[go: up one dir, main page]

JP2000084370A - Membrane separation device and its operation - Google Patents

Membrane separation device and its operation

Info

Publication number
JP2000084370A
JP2000084370A JP10254229A JP25422998A JP2000084370A JP 2000084370 A JP2000084370 A JP 2000084370A JP 10254229 A JP10254229 A JP 10254229A JP 25422998 A JP25422998 A JP 25422998A JP 2000084370 A JP2000084370 A JP 2000084370A
Authority
JP
Japan
Prior art keywords
membrane
treated
membrane separation
pressure
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10254229A
Other languages
Japanese (ja)
Inventor
Yoshikimi Watanabe
義公 渡辺
Genzo Ozawa
源三 小澤
Shinichi Minegishi
進一 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP10254229A priority Critical patent/JP2000084370A/en
Publication of JP2000084370A publication Critical patent/JP2000084370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To evade to impose excess pressure on a separation membrane module in the rapid increase of the pressure difference of filtration or in the generation of the failure of a pressure sensor or a solenoid valve by giving a means for releasing water to be treated between a pressure liquid feed means and the separation membrane module. SOLUTION: The water to be treated is pressurized and supplied to the separation membrane module 5 from an original water treating tank 1 by the pressure liquid feed means 2 such as a pump, the whole or a part of the original water to be treated is permeated through the separation membrane and a clear treated water is stored in a treated water tank 7. In the case of rapid increase of the pressure difference of filtration or the failure of the pressure sensor 4, the solenoid valve 6b, or the like, and when the feed pressure of the original water to be treated is increased to reach a previously set value, the original water to be treated is returned to the original water treating tank 1 by detecting reaching equal to or above the previously set value and opening a valve by the means 3 such as a safety valve or a release valve for releasing the original water to be treated. As a result, even in the case of the rapid increase of the pressure difference of filtration or the failure of the pressure sensor 4, the solenoid valve 6, or the like, excess pressure is not imposed on the separation membrane module 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は膜分離装置およびそ
の運転方法に関する。さらに詳しくは、加圧型の分離膜
モジュールを用いてろ過を行う膜分離装置において、加
圧送液手段と分離膜モジュールとの間に被処理原水を逃
がす手段を設けた膜分離装置に関するものである。
The present invention relates to a membrane separation device and a method of operating the same. More specifically, the present invention relates to a membrane separation device that performs filtration using a pressure-type separation membrane module, and further includes a means for releasing raw water to be treated between a pressure liquid sending unit and the separation membrane module.

【0002】[0002]

【従来の技術】精密ろ過膜や限外ろ過膜などの分離膜
は、食品工業や医療分野、用水製造、排水処理分野等を
はじめとして様々な方面で利用されている。特に近年で
は、飲料水製造分野すなわち浄水処理過程においても分
離膜が使われるようになってきている。
2. Description of the Related Art Separation membranes such as microfiltration membranes and ultrafiltration membranes are used in various fields including the food industry, the medical field, water production, and wastewater treatment. Particularly in recent years, separation membranes have been used in the field of drinking water production, that is, in the purification process.

【0003】これは、分離膜を用いることによって、従
来の浄水処理における殺菌技術である塩素処理で死なな
いクリプトスポリジウムなどの病原性微生物を完全に阻
止でき、安全で水質良好な飲料水を得ることが可能にな
るためである。
[0003] By using a separation membrane, it is possible to completely prevent pathogenic microorganisms such as cryptosporidium which are not killed by chlorination, which is a sterilization technique in the conventional water purification treatment, to obtain safe and high quality drinking water. This is because it becomes possible.

【0004】用水製造や排水処理などの水処理に用いら
れる精密ろ過膜や限外ろ過膜は、圧力差を駆動力に分離
を行なう。ろ過には、ろ過流量が一定でろ過差圧が変化
する定流量ろ過と、ろ過差圧が一定でろ過流量が変化す
る定圧ろ過とがある。ろ過を継続し、分離膜面および分
離膜の細孔内に汚れが蓄積していくと、分離膜のろ過抵
抗が増加する。一般に実プロセスでは、決められた量の
水を処理する場合が多いので、定流量ろ過が行われるこ
とが多いが、この場合、膜の汚れの蓄積によりろ過抵抗
が増加し、ろ過差圧が急上昇してしまう場合があった。
また、定圧ろ過の場合は、ろ過抵抗が増加するとろ過流
量が低下してろ過差圧を一定に保つが、圧力センサーや
電磁バルブなどが故障した場合など、分離膜モジュール
に過剰な圧力がかかってしまうことがあった。
[0004] Microfiltration membranes and ultrafiltration membranes used in water treatment such as water production and wastewater treatment separate pressure difference into driving force. There are two types of filtration: constant-flow filtration in which the filtration flow rate is constant and the filtration differential pressure changes, and constant-pressure filtration in which the filtration pressure is constant and the filtration flow rate changes. When the filtration is continued and the dirt accumulates on the separation membrane surface and in the pores of the separation membrane, the filtration resistance of the separation membrane increases. Generally, in a real process, a fixed amount of water is often treated because a fixed amount of water is treated, but in this case, filtration resistance increases due to accumulation of dirt on the membrane, and the filtration pressure difference rises sharply. There was a case.
In addition, in the case of constant pressure filtration, when the filtration resistance increases, the filtration flow rate decreases and the filtration differential pressure is kept constant.However, when the pressure sensor or the solenoid valve fails, excessive pressure is applied to the separation membrane module. There was sometimes.

【0005】[0005]

【発明が解決しようとする課題】分離膜モジュールに過
剰な圧力がかかった場合、分離膜の損傷や分離膜モジュ
ールの破損、あるいは膜分離装置の配管が破裂したりす
ることがあった。このような従来技術の欠点は、処理規
模が小さい場合は、損害も小さいが、今後、大規模浄水
場などに膜分離技術が導入された場合、その損害は計り
知れないものがあり、分離膜モジュールに過剰な圧力が
かからないような膜分離装置およびその運転方法の提供
が従来技術の課題であった。
When an excessive pressure is applied to the separation membrane module, the separation membrane may be damaged, the separation membrane module may be damaged, or the piping of the membrane separation device may be ruptured. The disadvantage of the conventional technology is that the damage is small when the treatment scale is small, but when the membrane separation technology is introduced in a large-scale water purification plant in the future, the damage is immeasurable. It was an object of the prior art to provide a membrane separation apparatus and an operation method thereof in which an excessive pressure is not applied to a module.

【0006】本発明は、上記従来技術の課題を解決せん
とするものであり、ろ過差圧が急上昇した場合、また圧
力センサーや電磁バルブなどが故障した場合などにおい
ても、分離膜モジュールに過剰な圧力がかからないよう
な膜分離装置およびその運転方法を提供することを目的
とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem of the prior art. Even when the pressure difference in filtration suddenly rises, or when the pressure sensor, the electromagnetic valve or the like breaks down, the separation membrane module is not excessively charged. It is an object of the present invention to provide a membrane separation device in which pressure is not applied and a method of operating the same.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明の上記
の目的は、「加圧型の分離膜モジュールを用いてろ過を
行う膜分離装置において、加圧送液手段と分離膜モジュ
ールとの間に被処理原水を逃がす手段を有することを特
徴とする膜分離装置。」により基本的に達成される。
That is, an object of the present invention is to provide a membrane separation apparatus for performing filtration using a pressurized separation membrane module, wherein a coating is provided between a pressurized liquid sending means and a separation membrane module. Membrane separation device characterized by having means for releasing treated raw water. "

【0008】[0008]

【発明の実施の形態】以下、発明の実施の形態について
説明する。
Embodiments of the present invention will be described below.

【0009】図2に従来技術の加圧型分離膜モジュール
を用いた膜分離装置を示す。被処理原水タンク1から被
処理原水をポンプ等の加圧送液手段2を用いて分離膜モ
ジュール5に加圧、供給し、全量(電磁バルブ6a閉)
もしくは一部(電磁バルブ6a一部開)の被処理原水を
分離膜へ透過させ、清澄な処理水を取り出し、処理水タ
ンク7に貯える。処理水の一部は電磁バルブ6eを介し
て、逆洗水タンク8に貯えられる。被処理原水中に含ま
れる不純物のうち膜の細孔より大きいものは、分離膜で
阻止され、分離膜表面に蓄積する。このため、分離膜の
処理水側から被処理原水側に向かって処理水を逆洗水タ
ンク8から電磁バルブ6dを介して流す逆洗などの物理
洗浄で分離膜表面に蓄積した不純物を取り除きながらろ
過を継続する。物理洗浄排水は電磁バルブ6cを介して
分離膜モジュール5から排出される。従来技術の膜分離
装置において、ろ過差圧が急上昇した場合、また圧力セ
ンサー4や電磁バルブ6bなどが故障した場合などにお
いても、分離膜モジュール5に過剰な圧力がかかり、分
離膜の損傷や分離膜モジュール5の破損、あるいは膜分
離装置の配管が破裂したりすることがあった。
FIG. 2 shows a membrane separation apparatus using a conventional pressurized separation membrane module. The raw water to be processed is pressurized and supplied from the raw water tank 1 to the separation membrane module 5 using the pressurized liquid sending means 2 such as a pump, and the total amount (the electromagnetic valve 6a is closed)
Alternatively, part of the raw water to be processed (partially opened with the electromagnetic valve 6a) is allowed to permeate the separation membrane, and clear treated water is taken out and stored in the treated water tank 7. Part of the treated water is stored in the backwash water tank 8 via the electromagnetic valve 6e. Of the impurities contained in the raw water to be treated, those larger than the pores of the membrane are blocked by the separation membrane and accumulate on the surface of the separation membrane. For this reason, while removing impurities accumulated on the surface of the separation membrane by physical washing such as backwashing in which the treated water flows from the treated water side of the separation membrane toward the raw water to be treated from the backwash water tank 8 via the electromagnetic valve 6d. Continue filtration. The physical cleaning wastewater is discharged from the separation membrane module 5 via the electromagnetic valve 6c. In the conventional membrane separation device, even when the filtration differential pressure rises rapidly, or when the pressure sensor 4 or the electromagnetic valve 6b breaks down, excessive pressure is applied to the separation membrane module 5 to damage or separate the separation membrane. In some cases, the membrane module 5 was damaged, or the piping of the membrane separation device was ruptured.

【0010】図1に本発明の加圧型分離膜モジュールを
用いた膜分離装置の一例を示すフロー図を示す。被処理
原水タンク1から被処理原水をポンプ等の加圧送液手段
2を用いて分離膜モジュール5に加圧、供給し、全量も
しくは一部の被処理原水を分離膜へ透過させ、清澄な処
理水を取り出し、処理水タンク7に貯える。ここで、ろ
過差圧が急上昇した場合、また圧力センサー4や電磁バ
ルブ6bなどが故障した場合など被処理原水の供給圧力
が高くなり、予め設定した圧力(P)に達した場合、安
全弁、放圧弁等などの被処理原水を逃がす手段3が圧力
(P)以上になったことを検知し、弁が開いて被処理原
水を被処理原水タンク1に戻すことで分離膜モジュール
5に過剰な圧力がかかるのを防いだ安全な膜分離装置が
提供される。
FIG. 1 is a flowchart showing an example of a membrane separation apparatus using the pressurized separation membrane module of the present invention. The raw water to be processed is pressurized and supplied from the raw water tank 1 to the separation membrane module 5 by using a pressurized liquid sending means 2 such as a pump, and the whole or a part of the raw water to be processed is permeated through the separation membrane, thereby obtaining a clear treatment. The water is taken out and stored in the treated water tank 7. Here, when the supply pressure of the raw water to be treated becomes high, for example, when the filtration pressure difference rises rapidly, or when the pressure sensor 4 or the electromagnetic valve 6b breaks down, and reaches a preset pressure (P), the safety valve and the discharge valve are released. When it is detected that the means 3 for releasing the raw water to be treated such as a pressure valve or the like has become pressure (P) or more, the valve is opened and the raw water to be treated is returned to the raw water tank 1 so that excessive pressure is applied to the separation membrane module 5. A safe membrane separation device is provided which prevents such a phenomenon.

【0011】ここで、予め設定した圧力(P)とは、分
離膜モジュールの最大使用圧力や膜分離装置の配管等の
耐圧性、被処理原水水質およびその変動幅と分離膜モジ
ュールの使用圧力などから決められるべきで、使用する
分離膜モジュールによって異なるが、用水製造や排水処
理などの水処理に用いられる精密ろ過膜や限外ろ過膜の
場合、おおよそ50kPa以上500kPa以下が好ま
しく、より好ましくは100kPa以上300kPa以
下程度である。
Here, the preset pressure (P) means the maximum operating pressure of the separation membrane module, the pressure resistance of the piping of the membrane separation device, the quality of the raw water to be treated and its fluctuation range, the operating pressure of the separation membrane module, and the like. Although it depends on the separation membrane module to be used, it is preferably about 50 kPa or more and 500 kPa or less, more preferably 100 kPa, in the case of a microfiltration membrane or an ultrafiltration membrane used for water treatment such as water production or wastewater treatment. It is about 300 kPa or less.

【0012】また、膜分離装置の運転方法には、ろ過流
量が一定でろ過差圧が変化する定流量ろ過と、ろ過差圧
が一定でろ過流量が変化する定圧ろ過とがある。ろ過を
継続し、分離膜表面および分離膜の細孔内に汚れが蓄積
していくと、分離膜のろ過抵抗が増加する。一般に実プ
ロセスでは、決められた量の水を処理する場合が多いの
で、定流量ろ過が行われることが多いが、この場合、一
定量のろ過水を得るためには、ろ過差圧を制御しなけれ
ばならない。また、定圧ろ過の場合、ろ過の継続に伴い
ろ過流量が低下していく。本発明の膜分離装置の運転方
法は定流量ろ過および定圧ろ過のいずれでも構わない
が、定流量ろ過運転が、一定の処理量を得ることができ
一般的で好ましい。
There are two types of operating methods of the membrane separation apparatus: constant flow filtration in which the filtration flow rate is constant and the filtration differential pressure changes, and constant pressure filtration in which the filtration differential pressure is constant and the filtration flow rate changes. When the filtration is continued and the dirt accumulates on the surface of the separation membrane and in the pores of the separation membrane, the filtration resistance of the separation membrane increases. Generally, in a real process, a fixed amount of water is often treated because a fixed amount of water is treated.In this case, in order to obtain a fixed amount of filtered water, the filtration differential pressure is controlled. There must be. In the case of constant-pressure filtration, the filtration flow rate decreases as the filtration continues. The method of operating the membrane separation device of the present invention may be either constant flow filtration or constant pressure filtration. However, constant flow filtration is a general and preferred method because a constant throughput can be obtained.

【0013】本発明に用いられる分離膜は、本発明の主
旨から言えば特に限定されるものではないが、飲料水製
造分野すなわち浄水処理過程、用水製造や排水処理など
の水処理用途には、細孔径が1nm以上10μm以下の
いわゆる精密ろ過膜または限外ろ過膜に分類される分離
膜であることが好ましい。
[0013] The separation membrane used in the present invention is not particularly limited in view of the gist of the present invention, but is used in the field of drinking water production, that is, in the water treatment process such as water purification process, water production and wastewater treatment. It is preferable that the separation membrane is classified into a so-called microfiltration membrane or an ultrafiltration membrane having a pore diameter of 1 nm or more and 10 μm or less.

【0014】ここで、分離膜の細孔径は、以下に述べる
方法で測定する。すなわち、分離膜の透水性(Lp )と
水の膜透過速度(Jv )から、(1)(2)式の関係を
使って計算して求める。
Here, the pore diameter of the separation membrane is measured by the method described below. That is, it is calculated from the water permeability (L p ) of the separation membrane and the membrane permeation velocity (J v ) of water using the relations of equations (1) and (2).

【0015】 Jv =Lp ・ΔP (1)式 Lp =(H/L)・{Rp 2 /(8η)} (2)式 ここで、(ΔP)は膜間圧力差、(H)は膜含水率、
(L)は膜厚、(Rp )は細孔径、(η)は水の粘性で
ある。
J v = L p · ΔP (1) Equation L p = (H / L) · {R p 2 / (8η)} (2) where (ΔP) is the transmembrane pressure difference, and (H) ) Is the moisture content of the membrane,
(L) is the film thickness, (R p ) is the pore diameter, and (η) is the viscosity of water.

【0016】また、分離膜の素材は、ポリアクリロニト
リル、ポリスルフォン、ポリフェニレンスルフォン、ポ
リフェニレンスルフィドスルフォン、ポリフッ化ビニリ
デン、酢酸セルロース、ポリエチレン、ポリプロピレ
ン、セラミック等の無機素材等を挙げることができ、本
発明の主旨から言って特に限定されない。
Examples of the material of the separation membrane include inorganic materials such as polyacrylonitrile, polysulfone, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, cellulose acetate, polyethylene, polypropylene, and ceramics. There is no particular limitation for the gist.

【0017】また、分離膜の形状には、中空糸膜、平
膜、管状膜などがあり、いずれの形状のものでも本発明
に用いることができるが、一般的な飲料水製造分野すな
わち浄水処理過程、用水製造や排水処理などの水処理用
途には、装置単位体積あたりの有効膜面積を大きくでき
る中空糸膜を、被処理原水中の濁度が極めて高く、中空
糸膜束内に濁質が堆積して、運転が困難な場合などは平
膜を、平膜を形成し難い無機膜等は管状膜を、それぞれ
用いるのが好ましい。ここで中空糸膜とは外径2mm未
満、管状膜とは外径2mm以上の管状の形態の分離膜で
ある。
The shape of the separation membrane includes a hollow fiber membrane, a flat membrane, and a tubular membrane, and any shape can be used in the present invention. For water treatment applications such as process, water production and wastewater treatment, hollow fiber membranes that can increase the effective membrane area per unit volume of the equipment are treated with extremely high turbidity in the raw water to be treated. It is preferable to use a flat film when the operation is difficult due to deposition of a flat film, and a tubular film when the inorganic film or the like is difficult to form. Here, the hollow fiber membrane is a tubular separation membrane having an outer diameter of less than 2 mm, and the tubular membrane is a tubular form having an outer diameter of 2 mm or more.

【0018】また、被処理原水の分離膜への供給の仕方
で、被処理原水の全量をろ過する全量ろ過運転と分離膜
モジュールに供給した被処理原水の一部を被処理原水タ
ンクに返送するクロスフローろ過運転がある。本発明の
主旨から言えばいずれのろ過運転方式でも構わないが、
全量ろ過運転の方が操作が単純で運転し易く、加圧送液
した被処理水の全てを処理水とできるため、エネルギー
コストの低減につながり有利で好ましい。
Further, in the manner of supplying the raw water to be treated to the separation membrane, a total amount filtering operation for filtering the entire raw water to be treated and a part of the raw water supplied to the separation membrane module are returned to the raw water tank to be treated. There is a cross-flow filtration operation. Although any filtration operation method may be used from the gist of the present invention,
The whole-volume filtration operation is simple and easy to operate, and all of the water to be treated that has been fed under pressure can be treated water.

【0019】中空糸膜を用いる場合、被処理原水を中空
糸膜の外側から内側に向かって流す、いわゆる外圧型と
被処理原水を中空糸膜の内側から外側に向かって流す、
いわゆる内圧型とがある。本発明の主旨から言えばいず
れの方式でも構わないが、比較的水質の悪い河川水や湖
沼水を被処理原水とする場合は、外圧型の方が物理洗浄
回復性が良いので好ましい。本発明の被処理水は、本発
明の主旨から言えば特に限定されるものではないが、飲
料水製造分野すなわち浄水処理過程、用水製造や排水処
理などの水処理用途には河川水または湖沼水または地下
水などが好ましい。
When a hollow fiber membrane is used, the raw water to be treated flows from the outside to the inside of the hollow fiber membrane, that is, an external pressure type and the raw water to be treated flows from the inside to the outside of the hollow fiber membrane.
There is a so-called internal pressure type. From the point of the gist of the present invention, any method may be used. However, when river water or lake water having relatively poor water quality is used as raw water to be treated, the external pressure type is preferable because the physical cleaning recovery is better. The water to be treated according to the present invention is not particularly limited in view of the gist of the present invention. However, in the field of drinking water production, i.e., in the water purification process, water treatment use such as water production and wastewater treatment, river water or lake water is used. Alternatively, groundwater or the like is preferable.

【0020】以下に具体的実施例を挙げて本発明を説明
するが、本発明はこれら実施例により何ら限定されるも
のではない。
Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to these examples.

【0021】[0021]

【実施例】実施例1 平均孔径0.01μmのポリアクリロニトリル製中空糸
膜を束ねた、長さ約50cm、有効膜面積0.5m2の
中空糸膜モジュールを用いて、北海道千歳川表流水の外
圧式定流量全ろ過を行った。ろ過線速度は1m/dとし
た。また、1時間に1回清澄水による逆洗と分離膜モジ
ュール下部からエアーを吹込む空洗を行った。この際、
被処理原水の供給ポンプと中空糸膜モジュールの中間に
安全弁を取り付け、被処理原水の供給圧力が250kP
aになったら安全弁が開き被処理原水を被処理原水タン
クに戻して分離膜モジュールに250kPa以上の圧力
がかからないようにした。運転開始約500時間後まで
は、ろ過差圧が30〜50kPa程度で安定にろ過を行
った。その後、供給圧力の急上昇が始まり、供給圧力の
急上昇が始まってから約18時間後に供給圧力が250
kPaに達し、安全弁が開いて被処理原水が被処理原水
タンクに返送された。ろ過差圧の急上昇が起こっても、
分離膜の損傷や分離膜モジュールの破損、配管等の破裂
が起こらなかった。
Example 1 Using a hollow fiber membrane module having a length of about 50 cm and an effective membrane area of 0.5 m2 in which a polyacrylonitrile hollow fiber membrane having an average pore diameter of 0.01 μm was bundled, the surface water of Chitose River, Hokkaido was used. A pressure-type constant flow total filtration was performed. The filtration linear velocity was 1 m / d. In addition, backwashing with clear water and empty washing by blowing air from below the separation membrane module were performed once an hour. On this occasion,
A safety valve is installed between the supply pump of raw water to be treated and the hollow fiber membrane module, and the supply pressure of raw water to be treated is 250 kP.
When the pressure became a, the safety valve was opened and the raw water to be treated was returned to the raw water tank to be treated so that a pressure of 250 kPa or more was not applied to the separation membrane module. Until about 500 hours after the start of operation, filtration was performed stably at a filtration pressure difference of about 30 to 50 kPa. Thereafter, the supply pressure starts to rise sharply, and about 18 hours after the supply pressure starts to rise, the supply pressure becomes 250.
When the pressure reached kPa, the safety valve was opened and the raw water to be treated was returned to the raw water tank to be treated. Even if the filtration pressure rises sharply,
No damage to the separation membrane, no damage to the separation membrane module, and no rupture of piping or the like occurred.

【0022】比較例1 実施例1と同様の中空糸膜モジュールを用いて、同時期
に北海道千歳川表流水の外圧式定流量全ろ過を行った。
ろ過線速度は1m/dとした。また、1時間に1回清澄
水による逆洗と分離膜モジュール下部からエアーを吹込
む空洗を行った。この際、被処理原水の供給ポンプと中
空糸膜モジュールの中間には安全弁等の被処理原水を逃
がす手段を取り付けなかった。実施例1と同様に運転開
始約500時間後までは、ろ過差圧が30〜50kPa
程度で安定にろ過を行った。その後、供給圧力の急上昇
が始まった。供給圧力の急上昇が始まってから約28時
間後に供給圧力が550kPaに達し、分離膜モジュー
ルのアクリル製容器の一部が破損し、被処理原水の水漏
れが起こった。
Comparative Example 1 Using the same hollow fiber membrane module as in Example 1, the external pressure type constant flow total filtration of the surface water of Chitosegawa, Hokkaido was performed at the same time.
The filtration linear velocity was 1 m / d. In addition, backwashing with clear water and empty washing by blowing air from below the separation membrane module were performed once an hour. At this time, no means for releasing the raw water to be treated such as a safety valve was provided between the supply pump of the raw water to be treated and the hollow fiber membrane module. Until about 500 hours after the start of operation, the filtration pressure difference is 30 to 50 kPa as in Example 1.
Filtration was performed stably at about the same level. Then the supply pressure began to rise sharply. About 28 hours after the start of the rapid rise in the supply pressure, the supply pressure reached 550 kPa, a part of the acrylic container of the separation membrane module was damaged, and the raw water to be treated leaked.

【0023】[0023]

【発明の効果】ろ過差圧が急上昇した場合、または圧力
センサーや電磁バルブなどが故障した場合などにおいて
も、分離膜モジュールに過剰な圧力がかからないように
することができた。
According to the present invention, it is possible to prevent an excessive pressure from being applied to the separation membrane module even when the filtration differential pressure rises rapidly or when the pressure sensor or the electromagnetic valve breaks down.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る膜分離装置の一例を示すフロー図
である。
FIG. 1 is a flowchart showing an example of a membrane separation device according to the present invention.

【図2】従来の膜分離装置のフロー図である。FIG. 2 is a flowchart of a conventional membrane separation apparatus.

【符号の説明】[Explanation of symbols]

1:被処理原水タンク 2:ポンプ等の加圧送液手段 3:安全弁等の被処理原水を逃がす手段 4:圧力センサー 5:分離膜モジュール 6:電磁バルブ 7:処理水タンク 8:逆洗水タンク 1: Raw water tank to be processed 2: Pressurized liquid sending means such as a pump 3: Means to release raw water to be processed such as a safety valve 4: Pressure sensor 5: Separation membrane module 6: Electromagnetic valve 7: Treated water tank 8: Backwash water tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 71/42 B01D 71/42 71/68 71/68 (72)発明者 渡辺 義公 北海道札幌市豊平区西岡5条11丁目12番8 号 (72)発明者 小澤 源三 北海道札幌市北区北33条西12丁目3番23号 (72)発明者 峯岸 進一 滋賀県大津市園山1丁目1番1号 東レ株 式会社滋賀事業場内 Fターム(参考) 4D006 GA06 GA07 HA01 HA21 HA41 JA14A JA59Z JA64Z JA65Z KC03 KE02Q KE07P KE07Q KE07R MA01 MA02 MA03 MC03 MC18 MC22 MC23 MC29 MC39 MC62 PA01 PB04 PB05 PB06 PB08 PC11 PC41 PC51──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 71/42 B01D 71/42 71/68 71/68 (72) Inventor Yoshiko Watanabe Nishioka, Toyohira-ku, Sapporo, Hokkaido 5-11-11-12-8 (72) Inventor Genzo Ozawa Hokkaido, Sapporo City, Kita-ku, Kita 33 Nishi 12-3-3-23 (72) Inventor Shinichi Minegishi 1-1-1, Sonoyama, Otsu City, Shiga Prefecture Toray F-term in Shiga Plant (reference) 4D006 GA06 GA07 HA01 HA21 HA41 JA14A JA59Z JA64Z JA65Z KC03 KE02Q KE07P KE07Q KE07R MA01 MA02 MA03 MC03 MC18 MC22 MC23 MC29 MC39 MC62 PA01 PB04 PB05 PB41 PCB11 PC11 PC11

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】被処理原水を加圧型の分離膜モジュールを
用いてろ過を行う膜分離装置において、加圧送液手段と
分離膜モジュールとの間に被処理原水を逃がす手段を有
することを特徴とする膜分離装置。
1. A membrane separation apparatus for filtering raw water to be treated using a pressurized type separation membrane module, comprising means for releasing the raw water to be treated between a pressurized liquid sending means and a separation membrane module. Membrane separation equipment.
【請求項2】被処理原水を逃がす手段が安全弁、または
放圧弁から選ばれたものであることを特徴とする請求項
1に記載の膜分離装置。
2. The membrane separation device according to claim 1, wherein the means for releasing the raw water to be treated is selected from a safety valve and a pressure relief valve.
【請求項3】被処理原水の供給圧力が予め設定した圧力
(P)に達した際に、被処理原水を被処理原水タンクに
返送する手段を設けたことを特徴とする請求項1または
2に記載の膜分離装置。
3. A means for returning the raw water to be treated to the raw water tank when the supply pressure of the raw water to be treated reaches a preset pressure (P). 5. The membrane separation device according to item 1.
【請求項4】予め設定した圧力(P)が50kPa以上
500kPa以下であることを特徴とする請求項3に記
載の膜分離装置。
4. The membrane separation apparatus according to claim 3, wherein the preset pressure (P) is not less than 50 kPa and not more than 500 kPa.
【請求項5】膜分離装置が定流量ろ過を行なうものであ
ることを特徴とする請求項1〜4のいずれかに記載の膜
分離装置。
5. The membrane separation apparatus according to claim 1, wherein the membrane separation apparatus performs constant flow filtration.
【請求項6】分離膜の細孔径が、1nm以上10μm以
下の精密ろ過膜または限外ろ過膜であることを特徴とす
る請求項1〜5のいずれかに記載の膜分離装置。
6. The membrane separation device according to claim 1, wherein the separation membrane is a microfiltration membrane or an ultrafiltration membrane having a pore diameter of 1 nm or more and 10 μm or less.
【請求項7】分離膜の素材が、ポリアクリロニトリル、
ポリスルフォン、ポリフェニレンスルフォン、ポリフェ
ニレンスルフィドスルフォン、ポリフッ化ビニリデン、
酢酸セルロース、ポリエチレン、ポリプロピレン、セラ
ミックのいずれかから選ばれたものであることを特徴と
する請求項1〜6のいずれかに記載の膜分離装置。
7. The material of the separation membrane is polyacrylonitrile,
Polysulfone, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride,
The membrane separation device according to any one of claims 1 to 6, wherein the membrane separation device is selected from cellulose acetate, polyethylene, polypropylene, and ceramic.
【請求項8】分離膜が中空糸膜であることを特徴とする
請求項1〜7のいずれかに記載の膜分離装置の運転方法
および膜分離装置。
8. The method for operating a membrane separation device and the membrane separation device according to claim 1, wherein the separation membrane is a hollow fiber membrane.
【請求項9】分離膜が平膜または管状膜であることを特
徴とする請求項1〜7のいずれかに記載の膜分離装置の
運転方法および膜分離装置。
9. The method for operating a membrane separation apparatus and the membrane separation apparatus according to claim 1, wherein the separation membrane is a flat membrane or a tubular membrane.
【請求項10】全量ろ過運転されることを特徴とする請
求項1〜9のいずれかに記載の膜分離装置。
10. The membrane separation device according to claim 1, wherein a total amount filtration operation is performed.
【請求項11】外圧式ろ過運転されることを特徴とする
請求項8に記載の膜分離装置。
11. The membrane separation device according to claim 8, wherein an external pressure filtration operation is performed.
【請求項12】被処理原水が河川水、湖沼水、または地
下水であることを特徴とする請求項1〜11のいずれか
に記載の膜分離装置。
12. The membrane separation device according to claim 1, wherein the raw water to be treated is river water, lake water, or groundwater.
【請求項13】請求項1〜12のいずれかに記載の膜分
離装置を用いて被処理原水のろ過を行うことを特徴とす
る膜分離装置の運転方法。
13. A method for operating a membrane separation apparatus, comprising filtering raw water to be treated using the membrane separation apparatus according to any one of claims 1 to 12.
JP10254229A 1998-09-08 1998-09-08 Membrane separation device and its operation Pending JP2000084370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10254229A JP2000084370A (en) 1998-09-08 1998-09-08 Membrane separation device and its operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10254229A JP2000084370A (en) 1998-09-08 1998-09-08 Membrane separation device and its operation

Publications (1)

Publication Number Publication Date
JP2000084370A true JP2000084370A (en) 2000-03-28

Family

ID=17262066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10254229A Pending JP2000084370A (en) 1998-09-08 1998-09-08 Membrane separation device and its operation

Country Status (1)

Country Link
JP (1) JP2000084370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039224A1 (en) * 2011-09-15 2013-03-21 東レ株式会社 Freshwater production apparatus and method for producing freshwater
CN105152273A (en) * 2015-09-30 2015-12-16 中国科学院西安光学精密机械研究所 Multipurpose water treatment facilities

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039224A1 (en) * 2011-09-15 2013-03-21 東レ株式会社 Freshwater production apparatus and method for producing freshwater
JPWO2013039224A1 (en) * 2011-09-15 2015-03-26 東レ株式会社 Fresh water production apparatus and fresh water production method
AU2012309380B2 (en) * 2011-09-15 2016-10-20 Toray Industries, Inc. Freshwater production apparatus and method for producing freshwater
CN105152273A (en) * 2015-09-30 2015-12-16 中国科学院西安光学精密机械研究所 Multipurpose water treatment facilities

Similar Documents

Publication Publication Date Title
US6120688A (en) Portable reverse osmosis unit for producing drinking water
EP1371409B1 (en) Separating film, separating film element, separating film module, sewage and waste water treatment device, and separating film manufacturing method
US8070947B2 (en) Permselective membrane module and method for manufacturing the same
US20170274325A1 (en) Water treatment method
KR100993886B1 (en) Operation Method of Membrane Separator
JP6492658B2 (en) Cleaning method for hollow fiber membrane module
CN102471103A (en) Water treatment device and water treatment method
WO2013176145A1 (en) Cleaning method for separation membrane module
KR101117647B1 (en) A defecator using the membrane with silicon carbide material for waste liquid and process thereof
JP7103526B2 (en) Cleaning trouble judgment method and cleaning trouble judgment program of water production equipment
JP2007296500A (en) Membrane separation apparatus and membrane filtration method
KR20090071643A (en) Hollow fiber membrane for immersion filtration, Hollow fiber membrane module for immersion filtration, Immersion filtration device, and Immersion filtration method
JP2014124579A (en) Processing apparatus of organic wastewater
JP2008246424A (en) Hollow fiber membrane module cleaning method and hollow fiber membrane filtration device
JP4437527B2 (en) Membrane filtration module
JP2001029751A (en) Separation apparatus and solid-liquid separation method
JP2000084370A (en) Membrane separation device and its operation
KR100503783B1 (en) Two-way alternate backwashing method and equipment of hollow-fiber membrane module, and drinking water treatment equipment using the same
JP7213711B2 (en) Water treatment device and water treatment method
JPH05329339A (en) Filtration system
JP5149515B2 (en) Ink-containing wastewater treatment method
JP4943662B2 (en) Operation method of membrane separator
WO2010113589A1 (en) Water treatment device and water treatment method
Xie et al. Understanding permeability decay of pilot-scale microfiltration in secondary effluent reclamation
JP2005195499A (en) Sdi measuring method, sdi measuring instrument, and water production method using reverse osmosis membrane