[go: up one dir, main page]

JP2000080431A - Al-Mg ALLOY SHEET EXCELLENT IN PRESS FORMABILITY - Google Patents

Al-Mg ALLOY SHEET EXCELLENT IN PRESS FORMABILITY

Info

Publication number
JP2000080431A
JP2000080431A JP23955099A JP23955099A JP2000080431A JP 2000080431 A JP2000080431 A JP 2000080431A JP 23955099 A JP23955099 A JP 23955099A JP 23955099 A JP23955099 A JP 23955099A JP 2000080431 A JP2000080431 A JP 2000080431A
Authority
JP
Japan
Prior art keywords
orientation
texture
crystal grain
grain size
formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23955099A
Other languages
Japanese (ja)
Inventor
Masahiro Yanagawa
政洋 柳川
Yasushi Maeda
恭志 前田
Yasuhiro Hayashida
康宏 林田
Shigeo Hattori
重夫 服部
Kuniaki Matsui
邦昭 松井
Seiichi Hashimoto
成一 橋本
Barrat Fredrick
バーラット フレデリック
C Blem John
シー ブレム ジョン
J Risi Daniel
ジェイ リージ ダニエル
J Martha Shawn
ジェイ マーサ シャウン
Chan Kwansoo
チャン クワンソー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Howmet Aerospace Inc
Original Assignee
Kobe Steel Ltd
Aluminum Company of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Aluminum Company of America filed Critical Kobe Steel Ltd
Publication of JP2000080431A publication Critical patent/JP2000080431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an alloy sheet excellent in bulging formability, deep drawability and a forming crack limit in the place from a tensile region to a plane strain region, as to a texture dominating plastic anisotropy, by controlling the ratio of respective crystal orientations and controlling the crystal grain sizes to specified ranges. SOLUTION: An alloy sheet excellent in bulging formability has a texture in which the volume fractional rate in the CUBE orientation is 5 to 20%, the volume fractional rate in the GOSS orientation is 1 to 5%, and each volume fractional rate in the BRASS orientation, S orientation and COPPER orientation is 1 to 10%, and whose crystal grain size is 20 to 70 μm. An alloy sheet excellent in deep drawability has a texture in which the ratio of the volume fractional rate in the CUBE orientation and the volume fractional rate in the S orientation (S/Cube) is >=1, and that in the GOSS orientation is <=10%, and whose crystal grain size is 20 to 100 μm. As to an alloy sheet high in a forming crack limit in the place from a tensile region to a plane strain region, the volume fractional rate in the CUBE orientation is 30 to 50%, the volume fractional rate in the BRASS orientation is 10 to 20%, and the crystal grain size is 50 to 100 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プレス成形性に優
れるAl−Mg系合金板であり、特に張出し成形性、深
絞り成形性、引張り領域から平面ひずみ領域における成
形割れ限界が高く、自動車ボディパネル等の材料に好適
なAl−Mg系合金板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al-Mg based alloy sheet having excellent press formability, and particularly to a stretchable formability, a deep draw formability, a high forming crack limit in a tensile range to a plane strain range, and an automobile body. The present invention relates to an Al-Mg-based alloy plate suitable for a material such as a panel.

【0002】[0002]

【従来の技術】近年、地球環境などへの配慮の観点か
ら、自動車等の車両の軽量化の社会的要求はますます高
まってきている。かかる要求に答えるべく、自動車のボ
ディパネル等の材料として、鋼板等の鉄鋼材料にかえて
アルミニウム材料の適用が検討されている。
2. Description of the Related Art In recent years, from the viewpoint of consideration for the global environment and the like, social demands for reducing the weight of vehicles such as automobiles have been increasing more and more. In order to meet such demands, application of aluminum materials as materials for automobile body panels and the like instead of steel materials such as steel plates is being studied.

【0003】しかし、強度的に鋼板と同程度であるアル
ミニウム材料であっても、一般に深絞り成形、張出し成
形等のプレス成形性が劣っているため、プレス成形性で
の改善が強く望まれている。
[0003] However, even if the aluminum material is similar in strength to a steel sheet, the press formability such as deep drawing and stretch forming is generally inferior, so that improvement in press formability is strongly desired. I have.

【0004】プレス成形性に優れるアルミニウム合金板
としては、従来からAl−Mg系のJIS5052合金
やJIS5182合金等のアルミニウム合金材料が使用
されており、他には特開昭52−141409号公報に
開示されたAl−Mg系合金材料がある。本件出願人
は、これまで鋭意、研究開発と商品化の努力を行い、K
S5030合金やKS5032合金(いずれも神戸製鋼
所商品名で、その内容は特開昭60−125346号公
報、特開昭63−89649号公報、特開平2−269
937号公報、特開平3−315486号公報等に開示
されている)を開発している。これらの合金は、Mgを
高濃度添加することで高強度、高延性を与え、0.5%
程度のCuを添加することで塗装焼付硬化性と耐応力腐
食割れ性を高め、さらにMn、Crを添加することによ
り結晶粒径の最適化をはかったことを特徴としている。
そして、これらのアルミニウム合金板は自動車パネル等
に適用されている。
As an aluminum alloy plate having excellent press formability, aluminum alloy materials such as Al-Mg based JIS5052 alloy and JIS5182 alloy have been conventionally used, and others are disclosed in Japanese Patent Application Laid-Open No. 52-141409. Al-Mg based alloy materials. The Applicant has worked diligently on research and development and commercialization,
S5030 alloy and KS5032 alloy (both are trade names of Kobe Steel, whose contents are described in JP-A-60-125346, JP-A-63-89649, and JP-A-2-269.
937, JP-A-3-315486, and the like). These alloys provide high strength and high ductility by adding a high concentration of Mg,
It is characterized in that baking hardenability and stress corrosion cracking resistance are enhanced by adding a certain amount of Cu, and the crystal grain size is optimized by adding Mn and Cr.
These aluminum alloy plates are applied to automobile panels and the like.

【0005】しかし、これらのアルミニウム系合金板は
成形性が十分とはいえず、自動車メーカーからさらなる
成形性の向上が要求されていた。成形性が不十分な理由
は,塑性異方性をうまく制御できないためであった。つ
まり、JIS5182合金などのJIS合金、KS50
30合金やKS5032合金などの本出願人が開発した
合金あるいは特開昭52−141409号公報、特開昭
60−125346号公報、特開昭63−89649号
公報、特開平2−269937号公報、特開平3−31
5486号公報等に開示されたAl−Mg系合金は合金
成分を特定するのにとどまり、塑性異方性を支配する集
合組織に関してはなんら配慮されていない。
[0005] However, these aluminum alloy sheets have insufficient formability, and there has been a demand from automobile manufacturers for further improvement in formability. The reason for insufficient formability was that the plastic anisotropy could not be controlled well. That is, JIS alloys such as JIS5182 alloy, KS50
Alloys developed by the present applicant such as No. 30 alloy and KS5032 alloy, or JP-A-52-141409, JP-A-60-125346, JP-A-63-89649, JP-A-2-269937, JP-A-3-31
The Al-Mg-based alloy disclosed in Japanese Patent No. 5486 and the like merely specifies alloy components, and no consideration is given to the texture that governs plastic anisotropy.

【0006】集合組織が成形性を支配することは古くか
ら知られている。例えば冷延鋼板では板面方位として
(111)を強く発達させることで深絞り性を向上させ
ることができることが知られている。最近では、アルミ
合金においても、板材の集合組織を制御することにより
成形性を向上させることが提案されている。例えば、特
開平5−295476号公報に、深絞り成形用アルミニ
ウム合金として、板面の(110)方位集積度が10%
以上で、かつ(110)方位と(112)方位の集積度
比が1.5以上であり、結晶粒径が35〜80μmの範
囲にあるAl−Mg系合金板が開示されている。しか
し、ここに示されている集合組織も深絞り成形に最適と
は言えず、より深絞り成形性に優れた集合組織が求めら
れている。
It has long been known that the texture governs the formability. For example, it is known that deep drawability can be improved by strongly developing (111) as a plane orientation in a cold rolled steel sheet. Recently, it has been proposed to improve the formability of aluminum alloys by controlling the texture of the sheet material. For example, Japanese Unexamined Patent Publication (Kokai) No. 5-295476 discloses that an aluminum alloy for deep drawing has a (110) orientation integration degree of 10% on a plate surface.
The above discloses an Al-Mg based alloy plate in which the (110) orientation and the (112) orientation have a degree of integration of 1.5 or more and a crystal grain size in the range of 35 to 80 µm. However, the texture shown here cannot be said to be optimal for deep drawing, and a texture excellent in deep drawing formability is required.

【0007】本発明者の一人も集合組織を制御した張出
し成形に優れたAl−Mg合金を発明した(特開平8−
325663号)が、そこに規定した集合組織は必ずし
も張出し成形性について最適とは限らず、張出し成形性
と集合組織との関係をより明らかにする必要である。ま
た、この発明では、成形性を大きく支配する結晶粒径に
ついては考慮していない。
One of the present inventors has also invented an Al-Mg alloy excellent in stretch forming by controlling the texture (Japanese Unexamined Patent Publication No. Hei 8-
However, the texture defined therein is not always optimal for stretch formability, and it is necessary to clarify the relationship between stretch formability and texture. In addition, in the present invention, no consideration is given to the crystal grain size that largely affects the formability.

【0008】学術論文に目を向けると、P.Ratch
evらは、Al−Mg合金板における集合組織と成形性
の関係を塑性加工理論に基づいて計算機予測し、Cub
e方位などが強く発達すると異方性が強くなり、成形性
が低下すると報告している(Texture and
Microstructures、vol.22、19
94年、P219.)。
[0008] Turning to academic papers, Ratch
ev et al. calculated the relationship between the texture and formability of an Al-Mg alloy plate by computer based on the theory of plastic working.
It is reported that when the e-orientation develops strongly, the anisotropy increases and the formability decreases (Texture and
Microstructures, vol. 22, 19
1994, P219. ).

【0009】[0009]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みてなされたものであり、その目的は、塑性異
方性を支配する集合組織につき、個々の結晶方位の割合
を制御し、さらに結晶粒径を最適化し、また添加元素の
種類と添加量を特定範囲に限定することによって、プレ
ス成形性に優れた最適のAl−Mg系合金板を提供する
ことにある。より詳しくは、プレス成形性のうち、張
出し成形性、深絞り成形性、引張り領域から平面ひ
ずみ領域における成形割れ限界の3つの特性の向上を目
的に、それぞれの特性に優れたAl−Mg系合金板を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to control the ratio of individual crystal orientations in a texture governing plastic anisotropy. Another object of the present invention is to provide an optimal Al-Mg-based alloy sheet having excellent press formability by optimizing the crystal grain size and limiting the types and amounts of the added elements to specific ranges. More specifically, of the press formability, Al-Mg based alloys having excellent properties for the purpose of improving the three properties of stretch formability, deep drawing formability, and forming crack limit in the tensile range to the plane strain range. The purpose is to provide a board.

【0010】[0010]

【課題を解決するための手段】本発明のプレス成形性に
優れるAl−Mg系合金板のうち、張出し成形性に優れ
るAl−Mg系合金板は、集合組織として,CUBE方
位の体積分率が5〜20%,GOSS方位の体積分率が
1〜5%,BRASS方位,S方位,COPPER方位
の体積分率が各々1〜10%であり,結晶粒径が20〜
70μmの範囲にあることを要旨とする。好ましくは、
CUBE方位の体積分率が5〜15%,GOSS方位の
体積分率が1〜3%,BRASS方位,S方位,COP
PER方位の体積分率が各々1〜5%である。さらに、
結晶粒径は30〜60μmであることが好ましい。
SUMMARY OF THE INVENTION Among the Al-Mg-based alloy sheets having excellent press formability of the present invention, the Al-Mg based alloy sheet having excellent stretch formability has a volume fraction of CUBE orientation as a texture. 5-20%, volume fraction of GOSS orientation is 1-5%, volume fraction of BRASS orientation, S orientation, COPER orientation is 1-10% each, and crystal grain size is 20-
The gist should be within the range of 70 μm. Preferably,
Volume fraction of CUBE orientation is 5 to 15%, volume fraction of GOSS orientation is 1 to 3%, BRASS orientation, S orientation, COP
The volume fraction of the PER orientation is 1 to 5%, respectively. further,
The crystal grain size is preferably 30 to 60 μm.

【0011】深絞り成形性に優れるAl−Mg系合金板
は、集合組織として、CUBE方位の体積分率とS方位
の体積分率の比(S/Cube)が1以上であり、かつ
GOSS方位が10%以下であり、かつ結晶粒径が20
〜100μmの範囲にあることを要旨とする。好ましく
は、CUBE方位の体積分率とS方位の体積分率の比
(S/Cube)が2以上で、かつGOSS方位が5%
以下である。また、結晶粒径は40〜80μmが好まし
い。
An Al—Mg based alloy sheet excellent in deep drawing formability has, as a texture, a ratio of the volume fraction of the CUBE orientation to the volume fraction of the S orientation (S / Cube) of 1 or more, and the GOSS orientation. Is 10% or less and the crystal grain size is 20% or less.
The gist is in the range of 〜100 μm. Preferably, the ratio (S / Cube) of the volume fraction of the CUBE orientation to the volume fraction of the S orientation is 2 or more, and the GOSS orientation is 5%.
It is as follows. Further, the crystal grain size is preferably 40 to 80 μm.

【0012】引張り領域から平面ひずみ領域における成
形割れ限界が高いAl−Mg系合金板は、集合組織とし
て、CUBE方位の体積分率が30〜50%で、かつB
RASS方位の体積分率が10〜20%で、かつ結晶粒
径が50〜100μmの範囲にあることを要旨とする。
好ましくは、CUBE方位の体積分率が40〜50%で
かつBRASS方位の体積分率が15〜20%である。
また、粒径は、60〜90μmであることがより好まし
い。
An Al—Mg based alloy sheet having a high forming crack limit from the tensile region to the plane strain region has a texture having a CUBE orientation volume fraction of 30 to 50% and a B
The gist is that the volume fraction of the RAS orientation is 10 to 20% and the crystal grain size is in the range of 50 to 100 μm.
Preferably, the volume fraction in the CUBE azimuth is 40 to 50% and the volume fraction in the BRASS azimuth is 15 to 20%.
Further, the particle size is more preferably 60 to 90 μm.

【0013】更に、これらのAl−Mg系合金板は、い
ずれもMgを2〜6wt%含有し、Fe、Mn、Cr、
Zr、及びCuの内から選ばれる1種以上を総和で0.
03wt%以上(Cuが選択される場合はCuとして
0.2wt%以上)含有し、残部がAlである組成であ
ることが好ましい。
Further, each of these Al-Mg alloy plates contains 2 to 6 wt% of Mg, and contains Fe, Mn, Cr,
One or more selected from Zr and Cu are included in a total of 0.1.
It is preferable that the composition contains not less than 03 wt% (when Cu is selected, not less than 0.2 wt% as Cu) and the balance being Al.

【0014】Al−Mg系合金板において、以上のよう
に集合組織、結晶粒径、添加元素を適切に制御すること
により、プレス成形性を向上できる。具体的には、張出
し成形性又は深絞り成形性に優れ、あるいは引張り領域
から平面ひずみ領域における成形割れ限界が高い、自動
車ボディパネル等に好適なアルミニウム合金板を得るこ
とができる。
By appropriately controlling the texture, crystal grain size, and additional elements of the Al-Mg alloy sheet as described above, press formability can be improved. Specifically, it is possible to obtain an aluminum alloy sheet that is excellent in stretch formability or deep draw formability, or has a high forming crack limit from a tensile region to a plane strain region, and is suitable for an automobile body panel or the like.

【0015】[0015]

【発明の実施の形態】通常のアルミニウム合金板の集合
組織は、主としてCUBE方位,GOSS方位,BRA
SS方位,S方位,COPPER方位から構成され、こ
れらの体積分率が変化すると塑性異方性が変化する。こ
こで、集合組織のでき方は同じ結晶系の場合でも加工法
によって異なり、圧延による板材の場合には圧延面と圧
延方向で表す必要がある。圧延面は(○○○)で表現さ
れ、圧延方向は<△△△>で表現される(○、△は整数
を示す)。かかる表現方法に基づいて、CUBE方位,
GOSS方位,BRASS方位,S方位,COPPER
方位は、以下のように表される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The texture of an ordinary aluminum alloy sheet mainly includes a CUBE orientation, a GOSS orientation, and a BRA orientation.
It is composed of the SS direction, the S direction, and the COPER direction, and when these volume fractions change, the plastic anisotropy changes. Here, the formation of the texture differs depending on the processing method even in the case of the same crystal system, and in the case of a rolled sheet material, it is necessary to express the texture by the rolling surface and the rolling direction. The rolling surface is represented by ((), and the rolling direction is represented by <△△△> (○ and を indicate integers). Based on such an expression method, the CUBE direction,
GOSS direction, BRASS direction, S direction, COPER
The azimuth is represented as follows.

【0016】 CUBE方位 (100)<001> GOSS方位 (110)<001> BRASS方位 (110)<1−12> S方位 (123)<63−4> COPPER方位(112)<11−1> 本明細書ではこれらの方位から±10度以内の方位のず
れは同一の方位因子に属するものと定義する。なお方位
を表す場合に,負方向の数値は数値の上にバ−を付けて
表示するのが一般的であるが,本明細書においては,都
合上,数値の前に「−」符号を付けてこれを表示する。
また、これらの方位因子以外の方位をランダム方位と定
義する。
CUBE direction (100) <001> GOSS direction (110) <001> BRASS direction (110) <1-12> S direction (123) <63-4> COPER direction (112) <11-1> In the specification, a deviation of azimuth within ± 10 degrees from these azimuths is defined as belonging to the same azimuth factor. In addition, when indicating the bearing, it is common to display a numerical value in the negative direction with a bar above the numerical value. However, in this specification, for convenience, a "-" sign is added before the numerical value. To display this.
Also, an orientation other than these orientation factors is defined as a random orientation.

【0017】本発明者らは、集合組織の変化に対応する
塑性異方性の変化から、張出し成形性、深絞り成形性、
引張り領域から平面ひずみ領域における成形割れ限界の
3つの特性に最適の組織形態を明らかにした。以下、個
々の成形特性ごとに説明する。
The inventors of the present invention have found that a change in plastic anisotropy corresponding to a change in texture causes a stretch formability, a deep draw formability,
The optimum morphology for the three characteristics of forming crack limit in the tensile range to the plane strain range was clarified. Hereinafter, each molding characteristic will be described.

【0018】(1)張出し成形性と集合組織の関係 張出し成形性に優れるとは二軸応力下での割れ限界が高
いことである。そのための支配因子は3つあり、塑性異
方性が弱いこと、加工硬化能が高いこと、ひずみ速度感
受性指数が高い値を示すことである。集合組織が弱いも
のが張出し成形性に優れることは従来からわかっていた
ことであるが、圧延で板を製造する場合、完全に等方的
なもの(換言すると集合組織が弱い)を得ることは不可
能で、何らかの方位が強くなる。
(1) Relationship between Overhang Formability and Texture An excellent overhang formability means that the crack limit under biaxial stress is high. There are three governing factors for this: low plastic anisotropy, high work hardening ability, and high value of strain rate sensitivity index. It has been known from the past that a material having a weak texture is excellent in stretch formability, but when a sheet is manufactured by rolling, it is impossible to obtain a completely isotropic material (in other words, a weak texture). Impossible, some direction becomes stronger.

【0019】個々の方位の体積分率と張出し性の関係に
ついて、多くの実験結果をもとに検討した結果、CUB
E方位の体積分率が5%以上で20%以下、好ましくは
15%以下,GOSS方位の体積分率が1%以上で5%
以下、好ましくは3%以下,BRASS方位,S方位,
COPPER方位の体積分率が各々1%以上で10%以
下、好ましくは5%以下のときに、塑性異方性の弱い組
織、即ち最も張出し性に優れる組織となることがわかっ
た。
As a result of examining the relationship between the volume fraction of each direction and the overhang property based on many experimental results, it was found that CUB
The volume fraction in the E direction is 5% or more and 20% or less, preferably 15% or less, and the volume fraction in the GOSS direction is 1% or more and 5%.
Or less, preferably 3% or less, BRASS orientation, S orientation,
It has been found that when the volume fraction of the COPER orientation is 1% or more and 10% or less, and preferably 5% or less, a structure having weak plastic anisotropy, that is, a structure having the most excellent overhang property is obtained.

【0020】集合組織の定量的評価の方法に関しては、
電子チャネリングパタ−ン法で板面100ケの結晶粒に
ついて1ケ1ケの粒の方位を求め、上記5つの方位のど
れに属するかを決定し、全ての粒子の大きさは同じと仮
定して、各方位の体積分率を算出した。以下、本明細書
における集合組織の定量的評価方法は、同様である。
Regarding the method of quantitative evaluation of texture,
The orientation of each grain is determined for each of the 100 crystal grains by the electron channeling pattern method, one of the above five orientations is determined, and it is assumed that all grains have the same size. Thus, the volume fraction in each direction was calculated. Hereinafter, the method of quantitatively evaluating the texture in the present specification is the same.

【0021】(2)深絞り成形性と集合組織の関係 深絞り成形性が優れるとは、フランジ部での板の絞り込
みが容易でかつパンチ側部あるいはパンチ底部で破断し
にくいことである。そのためには、1方向で引張った場
合(引張方向にと垂直の方向には圧縮応力がかかってい
る状態)の塑性変形が容易で,かつ2方向から引張った
場合(2方向に引張応力がかかっている状態)の強度が
高いことが必要である。
(2) Relationship between Deep Drawing Formability and Texture The phrase "excellent deep drawing formability" means that the plate is easily drawn down at the flange portion and hardly broken at the punch side or the punch bottom. For this purpose, plastic deformation is easy when tension is applied in one direction (compression stress is applied in the direction perpendicular to the tension direction), and when tension is applied in two directions (tensile stress is applied in two directions). It is necessary that the strength is high.

【0022】本発明者らは集合組織と深絞り成形性の指
標であるLDR(限界絞り比)の関係について鋭意研究
した結果,Cube方位,Goss方位はLDRを低
下させること、S方位はLDRを向上させること、
その他の方位の影響は無視できることを明らかにした。
〜の知見のうち、の見解だけは従来からわかって
いた(本発明者の1人による学位論文)が、他の方位の
体積分率と深絞り性の関係については、本発明者らが実
験結果に基づいて新たに見い出したものである。
The present inventors have conducted intensive studies on the relationship between the texture and LDR (critical drawing ratio), which is an index of deep drawability, and found that the Cube orientation and the Goss orientation lower the LDR, and the S orientation the LDR. To improve,
It was revealed that the effects of other orientations were negligible.
Of the findings described above, only the view was previously known (a dissertation by one of the present inventors), but the present inventors conducted experiments on the relationship between the volume fraction of other orientations and the deep drawability. It was newly found based on the results.

【0023】〜の知見に基づき、Al−Mg合金の
集合組織を、CUBE方位の体積分率とS方位の体積分
率の比(S/Cube)が1以上、好ましくは2以上
で、かつGOSS方位が10%以下、好ましくは5%以
下にすればLDRが高くなり、深絞り成形性に優れる。
尚、特開平5−295476号公報に記載の深絞り性成
形用アルミニウム合金は、GOSS又はBRASS方位
に該当する(110)方位の集積度が10%以上で、か
つ(110)方位とCOPPER方位に該当する(11
2)方位の集積度比が1.5以上であって、S方位率を
規定していない点、CUBE方位の体積分率とS方位の
体積分率の比(S/Cube)に着目していない点が本
発明と異なっている。
Based on the above findings, the texture of the Al—Mg alloy was determined to have a ratio of the volume fraction of the CUBE orientation to the volume fraction of the S orientation (S / Cube) of 1 or more, preferably 2 or more, and GOSS When the orientation is 10% or less, preferably 5% or less, the LDR becomes high, and the deep drawability is excellent.
In addition, the aluminum alloy for deep drawability described in JP-A-5-295476 has a degree of integration of (110) orientation corresponding to GOSS or BRASS orientation of 10% or more, and has a (110) orientation and a COPER orientation. Applicable (11
2) Attention is paid to the point that the integration degree ratio of the azimuth is 1.5 or more and the S azimuth ratio is not specified, and the ratio (S / Cube) of the volume fraction of the CUBE orientation to the volume fraction of the S azimuth. There is no difference from the present invention.

【0024】(3)引張り領域から平面ひずみ領域にお
ける成形割れ限界と集合組織の関係 本発明者らが鋭意研究した結果,引張り領域から平面ひ
ずみ領域における成形割れ限界は塑性異方性に影響され
ず,加工硬化特性とひずみ速度感受性が支配的であるこ
と、特に加工硬化特性は集合組織の影響を受け,集合組
織の異方性が強いほど加工硬化特性が向上することが明
かになった。
(3) Relationship between Forming Crack Limit and Texture in Tensile Region to Plane Strain Region As a result of extensive studies by the present inventors, the forming crack limit in the tensile region to plane strain region is not affected by plastic anisotropy. It was clarified that work hardening characteristics and strain rate sensitivity were dominant, especially work hardening characteristics were affected by texture, and that the more anisotropic the texture, the better the work hardening characteristics.

【0025】引張り領域から平面ひずみ領域における成
形割れ限界が高い集合組織は、CUBE方位の体積分率
が30%以上、好ましくは40%で、50%以下で、且
つBRASS方位の体積分率が10%以上、好ましくは
15%以上で20%以下である。
The texture having a high forming crack limit from the tensile region to the plane strain region has a volume fraction of CUBE orientation of 30% or more, preferably 40% and 50% or less, and a volume fraction of BRASS orientation of 10% or less. % Or more, preferably 15% or more and 20% or less.

【0026】(4)プレス成形性と結晶粒径の関係 (a)張出し成形性 結晶粒径が小さいほど変形が均一に起き、ひずみ速度感
受性指数が高い値を示し、張出し成形性が向上する。
(4) Relationship between press formability and crystal grain size (a) Overhanging formability The smaller the crystal grain size, the more uniform the deformation, the higher the strain rate sensitivity index, and the better the overhanging formability.

【0027】本発明者らは鋭意研究した結果,結晶粒径
として20μm以上、好ましくは30μm以上で、70
μm以下、好ましくは60μm以下の範囲にあることが
最適であることを見いだした。20μm未満では、成形
時にストレッチャストレインマ−クが発生するため好ま
しくなく、70μmを越えると粒界破壊が起こり易くな
って好ましくないからである。
The present inventors have conducted intensive studies and found that the crystal grain size is 20 μm or more, preferably 30 μm or more,
It has been found that it is optimal to be in the range of less than μm, preferably less than 60 μm. If it is less than 20 μm, a stretch strain mark is generated during molding, which is not preferable. If it exceeds 70 μm, grain boundary destruction is likely to occur, which is not preferable.

【0028】尚、結晶粒径の測定は、倍率が100倍の
光学顕微鏡写真に基づいてクロスカット法で平均切片長
を求め、これを平均結晶粒径とした。以下、本明細書に
おいて、同様である。
In the measurement of the crystal grain size, the average section length was determined by a cross-cut method based on an optical microscope photograph at a magnification of 100 times, and this was defined as the average crystal grain size. Hereinafter, the same applies in the present specification.

【0029】(b)深絞り成形性 結晶粒径が20μm以上、好ましくは40μm以上で、
100μm以下、好ましくは60μm以下の範囲にあれ
ば、深絞り成形性が良好である。20μm未満では絞っ
た製品の底部にストレッチャストレインマ−クが発生し
て製品の外観が損なわれ、100μmを超えると製品の
表面にオレンジピ−ル(肌荒れ)が発生して製品の外観
が損なわれるからである。
(B) Deep drawing formability When the crystal grain size is 20 μm or more, preferably 40 μm or more,
When the thickness is in the range of 100 μm or less, preferably 60 μm or less, the deep drawability is good. If the thickness is less than 20 μm, a stretch strain mark is generated at the bottom of the squeezed product to impair the appearance of the product, and if it exceeds 100 μm, an orange peel (rough skin) occurs on the surface of the product and the appearance of the product is impaired. It is.

【0030】(c)引張り領域から平面ひずみ領域にお
ける成形割れ限界 引張り領域から平面ひずみ領域における成形割れ限界
は、塑性異方性に影響されず,加工硬化特性とひずみ速
度感受性が支配的であり、特に加工硬化特性は集合組織
の影響を受けることがわかっている。そして、結晶粒径
が大きいほど加工硬化特性が向上することがわかった。
ただし,結晶粒径が大きくなりすぎると成形時にオレン
ジピ−ル(肌あれ)が生じ製品の外観を著しく損なう。
(C) Forming crack limit from tensile region to plane strain region Forming crack limit from tensile region to plane strain region is not affected by plastic anisotropy, and work hardening characteristics and strain rate sensitivity are dominant. In particular, it has been found that work hardening characteristics are affected by texture. And it turned out that work hardening characteristic improves, so that a crystal grain size is large.
However, if the crystal grain size is too large, orange peels (skin roughness) occur during molding, which significantly impairs the appearance of the product.

【0031】従って、結晶粒径が50μm以上、好まし
くは60μm以上で、100μm以下、好ましくは90
μm以下の範囲にすると、引張り領域から平面ひずみ領
域における成形割れ限界が高くなる。
Therefore, the crystal grain size is 50 μm or more, preferably 60 μm or more, and 100 μm or less, preferably 90 μm or less.
When the thickness is in the range of μm or less, the forming crack limit in the tensile region to the plane strain region increases.

【0032】(5)化学組成について 本発明のアルミニウム合金の化学組成は、以下に述べる
理由から、2wt%≦2wt%≦Mg≦6wt%のMg
を含有し、Fe、Mn、Cr、Zr、及びCuの内から
選ばれる1種以上を総和で0.03wt%以上(Cuが
選択される場合はCuとして0.2wt%以上)、且つ
個々の元素の含有率の上限がFe≦0.2wt%、Mn
≦0.6wt%、Cr≦0.3wt%、Zr≦0.3w
t%、Cu≦1.0%であることが好ましい。これらの
添加元素は集合組織形成に大きな影響をおよぼし,塑性
異方性を変化させるので、添加元素量の最適化とそれに
対応したプロセス条件の最適化により集合組織の最適化
をはかることができる。
(5) Chemical Composition The chemical composition of the aluminum alloy of the present invention is, as described below, 2% by weight ≦ 2% by weight ≦ Mg ≦ 6% by weight of Mg.
And at least one selected from Fe, Mn, Cr, Zr, and Cu in a total amount of 0.03 wt% or more (when Cu is selected, 0.2 wt% or more as Cu). The upper limit of the element content is Fe ≦ 0.2 wt%, Mn
≦ 0.6wt%, Cr ≦ 0.3wt%, Zr ≦ 0.3w
It is preferable that t% and Cu ≦ 1.0%. Since these additional elements greatly affect the texture formation and change the plastic anisotropy, the texture can be optimized by optimizing the amount of the additional elements and the process conditions corresponding thereto.

【0033】・2wt%≦Mg≦6wt% Mgは加工硬化能を高め材料を均一に塑性変形させ,破
断割れ限界を向上させる重要な元素である。Mgの含有
率が2wt%未満では、Mg含有の硬化が不十分であ
り、6wt%を越えると製造が困難となり,しかも成形
時に粒界破壊が発生しやすくなるので、2〜6wt%の
範囲にあることが望ましい。
2 wt% ≦ Mg ≦ 6 wt% Mg is an important element that enhances work hardening ability, uniformly plastically deforms the material, and improves the limit of fracture cracking. If the Mg content is less than 2 wt%, the hardening of the Mg content is insufficient, and if it exceeds 6 wt%, the production becomes difficult, and the grain boundary fracture is liable to occur during molding. Desirably.

【0034】・Fe、Mn、Cr、Zr、及びCuの内
から選ばれる1種以上を総和で0.03wt%以上(C
uが選択される場合はCuとして0.2wt%以上)、
且つ個々の元素の含有率の上限がFe≦0.2wt%、
Mn≦0.6wt%、Cr≦0.3wt%、Zr≦0.
3wt%、Cu≦1.0wt% Fe、Mn、Cr、Zrの添加は結晶粒微細化に有効で
あり,しかも集合組織制御に重要な役割を果す。粒界破
壊は結晶粒径が大きい時に発生しやすく,結晶粒径が小
さいほど好ましい。従って、結晶粒微細化に有効な元素
であるFe、Mn、Cr、Zrを添加することが好まし
い。また、これらの元素は、ひずみ速度感受性指数を向
上させ成形限界を向上させる。ひずみ速度感受性指数が
正の値を示すことは成形時のくびれ開始までのひずみが
増加することを意味する。但し、Fe,Mn,Cr,Z
rの含有率合計が0.03wt%未満では添加効果がな
く、一方、各元素の上限率(すなわち、Feの含有率が
0.2wt%、Mnの含有率が0.6wt%、Crの含
有率が0.3wt%、Zrの含有率が0.3wt%)を
超えると、粗大な化合物が形成され,破壊の起点となる
ため成形性が劣化するからである。
At least one selected from the group consisting of Fe, Mn, Cr, Zr, and Cu in a total amount of at least 0.03 wt% (C
When u is selected, 0.2 wt% or more as Cu),
And the upper limit of the content of each element is Fe ≦ 0.2 wt%,
Mn ≦ 0.6 wt%, Cr ≦ 0.3 wt%, Zr ≦ 0.
3 wt%, Cu ≦ 1.0 wt% The addition of Fe, Mn, Cr, and Zr is effective in refining crystal grains and plays an important role in controlling texture. Grain boundary fracture is likely to occur when the crystal grain size is large, and the smaller the crystal grain size, the better. Therefore, it is preferable to add Fe, Mn, Cr, and Zr, which are elements effective for crystal grain refinement. Also, these elements improve the strain rate sensitivity index and improve the forming limit. When the strain rate sensitivity index shows a positive value, it means that the strain until the start of constriction during molding increases. However, Fe, Mn, Cr, Z
If the total content of r is less than 0.03 wt%, there is no effect of addition, while the upper limit of each element (that is, the content of Fe is 0.2 wt%, the content of Mn is 0.6 wt%, and the content of Cr is If the ratio exceeds 0.3 wt% and the Zr content exceeds 0.3 wt%), a coarse compound is formed and becomes a starting point of destruction, so that moldability deteriorates.

【0035】Cuは加工硬化能を向上させ塗装焼付硬化
特性を向上させ、さらに耐応力腐食割れ性を向上させる
元素であり,しかも集合組織を変化させる効果がある。
但し、0.2wt%未満では添加効果がなく,1.0w
t%を越えると粗大な化合物が形成され,破壊の起点と
なるため成形性が劣化するからである。
Cu is an element which improves work hardening ability, improves paint bake hardening characteristics, and further improves stress corrosion cracking resistance, and has the effect of changing the texture.
However, if it is less than 0.2 wt%, there is no effect of addition, and 1.0 w
If the content exceeds t%, a coarse compound is formed, which becomes a starting point of destruction, and thus the moldability deteriorates.

【0036】(6)集合組織と製造条件 本発明のアルミニウム合金の板材は、通常の鋳造、均質
化熱処理、熱間圧延、冷間圧延、最終焼鈍の工程を経て
製造されるが、化学組成、各工程の設定条件により、得
られる集合組織は変わる。
(6) Texture and Manufacturing Conditions The aluminum alloy sheet of the present invention is manufactured through ordinary steps of casting, homogenizing heat treatment, hot rolling, cold rolling, and final annealing. The obtained texture changes depending on the setting conditions of each step.

【0037】まず、Mn、Cr、Fe、Zrなどの遷移
金属を含有する場合、析出物を所望の形態に制御するこ
とが重要である。なぜならば、これらの析出物は、再結
晶方位の優先核生成サイトとして働き、形成される集合
組織を支配するからである。またこれらの析出物は結晶
粒径をも支配し、成形割れ限界を大きく左右するからで
ある。従って、均質化熱処理工程における最適条件も、
Mn、Cr、Fe、Zrなどの遷移金属の種類と添加量
が変われば変化するため、一義的には決定できない。
First, when a transition metal such as Mn, Cr, Fe, or Zr is contained, it is important to control the precipitate to a desired form. This is because these precipitates act as preferential nucleation sites for the recrystallization orientation and govern the texture formed. In addition, these precipitates also control the crystal grain size and greatly influence the limit of forming cracks. Therefore, the optimum conditions in the homogenization heat treatment process are also
If the type and the amount of the transition metal such as Mn, Cr, Fe, and Zr change, the ratio changes, and therefore cannot be determined uniquely.

【0038】均質化熱処理工程の後に行なう熱間圧延工
程、冷間圧延工程の最適条件は、均質化熱処理で形成さ
れる析出物の形態によって変化する。高温圧延、低温圧
延、高圧下冷延、低圧下冷延などの組み合わせがある
が、この組み合わせも一義的には決まらない。さらに、
熱間圧延後に荒鈍を行なった後、冷間圧延を行ってもよ
いし、冷間圧延の途中で中間焼鈍を行なってもよく、熱
間圧延後に荒鈍を行なう場合と行なわない場合、冷間圧
延の途中で中間焼鈍を行なう場合と行なわない場合で
は、最適な圧延条件は異なる。
Optimum conditions of the hot rolling step and the cold rolling step performed after the homogenizing heat treatment step vary depending on the form of the precipitate formed by the homogenizing heat treatment. There are combinations of high-temperature rolling, low-temperature rolling, high-pressure cold rolling, low-pressure cold rolling, and the like, but these combinations cannot be uniquely determined. further,
After the annealing after the hot rolling, cold rolling may be performed, or intermediate annealing may be performed during the cold rolling. The optimum rolling conditions differ depending on whether or not intermediate annealing is performed during the intermediate rolling.

【0039】冷間圧延後に最終熱処理(溶体化処理)を
行なう。この溶体化処理条件によっても、集合組織は変
化する。
After the cold rolling, a final heat treatment (solution treatment) is performed. The texture changes also depending on the solution treatment conditions.

【0040】つまり、請求の範囲に示した好適な集合組
織を得るには、合金成分や均質化熱処理条件が変化する
と、圧延条件、荒鈍条件、溶体化処理条件などをその都
度調整する必要がある。すなわち、同じ合金組成であっ
ても。均質化熱処理条件、圧延条件、荒鈍条件、溶体化
処理条件などを複合的に制御することによって、最適な
集合組織を形成することができ、プレス成形性を大きく
向上させることができるからである。従って、これらの
製造条件は、個々には従来の製造条件とオ−バ−ラップ
するものもあるが、一連の製造工程としては特殊な組み
合わせを行うことで要求される成形性に好適な集合組織
を得ることができる。
That is, in order to obtain the preferred texture shown in the claims, it is necessary to adjust the rolling conditions, the roughening conditions, the solution treatment conditions, etc. each time when the alloy components and the homogenizing heat treatment conditions change. is there. That is, even if they have the same alloy composition. This is because an optimal texture can be formed by controlling the homogenizing heat treatment conditions, rolling conditions, roughening conditions, solution treatment conditions, and the like in a complex manner, and press formability can be greatly improved. . Therefore, although these manufacturing conditions individually overlap with the conventional manufacturing conditions, a texture suitable for formability required by performing a special combination as a series of manufacturing steps is adopted. Can be obtained.

【0041】ただし、傾向としては、最終冷間圧延率が
低い時には深絞り成形性に優れた集合組織を得ることが
容易く、最終冷間圧延率が50%前後の時には張出し成
形性に優れた集合組織を得ることが容易く、また最終冷
間圧延率が高い時には引張り領域から平面ひずみ領域に
おける成形割れ限界が高くなりやすいと言える。ここ
で、最終冷間圧延率とは、冷間圧延の途中で焼鈍を行な
った場合に焼鈍後行なう圧延率をいい、途中で焼鈍を行
なわない場合には冷間圧延率が最終冷間圧延率となる。
However, there is a tendency that when the final cold rolling reduction is low, it is easy to obtain a texture excellent in deep drawing formability, and when the final cold rolling reduction is around 50%, an assembly excellent in stretch forming property is obtained. It can be said that when the structure is easy to obtain and the final cold rolling reduction is high, the forming crack limit from the tensile region to the plane strain region tends to be high. Here, the final cold rolling reduction refers to the rolling reduction performed after annealing when annealing is performed during cold rolling, and the cold rolling reduction is the final cold rolling reduction when annealing is not performed during cooling. Becomes

【0042】[0042]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to specific embodiments.

【0043】以下の実施例において、得られた組織の結
晶粒径は、圧延面に垂直で且つ圧延方向に垂直な面を線
切断法で測定した。結晶粒径の測定は、倍率が100倍
の光顕写真についてクロスカット法で平均切片長を求
め、これを平均結晶粒径とした。
In the following examples, the crystal grain size of the obtained structure was measured by a line cutting method on a plane perpendicular to the rolling surface and perpendicular to the rolling direction. In the measurement of the crystal grain size, an average section length was determined by a cross-cut method for a photomicrograph at a magnification of 100 times, and this was defined as the average crystal grain size.

【0044】また、集合組織については、電子チャネリ
ングパターン法で100個の結晶粒について各結晶粒の
方位を求め、上記5つの方位のどれに属するかを決定
し、各方位の体積分率を算出した(1ケ1ケの粒の大き
さは同じと仮定した。)。
Regarding the texture, the orientation of each crystal grain is determined for 100 crystal grains by the electron channeling pattern method, which of the above five orientations is determined, and the volume fraction of each orientation is calculated. (The size of each grain was assumed to be the same.)

【0045】実施例1:請求項1に係わる発明の好適実
施例 Al−5%Mg−0.1%Fe合金につき通常のDC鋳
造(半連続鋳造)で造塊し,幅400mm,厚さ150
mm,長さ3000mmのインゴットを得た。480℃
で48時間保持した後、440℃で4時間保持するとい
う二段階の均質化熱処理を施し,熱間圧延で5mm厚さ
の板とした。熱間圧延の開始温度は、直前に行なった均
質化熱処理の温度である440℃で、熱間圧延の終了温
度は320℃であった。熱間圧延後、冷間圧延により、
1mm厚さの板材とするが、冷間圧延途中に適宜中間焼
鈍を施すことにより、最終冷間圧延率を17%〜80%
の範囲で調整した。中間焼鈍を行なわない場合、冷間圧
延で5mmから1mmにまで一気に圧延することにな
り、最終冷間圧延率は80%となる。
Embodiment 1: Preferred embodiment of the invention according to claim 1 An Al-5% Mg-0.1% Fe alloy is ingot-formed by ordinary DC casting (semi-continuous casting) to have a width of 400 mm and a thickness of 150 mm.
mm and a length of 3000 mm were obtained. 480 ° C
, And then a two-stage homogenizing heat treatment of holding at 440 ° C. for 4 hours, followed by hot rolling to obtain a plate having a thickness of 5 mm. The starting temperature of the hot rolling was 440 ° C., which is the temperature of the homogenization heat treatment performed immediately before, and the ending temperature of the hot rolling was 320 ° C. After hot rolling, cold rolling
Although a sheet material having a thickness of 1 mm is used, an intermediate annealing is appropriately performed during the cold rolling, so that the final cold rolling reduction is 17% to 80%.
Adjusted within the range. If the intermediate annealing is not performed, cold rolling is performed at once from 5 mm to 1 mm, and the final cold rolling reduction is 80%.

【0046】冷間圧延により得られた厚み1mmの板材
を、表1に示す温度及び保持時間で行なう溶体化処理を
して、表1に示すような結晶粒径及び集合組織を有する
No.1〜15の板材を得た。ここで、溶体化処理温度
までの加熱は、急速加熱(60000℃/h)と徐加熱
(300℃/h)の2種類で行なった。
The sheet material having a thickness of 1 mm obtained by cold rolling was subjected to a solution treatment at a temperature and a holding time shown in Table 1 to obtain a sheet No. having a crystal grain size and texture as shown in Table 1. 1 to 15 plate materials were obtained. Here, heating to the solution treatment temperature was performed by two types of rapid heating (60000 ° C./h) and slow heating (300 ° C./h).

【0047】得られたNo.1〜15の板材について、
次のようなバルジ張出し試験を行った。すなわち、直径
100mmの板材試験片の周縁を直径50mmの金型に
固定し、試験片の一面に静水圧を与えることにより試験
片を下げていき、破断時の歪み量を試験開始時に対する
割合として求めた。歪み量の測定は、板材試験片の表面
に3mm角の碁盤目状のスタンプを押し、その寸法変化
から測定した。結果を、製造方法(最終冷間圧延率,溶
体化処理温度及び保持時間、加熱速度)、結晶粒径及び
集合組織とともに表1に示す。
The obtained No. About 1-15 board materials,
The following bulge overhang test was performed. That is, the periphery of a 100 mm diameter plate test piece was fixed to a 50 mm diameter mold, and the test piece was lowered by applying hydrostatic pressure to one surface of the test piece. I asked. The amount of strain was measured by pressing a 3 mm square checkerboard stamp on the surface of the plate test piece and measuring the dimensional change. The results are shown in Table 1 together with the production method (final cold rolling rate, solution treatment temperature and holding time, heating rate), crystal grain size and texture.

【0048】[0048]

【表1】 [Table 1]

【0049】表1から、実施例はいずれも歪み量0.4
0mmを超えたが、比較例は0.38mm未満、あるい
は0.38mmを超えてもssマークが発生し(No.
14)、本発明の板材が比較例よりも優れた張出成形性
を示すことがわかる。
From Table 1, it can be seen that in each of the examples, the distortion amount was 0.4.
Although it exceeded 0 mm, the ss mark occurred in the comparative example even if it was less than 0.38 mm or more than 0.38 mm (No.
14) It can be seen that the sheet material of the present invention exhibits more excellent stretch formability than the comparative example.

【0050】実施例2:請求項2に係わる発明の好適実
施例 Al−5%Mg−0.1%Fe合金につき通常のDC鋳
造(半連続鋳造)で造塊し,幅400mm,厚さ150
mm,長さ3000mmのインゴットを得た。520℃
で48時間保持した後、460℃で4時間保持するとい
う二段均熱処理を施し,熱間圧延で5mm厚さの板とし
た。熱間圧延の開始温度は460℃で終了温度は330
℃であった。熱間圧延後、冷間圧延により、1mm厚さ
の板材とするが、冷間圧延途中に適宜中間焼鈍を施すこ
とにより、最終冷間圧延率を17%〜80%の範囲で調
整した。中間焼鈍を行なわない場合、冷間圧延で5mm
から1mmにまで一気に圧延することになり、最終冷間
圧延率は80%となる。
Embodiment 2: Preferred embodiment of the invention according to claim 2 An Al-5% Mg-0.1% Fe alloy is ingot-formed by ordinary DC casting (semi-continuous casting) to have a width of 400 mm and a thickness of 150 mm.
mm and a length of 3000 mm were obtained. 520 ° C
, And a two-stage soaking heat treatment at 460 ° C. for 4 hours, and a hot-rolled sheet having a thickness of 5 mm. The starting temperature of hot rolling is 460 ° C and the ending temperature is 330
° C. After the hot rolling, a sheet material having a thickness of 1 mm was formed by cold rolling, and the final cold rolling reduction was adjusted in the range of 17% to 80% by appropriately performing intermediate annealing during the cold rolling. If intermediate annealing is not performed, 5 mm by cold rolling
From 1 to 1 mm, and the final cold rolling reduction is 80%.

【0051】冷間圧延により得られた厚み1mmの板材
を、表2に示す温度及び保持時間で保持する溶体化処理
をして、表2に示すような結晶粒径及び集合組織を有す
るNo.21〜28の板材を得た。ここで、溶体化処理
温度までの加熱は、急速加熱(60000℃/h)と徐
加熱(300℃/h)の2種類で行なった。
The sheet material having a thickness of 1 mm obtained by cold rolling was subjected to a solution treatment for holding at a temperature and a holding time shown in Table 2 to obtain a sheet No. having a crystal grain size and texture as shown in Table 2. 21 to 28 plate materials were obtained. Here, heating to the solution treatment temperature was performed by two types of rapid heating (60000 ° C./h) and slow heating (300 ° C./h).

【0052】得られた板材試験片No.21〜28につ
いて、限界絞り比(LDR)を測定した。限界絞り比
(LDR)の測定は、種々の直径の円板試験片を準備
し、下記寸法のポンチで深絞り加工し、深絞り加工でき
ないときの試験片の直径とパンチの直径の比を限界絞り
比とした。限界絞り比が大きい程、深絞り成形性に優れ
ていることを示している。尚、測定試験に用いた油は、
固形潤滑材KS−3(神戸製鋼開発)であった。 LDR試験の測定条件 金型材質 SKD11 パンチ 直径50mm(平頭) ダイホルダー 直径52.8mm ダイ肩 R6.0mm BHF 0.5t パンチスピード 850mm/min
The obtained plate material test piece No. For 21 to 28, the limit drawing ratio (LDR) was measured. The limit drawing ratio (LDR) is measured by preparing disk specimens of various diameters, deep-drawing with a punch of the following dimensions, and limiting the ratio between the diameter of the specimen and the diameter of the punch when deep-drawing is not possible. The aperture ratio was used. The larger the limit drawing ratio, the better the deep drawing formability. The oil used in the measurement test was
Solid lubricant KS-3 (Kobe Steel Development). Measurement conditions of LDR test Die material SKD11 Punch diameter 50mm (flat head) Die holder diameter 52.8mm Die shoulder R6.0mm BHF 0.5t Punch speed 850mm / min

【0053】表2に、限界絞り比(LDR)を、最終冷
間圧延率,加熱速度,溶体化処理温度及び保持時間、結
晶粒径、並びに集合組織(CUBE方位の体積分率とS
方位の体積分率の比(S/Cube)及びGOSS方位
の体積分率)とともに示す。
Table 2 shows the critical draw ratio (LDR) of the final cold rolling reduction, heating rate, solution treatment temperature and holding time, crystal grain size, and texture (volume fraction of CUBE orientation and S
Along with the volume fraction of the azimuth (S / Cube) and the volume fraction of the GOSS azimuth.

【0054】[0054]

【表2】 [Table 2]

【0055】表2から、本発明の板材は比較例よりもL
DRが高く、深絞り成形性に優れていることがわかる。
From Table 2, it can be seen that the plate material of the present invention has a lower L than the comparative example.
It turns out that DR is high and it is excellent in deep drawing formability.

【0056】実施例3:請求項3に係わる発明の好適実
施例 Al−5%Mg−0.1%Fe合金につき通常のDC鋳
造(半連続鋳造)で造塊し,幅400mm,厚さ150
mm,長さ3000mmのインゴットを得た。480℃
で48時間保持する均熱処理を施し,熱間圧延で5mm
厚さの板とした。熱間圧延の開始温度は480℃で終了
温度は340℃であった。熱間圧延後、冷間圧延によ
り、1mm厚さの板材とするが、冷間圧延途中に適宜中
間焼鈍を施すことにより、最終冷間圧延率を17%〜8
0%の範囲で調整した。中間焼鈍を行なわない場合、冷
間圧延で5mmから1mmにまで一気に圧延することに
なり、最終冷間圧延率は80%となる。
Embodiment 3 Preferred Embodiment of the Invention According to Claim 3 An Al-5% Mg-0.1% Fe alloy is ingot-formed by ordinary DC casting (semi-continuous casting) to have a width of 400 mm and a thickness of 150 mm.
mm and a length of 3000 mm were obtained. 480 ° C
At 48 hours, and 5mm by hot rolling
It was a thick plate. The starting temperature of the hot rolling was 480 ° C and the ending temperature was 340 ° C. After the hot rolling, a cold-rolled sheet material having a thickness of 1 mm is obtained. Intermediate annealing is appropriately performed during the cold rolling to reduce the final cold-rolling rate to 17% to 8%.
The adjustment was made in the range of 0%. If the intermediate annealing is not performed, cold rolling is performed at once from 5 mm to 1 mm, and the final cold rolling reduction is 80%.

【0057】冷間圧延により得られた厚み1mmの板材
を、表3に示す温度及び保持時間で保持する溶体化処理
して、表3に示すような結晶粒径及び集合組織を有する
No.31〜37の板材を得た。ここで、溶体化処理温
度までの加熱は、急速加熱(60000℃/h)と徐加
熱(300℃/h)の2種類で行なった。
The sheet material having a thickness of 1 mm obtained by cold rolling was subjected to a solution treatment at a temperature and a holding time shown in Table 3 to obtain a sheet having a grain size and texture as shown in Table 3. 31 to 37 plate materials were obtained. Here, heating to the solution treatment temperature was performed by two types of rapid heating (60000 ° C./h) and slow heating (300 ° C./h).

【0058】No.31〜37の板材のから、図1及び
図2に示す形状を有する試験片を切り取り、図1に示す
試験片を用いて二軸引張試験を行い、図2に示す試験片
を用いて一軸引張試験を行なった。いずれも試験片が破
断したときのひずみ量を測定し、試験開始時に対するひ
ずみ割合を求めた。尚、図1に示す試験片を用いた試験
では、平面ひずみ領域における破断限界時のひずみ量、
図2に示す試験片を用いた試験では、1軸引張領域にお
ける破断限界時のひずみ量がわかる。いずれも数値が大
きい程、破断限界が高いことおを示す。
No. A test piece having the shape shown in FIGS. 1 and 2 was cut out from the plate material of Nos. 31 to 37, a biaxial tensile test was performed using the test piece shown in FIG. 1, and a uniaxial tensile test was performed using the test piece shown in FIG. The test was performed. In each case, the amount of strain when the test piece was broken was measured, and the strain ratio with respect to the start of the test was determined. Incidentally, in the test using the test piece shown in FIG. 1, the strain amount at the time of breaking limit in the plane strain region,
In the test using the test piece shown in FIG. 2, the strain amount at the breaking limit in the uniaxial tensile region can be found. In each case, the larger the numerical value, the higher the breaking limit.

【0059】測定結果を、製造方法(最終冷間圧延率,
溶体化処理温度及び保持時間、加熱速度)、結晶粒径及
び集合組織とともに表3に示す。
The measurement results were measured according to the production method (final cold rolling reduction,
The results are shown in Table 3 together with the solution treatment temperature and holding time, heating rate), crystal grain size and texture.

【0060】[0060]

【表3】 [Table 3]

【0061】表3から明かなように,平面ひずみ、1軸
引張のいずれも本発明の板材の方が比較例よりも高く
て、引張り領域から平面ひずみ領域における成形割れ限
界が高いことがわかる。
As is clear from Table 3, the sheet material of the present invention is higher in both plane strain and uniaxial tension than in the comparative example, and the forming crack limit in the range from the tensile region to the plane strain region is high.

【0062】実施例4:請求項4に係わる発明の好適実
施例 表4及び表5に示す組成を有する合金について、通常の
DC鋳造(半連続鋳造)で造塊し,幅400mm,厚さ
150mm,長さ3000mmのインゴットを得た。表
4及び表5に示す均質化熱処理を施し,熱間圧延で5m
m厚さの板とした。熱間圧延の開始温度は均質化熱処理
温度(二段均熱の場合は二段目の温度)で、熱間圧延の
終了温度は開始温度よりも約150℃低い温度であっ
た。その後冷間圧延で5mmから1mm厚さの板材にし
た。この際、途中で中間焼鈍を施すことにより、最終冷
間圧延率を50%及び17%に調整した。その後、53
0℃で溶体化処理し、表4及び表5に示すような結晶粒
径及び集合組織を有するNo.41〜73の板材を得
た。ここで、溶体化処理温度までの加熱は、いずれも急
速加熱(60000℃/h)で行なった。
Embodiment 4: Preferred embodiments of the invention according to claim 4 An alloy having the composition shown in Tables 4 and 5 was ingot-formed by ordinary DC casting (semi-continuous casting) to have a width of 400 mm and a thickness of 150 mm. 3,000 mm long ingot was obtained. Apply the homogenizing heat treatment shown in Tables 4 and 5 and hot roll 5m
m-thick plate. The starting temperature of the hot rolling was the homogenizing heat treatment temperature (the temperature of the second stage in the case of the two-stage soaking), and the ending temperature of the hot rolling was a temperature about 150 ° C. lower than the starting temperature. Thereafter, a plate having a thickness of 5 mm to 1 mm was formed by cold rolling. At this time, the final cold rolling reduction was adjusted to 50% and 17% by performing intermediate annealing on the way. Then 53
The solution was subjected to a solution treatment at 0 ° C., and had a crystal grain size and texture as shown in Tables 4 and 5. Plate materials 41 to 73 were obtained. Here, heating to the solution treatment temperature was performed by rapid heating (60000 ° C./h) in all cases.

【0063】得られたNo.41〜73の板材につい
て、実施例1と同様にしてバルジ張出し試験を行った。
測定結果を、製造方法(最終冷間圧延率,溶体化処理温
度及び保持時間、加熱速度)、結晶粒径及び集合組織と
ともに表4及び表5に示す。表4は実施例であり、表5
は比較例である。
The obtained No. A bulge overhang test was performed on the plates 41 to 73 in the same manner as in Example 1.
The measurement results are shown in Tables 4 and 5 together with the production method (final cold rolling reduction, solution treatment temperature and holding time, heating rate), crystal grain size and texture. Table 4 is an example and Table 5
Is a comparative example.

【0064】尚、表中の均質化熱処理条件におけるA:
Bの表示は、A℃でB時間保持したことを示し、さらに
「↓」の上段から下段の2段階で処理したことを示して
いる。以下、本明細書において同様である。
In the homogenization heat treatment conditions in the table, A:
The display of B indicates that the sample was held at A ° C. for B hours, and that the process was performed in two stages from the upper stage to the lower stage of “↓”. Hereinafter, the same applies in the present specification.

【0065】[0065]

【表4】 [Table 4]

【0066】[0066]

【表5】 [Table 5]

【0067】表5(比較例に該当)はいずれもバジル試
験割れ歪みの値がいずれも0.37以下であるのに対
し、表4(実施例に該当)に示すバジル試験割れ歪みの
値がいずれも0.38以上で優れていた。
Table 5 (corresponding to the comparative example) has a value of the basil test cracking strain of 0.37 or less in each case, whereas the value of the basil test cracking strain shown in Table 4 (corresponding to the example) is less than 0.37. All were excellent at 0.38 or more.

【0068】実施例5:請求項5に係わる発明の好適実
施例 表6、表7に示した合金について通常のDC鋳造(半連
続鋳造)で造塊し,幅400mm,厚さ150mm,長
さ3000mmのインゴットを得た。表6及び表7に示
す均質化熱処理を施し,熱間圧延で5mm厚さの板とし
た。熱間圧延の開始温度は均質化熱処理温度(二段均熱
の場合は二段目の温度)で、熱間圧延の終了温度はそれ
よりも約150℃低い温度であった。その後冷間圧延で
5mmから1mm厚さの板材にした。この際、途中で中
間焼鈍を施すことによりあるいは施さないことにより、
最終冷間圧延率を17%、50%、80%とした。中間
焼鈍を行なわない場合には、最終冷間圧延率が80%と
なる。
Embodiment 5: Preferred embodiment of the invention according to claim 5 The alloys shown in Tables 6 and 7 were ingot-formed by ordinary DC casting (semi-continuous casting) and 400 mm in width, 150 mm in thickness and 150 mm in length A 3000 mm ingot was obtained. The sheets were subjected to the homogenizing heat treatment shown in Tables 6 and 7, and were hot-rolled into 5 mm-thick plates. The starting temperature of the hot rolling was the homogenizing heat treatment temperature (the temperature of the second stage in the case of the two-stage soaking), and the ending temperature of the hot rolling was about 150 ° C. lower than that. Thereafter, a plate having a thickness of 5 mm to 1 mm was formed by cold rolling. At this time, by performing or not performing intermediate annealing in the middle,
The final cold rolling reduction was 17%, 50%, and 80%. When the intermediate annealing is not performed, the final cold rolling reduction is 80%.

【0069】その後、400℃又は530℃で保持する
ことによる溶体化処理し、表4及び表5に示すような結
晶粒径及び集合組織を有するNo.81〜113の板材
を得た。ここで、溶体化処理温度までの加熱は、急速加
熱(60000℃/h)又は徐加熱(300℃/h)の
2種類で行なった。
Thereafter, a solution treatment was performed by maintaining the temperature at 400 ° C. or 530 ° C., and the sample No. 1 having a crystal grain size and texture as shown in Tables 4 and 5 was obtained. Plate materials 81 to 113 were obtained. Here, heating to the solution treatment temperature was performed by two types of rapid heating (60000 ° C./h) or slow heating (300 ° C./h).

【0070】得られたNo.81〜113の板材につい
て、実施例2と同様にして限界絞り比(LDR)測定試
験を行った。測定結果を、組成、製造方法(最終冷間圧
延率,均質化熱処理条件、溶体化処理条件)、結晶粒径
及び集合組織とともに表6及び表7に示す。表6は実施
例に該当し、表7は比較例に該当する。
The obtained No. The limit drawing ratio (LDR) measurement test was performed on the plates 81 to 113 in the same manner as in Example 2. The measurement results are shown in Tables 6 and 7 together with the composition, the production method (final cold rolling ratio, homogenization heat treatment conditions, solution treatment conditions), crystal grain size, and texture. Table 6 corresponds to Examples and Table 7 corresponds to Comparative Examples.

【0071】[0071]

【表6】 [Table 6]

【0072】[0072]

【表7】 [Table 7]

【0073】本発明実施例に該当する場合(表6)は、
LDRが2.08以上と高かったのに対し、比較例(表
7)ではLDRが2.01以下と低いか、或いは2.0
2以上のLDRが得られてもオレンジピールが生じた
り、ストレッチャーストレインマーク(ssマーク)が
生じ、製品としては不良であった。
In the case of the embodiment of the present invention (Table 6),
The LDR was as high as 2.08 or more, whereas the LDR was as low as 2.01 or less in Comparative Example (Table 7) or 2.0% or less.
Even if two or more LDRs were obtained, orange peel was generated and stretcher strain marks (ss marks) were generated, resulting in a poor product.

【0074】実施例6:請求項6に係わる発明の好適実
施例 表8及び表9に示した合金について、通常のDC鋳造
(半連続鋳造)で造塊し,幅400mm,厚さ150m
m,長さ3000mmのインゴットを得た。表8及び表
9に示す均質化熱処理を施し,熱間圧延で5mm厚さの
板とした。熱間圧延の開始温度は均質化熱処理温度(二
段均熱の二段目の温度)で、熱間圧延の終了温度はそれ
よりも約150℃低い温度であった。その後冷間圧延で
5mmから1mm厚さの板材にした。この際、途中で中
間焼鈍を施すことにより、或いは中間焼鈍を施さないこ
とにより、最終冷間圧延率を17%、50%、80%
(中間焼鈍を施さない場合)に調整した。その後、53
0℃で溶体化処理し、表8及び表9に示すような結晶粒
径及び集合組織を有するNo.121〜153の板材を
得た。ここで、溶体化処理温度までの加熱は、急速加熱
(60000℃/h)又は徐加熱(300℃/h)の2
種類で行なった。
Embodiment 6: Preferred embodiment of the invention according to claim 6 The alloys shown in Tables 8 and 9 were ingot-formed by ordinary DC casting (semi-continuous casting) to have a width of 400 mm and a thickness of 150 m.
m, an ingot having a length of 3000 mm was obtained. A homogenizing heat treatment shown in Tables 8 and 9 was performed, and a 5 mm-thick plate was formed by hot rolling. The starting temperature of the hot rolling was the homogenizing heat treatment temperature (the temperature of the second stage of the two-stage soaking), and the ending temperature of the hot rolling was about 150 ° C. lower than that. Thereafter, a plate having a thickness of 5 mm to 1 mm was formed by cold rolling. At this time, by performing intermediate annealing or not performing intermediate annealing in the middle, the final cold rolling reduction is 17%, 50%, 80%.
(When no intermediate annealing is performed). Then 53
No. 3 having a crystal grain size and texture as shown in Tables 8 and 9 after solution treatment at 0 ° C. Sheet materials 121 to 153 were obtained. Here, the heating to the solution treatment temperature is performed by rapid heating (60000 ° C./h) or slow heating (300 ° C./h).
Made by kind.

【0075】得られたNo.121〜153の板材につ
いて、実施例3と同様にして、特殊形状試験片を用いた
引張り試験を行なった。結果を、組成、製造方法(最終
圧延率、均質化熱処理条件、加熱速度)、粒径及び組織
とともに、表8及び表9に示す。表8は本発明実施例に
該当する場合であり、表9は本発明の比較例に該当する
場合である。
The obtained No. A tensile test using a specially shaped test piece was performed on the plates 121 to 153 in the same manner as in Example 3. The results are shown in Tables 8 and 9 together with the composition, production method (final rolling reduction, homogenizing heat treatment conditions, heating rate), particle size and structure. Table 8 shows a case corresponding to the example of the present invention, and Table 9 shows a case corresponding to the comparative example of the present invention.

【0076】[0076]

【表8】 [Table 8]

【0077】[0077]

【表9】 [Table 9]

【0078】実施例(表8)は、1軸引張時の破断限界
は0.35以上で、平面ひずみの破断限界は0.30以
上であった。これに対して、比較例(表9)では、1軸
引張時の破断限界は0.35未満で、平面ひずみの破断
限界は0.30未満あり、しかもオレンジピールの発生
が認められるものもあった。
In Examples (Table 8), the breaking limit under uniaxial tension was 0.35 or more, and the breaking limit of plane strain was 0.30 or more. On the other hand, in Comparative Example (Table 9), the breaking limit under uniaxial tension is less than 0.35, the breaking limit of plane strain is less than 0.30, and in some cases, orange peel is observed. Was.

【0079】[0079]

【発明の効果】本発明のAl−Mg系合金板は、プレス
成形性、具体的には張出し成形性又は深絞り成形性に優
れ、あるいは引張り領域から平面ひずみ領域における成
形割れ限界が高くなるように、集合組織、結晶粒径、添
加元素を適切に制御されている。従って、本発明のAl
−Mg系合金板は、自動車ボディパネル等に用いられる
アルミニウム合金板として好適である。
The Al-Mg based alloy sheet of the present invention is excellent in press formability, specifically, stretch formability or deep draw formability, or has a high forming crack limit from a tensile region to a plane strain region. In addition, the texture, the crystal grain size, and the added elements are appropriately controlled. Therefore, the Al of the present invention
-Mg-based alloy plates are suitable as aluminum alloy plates used for automobile body panels and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】平面ひずみ領域における引張試験に用いられる
試験片(広幅引張試験片)の形状を示す平面図である。
FIG. 1 is a plan view showing the shape of a test piece (wide tensile test piece) used for a tensile test in a plane strain region.

【図2】一軸引張領域における引張試験に用いられる試
験片の形状を示す平面図である。
FIG. 2 is a plan view showing a shape of a test piece used for a tensile test in a uniaxial tensile region.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 恭志 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 林田 康宏 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 服部 重夫 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 松井 邦昭 栃木県真岡市鬼怒ケ丘15番地 株式会社神 戸製鋼所真岡製造所内 (72)発明者 橋本 成一 東京都千代田区丸の内1丁目8番2号 株 式会社神戸製鋼所東京本社内 (72)発明者 フレデリック バーラット アメリカ合衆国、15069−0001 ペンシル バニア州、アルコアセンター、テクニカル ドライブ 100、アルミナム カンパニー オブ アメリカ、アルコアテクニカルセ ンター内 (72)発明者 ジョン シー ブレム アメリカ合衆国、15069−0001 ペンシル バニア州、アルコアセンター、テクニカル ドライブ 100、アルミナム カンパニー オブ アメリカ、アルコアテクニカルセ ンター内 (72)発明者 ダニエル ジェイ リージ アメリカ合衆国、15069−0001 ペンシル バニア州、アルコアセンター、テクニカル ドライブ 100、アルミナム カンパニー オブ アメリカ、アルコアテクニカルセ ンター内 (72)発明者 シャウン ジェイ マーサ アメリカ合衆国、15069−0001 ペンシル バニア州、アルコアセンター、テクニカル ドライブ 100、アルミナム カンパニー オブ アメリカ、アルコアテクニカルセ ンター内 (72)発明者 クワンソー チャン 大韓民国、ソウル市、クワナック区、シン リム−ドン 56−1、ソウル国立大学、工 学部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor, Koji Maeda 1-5-5 Takatsukadai, Nishi-ku, Kobe City Inside Kobe Research Institute, Kobe Steel Ltd. (72) Inventor, Yasuhiro Hayashida 1 Takatsukadai, Nishi-ku, Kobe-shi Kobe Steel Research Institute Kobe Research Institute Kobe Steel Co., Ltd. (72) Inventor Shigeo Hattori 1-5-5 Takatsukadai, Nishi-ku, Kobe City Kobe Steel Research Institute Kobe Research Institute (72) Inventor Kuniaki Matsui 15 Kinuigaoka, Moka City, Tochigi Prefecture Kobe Steel, Ltd.Moka Works (72) Inventor Seiichi Hashimoto 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Kobe Steel Tokyo Main Office (72) Inventor Frederick Barrat Technical Drive, Alcoa Center, Pennsylvania, 15069-0001 USA 1 00, Aluminum Company of America, Alcoa Technical Center (72) Inventor John Seablem United States, 15069-0001 Pennsylvania, Alcoa Center, Technical Drive 100, Aluminum Company of America, Alcoa Technical Center (72) Invention Daniel Jay Lage United States, 15069-0001 Pennsylvania, Alcoa Center, Technical Drive 100, Aluminum Company of America, Alcoa Technical Center (72) Inventor Shaun Jay Martha United States of America, 15069-0001 Pennsylvania, Alcoa Center, Technical Drive 100, Aluminum Company of America, Alcoa Technical Center (72) Inventor Kwan Seo Chan South Korea , Shin rim - Don 56-1, Seoul National University, in the Faculty of Engineering

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Al−Mg系合金板であって、CUBE
方位の体積分率が5%以上20%以下、GOSS方位の
体積分率が1%以上5%以下、BRASS方位、S方
位、COPPER方位の体積分率が各々1%以上10%
以下の集合組織を有し、且つ結晶粒径が20〜70μm
の範囲にあることを特徴とするプレス成形性に優れるA
l−Mg系合金板。
1. An Al-Mg based alloy plate, comprising CUBE
Orientation volume fraction of 5% or more and 20% or less, GOSS orientation volume fraction of 1% or more and 5% or less, BRASS orientation, S orientation, and COPER orientation volume fraction of 1% or more and 10%, respectively
Has the following texture and a crystal grain size of 20 to 70 μm
A excellent in press formability characterized by being in the range of A
l-Mg based alloy plate.
【請求項2】 Al−Mg系合金板であって、CUBE
方位の体積分率とS方位の体積分率の比(S/Cub
e)が1以上、GOSS方位が10%以下の集合組織を
有し、且つ結晶粒径が20〜100μmの範囲にあるこ
とを特徴とするプレス成形性に優れるAl−Mg系合金
板。
2. An Al—Mg alloy plate, comprising CUBE.
The ratio of the volume fraction in the azimuth to the volume fraction in the S azimuth (S / Cub
e) An Al-Mg based alloy sheet excellent in press formability, characterized by having a texture of 1 or more, a GOSS orientation of 10% or less, and a crystal grain size in a range of 20 to 100 µm.
【請求項3】 Al−Mg系合金板であって、CUBE
方位の体積分率が30%以上50%以下、BRASS方
位の体積分率が10%以上20%以下の集合組織を有
し、且つ結晶粒径が50〜100μmの範囲にあること
を特徴とするプレス成形性に優れるAl−Mg系合金
板。
3. An Al—Mg alloy plate, comprising CUBE.
It has a texture in which the volume fraction in the azimuth is 30% or more and 50% or less, the volume fraction in the BRASS orientation is 10% or more and 20% or less, and the crystal grain size is in the range of 50 to 100 μm. Al-Mg based alloy sheet with excellent press formability.
【請求項4】 請求項1に記載のAl−Mg系合金板で
あって、2wt%≦Mg≦6wt%のMgを含有し、F
e、Mn、Cr、Zr、及びCuの内から選ばれる1種
以上を総和で0.03wt%以上(Cuが選択される場
合はCuとして0.2wt%以上)含有し、且つ個々の
元素の含有率の上限がFe≦0.2wt%、Mn≦0.
6wt%、Cr≦0.3wt%、Zr≦0.3wt%、
Cu≦1.0%であるプレス成形性に優れるAl−Mg
系合金板。
4. The Al—Mg based alloy sheet according to claim 1, which contains 2 wt% ≦ Mg ≦ 6 wt% of Mg,
e, Mn, Cr, Zr, and at least one selected from Cu and Cu in an amount of 0.03 wt% or more (when Cu is selected, 0.2 wt% or more as Cu). The upper limit of the content is Fe ≦ 0.2 wt%, Mn ≦ 0.
6 wt%, Cr ≦ 0.3 wt%, Zr ≦ 0.3 wt%,
Al-Mg excellent in press formability with Cu ≦ 1.0%
Alloy plate.
【請求項5】 請求項2に記載のAl−Mg系合金板で
あって、2wt%≦Mg≦6wt%のMgを含有し、F
e、Mn、Cr、Zr、及びCuの内から選ばれる1種
以上を総和で0.03wt%以上(Cuが選択される場
合はCuとして0.2wt%以上)含有し、且つ個々の
元素の含有率の上限がFe≦0.2wt%、Mn≦0.
6wt%、Cr≦0.3wt%、Zr≦0.3wt%、
Cu≦1.0%であるプレス成形性に優れるAl−Mg
系合金板。
5. The Al—Mg-based alloy sheet according to claim 2, wherein 2% by weight ≦ Mg ≦ 6% by weight of Mg,
e, Mn, Cr, Zr, and at least one selected from Cu and Cu in an amount of 0.03 wt% or more (when Cu is selected, 0.2 wt% or more as Cu). The upper limit of the content is Fe ≦ 0.2 wt%, Mn ≦ 0.
6 wt%, Cr ≦ 0.3 wt%, Zr ≦ 0.3 wt%,
Al-Mg excellent in press formability with Cu ≦ 1.0%
Alloy plate.
【請求項6】 請求項3に記載のAl−Mg系合金板で
あって、2wt%≦Mg≦6wt%のMgを含有し、F
e、Mn、Cr、Zr、及びCuの内から選ばれる1種
以上を総和で0.03wt%以上(Cuが選択される場
合はCuとして0.2wt%以上)含有し、且つ個々の
元素の含有率の上限がFe≦0.2wt%、Mn≦0.
6wt%、Cr≦0.3wt%、Zr≦0.3wt%、
Cu≦1.0%であるプレス成形性に優れたAl−Mg
系合金板。
6. The Al—Mg based alloy sheet according to claim 3, which contains 2 wt% ≦ Mg ≦ 6 wt% of Mg,
e, Mn, Cr, Zr, and at least one selected from Cu and Cu in an amount of 0.03 wt% or more (when Cu is selected, 0.2 wt% or more as Cu). The upper limit of the content is Fe ≦ 0.2 wt%, Mn ≦ 0.
6 wt%, Cr ≦ 0.3 wt%, Zr ≦ 0.3 wt%,
Al-Mg excellent in press formability with Cu ≦ 1.0%
Alloy plate.
JP23955099A 1998-09-02 1999-08-26 Al-Mg ALLOY SHEET EXCELLENT IN PRESS FORMABILITY Pending JP2000080431A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9886098P 1998-09-02 1998-09-02
US60/098860 1998-09-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2006116990A Division JP4339869B2 (en) 1998-09-02 2006-04-20 Al-Mg alloy plate with excellent press formability
JP2006116991A Division JP4326009B2 (en) 1998-09-02 2006-04-20 Al-Mg alloy plate with excellent press formability

Publications (1)

Publication Number Publication Date
JP2000080431A true JP2000080431A (en) 2000-03-21

Family

ID=22271292

Family Applications (3)

Application Number Title Priority Date Filing Date
JP23955099A Pending JP2000080431A (en) 1998-09-02 1999-08-26 Al-Mg ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JP2006116991A Expired - Lifetime JP4326009B2 (en) 1998-09-02 2006-04-20 Al-Mg alloy plate with excellent press formability
JP2006116990A Expired - Fee Related JP4339869B2 (en) 1998-09-02 2006-04-20 Al-Mg alloy plate with excellent press formability

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2006116991A Expired - Lifetime JP4326009B2 (en) 1998-09-02 2006-04-20 Al-Mg alloy plate with excellent press formability
JP2006116990A Expired - Fee Related JP4339869B2 (en) 1998-09-02 2006-04-20 Al-Mg alloy plate with excellent press formability

Country Status (1)

Country Link
JP (3) JP2000080431A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064744A (en) * 1999-08-30 2001-03-13 Nippon Light Metal Co Ltd High-strength aluminum alloy sheet suitable for spinning and method for producing the same
JP2006200018A (en) * 2005-01-21 2006-08-03 Kobe Steel Ltd Aluminum alloy sheet for forming
JP2006291298A (en) * 2005-04-12 2006-10-26 Ykk Corp Aluminum alloy and slide fastener using this alloy
WO2009045645A1 (en) * 2007-10-01 2009-04-09 Alcoa Inc. Recrystallized aluminum alloys with brass texture and methods of making the same
JP2011102415A (en) * 2009-11-10 2011-05-26 Kobe Steel Ltd Aluminum alloy sheet for magnetic disk, and method for producing the same
WO2016002489A1 (en) * 2014-06-30 2016-01-07 日本軽金属株式会社 Aluminum alloy sheet with excellent press formability and shape fixability and process for producing same
JP2016056444A (en) * 2014-09-10 2016-04-21 株式会社神戸製鋼所 Aluminum alloy sheet
JP2016055333A (en) * 2014-09-11 2016-04-21 第一高周波工業株式会社 Method of manufacturing flexure metallic bar material
WO2017065137A1 (en) * 2015-10-14 2017-04-20 株式会社神戸製鋼所 Aluminum alloy plate for can end
JP2020521885A (en) * 2017-06-06 2020-07-27 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy article with less texture and method of making the same
CN112877621A (en) * 2021-01-14 2021-06-01 西北工业大学 Cold bulging method for regulating residual stress of aluminum alloy ring piece and improving mechanical property

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111002A1 (en) * 2006-03-29 2007-10-04 The Furukawa Electric Co., Ltd. High-formability aluminum material
JP2006322064A (en) * 2005-04-19 2006-11-30 Furukawa Electric Co Ltd:The High moldability aluminum material
BR112014001471B1 (en) 2011-07-25 2022-05-24 Nippon Light Metal Company, Ltd. Aluminum alloy sheet and method of manufacturing same
JP5870791B2 (en) 2012-03-21 2016-03-01 日本軽金属株式会社 Aluminum alloy plate excellent in press formability and shape freezing property and manufacturing method thereof
JP6170386B2 (en) * 2013-09-10 2017-07-26 株式会社アマダホールディングス Method of bending metal plate material and laser processing apparatus used in the bending method
US10221471B2 (en) 2014-04-09 2019-03-05 Nippon Light Metal Company, Ltd. High strength aluminum alloy sheet excellent in bendability and shape freezability and method of production of same
CN108486510B (en) * 2018-04-24 2019-06-11 东莞理工学院 A kind of quality monitoring method of Al-Cu-MgT3 aluminum alloy processing process for aviation skin
US20200024713A1 (en) 2018-07-23 2020-01-23 Novelis Inc. Highly formable, recycled aluminum alloys and methods of making the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064744A (en) * 1999-08-30 2001-03-13 Nippon Light Metal Co Ltd High-strength aluminum alloy sheet suitable for spinning and method for producing the same
JP2006200018A (en) * 2005-01-21 2006-08-03 Kobe Steel Ltd Aluminum alloy sheet for forming
JP4550598B2 (en) * 2005-01-21 2010-09-22 株式会社神戸製鋼所 Aluminum alloy sheet for forming
JP2006291298A (en) * 2005-04-12 2006-10-26 Ykk Corp Aluminum alloy and slide fastener using this alloy
US10161020B2 (en) 2007-10-01 2018-12-25 Arconic Inc. Recrystallized aluminum alloys with brass texture and methods of making the same
WO2009045645A1 (en) * 2007-10-01 2009-04-09 Alcoa Inc. Recrystallized aluminum alloys with brass texture and methods of making the same
JP2011102415A (en) * 2009-11-10 2011-05-26 Kobe Steel Ltd Aluminum alloy sheet for magnetic disk, and method for producing the same
WO2016002489A1 (en) * 2014-06-30 2016-01-07 日本軽金属株式会社 Aluminum alloy sheet with excellent press formability and shape fixability and process for producing same
JPWO2016002489A1 (en) * 2014-06-30 2017-04-27 日本軽金属株式会社 Aluminum alloy plate excellent in press formability and shape freezing property and method for producing the same
JP2016056444A (en) * 2014-09-10 2016-04-21 株式会社神戸製鋼所 Aluminum alloy sheet
JP2016055333A (en) * 2014-09-11 2016-04-21 第一高周波工業株式会社 Method of manufacturing flexure metallic bar material
WO2017065137A1 (en) * 2015-10-14 2017-04-20 株式会社神戸製鋼所 Aluminum alloy plate for can end
JP2020521885A (en) * 2017-06-06 2020-07-27 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy article with less texture and method of making the same
JP7009514B2 (en) 2017-06-06 2022-02-10 ノベリス・インコーポレイテッド Aluminum alloy articles with less texture and their manufacturing methods
CN112877621A (en) * 2021-01-14 2021-06-01 西北工业大学 Cold bulging method for regulating residual stress of aluminum alloy ring piece and improving mechanical property

Also Published As

Publication number Publication date
JP4339869B2 (en) 2009-10-07
JP4326009B2 (en) 2009-09-02
JP2006219763A (en) 2006-08-24
JP2006219762A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4326009B2 (en) Al-Mg alloy plate with excellent press formability
EP0097319A2 (en) A cold-rolled aluminium-alloy sheet for forming and process for producing the same
JP4057199B2 (en) Al-Mg-Si alloy plate
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP2008223075A (en) Hot rolling omission type aluminum alloy sheet and its manufacturing method
CA2588046C (en) Aluminum alloy sheet and method for manufacturing the same
US5516374A (en) Method of manufacturing an aluminum alloy sheet for body panel and the alloy sheet manufactured thereby
JP2008190021A (en) Al-Mg BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME
JP2004250738A (en) Al-Mg BASED ALLOY SHEET
US6117252A (en) Al--Mg based alloy sheets with good press formability
JPS6339655B2 (en)
JP2012237035A (en) HIGHLY FORMABLE Al-Mg-BASED ALLOY PLATE AND METHOD OF MANUFACTURING THE SAME
JP3838504B2 (en) Aluminum alloy plate for panel forming and manufacturing method thereof
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP2008202134A (en) Aluminum alloy hot rolled sheet having excellent press formability
JP2003321754A (en) Method for manufacturing aluminum alloy sheet with excellent bendability
EP0681034A1 (en) A method of manufacturing an aluminum alloy sheet for body panel and the alloy sheet manufactured thereby
JP4022497B2 (en) Method for manufacturing aluminum alloy panel
JP2001262265A (en) Hot rolling stock of high formability aluminum alloy sheet
US6221182B1 (en) Al-Mg based alloy sheets with good press formability
JP4591986B2 (en) Aluminum alloy sheet for transportation-related structures with excellent paintability and press formability
JP2003247040A (en) Aluminum alloy sheet having excellent flat hem workability and production method thereof
JP3983454B2 (en) Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method
JP4588338B2 (en) Aluminum alloy sheet with excellent bending workability and press formability
JP2003321723A (en) Aluminum alloy plate with excellent bending workability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040603

A521 Written amendment

Effective date: 20040804

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20060131

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060420

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Effective date: 20060919

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070220

Free format text: JAPANESE INTERMEDIATE CODE: A02