconductor lead frames, terminals, connectors, bus bars, etc. The high-strength and high-conductivity copper alloy sheet to be used and the method for producing the same have good press punching properties.
【0002】[0002]
【従来の技術】Cu合金中にFe又は/及びFe−Pに
代表される金属間化合物を析出させると、高強度・高導
電率の銅合金が比較的簡単に得られるため、C1940
0(Cu−2.3wt%Fe−0.03wt%P−0.
1wt%Zn)、C19700(Cu−0.6wt%F
e−0.2wt%P−0.05wt%Mg)など多種多
用のFe含有銅合金がリードフレーム、端子、コネクタ
などの電気・電子部品用材料として大量に用いられてい
る。2. Description of the Related Art When an intermetallic compound typified by Fe and / or Fe-P is precipitated in a Cu alloy, a copper alloy having high strength and high conductivity can be obtained relatively easily.
0 (Cu-2.3 wt% Fe-0.03 wt% P-0.
1 wt% Zn), C19700 (Cu-0.6 wt% F)
A wide variety of Fe-containing copper alloys such as e-0.2 wt% P-0.05 wt% Mg) have been used in large quantities as materials for electrical and electronic components such as lead frames, terminals, and connectors.
【0003】しかし、これらの材料を加工、成型する場
合において、冷間圧延における板の波打ちや蛇行、残留
応力の不均一、スリッターした条の蛇行、プレス打ち抜
き加工(スタンピング加工)における曲がりやダレ(特
に不均一なダレ幅及びダレ高さ)の発生、リード曲げ加
工部の肌荒れや割れ、製品での強度低下などが発生する
という問題があり、これが製品歩留りや加工時の生産性
を低下させていた。[0003] However, when these materials are processed and formed, the sheet is corrugated or meandered in cold rolling, uneven in residual stress, meandering of a slitted strip, bending or sagging in stamping (stamping). In particular, there is a problem that non-uniform sagging width and sagging height), roughening and cracking of a lead bending portion, and a decrease in strength of a product occur, which lowers a product yield and a productivity at the time of working. Was.
【0004】[0004]
【発明が解決しようとする課題】ところで、Fe又は/
及びFe基の金属間化合物が析出する前記のFe含有銅
合金のように合金中に第2相が析出する銅合金において
は、その熱処理において再結晶−結晶粒粗大化と析出が
同時に進行する。このため、熱処理工程において、粗大
に成長した結晶粒と加熱中の析出によって成長を止めら
れた微細な結晶粒が混在した組織(以下、混粒組織と記
述)となりやすい。この現象は、特にFeの含有量が
0.2%以上である銅合金において顕著となる。また、
一度、混粒組織となるとその後の加工&熱処理によって
整粒組織の材料を製作することが極めて困難となる。そ
して、混粒組織を呈する材料においては、粗大化した結
晶粒は微細な結晶粒よりも変形能が大きく、耐力が小さ
い。そのため、このような混粒組織を呈する材料におい
ては、部位によって変形能及び強度が異なるという現象
が発生する。By the way, Fe or / and / or
In a copper alloy in which a second phase is precipitated in the alloy, such as the above-mentioned Fe-containing copper alloy in which an Fe-based intermetallic compound is precipitated, recrystallization, crystal grain coarsening and precipitation proceed simultaneously during the heat treatment. Therefore, in the heat treatment step, a structure in which coarsely grown crystal grains and fine crystal grains whose growth is stopped by precipitation during heating are mixed (hereinafter, referred to as a mixed grain structure) is likely to occur. This phenomenon is particularly remarkable in a copper alloy containing 0.2% or more of Fe. Also,
Once it has a mixed grain structure, it is extremely difficult to produce a material with a grain sized structure by subsequent processing and heat treatment. In a material exhibiting a mixed grain structure, coarsened crystal grains have greater deformability and smaller proof stress than fine crystal grains. Therefore, in a material having such a mixed grain structure, a phenomenon occurs in which the deformability and the strength are different depending on the site.
【0005】この混粒組織はC19400に代表される
Feの析出が主な析出物である銅合金において特に発生
しやすく、その度合により部位による変形能及び強度の
差が大きくなり、前記のような冷間圧延における板の波
打ちや蛇行、残留応力の不均一、スリッターした条の蛇
行、プレス打ち抜き加工における曲がりやダレ(特に不
均一なダレ幅及びダレ高さ)の発生、リード曲げ加工部
の肌荒れや割れ、製品での強度低下などの問題が発生す
る。本発明は以上の知見に基づいてなされたもので、F
e含有銅合金からなる板(条を含む)において見られる
上記の問題点、特にプレス打ち抜き性の改善を目的とす
る。[0005] This mixed grain structure is particularly liable to occur in a copper alloy in which precipitation of Fe typified by C19400 is a main precipitate, and the degree of deformation increases the difference in deformability and strength depending on the degree. Wavy and meandering of the sheet during cold rolling, uneven residual stress, meandering of slitted strips, occurrence of bending and sagging (particularly uneven sagging width and sagging height) in press punching, roughening of the lead bending part This causes problems such as cracking and reduced strength in products. The present invention has been made based on the above findings.
An object of the present invention is to improve the above-described problems, particularly, press punchability, which are observed in a plate (including a strip) made of an e-containing copper alloy.
【0006】[0006]
【課題を解決するための手段】Fe含有銅合金は、製造
工程中に軟化、時効などの目的で行う熱処理によって、
前述のように混粒組織となりやすく、また、一度混粒組
織となるとその解消が難しく、製造工程、スタンピング
工程において多大な問題を発生させる。逆に、熱延材及
び水平連鋳材を冷延する工程中で行う第1回目の熱処理
において整粒組織とし、その後時効処理によってFe又
は/及びFe系金属間化合物を析出させると、さらに冷
延−熱処理を行っても混粒組織となることはなく、前述
の問題は発生しない。The Fe-containing copper alloy is heat-treated during the manufacturing process for the purpose of softening, aging and the like.
As described above, the mixed grain structure tends to be formed, and once the mixed grain structure is formed, it is difficult to eliminate the mixed grain structure, which causes a great problem in the manufacturing process and the stamping process. Conversely, when the first heat treatment performed during the step of cold rolling the hot-rolled material and the horizontally continuous cast material has a grain-sized structure, and then aging treatment is performed to precipitate Fe or / and Fe-based intermetallic compounds, the cooling is further reduced. Even if the elongation-heat treatment is performed, a mixed grain structure does not occur, and the above-described problem does not occur.
【0007】このような観点から、整粒組織とするため
の諸条件を検討した結果、以下の銅合金板及び製造方法
を得た。本発明に係るプレス打ち抜き性に優れる高強度
・高導電性銅合金は、Fe:0.2〜3.0wt%、
P:0.001〜0.2wt%、Zn:0.05〜1.
0wt%を含有し、下記式で示すFe量条件式を満足
し、残部が実質的にCuと不可避不純物である銅合金か
らなり、Fe又は/及びFe基の金属間化合物が析出
し、圧延表面の板幅方向の平均結晶粒径が3〜60μm
で、かつその値の80〜120%の寸法の結晶粒の数が
全結晶粒の70%以上であることを特徴とする。 [Fe]−3.6×([P]−0.18×[Ni]−0.26×
[Co]−0.20×[Cr]−0.85×[Mg])≧0.5 ただし、[Fe]、[P]、[Ni]、[Co]、[C
r]、[Mg]は添加元素又は不可避不純物として銅合
金中に含まれる各元素のwt%を表す。[0007] From these viewpoints, as a result of examining various conditions for obtaining a grain-sized structure, the following copper alloy sheet and manufacturing method were obtained. The high-strength and high-conductivity copper alloy excellent in press punching property according to the present invention is Fe: 0.2 to 3.0 wt%,
P: 0.001-0.2 wt%, Zn: 0.05-1.
0 wt%, satisfying the Fe content condition expressed by the following formula, the balance being substantially composed of Cu and a copper alloy which is an unavoidable impurity, Fe or / and an Fe-based intermetallic compound is precipitated, and the rolling surface The average crystal grain size in the plate width direction is 3 to 60 μm
And the number of crystal grains having a size of 80 to 120% of that value is 70% or more of all the crystal grains. [Fe] −3.6 × ([P] −0.18 × [Ni] −0.26 ×
[Co] −0.20 × [Cr] −0.85 × [Mg]) ≧ 0.5 where [Fe], [P], [Ni], [Co], [C
[r] and [Mg] represent wt% of each element contained in the copper alloy as an additional element or an unavoidable impurity.
【0008】本発明に係る銅合金は、必要に応じて、N
i、Co、Cr、Mgのうち1種又は2種以上を合計で
0.01〜0.5wt%含有し、あるいはAl、Sn、
Mn、Zr、In、Tiのうち1種又は2種以上を合計
で0.005〜0.5wt%含有する。これらの両方を
含有してもよい。また、上記範囲のPの一部又は全部に
代えて、又は上記範囲のPに加えて、0.3%以下のS
iをP及びSiの総量で0.001wt%以上となるよ
うに添加することもできる(この場合、P:0〜0.2
wt%の範囲をとり得る)。そして、以上の銅合金にお
いて、O:100ppm以下、H:10ppm以下であ
ることが望ましい。さらに、銅合金中には不可避不純物
として、Ag、Cd、Au、Pt、Hf、Th、Sr、
Pd、S、C、Y、Pb、Ga、Ge、As、Se、S
b、Bi、Te、Bなどが原料の地金やスクラップ及び
炉材などから混入することがある。これらの元素のう
ち、Pb、Sについてはそれぞれ0.01wt%以下、
それ以外の元素についてはそれぞれ0.005wt%以
下、かつこれらの元素の総量が0.01wt%以下であ
れば、本合金の特性を大きく損なうことはない。[0008] If necessary, the copper alloy according to the present invention may contain N
One, two or more of i, Co, Cr, and Mg are contained in a total amount of 0.01 to 0.5 wt%, or Al, Sn,
One or more of Mn, Zr, In, and Ti are contained in a total amount of 0.005 to 0.5 wt%. You may contain both of these. Further, in place of part or all of P in the above range, or in addition to P in the above range, 0.3% or less of S
i can be added so that the total amount of P and Si is 0.001 wt% or more (in this case, P: 0 to 0.2
wt%). In the above copper alloy, it is desirable that O: 100 ppm or less and H: 10 ppm or less. Furthermore, in the copper alloy, Ag, Cd, Au, Pt, Hf, Th, Sr,
Pd, S, C, Y, Pb, Ga, Ge, As, Se, S
In some cases, b, Bi, Te, B, and the like may be mixed in from raw metal ingots, scraps, furnace materials, and the like. Of these elements, Pb and S are each 0.01 wt% or less,
If the other elements are not more than 0.005 wt% and the total amount of these elements is not more than 0.01 wt%, the properties of the alloy will not be significantly impaired.
【0009】本発明に係る銅合金板の製造方法は、上記
組成の銅合金に対し熱間圧延を終了した時点から、最初
に再結晶を生じさせる熱処理までの冷間加工率を90%
以下とすることを特徴とする。あるいは、Fe又は/及
びFe基の金属間化合物を析出させる時効処理に先だっ
て、450〜950℃の温度範囲に0.1℃/秒以上の
速度で昇温し、その温度で5秒〜10分間保持して再結
晶させた後に、Fe又は/及びFe基の金属間化合物を
析出させる時効処理を行うことを特徴とする。The method for producing a copper alloy sheet according to the present invention is characterized in that the cold working ratio from the time when hot rolling is completed to the heat treatment for first causing recrystallization to 90% is performed on the copper alloy having the above composition.
It is characterized as follows. Alternatively, prior to the aging treatment for precipitating the Fe or / and Fe-based intermetallic compound, the temperature is raised to a temperature range of 450 to 950 ° C at a rate of 0.1 ° C / sec or more, and the temperature is increased for 5 seconds to 10 minutes. An aging treatment for precipitating Fe and / or an Fe-based intermetallic compound after holding and recrystallizing is performed.
【0010】[0010]
【発明の実施の形態】以下、成分及び諸条件を上記の通
りに限定した理由を説明する。 <Fe量>Fe含有量が0.2%wt未満であると、F
e又はFe基金属間化合物の析出量が少ないためリード
フレーム、端子、コネクターに要求される最近の高強度
化及び高耐熱性の要求に十分には応えることができな
い。従って、Fe含有量は0.2wt%以上必要であ
る。また、Fe含有量が3.0wt%を越えると粗大な
Feの晶出物が多量に発生し、これらの晶出物は強度向
上にほとんど寄与せず、かえって曲げ加工性を劣化さ
せ、プレス打抜き時に金型を摩耗させるため、Fe含有
量は3.0%以下でなければならない。従って、Fe含
有量は0.2〜3.0wt%とする。この範囲の中で望
ましい範囲は0.5〜2.6wt%、さらに望ましい範
囲は、1.0〜2.1wt%である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the components and various conditions as described above will be described below. <Fe content> If the Fe content is less than 0.2% wt,
Since the amount of e or Fe-based intermetallic compound deposited is small, it cannot sufficiently meet the recent demand for higher strength and higher heat resistance required for lead frames, terminals, and connectors. Therefore, the Fe content needs to be 0.2 wt% or more. On the other hand, if the Fe content exceeds 3.0% by weight, a large amount of coarse Fe crystallized substances are generated, and these crystallized substances hardly contribute to the improvement in strength, but rather deteriorate the bending workability and press-punch. The Fe content must be less than 3.0% to sometimes wear the mold. Therefore, the Fe content is set to 0.2 to 3.0 wt%. A desirable range in this range is 0.5 to 2.6 wt%, and a more desirable range is 1.0 to 2.1 wt%.
【0011】<P量>Pは、Feとの安定な金属間化合
物を形成し、Cuの母相に析出して銅合金の耐力及び耐
熱性を向上させる。さらに、後述するNi、Co、C
r、Mgとの化合物を生成することで合金中に析出して
剪断加工性を向上させる。しかし、Pの含有量が0.2
wt%を越えた場合、熱間加工性が低下する。一方、P
が0.001wt%未満の場合は、溶解鋳造時の脱酸が
不十分となり溶湯の粘性が高くなる。この結果、鋳造時
に酸化物を巻き込みやすくなり、巻き込んだ酸化物は製
品欠陥となる。このため健全な鋳塊を得ることができず
好ましくない。従って、Pの含有量は0.001〜0.
2wt%とする。より好ましい範囲はP:0.01〜
0.1wt%である。<P content> P forms a stable intermetallic compound with Fe and precipitates in a Cu matrix to improve the proof stress and heat resistance of the copper alloy. Furthermore, Ni, Co, C
By generating a compound with r and Mg, it precipitates in the alloy and improves the shearing workability. However, when the content of P is 0.2
If the content exceeds wt%, the hot workability decreases. On the other hand, P
Is less than 0.001 wt%, deoxidation during melting and casting is insufficient, and the viscosity of the molten metal increases. As a result, the oxide is easily entrained during casting, and the entrained oxide becomes a product defect. Therefore, a sound ingot cannot be obtained, which is not preferable. Therefore, the content of P is 0.001-0.
2 wt%. A more preferred range is P: 0.01 to
0.1 wt%.
【0012】<Zn量>Znはプレス金型の摩耗を低減
する効果、マイグレーションの防止、銅合金のはんだ及
びSnめっきの耐熱剥離性を改善する。Znの含有量が
0.05wt%未満の場合、所望の効果が得られない。
一方、その含有量が1.0wt%を越えるとはんだ濡れ
性が低下する。また、導電率の低下も激しくなる。従っ
て、Znの含有量は0.05〜1.0wt%とする。よ
り好ましい範囲は、0.1〜0.3wt%である。<Zn Content> Zn improves the effect of reducing the wear of the press die, prevents migration, and improves the heat-peeling resistance of copper alloy solder and Sn plating. If the Zn content is less than 0.05 wt%, the desired effect cannot be obtained.
On the other hand, if the content exceeds 1.0% by weight, the solder wettability decreases. In addition, the decrease in conductivity also becomes severe. Therefore, the content of Zn is set to 0.05 to 1.0 wt%. A more preferred range is 0.1 to 0.3 wt%.
【0013】<Ni、Co、Cr、Mg量>Ni、C
o、Cr、Mgは、Pとの化合物を生成し合金中に析出
して剪断加工性(プレス打ち抜き性等)を向上させる。
この化合物が合金中に分散されていると、母材との金属
学的な連続性がないため剪断加工時に応力を集中的に受
けてミクロクラックの発生源となり、剪断加工性を著し
く向上させることができる。この効果は、これらの元素
の1種又は2種以上の合計が0.01wt%以上で顕著
に示される。しかし、Fe−P化合物と比較して粗大な
化合物として析出しやすく、粗大になった析出物は結晶
が成長する際のピン止め効果を果たすことになる。この
とき粗大な析出物の分布が不均一であると、熱処理を行
った際に結晶成長が不均一となり、結果、混粒組織とな
りやすい。この現象は、Ni、Co、Cr、Mgの1種
又は2種以上の合計が0.5wt%を越えると顕著とな
る。従って、Ni、Co、Cr、Mgのうち1種又は2
種以上の合計は0.01〜0.5wt%とする。より望
ましい範囲は0.02〜0.3wt%である。<Ni, Co, Cr, Mg content> Ni, C
o, Cr, and Mg generate a compound with P and precipitate in the alloy to improve the shearing property (press punching property and the like).
If this compound is dispersed in the alloy, there is no metallurgical continuity with the base material, so stress will be concentrated during shearing and it will be a source of micro cracks, significantly improving the shearability. Can be. This effect is remarkably exhibited when the total of one or more of these elements is 0.01% by weight or more. However, compared to the Fe-P compound, it is easy to precipitate as a coarse compound, and the coarse precipitate exerts a pinning effect when the crystal grows. At this time, if the distribution of the coarse precipitates is not uniform, the crystal growth becomes uneven when heat treatment is performed, and as a result, a mixed grain structure is likely to be formed. This phenomenon becomes significant when one or more of Ni, Co, Cr, and Mg exceeds 0.5 wt%. Therefore, one or two of Ni, Co, Cr, and Mg
The total of the species or more is 0.01 to 0.5 wt%. A more desirable range is 0.02 to 0.3 wt%.
【0014】<Fe量条件式>PはFe、Ni、Co、
Cr、Mgのいずれとも化合物を形成し母材中に析出す
る。しかし、添加元素又は不可避不純物として含有され
る上記元素の含有量が前記条件式を満たす場合、Pとの
化合物を生成せずにFe単体で析出するものが現れてく
る。この単体で析出したFeは、Fe−P化合物として
析出するよりも高強度化及び高耐熱化の作用をもつ。一
方、最近の各種電気電子機器の軽薄短小化及び実装密度
の向上要求に対応するため、プレス打ち抜き時の剪断に
より発生する残留応力を小さくする技術が開発され、一
般化している。この技術はリード打ち抜きに際して、リ
ード先端を切り落とさず束ねたままの状態で、一度、数
秒〜数分間の短時間熱処理を行いリード側面を抜いた時
に生じた残留応力を逃がす。この後、残留応力が小さく
なった時点でリード先端部を切り落とし、平坦性を確保
するという技術である。この技術を適用するには、打ち
抜き加工途中の焼鈍によって材料自身が軟化しないよう
な高耐熱性が必要である。銅合金板の組成が上記Fe量
の条件を満たすことで、この要求に対応することが可能
となる。従って、本発明に係る銅合金板の組成は上記F
e量条件式を満たすものとした。なお、さらに後述する
Al、Sn、Mn、Zr、In、Tiの存在があれば、
耐熱性を飛躍的に高めることが可能となり、プレス打ち
抜き時に熱処理を行う場合に最適なものとなる。<Fe quantity conditional expression> P is Fe, Ni, Co,
Both Cr and Mg form compounds and precipitate in the base material. However, when the content of the above-mentioned element contained as an additional element or an unavoidable impurity satisfies the above-mentioned conditional expression, a substance that precipitates as Fe alone without generating a compound with P appears. The Fe precipitated as a simple substance has the effect of increasing the strength and increasing the heat resistance as compared with the precipitation as an Fe-P compound. On the other hand, in order to respond to recent demands for reducing the weight and thickness of various electric and electronic devices and improving the mounting density, a technique for reducing residual stress generated by shearing during press punching has been developed and has become popular. In this technique, when punching a lead, a heat treatment is performed once for a short time of several seconds to several minutes while the tip of the lead is not cut off and cut off to release the residual stress generated when the side surface of the lead is pulled out. Thereafter, when the residual stress is reduced, the tip of the lead is cut off to ensure flatness. In order to apply this technology, high heat resistance is required so that the material itself does not soften due to annealing during the punching process. When the composition of the copper alloy plate satisfies the above condition of the amount of Fe, it is possible to meet this requirement. Therefore, the composition of the copper alloy sheet according to the present invention is F
e It was assumed that the condition expression was satisfied. If there are Al, Sn, Mn, Zr, In, and Ti, which will be described later,
The heat resistance can be dramatically increased, which is optimal when heat treatment is performed during press punching.
【0015】<平均結晶粒径、整粒化度>本発明の合金
は熱処理上がり、冷延上がり又は冷延後、伸びを改善さ
せるための低温−短時間加熱処理上がり、テンションア
ニーリング上がりあるいはテンションレベラー上がりと
しても良いが、いずれの場合も圧延面で測定した板幅方
向の結晶粒径が平均値が3〜60μmで、かつ整粒化度
(平均結晶粒径の80〜120%の寸法の結晶粒の数が
全結晶粒の数に占める割合)が70%以上である必要が
ある。ここで、板表面において板幅方向の結晶粒径を測
定するのは、焼鈍上がりにおいてもその後圧延を加えて
も板幅方向の結晶粒径がほとんど変化しないためであ
る。<Average grain size, degree of sizing> The alloy of the present invention is heat-treated, cold-rolled or cold-rolled, and then subjected to a low-temperature-short-time heat treatment for improving elongation, tension-annealed, or a tension leveler. In any case, the crystal grain size in the sheet width direction measured on the rolled surface has an average value of 3 to 60 μm and the degree of sizing (80 to 120% of the average crystal grain size). (The ratio of the number of grains to the total number of crystal grains) must be 70% or more. Here, the reason why the crystal grain size in the sheet width direction is measured on the sheet surface is that the crystal grain size in the sheet width direction hardly changes even after annealing and subsequent rolling.
【0016】結晶粒径の平均値を3〜60μmに限定す
るのは、結晶粒径が3μmを下回った場合、かえって曲
げ加工性が低下するためであり、60μmを超えた場合
は曲げ加工性が不良となり、かつプレス打抜き加工時の
ダレ幅及びダレ高さが大きくかつ不均一となるからであ
る(そのため、斜め上方又は斜め下方からダレ部分を見
たとき、ダレ部分が凹凸の連なりにみえる・・・・ダレ部分
の直線性が悪いともいう)。また、整粒化度を70%以
上と限定するのは、70%を下回ると材料の曲げ加工
性、プレス打ち抜き加工性、強度が低下するためであ
る。さらに、平均結晶粒径は5〜40μmがより望まし
く、整粒化度は80%以上がより望ましく、この範囲内
でプレス打ち抜き加工性や曲げ加工性がさらに向上す
る。なお、平均結晶粒径は、表面をエッチングした試料
の光学顕微鏡組織写真を用い、JIS H0501に規
定されている切断法で測定する。整粒化度は、上記組織
写真を画像解析装置で解析して求めることができる。The reason why the average value of the crystal grain size is limited to 3 to 60 μm is that when the crystal grain size is less than 3 μm, the bending workability is rather deteriorated. This is because it becomes defective, and the sagging width and sagging height during press punching are large and non-uniform (for this reason, when the sagging part is viewed from diagonally above or below, the sagging part appears to be a series of irregularities. ... It is also said that the linearity of the sagging portion is poor). The reason why the sizing degree is limited to 70% or more is that if it is less than 70%, bending workability, press punching workability, and strength of the material decrease. Further, the average crystal grain size is more preferably 5 to 40 μm, and the degree of sizing is more preferably 80% or more. Within this range, press punching workability and bending workability are further improved. The average crystal grain size is measured by a cutting method defined in JIS H0501, using an optical microstructure photograph of a sample whose surface has been etched. The degree of sizing can be determined by analyzing the structure photograph with an image analyzer.
【0017】<Al、Sn、Mn、Zr、In、Ti量
>Al、Sn、Mn、Zr、In、Tiは合金中に固溶
することで強度を向上させるのみならず、Fe析出物
(Fe及び/又はFe基金属間化合物)と共存した状態
では耐熱性を飛躍的に向上させる。なお、プレス打ち抜
きの剪断加工により発生した残留応力が除去されるに
は、材料を加熱し材料中の転位が容易に移動できるよう
にすることが重要である。転位が移動することで残留応
力は除去される。しかし、転位が移動した場合、転位は
対消滅を起こし転位密度が低下することとなる。言い換
えれば転位の導入によって加工硬化していた材料が軟化
してしまう。このとき、Al、Sn、Mn、Zr、I
n、Tiが固溶しているとこれらの原子と空孔との親和
性が強く、空孔サイトをこれら原子が埋めてしまう。結
果、合金中の空孔量が減る。このため、転位の上昇運動
が起きにくくなり、Fe析出物にトラップされた転位は
移動しにくくなる。この結果、転位の対消滅を抑制し耐
熱性が上昇することとなる。この特性は、Al、Sn、
Mn、Zr、In、Tiのうち1種又は2種以上の合計
が0.005wt%未満では十分でなく、0.5wt%
を超えると導電率の低下が生じるとともにはんだ濡れ性
が低下するため好ましくない。従って、これらの元素の
1種又は2種以上の含有量は0.005〜0.5wt%
とする。より望ましい範囲は0.02〜0.3wt%で
ある。<Amounts of Al, Sn, Mn, Zr, In, and Ti> Al, Sn, Mn, Zr, In, and Ti not only improve the strength by forming a solid solution in the alloy but also improve the Fe precipitates (Fe And / or a Fe-based intermetallic compound) in which the heat resistance is dramatically improved. In order to remove the residual stress generated by the shearing process of press punching, it is important to heat the material so that dislocations in the material can be easily moved. The residual stress is removed by the dislocation movement. However, when dislocations move, the dislocations annihilate and the dislocation density decreases. In other words, the work-hardened material is softened by the introduction of dislocations. At this time, Al, Sn, Mn, Zr, I
When n and Ti are in solid solution, the affinity between these atoms and vacancies is strong, and these atoms fill the vacancy sites. As a result, the amount of vacancies in the alloy is reduced. For this reason, it is difficult for the dislocation ascending motion to occur, and the dislocations trapped in the Fe precipitates are less likely to move. As a result, dissociation of dislocations is suppressed, and the heat resistance is increased. This characteristic is similar to Al, Sn,
If the total of one or more of Mn, Zr, In, and Ti is less than 0.005 wt%, it is not sufficient, and 0.5 wt%
Exceeding the ratio is not preferred because the conductivity is lowered and the solder wettability is lowered. Therefore, the content of one or more of these elements is 0.005 to 0.5 wt%.
And A more desirable range is 0.02 to 0.3 wt%.
【0018】<O量>Oは、Pと反応しやすい。Oが1
00ppmを越えた場合、反応したPは上述したNi、
Co、Cr、Mgとの化合物を形成できなくなる。結
果、剪断加工性向上の効果が得られない。また、OはS
iとも反応しやすく、100ppmを越えた場合、Si
の酸化物が多く形成されて鋳塊の清浄性が損なわれる。
従って、Oの含有量は100ppm以下、さらに望まし
くは30ppm以下とする。 <H量>Hは、O量が10ppm以上含有される場合、
H量が10ppmを越えてくると、鋳造時の冷却過程で
Oと結び付いて水蒸気となり、この水蒸気が鋳塊中にブ
ローホール欠陥を生じてしまう。従って、Hの含有量は
「10ppm以下、好ましくは4ppm以下、さらに好
ましくは2ppm以下」と定める。<O content> O easily reacts with P. O is 1
If it exceeds 00 ppm, the reacted P is Ni as described above,
Compounds with Co, Cr and Mg cannot be formed. As a result, the effect of improving the shearability cannot be obtained. O is S
easily reacts with i.
Oxides are formed in large amounts and the cleanliness of the ingot is impaired.
Therefore, the content of O is set to 100 ppm or less, more preferably, 30 ppm or less. <H content> H is, when the O content is 10 ppm or more,
When the amount of H exceeds 10 ppm, it is combined with O in the cooling process during casting to form steam, and this steam causes blowhole defects in the ingot. Therefore, the content of H is defined as "10 ppm or less, preferably 4 ppm or less, more preferably 2 ppm or less."
【0019】<Si量>SiはPと同様にFeとの安定
な金属間化合物を形成し、Cuの母相に析出して特に銅
合金の耐熱性を向上させる。従って、前記範囲のPの一
部又は全部に代えて、又は前記範囲のPに加えて、Si
を添加することができる。しかし、Siが0.3wt%
を越えてくると導電率の低下が激しく好ましくない。一
方、SiはPと同様に脱酸作用を有し、P及びSiの総
量が0.001wt%未満であると、溶解鋳造時の脱酸
が不十分となり溶湯の粘性が高くなる。この結果、鋳造
時に酸化物を巻き込みやすくなり、巻き込んだ酸化物は
製品欠陥となる。このため健全な鋳塊を得ることができ
ず好ましくない。従って、Siを添加する場合は、P:
0.2wt%以下(好ましくは0.01〜0.1wt
%)、Si:0.3wt%以下、P及びSiの総量で
0.001wt%以上とする。好ましくは、Si:0.
005〜0.1wt%、PとSiの総量が0.02〜
0.1wt%である。なお、Siが存在する場合はその
存在量に応じたFe−Si金属間化合物が形成される
が、銅合金の組成が前記の条件式を満足する限り、高強
度化、高耐熱化について同等の作用が得られる。<Si Content> Si forms a stable intermetallic compound with Fe similarly to P, and precipitates in the parent phase of Cu to improve the heat resistance particularly of the copper alloy. Therefore, instead of part or all of P in the above range, or in addition to P in the above range, Si
Can be added. However, Si is 0.3wt%
If the ratio exceeds the above range, the electrical conductivity is greatly reduced, which is not preferable. On the other hand, Si has a deoxidizing effect like P, and if the total amount of P and Si is less than 0.001 wt%, deoxidation during melting casting becomes insufficient and the viscosity of the molten metal increases. As a result, the oxide is easily entrained during casting, and the entrained oxide becomes a product defect. Therefore, a sound ingot cannot be obtained, which is not preferable. Therefore, when adding Si, P:
0.2 wt% or less (preferably 0.01 to 0.1 wt%
%), Si: 0.3 wt% or less, and the total amount of P and Si is 0.001 wt% or more. Preferably, Si: 0.
005 to 0.1 wt%, the total amount of P and Si is 0.02 to
0.1 wt%. When Si is present, an Fe-Si intermetallic compound is formed in accordance with the amount of Si, but as long as the composition of the copper alloy satisfies the above-mentioned conditional expression, high strength and high heat resistance are equivalent. Action is obtained.
【0020】<最初の再結晶熱処理までの冷間加工率>
本発明の銅合金は、例えば、熱間圧延、冷間圧延、再結
晶を生じさせる熱処理、必要に応じてさらに冷間圧延又
は/及び熱処理を組み合わせて板に製造されるが、この
銅合金をその使用状態において前述の結晶粒径範囲に規
定される整粒組織にするための1つの方法は、熱間圧延
を終了した時点から最初に再結晶を生じさせる熱処理ま
での冷間加工率を90%以下とすることである。本発明
の組成のFe含有銅合金では、その熱処理において再結
晶−結晶粒粗大化とFe又は/及びFe基の金属間化合
物の析出が同時に進行し、混粒組織が形成されやすい。
そして、熱間圧延終了時点から最初に再結晶を生じさせ
る熱処理まで90%を越えて冷間加工した場合、導入さ
れた転移及び点欠陥により再結晶及び析出するサイトが
増加し、再結晶−結晶粒粗大化と析出の反応速度が急激
に大きくなる。そのため冷間加工率が90%を越える
と、後述する特殊な熱処理条件以外では熱処理条件をい
かに工夫しても前述の結晶粒径範囲に規定される整粒組
織とすることが困難となり、また、この熱処理でいった
ん混粒組織ができてしまうと、その後の加工熱処理で整
粒組織を得ることが困難となる。<Cold work ratio until the first recrystallization heat treatment>
The copper alloy of the present invention is produced, for example, by hot rolling, cold rolling, heat treatment for causing recrystallization, and if necessary, further combining cold rolling or / and heat treatment to produce a sheet. One method for obtaining a grain-sized structure defined in the above-mentioned range of crystal grain size in the state of use is to reduce the cold working ratio from the time when hot rolling is completed to the first heat treatment for causing recrystallization to be 90%. % Or less. In the Fe-containing copper alloy having the composition of the present invention, during the heat treatment, recrystallization-coarse grain coarsening and precipitation of Fe and / or Fe-based intermetallic compounds proceed simultaneously, and a mixed grain structure is easily formed.
When the cold work exceeds 90% from the end of hot rolling to the first heat treatment for causing recrystallization, the number of sites to be recrystallized and precipitated increases due to the introduced transitions and point defects. The reaction rate of grain coarsening and precipitation sharply increases. Therefore, if the cold working ratio exceeds 90%, it becomes difficult to obtain a grain-sized structure defined in the above-described crystal grain size range, no matter how the heat treatment conditions are modified except for the special heat treatment conditions described below. Once a mixed grain structure is formed by this heat treatment, it becomes difficult to obtain a grain sized structure by a subsequent thermomechanical treatment.
【0021】熱間圧延後最初の再結晶を生じさせる熱処
理は、例えば450〜600℃×30分〜10時間で行
えばよい。さらに好ましくは500〜600℃×1〜5
時間である。ただし、この熱処理時間は所定の温度にな
ってからの保持時間である。昇温速度は0.1℃/se
c未満が適当である。この熱処理は時効処理を兼ねるも
のであるが、この熱処理の後、必要に応じてさらに析出
のための熱処理を行うこともできる。なお、再結晶を伴
わない温度及び時間の熱処理であれば、熱間圧延を終了
した時点から最初に再結晶を生じさせる熱処理までに、
1回以上の熱処理を実施しても本発明の効果は阻害され
ない。また、いったんこの熱処理を行って上記の整粒組
織を得ると、その後に冷間加工又は/及び再結晶を伴わ
ない熱処理(例えば析出処理、低温焼鈍)を行った場合
はむろんのこと、再び再結晶を伴う熱処理を行った場合
でも整粒組織を保つことは容易である。The first heat treatment for producing recrystallization after hot rolling may be performed, for example, at 450 to 600 ° C. for 30 minutes to 10 hours. More preferably, 500 to 600 ° C x 1 to 5
Time. However, the heat treatment time is a holding time after a predetermined temperature is reached. Heating rate is 0.1 ° C / sec
Less than c is appropriate. This heat treatment also serves as an aging treatment. After this heat treatment, a heat treatment for precipitation can be further performed as necessary. In the case of heat treatment at a temperature and time not accompanied by recrystallization, from the time when hot rolling is completed to the first heat treatment for causing recrystallization,
Even if the heat treatment is performed one or more times, the effect of the present invention is not impaired. Further, once this heat treatment is performed to obtain the above-mentioned grain sized structure, if heat treatment without cold working and / or recrystallization (for example, precipitation treatment, low-temperature annealing) is performed thereafter, of course, It is easy to maintain a sized structure even when a heat treatment involving crystals is performed.
【0022】<時効処理に先立つ急速加熱処理条件>本
発明の銅合金をその使用状態において前述の結晶粒径範
囲に規定される整粒組織にするためのもう1つの方法
は、冷間圧延後、時効処理に先だって、通常の時効処理
の加熱より急速に加熱しかつ短時間で再結晶させること
である。この方法では、熱間圧延を省略した製造方法に
も適用でき(例えば薄板連鋳材の使用)、また、再結晶
させる熱処理の前の冷間圧延の加工率は90%を越えて
いてもよい。この急速加熱処理も、冷間圧延開始以降、
最初の再結晶を生じさせる熱処理として行われるもので
ある(再結晶を伴わない温度及び時間の熱処理であれ
ば、冷間圧延開始以降、この急速加熱処理の前に、1回
以上の熱処理を実施しても本発明の効果は阻害されな
い)。この方法において加熱温度を450℃以上とする
のは、450℃未満では0.1℃/秒以上の速度で昇温
し、かつ5秒以上保持しても再結晶しないからである。
また、950℃を超える温度に加熱すると加熱時間を5
秒としても再結晶粒が粗大化し、目的とする良好な曲げ
加工性、スタンピング性が得られないからである。従っ
て、加熱温度範囲は450〜950℃とする。好ましく
は、600〜800℃である。加熱速度を0.1℃/秒
以上とするのは、加熱速度が0.1℃/秒未満となると
加熱中に析出が起き始め、結晶粒の成長速度に差を生じ
て微細結晶粒と粗大結晶粒の混粒組織となるからであ
る。従って、加熱速度は0.1℃/秒以上でなければな
らない。好ましくは0.5℃/秒以上である。<Conditions for Rapid Heating Treatment Prior to Aging Treatment> Another method for bringing the copper alloy of the present invention into a grain-sized structure defined in the above-mentioned crystal grain size range in a state of use is cold rolling. Prior to the aging treatment, heating is performed more rapidly than in the normal aging treatment, and recrystallization is performed in a short time. This method can also be applied to a manufacturing method in which hot rolling is omitted (for example, use of a continuous thin sheet material), and the working ratio of cold rolling before heat treatment for recrystallization may exceed 90%. . This rapid heating treatment also starts after cold rolling,
This is performed as a first heat treatment for causing recrystallization (if the heat treatment is performed at a temperature and time without recrystallization, one or more heat treatments are performed after the start of cold rolling and before the rapid heating treatment. However, the effect of the present invention is not inhibited). The reason for setting the heating temperature to 450 ° C. or higher in this method is that if the temperature is lower than 450 ° C., the temperature is raised at a rate of 0.1 ° C./second or higher, and recrystallization does not occur even if the temperature is maintained for 5 seconds or longer.
When heating to a temperature exceeding 950 ° C., the heating time is reduced to 5 hours.
This is because the recrystallized grains become coarse even in seconds, and the desired good bending workability and stamping property cannot be obtained. Therefore, the heating temperature range is 450 to 950 ° C. Preferably, it is 600 to 800 ° C. The reason why the heating rate is set to 0.1 ° C./sec or more is that when the heating rate is less than 0.1 ° C./sec, precipitation starts to occur during heating, and a difference occurs in the growth rate of the crystal grains, and the fine crystal grains and This is because a mixed grain structure of crystal grains is formed. Therefore, the heating rate must be at least 0.1 ° C./sec. Preferably it is 0.5 ° C./sec or more.
【0023】さらに、上記条件で加熱しても、その保持
時間が5秒未満では目的とする再結晶組織が得られず、
10分を越えて保持しても結晶粒の成長が停止し、又は
結晶粒がかえって粗大化する。従って、保持時間は5秒
〜10分とする。10秒〜5分がより好ましい。なお、
整粒組織とするための加熱処理には例えば連続焼鈍炉を
用いればよく、材料の表面酸化や内部酸化を防止するた
めに還元雰囲気(たとえば窒素−水素混合ガス雰囲気)
で加熱し、冷却中の析出を防止するために加熱後急冷す
ることが望ましい。室温までの冷却速度は5℃/秒以上
であればその後の時効処理によって良好な特性が得られ
る。Further, even if heating under the above conditions, if the holding time is less than 5 seconds, the desired recrystallized structure cannot be obtained,
Even if the temperature is maintained for more than 10 minutes, the growth of crystal grains is stopped, or the crystal grains are rather coarsened. Therefore, the holding time is 5 seconds to 10 minutes. 10 seconds to 5 minutes are more preferred. In addition,
For example, a continuous annealing furnace may be used for the heat treatment for obtaining a grain-sized structure, and a reducing atmosphere (for example, a nitrogen-hydrogen mixed gas atmosphere) is used to prevent surface oxidation and internal oxidation of the material.
In order to prevent precipitation during cooling, it is desirable to rapidly cool after heating. If the cooling rate to room temperature is 5 ° C./sec or more, good characteristics can be obtained by the subsequent aging treatment.
【0024】この後、整粒組織とした材料を時効処理す
る。この時効処理には通常バッチ加熱式のベル型炉など
を用いるが、導電率が特に必要でない場合などには連続
熱処理炉を用いてもよい。バッチ加熱の場合には通常、
Fe又は/及びFeの化合物が析出する350〜650
℃で1〜30時間程度材料を加熱する工程を採用する。
なお、整粒組織を得るための急速加熱処理とその後の時
効処理の間に、加工率が50%以下であれば冷間圧延を
行っても本発明の効果を阻害するものではない。なお、
この冷間圧延は、材料中に転位及び点欠陥を導入しFe
又は/及びFeの化合物の析出効率を上げ、より低温、
より短時間で時効析出を完了させ、導電率を高くするた
めに行うものである。加工率が50%を越えると前述し
た急速加熱により所定の整粒化度に再結晶させた結晶組
織が、時効析出時にも局部的に再結晶を始め、所望の整
粒化度から外れてしまう。その結果、所望のプレス打ち
抜き性が得られなくなる。Thereafter, the material having the sized structure is aged. A batch heating type bell furnace or the like is usually used for this aging treatment, but a continuous heat treatment furnace may be used when conductivity is not particularly required. In the case of batch heating,
350 to 650 in which Fe and / or Fe compounds are deposited
A step of heating the material at a temperature of about 1 to 30 hours is employed.
In addition, if the working ratio is 50% or less between the rapid heating treatment for obtaining the grain size structure and the subsequent aging treatment, even if cold rolling is performed, the effect of the present invention is not impaired. In addition,
This cold rolling introduces dislocations and point defects in the material, and
Or / and increase the Fe compound precipitation efficiency,
This is performed to complete the aging precipitation in a shorter time and to increase the conductivity. If the working ratio exceeds 50%, the crystal structure recrystallized to a predetermined degree of sizing by the rapid heating described above starts to locally recrystallize even during aging precipitation, deviating from the desired degree of sizing. . As a result, desired press punching properties cannot be obtained.
【0025】[0025]
【実施例】以下、本発明の実施例1〜3を説明する。な
お、各実施例において結晶粒径及び整粒化度、引張り強
さ、導電率、プレス性、曲げ加工性及びはんだ濡れ性
は、以下の方法で調査した。 (結晶粒径及び分布測定)結晶粒径は、試料表面を研磨
後エッチングして光学顕微鏡写真を撮影し、その組織写
真からJIS H0501に規定されている切断法(線
分の向きは板幅方向)により測定した。なお、同一試料
に対して5視野を観察し、その平均値を各試料の結晶粒
径とした。結晶粒径の分布は、上記の組織写真を画像解
析装置を用いて解析した。すなわち、結晶粒を板幅方向
に横切る線分の長さを300個以上の結晶粒について測
定し、それらの平均値と度数分布を求めた。表1に示す
整粒化度は、この度数分布から平均結晶粒径の80〜1
20%の寸法の結晶粒の数を求め、その個数が全結晶粒
の数に占める割合(%)として算出した。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments 1 to 3 of the present invention will be described below. In each example, the crystal grain size and sizing degree, tensile strength, electrical conductivity, pressability, bending workability, and solder wettability were investigated by the following methods. (Measurement of crystal grain size and distribution) The crystal grain size was determined by polishing the surface of the sample, etching it, taking an optical micrograph, and using the micrograph of the structure to determine the cutting method specified in JIS H0501. ). The same sample was observed in five visual fields, and the average value was defined as the crystal grain size of each sample. The distribution of the crystal grain size was analyzed by using an image analyzer for the above structure photograph. That is, the length of a line segment crossing a crystal grain in the plate width direction was measured for 300 or more crystal grains, and their average value and frequency distribution were obtained. The sizing degree shown in Table 1 indicates that the average crystal grain size is 80 to 1 based on the frequency distribution.
The number of crystal grains having a size of 20% was obtained, and the number was calculated as a ratio (%) to the total number of crystal grains.
【0026】(引張強さ)試験片の長手方向を圧延方向
に平行としたJIS5号試験片を作製し、測定した。 (導電率)ミーリングにより短冊状の試験片を加工し、
ダブルブリッジ式抵抗測定装置により測定した。 (耐熱温度)5分間加熱後のHvの低下量が、加熱前の
Hvの20%の時の温度を耐熱温度という。(Tensile Strength) A JIS No. 5 test piece with the longitudinal direction of the test piece parallel to the rolling direction was prepared and measured. (Conductivity) Strip-shaped test piece is processed by milling,
It was measured by a double bridge type resistance measuring device. (Heat-resistant temperature) The temperature at which the decrease in Hv after heating for 5 minutes is 20% of Hv before heating is referred to as the heat-resistant temperature.
【0027】(プレス打ち抜き性)バリの評価は、機械
式プレスにより0.3mm幅のリードを打ち抜き、打ち
抜いたリードのばり高さを測定して評価した。ばり高さ
は、10個のリードのばり面を走査型電子顕微鏡で観察
し、各最大バリ高さの平均値で示した。ダレの評価は、
機械式プレスにより0.3mm幅のリードを打ち抜き、
打ち抜いたリードのダレ部分を斜め上方又は斜め下方か
ら光学顕微鏡にて目視観察し、ダレ部分の凹凸のレベル
を3段階で評価した。 (曲げ加工性)JIS H3130の方法で板厚と同等
の曲げ半径を有するW型の曲げ治具を用いて加工した。
加工後のW曲げ部を目視で観察し、肌荒れ、クラックの
有無で加工性を評価した。(Press punching property) The burrs were evaluated by punching a lead having a width of 0.3 mm by a mechanical press and measuring the burring height of the punched lead. The burrs were observed by observing the burrs of the ten leads with a scanning electron microscope, and indicated by the average of the maximum burrs. Dare's evaluation is
Punch 0.3mm width lead by mechanical press,
The sagged portion of the punched lead was visually observed obliquely from above or from below by an optical microscope, and the unevenness level of the sagged portion was evaluated in three stages. (Bending workability) Work was performed by a method of JIS H3130 using a W-shaped bending jig having a bending radius equal to the plate thickness.
The W-bent portion after processing was visually observed, and the workability was evaluated based on the presence or absence of rough skin and cracks.
【0028】(はんだ濡れ性)短冊状の試験片に弱活性
フラックスを塗布し、245±5℃に保持したはんだ浴
(Sn/Pb=60/40)に5秒間浸漬した後引上
げ、試験片へのはんだの付着状況を観察し、ズレの有無
及びはじきの有無で評価した。 (はんだ耐熱剥離)短冊状の試験片に弱活性フラックス
を塗布し、245±5℃に保持したはんだ浴(Sn/P
b=60/40)にてはんだ付けした後、150℃のオ
ーブンで1000Hrまで加熱した。この試験片を18
0゜曲げ戻しにて加工を加え加工部のはんだが剥離する
か観察した。(Solder wettability) A weakly active flux was applied to a strip-shaped test piece, immersed in a solder bath (Sn / Pb = 60/40) maintained at 245 ± 5 ° C. for 5 seconds, and then pulled up to a test piece. The state of solder adhesion was observed, and evaluation was made based on the presence or absence of deviation and the presence or absence of repelling. (Solder heat-resistant peeling) Solder bath (Sn / P) coated with a weakly active flux on a strip-shaped test piece and kept at 245 ± 5 ° C.
b = 60/40) and then heated to 1000 hr in a 150 ° C. oven. This test piece was
A process was performed at 0 ° bending back, and it was observed whether the solder in the processed portion was peeled off.
【0029】[実施例1]表1に示す化学組成の銅合金
を、電気炉により大気中で、厚さ50mm、幅80m
m、長さ200mmの鋳塊に溶製し、その後、この鋳塊
を900〜1000℃で1Hr加熱した後、厚さ12m
mに熱間圧延した。次に、上記熱間圧延材の表面を面削
して酸化膜を除去するとともに、この後の冷間加工率を
表2の条件に合うように板厚を2.5mm(80%)、
5mm(90%)、10mm(95%)に面削で仕上げ
た。そして、0.5mmまで冷間圧延を行った。なお、
熱処理までの加工率を表2の条件にあわせるために面削
にて板厚を仕上げたが、熱間圧延終了時点の板厚を表2
の条件に合うように仕上げるなどしても良い(この点は
実施例2、3でも同じ)。Example 1 A copper alloy having a chemical composition shown in Table 1 was placed in an electric furnace in air at a thickness of 50 mm and a width of 80 m.
m, melted into a 200 mm long ingot, and after heating this ingot at 900 to 1000 ° C. for 1 hour, the thickness was 12 m.
m. Next, the surface of the hot-rolled material was chamfered to remove an oxide film, and the subsequent cold working rate was set to 2.5 mm (80%) so as to meet the conditions shown in Table 2.
Finished by facing to 5 mm (90%) and 10 mm (95%). And cold rolling was performed to 0.5 mm. In addition,
The sheet thickness was finished by facing to adjust the processing rate up to the heat treatment to the conditions in Table 2, but the sheet thickness at the end of hot rolling was as shown in Table 2.
(The same applies to the second and third embodiments).
【0030】[0030]
【表1】 [Table 1]
【0031】この後、急速短時間加熱を行うものは表2
の条件(加熱温度とその温度に達してからの保持時間)
で実施し、引き続いて表2に示す条件で時効析出熱処理
を行った。急速短時間加熱を行わないものは再結晶を伴
う時効析出熱処理のみを行った。その後、加工率50%
の冷間圧延を行って厚さ0.25mmの試験片を作製
し、上述の試験を実施した。なお、急速短時間加熱の昇
温速度は5℃/sec、短時間加熱後の冷却速度は10
℃/sec以上、時効析出熱処理の昇温速度は0.01
℃/secとした。After that, heating is performed for a short period of time in Table 2.
Condition (heating temperature and holding time after reaching that temperature)
Subsequently, the aging precipitation heat treatment was performed under the conditions shown in Table 2. In the case where heating was not performed for a short time, only the aging precipitation heat treatment accompanied by recrystallization was performed. After that, processing rate 50%
Was subjected to cold rolling to produce a test piece having a thickness of 0.25 mm, and the above test was performed. The heating rate for rapid short-time heating was 5 ° C / sec, and the cooling rate after short-time heating was 10 ° C.
° C / sec or more, and the temperature rise rate of the aging precipitation heat treatment is 0.01
° C / sec.
【0032】[0032]
【表2】 [Table 2]
【0033】表2から明らかなように、本発明に含まれ
るNo.1〜7は熱間圧延を終了した時点から最初に再
結晶を生じさせる熱処理までの冷間加工率を90%以下
に抑えるか(No.1、4、5)、又は急速短時間加熱
と時効析出熱処理の組合せによって、整粒化された微細
結晶粒を呈し、プレス打ち抜き性に優れ曲げ加工性も良
好なものが得られた。これに対して、No.8〜15
は、試料を調整できていないか、又はいずれかの特性が
劣る。例えば、Fe量の条件を満たしていないものは
(No.8、15)、強度及び耐熱性が劣る。As is evident from Table 2, No. 1 included in the present invention. Nos. 1 to 7 reduce the rate of cold working from the time of completion of hot rolling to the first heat treatment for causing recrystallization to be 90% or less (Nos. 1, 4, and 5), or rapid heating and aging. The combination of the precipitation heat treatments provided fine crystal grains that had been sized, and had excellent press punching properties and good bending workability. On the other hand, no. 8 to 15
Cannot adjust the sample or is inferior in either property. For example, those that do not satisfy the condition of Fe amount (Nos. 8, 15) are inferior in strength and heat resistance.
【0034】[実施例2]表3に示す化学組成の銅合金
を、電気炉により大気中で、厚さ50mm、幅80m
m、長さ200mmの鋳塊に溶製し、その後、この鋳塊
を900〜1000℃で1Hr加熱した後、熱間圧延に
て厚さ12mmに仕上げた。次に、上記熱間圧延材の表
面を面削して酸化膜を除去するとともに、この後の冷間
加工率を表4の条件に合うように板厚を2.5mm(8
0%)、5mm(90%)、10mm(95%)にそれ
ぞれ面削で仕上げた。そして、0.5mmまで冷間圧延
を行った。Example 2 A copper alloy having a chemical composition shown in Table 3 was placed in an electric furnace in air at a thickness of 50 mm and a width of 80 m.
The ingot was melted into an ingot having a length of 200 mm and a length of 200 mm. Thereafter, the ingot was heated at 900 to 1000 ° C. for 1 hour, and then finished to a thickness of 12 mm by hot rolling. Next, the surface of the hot-rolled material was chamfered to remove an oxide film, and the subsequent cold working rate was set to 2.5 mm (8 mm) so as to meet the conditions shown in Table 4.
0%), 5 mm (90%), and 10 mm (95%). And cold rolling was performed to 0.5 mm.
【0035】[0035]
【表3】 [Table 3]
【0036】そして、表4に示すように、急速短時間加
熱を行うものは昇温速度5℃/sec、加熱温度760
℃、保持時間30secにて急速短時間加熱を行い、水
に焼入れ、引き続いて、昇温速度0.01℃/secで
加熱温度550℃に加熱し、4Hr保持して時効析出熱
処理を行った。急速短時間加熱を行わないものは再結晶
を伴う時効析出熱処理のみを行った。その後、加工率5
0%の冷間圧延を行って厚さ0.25mmの試験片を作
製し、結晶粒径・分布の測定及び各特性の調査を行っ
た。As shown in Table 4, when heating was performed for a short time in a short time, the heating rate was 5 ° C./sec and the heating temperature was 760.
Heating was carried out rapidly for a short time at 30 ° C. for a holding time of 30 sec, quenched in water, subsequently heated to a heating temperature of 550 ° C. at a heating rate of 0.01 ° C./sec, and kept at 4 hours for aging precipitation heat treatment. In the case where heating was not performed for a short time, only the aging precipitation heat treatment accompanied by recrystallization was performed. After that, processing rate 5
A test piece having a thickness of 0.25 mm was prepared by performing 0% cold rolling, and the crystal grain size / distribution was measured and each characteristic was investigated.
【0037】[0037]
【表4】 [Table 4]
【0038】表4から明らかなように、各成分が本発明
の規定範囲内のNo.16〜20は、熱処理までの冷間
圧延加工率を90%以下にするか、又は急速短時間加熱
と時効析出熱処理の組合せにより整粒化された微細結晶
粒を呈し、プレス打ち抜き性に優れ、同時に曲げ加工性
及び電気・電子部品用銅合金に不可欠なはんだ濡れ性も
良好であった。一方、No.21は、Ni、Co、C
r、Mgの1種又は2種以上の総量が少ないことから、
バリ高さがNo.15〜20ほど小さくない。No.2
2は、Ni、Co、Cr、Mgの1種又は2種以上の総
量が多いことから結晶組織が粗大となってプレス打ち抜
き性(ダレ部の凹凸)及び曲げ加工性が劣る。No.2
4は、Al、Sn、Mn、Zr、In、Tiの1種又は
2種以上の総量が多いために導電率が低く、さらにはん
だ濡れ性が悪い。No.23は、Al、Sn、Mn、Z
r、In、Tiの1種又は2種以上の総量が少ないた
め、No.16〜20ほど高い耐熱性が得られていな
い。No.25は、O含有量が多く、No.16〜20
ほどバリ高さが小さくない。また、No.26は、鋳塊
欠陥のため試料調整そのものができなかった。As is evident from Table 4, each component contained No. 3 within the range specified in the present invention. Nos. 16 to 20 exhibit fine crystal grains whose cold rolling reduction rate until heat treatment is set to 90% or less or a combination of rapid short-time heating and aging precipitation heat treatment, and are excellent in press punching property. At the same time, bending workability and solder wettability indispensable for copper alloys for electric / electronic parts were also good. On the other hand, No. 21 is Ni, Co, C
Since the total amount of one or more of r and Mg is small,
Burr height is no. Not as small as 15-20. No. 2
In No. 2, since the total amount of one or more of Ni, Co, Cr, and Mg is large, the crystal structure becomes coarse, and the press punching property (unevenness of the sagging portion) and the bending workability are inferior. No. 2
No. 4 has a low conductivity and a poor solder wettability because the total amount of one or more of Al, Sn, Mn, Zr, In, and Ti is large. No. 23 is Al, Sn, Mn, Z
r, In, and Ti, the total amount of one or more of them is small. High heat resistance of about 16 to 20 is not obtained. No. No. 25 has a large O content, 16-20
Burr height is not so small. In addition, No. Sample No. 26 could not be adjusted because of ingot defects.
【0039】[実施例3]化学組成:Cu−2.1wt
%Fe−0.03wt%P−0.2wt%Znの銅合金
を、電気炉により大気中で、厚さ50mm、幅80m
m、長さ150mmの鋳塊に溶製し、その後、この鋳塊
を900℃で1Hr加熱した後、熱間圧延にて厚さ12
mmに仕上げた。次に、上記熱間圧延材の表面を面削し
て酸化膜を除去するとともに、この後の冷間加工率を表
5の条件に合うように板厚を2.5mm(80%)、5
mm(90%)、10mm(95%)にそれぞれ面削で
仕上げた。そして、0.5mmまで冷間圧延を行った。
この後、急速短時間加熱を行うものは表5の条件(加熱
温度とその温度に達してからの保持時間)で実施し、そ
れに引き続き昇温速度0.01℃/sec、加熱温度5
50℃、保持時間4Hrにて時効析出熱処理を行った。
急速短時間加熱を行わないものは上記条件で再結晶を伴
う時効析出熱処理のみを行った。その後、加工率50%
の冷間圧延を行って厚さ0.25mmの試験片を作製
し、結晶粒径・分布の測定及び各特性の調査を行った。[Example 3] Chemical composition: Cu-2.1wt
% Fe-0.03 wt% P-0.2 wt% Zn copper alloy in air at 50 mm thickness and 80 m width
m, and ingot into a 150 mm long ingot, after which the ingot was heated at 900 ° C. for 1 hour and then hot rolled to a thickness of 12 mm.
mm. Next, the surface of the hot-rolled material was chamfered to remove an oxide film, and the subsequent cold-working rate was set to 2.5 mm (80%) so as to meet the conditions shown in Table 5.
mm (90%) and 10 mm (95%). And cold rolling was performed to 0.5 mm.
After that, heating in a short time is carried out under the conditions shown in Table 5 (heating temperature and holding time after the temperature is reached), followed by a heating rate of 0.01 ° C./sec and a heating temperature of 5 ° C.
The aging precipitation heat treatment was performed at 50 ° C. and a holding time of 4 hours.
In the case where heating was not performed for a short period of time, only the aging precipitation heat treatment accompanied by recrystallization was performed under the above conditions. After that, processing rate 50%
Was cold rolled to produce a test piece having a thickness of 0.25 mm, and the measurement of the crystal grain size and distribution and the investigation of each characteristic were carried out.
【0040】[0040]
【表5】 [Table 5]
【0041】表5から明らかなように、本発明に含まれ
るNo.27〜34は、適正な加工率、急速短時間加
熱、時効析出熱処理の組合せにより整粒化された微細結
晶粒を呈することから、プレス打ち抜きによるダレ部の
凹凸が極めて少なく、同時に曲げ加工性も良好であっ
た。なお、急速短時間加熱の昇温速度が速いほど、結晶
粒の微細化及び整粒化の度合いは大きくなることが示さ
れている。これに対して、No.35は熱間圧延からの
冷間加工率が90%を越えたため、整粒化度が低下して
混粒状態となることから、プレス打ち抜きによるダレ部
の凹凸がひどく、さらに、曲げ加工においても肌荒れが
生じた。No.36は急速短時間加熱の昇温速度が小さ
い場合であり、十分な結晶粒の微細化及び整粒化が得ら
れないため、同様にプレス打ち抜きによるダレ部の凹凸
がひどく、曲げ加工においても肌荒れが生じた。No.
37は、急速短時間加熱の加熱温度が350℃と低く再
結晶しなかったため混粒状態となり、やはりプレス打ち
抜きによるダレ部の凹凸がひどく、曲げ加工ではクラッ
クを生じた。No.38は、急速短時間加熱の加熱温度
が1000℃と高く、結晶が粗大化したためにプレス打
ち抜きによるダレ部の凹凸がひどく、曲げ加工では肌荒
れを生じた。No.39は、急速短時間加熱の加熱時間
が長く、結晶が粗大化した例であり、同様にプレス打ち
抜きによるダレ部の凹凸がひどく、曲げ加工では肌荒れ
を生じた。As is evident from Table 5, No. 1 included in the present invention. Nos. 27 to 34 exhibit fine crystal grains sized by a combination of an appropriate processing rate, rapid short-time heating, and aging precipitation heat treatment. It was good. In addition, it is shown that the degree of crystal grain refinement and sizing is increased as the heating rate of rapid short-time heating is increased. On the other hand, no. In No. 35, since the cold working ratio from hot rolling exceeded 90%, the degree of sizing was reduced and the mixture was in a mixed state, so that the unevenness of the sagged portion due to press punching was severe, and even in bending. The skin became rough. No. No. 36 shows a case where the heating rate of the rapid short-time heating is small, and sufficient grain refinement and sizing cannot be obtained, so that the unevenness of the sagged portion due to press punching is also severe and the skin becomes rough even in bending. Occurred. No.
In No. 37, the heating temperature of the rapid short-time heating was 350 ° C. and the recrystallization did not occur, resulting in a mixed-grained state. No. In No. 38, the heating temperature for rapid short-time heating was as high as 1000 ° C., and the crystal was coarsened, so that the unevenness of the sagged portion due to press punching was severe, and the surface was roughened by bending. No. Reference numeral 39 denotes an example in which the heating time of rapid short-time heating was long and the crystal was coarsened. Similarly, the unevenness of the sagged portion due to press punching was severe, and the surface was roughened by bending.
【0042】[0042]
【発明の効果】本発明によれば、プレス打ち抜き性及び
曲げ加工性に優れた高強度、高導電性銅合金を得ること
ができる。また、本発明によれば、適正な結晶粒径を持
ち、整粒化度の高い材料を得ることができるので、製造
上の不具合(圧延・スリッター不具合)を減少させるこ
とができる。従って、本発明は、製品歩留りの向上及び
加工時の生産性、品質の向上など多大な効果を有する。According to the present invention, it is possible to obtain a high-strength, highly-conductive copper alloy excellent in press punching properties and bending workability. Further, according to the present invention, a material having an appropriate crystal grain size and a high degree of sizing can be obtained, so that manufacturing defects (rolling / slitter defects) can be reduced. Therefore, the present invention has tremendous effects such as improvement in product yield and productivity and quality during processing.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22F 1/00 601 C22F 1/00 601 623 623 630 630A 661 661A 683 683 685 685Z 686 686Z 691 691A 691B 691C 694 694A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme court ゛ (Reference) // C22F 1/00 601 C22F 1/00 601 623 623 630 630 630A 661 661A 683 683 685 685Z 686 686Z 691 691A 691B 691C 694 694A
Claims (7)
001〜0.2wt%、Zn:0.05〜1.0wt%
を含有し、下記に示すFe量条件式を満足し、残部が実
質的にCuと不可避不純物である銅合金からなり、Fe
又は/及びFe基の金属間化合物が析出し、圧延表面の
板幅方向の平均結晶粒径が3〜60μmで、かつその値
の80〜120%の寸法の結晶粒の数が全結晶粒の70
%以上であることを特徴とする高強度・高導電性銅合金
板。 [Fe]−3.6×([P]−0.18×[Ni]−0.26×
[Co]−0.20×[Cr]−0.85×[Mg])≧0.5 ただし、[Fe]、[P]、[Ni]、[Co]、[C
r]、[Mg]は銅合金中の各元素のwt%を表す。1. Fe: 0.2 to 3.0 wt%, P: 0.
001 to 0.2 wt%, Zn: 0.05 to 1.0 wt%
And the balance of Fe is satisfied, and the balance is substantially composed of Cu and a copper alloy that is an unavoidable impurity.
And / or an Fe-based intermetallic compound is precipitated, the average crystal grain size in the sheet width direction of the rolled surface is 3 to 60 μm, and the number of crystal grains having a size of 80 to 120% of the value is the total crystal grain size. 70
% Or higher, a high-strength and high-conductivity copper alloy plate. [Fe] −3.6 × ([P] −0.18 × [Ni] −0.26 ×
[Co] −0.20 × [Cr] −0.85 × [Mg]) ≧ 0.5 where [Fe], [P], [Ni], [Co], [C
[r] and [Mg] represent wt% of each element in the copper alloy.
2種以上を合計で0.01〜0.5wt%含有すること
を特徴とする請求項1に記載された高強度・高導電性銅
合金板。2. High strength and high conductivity according to claim 1, wherein one or more of Ni, Co, Cr and Mg are contained in a total amount of 0.01 to 0.5 wt%. Copper alloy plate.
n、Tiのうち1種又は2種以上を合計で0.005〜
0.5wt%含有することを特徴とする請求項1又は2
に記載された高強度・高導電性銅合金板。3. The method according to claim 1, further comprising Al, Sn, Mn, Zr, and I.
one or more of n and Ti in total of 0.005 to
3. The composition according to claim 1, wherein the content is 0.5 wt%.
High-strength, high-conductivity copper alloy plate described in.
以下であることを特徴とする請求項1〜3のいずれかに
記載された高強度・高導電性銅合金板。4. O: 100 ppm or less, H: 10 ppm
The high-strength and high-conductivity copper alloy plate according to any one of claims 1 to 3, wherein:
えてSiを含有し、Si:0.3%以下、かつP及びS
iの総量で0.001wt%以上としたことを特徴とす
る請求項1〜4のいずれかに記載された高強度・高導電
性銅合金板。5. Si is contained in place of part or all of P or in addition to P, Si: 0.3% or less, and P and S
The high-strength and high-conductivity copper alloy sheet according to any one of claims 1 to 4, wherein the total amount of i is 0.001 wt% or more.
結晶を生じさせる熱処理までの冷間加工率を90%以下
とすることを特徴とする請求項1〜5のいずれかに記載
された高強度・高導電性銅合金板の製造方法。6. The method according to claim 1, wherein a cold working rate from a time point when the hot rolling is completed to a heat treatment for generating recrystallization for the first time is 90% or less. Manufacturing method of high strength and high conductivity copper alloy sheet.
析出させる時効処理に先だって、450〜950℃の温
度範囲に0.1℃/秒以上の速度で昇温し、その温度で
5秒〜10分間保持して再結晶させた後に、Fe又は/
及びFe基の金属間化合物を析出させる時効処理を行う
ことを特徴とする請求項1〜5のいずれかに記載された
高強度・高導電性銅合金板の製造方法。7. Prior to aging treatment for precipitating Fe or / and an Fe-based intermetallic compound, the temperature is raised to a temperature range of 450 to 950 ° C. at a rate of 0.1 ° C./sec or more, and the temperature is increased for 5 seconds. After recrystallization by holding for 10 minutes, Fe or /
A method for producing a high-strength and high-conductivity copper alloy sheet according to any one of claims 1 to 5, wherein an aging treatment for precipitating an Fe-based intermetallic compound is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27315998A JP3729662B2 (en) | 1998-09-28 | 1998-09-28 | High strength and high conductivity copper alloy sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27315998A JP3729662B2 (en) | 1998-09-28 | 1998-09-28 | High strength and high conductivity copper alloy sheet |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005240330A Division JP4407953B2 (en) | 2005-08-22 | 2005-08-22 | High strength and high conductivity copper alloy sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000104131A true JP2000104131A (en) | 2000-04-11 |
JP3729662B2 JP3729662B2 (en) | 2005-12-21 |
Family
ID=17523932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27315998A Expired - Lifetime JP3729662B2 (en) | 1998-09-28 | 1998-09-28 | High strength and high conductivity copper alloy sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3729662B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2809419A1 (en) * | 2000-05-25 | 2001-11-30 | Kobe Steel Ltd | COPPER ALLOY FOR USE IN ELECTRICAL AND ELECTRONIC PARTS |
JP2002294364A (en) * | 2001-03-30 | 2002-10-09 | Kobe Steel Ltd | Copper alloy sheet or bar for electronic and electrical parts and production method therefor |
WO2007007517A1 (en) | 2005-07-07 | 2007-01-18 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet |
WO2008041584A1 (en) * | 2006-10-02 | 2008-04-10 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy plate for electrical and electronic components |
JP2010126783A (en) * | 2008-11-28 | 2010-06-10 | Nippon Mining & Metals Co Ltd | Copper alloy sheet or strip for electronic material |
JP2010212164A (en) * | 2009-03-11 | 2010-09-24 | Mitsubishi Shindoh Co Ltd | Method of manufacturing wire conductor, wire conductor, insulated wire, and wire harness |
JP2011208271A (en) * | 2010-03-11 | 2011-10-20 | Mitsubishi Shindoh Co Ltd | Cu-Fe-P BASED COPPER ALLOY STRIP MATERIAL FOR ELECTRONIC EQUIPMENT HAVING EXCELLENT RESIN ADHESION |
JP2012207261A (en) * | 2011-03-29 | 2012-10-25 | Kobe Steel Ltd | Copper alloy sheet for electric and electronic part |
JP2013231224A (en) * | 2012-05-01 | 2013-11-14 | Sh Copper Products Co Ltd | Copper alloy material for electric and electronic components having excellent bending processability |
KR20150086444A (en) | 2014-01-18 | 2015-07-28 | 가부시키가이샤 고베 세이코쇼 | Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING PROCESSIBILITY |
KR20150108769A (en) | 2014-03-18 | 2015-09-30 | 가부시키가이샤 고베 세이코쇼 | Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING PROCESSIBILITY |
DE102012022794B4 (en) * | 2011-12-09 | 2017-09-14 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength copper alloy sheet with excellent oxide film adhesiveness |
CN115261665A (en) * | 2022-06-22 | 2022-11-01 | 昆明冶金研究院有限公司北京分公司 | Modifier for copper-iron-phosphorus alloy, its preparation method and application |
CN116197235A (en) * | 2023-04-28 | 2023-06-02 | 太原晋西春雷铜业有限公司 | Mixed hot rolling method for C19400 and C19210 cast ingots |
-
1998
- 1998-09-28 JP JP27315998A patent/JP3729662B2/en not_active Expired - Lifetime
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2809419A1 (en) * | 2000-05-25 | 2001-11-30 | Kobe Steel Ltd | COPPER ALLOY FOR USE IN ELECTRICAL AND ELECTRONIC PARTS |
JP2002294364A (en) * | 2001-03-30 | 2002-10-09 | Kobe Steel Ltd | Copper alloy sheet or bar for electronic and electrical parts and production method therefor |
JP4567906B2 (en) * | 2001-03-30 | 2010-10-27 | 株式会社神戸製鋼所 | Copper alloy plate or strip for electronic and electrical parts and method for producing the same |
EP2439296A3 (en) * | 2005-07-07 | 2012-10-17 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy having high strength and superior bending workability, and method for manufacturing copper alloy plates |
WO2007007517A1 (en) | 2005-07-07 | 2007-01-18 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet |
US9976208B2 (en) | 2005-07-07 | 2018-05-22 | Kobe Steel, Ltd. | Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet |
EP2439296A2 (en) | 2005-07-07 | 2012-04-11 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy having high strength and superior bending workability, and method for manufacturing copper alloy plates |
WO2008041584A1 (en) * | 2006-10-02 | 2008-04-10 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy plate for electrical and electronic components |
US8063471B2 (en) | 2006-10-02 | 2011-11-22 | Kobe Steel, Ltd. | Copper alloy sheet for electric and electronic parts |
JP2010126783A (en) * | 2008-11-28 | 2010-06-10 | Nippon Mining & Metals Co Ltd | Copper alloy sheet or strip for electronic material |
JP2010212164A (en) * | 2009-03-11 | 2010-09-24 | Mitsubishi Shindoh Co Ltd | Method of manufacturing wire conductor, wire conductor, insulated wire, and wire harness |
JP2011208271A (en) * | 2010-03-11 | 2011-10-20 | Mitsubishi Shindoh Co Ltd | Cu-Fe-P BASED COPPER ALLOY STRIP MATERIAL FOR ELECTRONIC EQUIPMENT HAVING EXCELLENT RESIN ADHESION |
JP2012207261A (en) * | 2011-03-29 | 2012-10-25 | Kobe Steel Ltd | Copper alloy sheet for electric and electronic part |
DE102012022794B4 (en) * | 2011-12-09 | 2017-09-14 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength copper alloy sheet with excellent oxide film adhesiveness |
JP2013231224A (en) * | 2012-05-01 | 2013-11-14 | Sh Copper Products Co Ltd | Copper alloy material for electric and electronic components having excellent bending processability |
KR20150086444A (en) | 2014-01-18 | 2015-07-28 | 가부시키가이샤 고베 세이코쇼 | Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING PROCESSIBILITY |
KR20150108769A (en) | 2014-03-18 | 2015-09-30 | 가부시키가이샤 고베 세이코쇼 | Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING PROCESSIBILITY |
CN115261665A (en) * | 2022-06-22 | 2022-11-01 | 昆明冶金研究院有限公司北京分公司 | Modifier for copper-iron-phosphorus alloy, its preparation method and application |
CN116197235A (en) * | 2023-04-28 | 2023-06-02 | 太原晋西春雷铜业有限公司 | Mixed hot rolling method for C19400 and C19210 cast ingots |
CN116197235B (en) * | 2023-04-28 | 2023-06-30 | 太原晋西春雷铜业有限公司 | Mixed hot rolling method for C19400 and C19210 cast ingots |
Also Published As
Publication number | Publication date |
---|---|
JP3729662B2 (en) | 2005-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI599666B (en) | High strength cu-ni-co-si copper alloy sheet and method of manufacture, and conductive components | |
TWI422692B (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
JP4787986B2 (en) | Copper alloy and manufacturing method thereof | |
JPH0841612A (en) | Copper alloy and its preparation | |
TWI429768B (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
CN103339273B (en) | Electronic material Cu-Si-Co series copper alloy and manufacture method thereof | |
CN114302975B (en) | Copper alloy for electronic and electrical equipment, copper alloy strip for electronic and electrical equipment, module for electronic and electrical equipment, terminal, and bus bar | |
WO2017043577A1 (en) | Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar | |
JP2017179490A (en) | Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars | |
WO2017043556A1 (en) | Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar | |
JP3408021B2 (en) | Copper alloy for electronic and electric parts and method for producing the same | |
JP3729662B2 (en) | High strength and high conductivity copper alloy sheet | |
JP7180102B2 (en) | Copper alloys for electronic and electrical equipment, copper alloy sheet materials for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars | |
JP3717321B2 (en) | Copper alloy for semiconductor lead frames | |
JP2017179493A (en) | Copper alloy for electric and electronic device, copper alloy plastic processing material for electric and electronic device, component for electric and electronic device, terminal and bus bar | |
JP2844120B2 (en) | Manufacturing method of copper base alloy for connector | |
JP5544316B2 (en) | Cu-Co-Si-based alloys, copper products, electronic parts, and connectors | |
JPH10195562A (en) | Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production | |
JP3729733B2 (en) | Copper alloy plate for lead frame | |
JP4251672B2 (en) | Copper alloy for electrical and electronic parts | |
JP3344700B2 (en) | High-strength, high-conductivity copper alloy sheet for leadframes with excellent heat treatment during press punching | |
JP2019173090A (en) | Copper alloy | |
JP4043118B2 (en) | High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance | |
JP4407953B2 (en) | High strength and high conductivity copper alloy sheet | |
JPH10287939A (en) | Copper alloy for electric and electronic equipment, excellent in punchability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050622 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051004 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081014 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091014 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091014 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101014 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111014 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111014 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121014 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131014 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |