[go: up one dir, main page]

JP2008202134A - Aluminum alloy hot rolled sheet having excellent press formability - Google Patents

Aluminum alloy hot rolled sheet having excellent press formability Download PDF

Info

Publication number
JP2008202134A
JP2008202134A JP2007042589A JP2007042589A JP2008202134A JP 2008202134 A JP2008202134 A JP 2008202134A JP 2007042589 A JP2007042589 A JP 2007042589A JP 2007042589 A JP2007042589 A JP 2007042589A JP 2008202134 A JP2008202134 A JP 2008202134A
Authority
JP
Japan
Prior art keywords
hot
aluminum alloy
rolled sheet
rolled
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007042589A
Other languages
Japanese (ja)
Inventor
Takeo Sakurai
健夫 櫻井
Kazuhide Matsumoto
和秀 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007042589A priority Critical patent/JP2008202134A/en
Publication of JP2008202134A publication Critical patent/JP2008202134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-heat refined Al-Mg based aluminum alloy hot rolled sheet capable of press forming as hot-rolled in a state where annealing is not performed after hot rolling. <P>SOLUTION: The structure of an aluminum alloy hot rolled sheet composed of an Al-Mg based aluminum alloy having a specific component composition and being as hot-rolled where annealing is not performed after hot rolling is made into a recrystallized grain structure where the average crystal grain diameter is ≤25 μm, and further, the average volume fraction in the Cube orientation is ≤10%, so as to improve its press formability. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車パネル用に好適な、プレス成形性に優れたアルミニウム合金熱延板に関するものである。本発明で言うアルミニウム合金熱延板とは、熱間圧延された板、熱間圧延上がりの板であって、熱延後に焼鈍されていない熱延上がりままの状態である(非調質な)アルミニウム合金板を言う。以下、アルミニウムをAlとも言う。   The present invention relates to an aluminum alloy hot-rolled sheet suitable for automobile panels and excellent in press formability. The aluminum alloy hot-rolled sheet referred to in the present invention is a hot-rolled sheet or a hot-rolled sheet, and is in a state of being hot-rolled and not annealed after hot rolling (non-tempered). An aluminum alloy plate. Hereinafter, aluminum is also referred to as Al.

近年、地球環境などへの配慮の観点から、自動車等の車両の軽量化の社会的要求はますます高まってきている。かかる要求に答えるべく、自動車パネル、特にフード、ドア、ルーフなどの大型ボディパネル(アウタパネル、インナパネル)の材料として、鋼板等の鉄鋼材料にかえてアルミニウム材料の適用が検討されている。   In recent years, from the viewpoint of consideration for the global environment, social demands for weight reduction of vehicles such as automobiles are increasing. In order to meet such demands, the application of aluminum materials in place of steel materials such as steel plates is being studied as materials for automobile panels, particularly large body panels (outer panels, inner panels) such as hoods, doors, and roofs.

プレス成形性に優れるアルミニウム合金板としては、従来からAl−Mg系のJIS5052合金やJIS5182合金等の5000系アルミニウム合金材料が使用されている。しかし、強度的に鋼板と同程度であるアルミニウム材料であっても、一般に深絞り成形、張出し成形等のプレス成形性が劣っているため、プレス成形性での改善が強く望まれている。   As an aluminum alloy plate excellent in press formability, 5000 series aluminum alloy materials such as Al-Mg series JIS5052 alloy and JIS5182 alloy have been used conventionally. However, even an aluminum material having a strength comparable to that of a steel plate is generally inferior in press formability such as deep drawing and stretch forming, and therefore, improvement in press formability is strongly desired.

これに対して、5000系アルミニウム合金においても、従来から、成分系の検討や製造条件の最適化検討によって、成形性を向上させることが提案されている。また、最近では、5000系アルミニウム合金冷延板の集合組織を制御することにより成形性を向上させることが提案されている。   On the other hand, it has been proposed to improve the formability of the 5000 series aluminum alloy by examining the component system and optimizing the production conditions. Recently, it has been proposed to improve formability by controlling the texture of a 5000 series aluminum alloy cold-rolled sheet.

例えば、特許文献1には、深絞り成形用アルミニウム合金として、板面の(110)方位集積度が10%以上で、かつ(110)方位と(112)方位の集積度比が1.5以上であり、結晶粒径が35〜80μmの範囲にあるAl−Mg系合金板が開示されている。   For example, in Patent Document 1, as an aluminum alloy for deep drawing, the (110) orientation integration degree of the plate surface is 10% or more, and the integration degree ratio between the (110) orientation and the (112) orientation is 1.5 or more. An Al—Mg alloy plate having a crystal grain size in the range of 35 to 80 μm is disclosed.

また、これに対して、5000系アルミニウム合金冷延板の集合組織を、より深絞り成形性に優れた集合組織とするために、特許文献2〜4なども提案されている。これらは、CUBE方位、S方位、GOSS方位、BRASS方位などを一定の割合に制御した集合組織とし、かつ結晶粒径も20〜100μmなどの一定の範囲に制御することを特徴としている。   On the other hand, Patent Documents 2 to 4 and the like have also been proposed in order to make the texture of the 5000 series aluminum alloy cold-rolled sheet a texture that is more excellent in deep drawability. These are characterized by having a texture in which the CUBE orientation, S orientation, GOSS orientation, BRASS orientation, etc. are controlled at a certain ratio, and the crystal grain size is also controlled within a certain range such as 20-100 μm.

確かに、5000系アルミニウム合金冷延板の集合組織を制御することによって、深絞り成形、張出し成形等のプレス成形性は向上する。   Certainly, press formability such as deep drawing and stretch forming is improved by controlling the texture of the 5000 series aluminum alloy cold rolled sheet.

ただ、これら5000系アルミニウム合金冷延板は、通常は、溶解鋳造されたスラブを均質化熱処理後に熱間圧延した熱延板を、更に冷間圧延して薄肉化して製造される。   However, these 5000 series aluminum alloy cold-rolled sheets are usually manufactured by further cold-rolling and thinning hot-rolled sheets obtained by hot rolling a melt-cast slab after homogenization heat treatment.

しかし、5000系アルミニウム合金は加工硬化する性質を有する。このために、冷間圧延によって加工硬化した5000系アルミニウム合金冷延板のプレス成形性を向上させるためには、材料強度を最も柔らかい状態にするために、冷間圧延後の仕上げ焼鈍(焼きなまし)が欠かせなかった。これは、前記した各従来技術において、集合組織や成分組成などのいずれの冶金的な制御を行ってプレス成形性を向上させる場合でも同様であり、冷間圧延後の仕上げ焼鈍(焼きなまし)が必須であった。   However, 5000 series aluminum alloys have a work hardening property. For this reason, in order to improve the press formability of a 5000 series aluminum alloy cold rolled sheet work-hardened by cold rolling, finish annealing (annealing) after cold rolling is performed in order to obtain the softest material strength. Was indispensable. This is the same in any of the above-described conventional techniques even when the metallurgical control of the texture and composition is performed to improve the press formability, and finish annealing (annealing) after cold rolling is essential. Met.

また、プレス成形性向上のために、前記したような5000系アルミニウム合金冷延板の結晶粒径の微細化(粗大化防止)を行おうとすると、冷間圧延率(加工率)を75%以上と高くする必要がある。このため、冷間圧延率をかせぐために、冷間圧延率材料である熱延板の板厚を厚くするとともに、冷間圧延のパス数(圧延回数)を増やす必要がある。したがって、前記したような5000系アルミニウム合金冷延板の結晶粒径の微細化(粗大化防止)を行う場合には、生産性が低下する。更に、冷間圧延率(加工率)を高くすると、前記した加工硬化も大きくなり、冷間圧延後の連続式焼鈍炉あるいはバッチ式焼鈍炉による仕上げ焼鈍(焼きなまし)がより欠かせないものとなる。   Further, in order to improve the press formability, when trying to refine the crystal grain size (preventing coarsening) of the 5000 series aluminum alloy cold rolled sheet as described above, the cold rolling rate (working rate) is 75% or more. It needs to be high. For this reason, in order to earn a cold rolling rate, it is necessary to increase the thickness of the hot-rolled sheet, which is a material of the cold rolling rate, and to increase the number of cold rolling passes (the number of rolling). Accordingly, when the crystal grain size of the 5000 series aluminum alloy cold-rolled sheet as described above is refined (preventing coarsening), productivity is lowered. Further, when the cold rolling rate (working rate) is increased, the work hardening described above is also increased, and the finish annealing (annealing) by the continuous annealing furnace or the batch annealing furnace after the cold rolling becomes more indispensable. .

このため、プレス成形性を向上させた5000系アルミニウム合金冷延板の製造コストはどうしても高くならざるを得ない。また、製造効率も低下せざるを得ない問題を有していた。   For this reason, the manufacturing cost of a 5000 series aluminum alloy cold-rolled sheet with improved press formability inevitably increases. In addition, the production efficiency is inevitably lowered.

これに対して、自動車パネル用素材板として、プレス成形用の5000系アルミニウム合金板を、上記冷延板の状態ではなく、熱延板(熱延上がりの板)の状態で供給できれば、製造コストや製造効率を大きく向上できる。   On the other hand, if a 5000 series aluminum alloy plate for press forming can be supplied in the state of a hot-rolled plate (hot-rolled plate) instead of the cold-rolled plate as a material plate for an automobile panel, the manufacturing cost will be increased. And manufacturing efficiency can be greatly improved.

この点、従来から、5000系アルミニウム合金板として、特許文献5では、曲げ部位を有するプレス構造部品用のアルミニウム合金熱延板として、0.2%耐力が110〜135MPa、引張り強さが220〜250MPaの範囲にあることが提案されている。また、特許文献6では、2.5mm以上の板厚を有する、構造部材用のアルミニウム合金板として、0.2%耐力とともに、圧延方向に伸長させた結晶粒とすることが提案されている。
特開平5−295476号公報 特開2000−80431号公報 特開2006−219762号公報 特開2006−219763号公報 特開2002−20830号公報 特開2003−34852号公報
In this regard, conventionally, as a 5000 series aluminum alloy plate, in Patent Document 5, as an aluminum alloy hot rolled plate for a press structure part having a bent portion, 0.2% proof stress is 110 to 135 MPa, and tensile strength is 220 to 220. It has been proposed to be in the range of 250 MPa. Moreover, in patent document 6, it is proposed to use the crystal grain extended in the rolling direction with 0.2% yield strength as an aluminum alloy plate for structural members having a plate thickness of 2.5 mm or more.
JP-A-5-295476 JP 2000-80431 A JP 2006-219762 A JP 2006-219663 A JP 2002-20830 A JP 2003-34852 A

しかし、特許文献5では、プレス構造部品としての曲げ性を改善するために、冷間圧延と同様に、熱間圧延後に、5000系アルミニウム合金熱延板の再結晶焼鈍 (最終焼鈍) を行い、上記0.2%耐力および引張り強さの範囲に材料を柔らかくしている。   However, in patent document 5, in order to improve the bendability as a press structure part, the recrystallization annealing (final annealing) of 5000 series aluminum alloy hot-rolled sheet is performed after hot rolling like cold rolling, The material is softened within the range of 0.2% proof stress and tensile strength.

これは、特許文献6でも同様であって、熱延板をO 調質処理 (350 ℃×2 時間の焼鈍処理) を行って軟質化させている。このように、熱延板と言えども、プレス成形性向上のために、熱間圧延後に再結晶焼鈍を行い、軟質化することが、当業者にとっての常識であった。しかし、冷延板と同様に、これら熱延板にも再結晶焼鈍を行う場合には、熱延板として、せっかく冷延や焼鈍の工程を省略したにもかかわらず、そのコストダウンや効率向上の効果が大きく損なわれる。   This is the same in Patent Document 6, and the hot-rolled sheet is softened by performing O refining treatment (350 ° C. × 2 hour annealing treatment). Thus, even for hot-rolled sheets, it has been common knowledge for those skilled in the art to resoften and soften after hot rolling in order to improve press formability. However, as with cold-rolled sheets, when recrystallization annealing is performed on these hot-rolled sheets, the cost reduction and efficiency improvement are achieved even though the process of cold-rolling and annealing is omitted as a hot-rolled sheet. The effect of is greatly impaired.

本発明はこのような課題に鑑み、その目的は、プレス成形性を向上させた、熱延後に焼鈍されていない熱延上がりままの状態である、非調質な5000系アルミニウム合金熱延板、言い換えると、熱延後に焼鈍されていない熱延上がりままの状態でプレス成形できる、非調質5000系アルミニウム合金熱延板を提供することである。   In view of such problems, the object of the present invention is to improve press formability, a non-tempered 5000 series aluminum alloy hot-rolled sheet that is in a state of being hot-rolled and not annealed after hot rolling, In other words, it is to provide a non-tempered 5000 series aluminum alloy hot-rolled sheet that can be press-formed without being annealed after hot rolling.

この目的を達成するために、本発明プレス成形性に優れたアルミニウム合金熱延板の要旨は、Mg:2.0〜6.0質量%を含み、更に、Fe、Mn、Cr、Zr及びCuの内から選ばれる一種また二種以上を合計で0.03〜2.5質量%含み、残部がAlおよび不可避的不純物からなり、熱延後に焼鈍されていない熱延上がりままの状態であるアルミニウム合金熱延板であって、平均結晶粒径が25μm以下であるとともに、Cube方位の平均体積分率が10%以下である再結晶粒組織を有することである。   In order to achieve this object, the gist of the aluminum alloy hot-rolled sheet excellent in press formability of the present invention includes Mg: 2.0 to 6.0% by mass, and further includes Fe, Mn, Cr, Zr and Cu. Aluminum containing 0.03 to 2.5% by mass in total of one or more selected from the group consisting of Al and unavoidable impurities, and being in an as-rolled state that has not been annealed after hot rolling The alloy hot-rolled plate has an average crystal grain size of 25 μm or less and a recrystallized grain structure having an average volume fraction of Cube orientation of 10% or less.

ここで、前記アルミニウム合金熱延板は、溶解鋳造されたスラブを450〜550℃で均質化熱処理後に、最終ロールにおける圧延率を30%以上とするとともに、巻き取り温度を300℃以上とした熱間圧延されたものであることが好ましい。また、前記アルミニウム合金熱延板の板厚が1.6〜2.5mmであることが好ましい。更に、前記アルミニウム合金熱延板の用途が自動車パネル用であることが好ましい。   Here, the aluminum alloy hot-rolled plate is a heat obtained by homogenizing and heat-treating the melt-cast slab at 450 to 550 ° C., setting the rolling rate in the final roll to 30% or more and setting the winding temperature to 300 ° C. or more. It is preferable that the material is hot rolled. Moreover, it is preferable that the plate | board thickness of the said aluminum alloy hot-rolled sheet is 1.6-2.5 mm. Furthermore, it is preferable that the use of the aluminum alloy hot-rolled sheet is for an automobile panel.

本発明では、特定組成の5000系アルミニウム合金の熱延板を、熱延後に再結晶焼鈍を含めた調質処理が施されていない、熱延上がりままの状態の(非調質な)アルミニウム合金熱延板の組織として、プレス成形性を向上させる。   In the present invention, a hot rolled sheet of a 5000 series aluminum alloy having a specific composition is not subjected to a tempering treatment including recrystallization annealing after hot rolling, and is a (non-tempered) aluminum alloy in a state of being hot-rolled. As a hot rolled sheet structure, press formability is improved.

このために、本発明では、熱延上がりままの状態のアルミニウム合金熱延板の組織を、平均結晶粒径が25μm以下であるとともに、Cube方位の平均体積分率が10%以下である再結晶粒組織とする。   Therefore, in the present invention, the structure of the hot-rolled aluminum alloy hot rolled sheet is recrystallized with an average crystal grain size of 25 μm or less and an average volume fraction of Cube orientation of 10% or less. Grain structure.

本発明のような、熱延後に再結晶焼鈍を含めた調質処理が施されていない、熱延上がりままの状態のアルミニウム合金熱延板では、再結晶焼鈍を行なって軟質化させた熱延板とは、その成形性に対する挙動が全く相違する。また、前記した特許文献2〜4などのように集合組織を発達させた上で、再結晶焼鈍を行なって軟質化させた冷延板とも、その成形性に対する挙動が全く相違する。   In an aluminum alloy hot-rolled sheet that has not been subjected to a tempering treatment including recrystallization annealing after hot rolling as in the present invention, the hot-rolled sheet softened by recrystallization annealing. The behavior with respect to the formability is completely different from the plate. Moreover, the behavior with respect to the formability is completely different from the cold-rolled sheet that has been developed by texture recrystallization as described in Patent Documents 2 to 4 and softened by recrystallization annealing.

この点、本発明は、再結晶焼鈍を行なわない、熱延上がりままの状態のアルミニウム合金熱延板では、異方性が無く、集合組織が発達しない再結晶粒組織の方が、却って、絞り性、バーリング加工性、張出性などのプレス成形性が向上することを知見してなされたものである。   In this regard, in the present invention, the recrystallized grain structure in which the recrystallization annealing is not performed and the as-rolled aluminum alloy hot rolled sheet has no anisotropy and the texture does not develop is more constricted. It has been made by knowing that press formability such as property, burring workability, and stretchability is improved.

本発明は、自動車パネル用素材板として、プレス成形用の5000系アルミニウム合金板を、上記冷延板の状態ではなく、また、熱延後に再結晶焼鈍を含めた調質処理が施されていない、熱延上がりままの状態で供給することを可能とする。この結果、自動車パネル用素材板の製造コストや製造効率を大きく向上できる。   In the present invention, a 5000 series aluminum alloy plate for press forming is not in the state of the cold-rolled plate as a material plate for an automobile panel, and is not subjected to a tempering treatment including recrystallization annealing after hot rolling. It is possible to supply in a state where heat is still rising. As a result, the manufacturing cost and manufacturing efficiency of the automobile panel material plate can be greatly improved.

以下に、本発明の実施の形態につき、各要件ごとに具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described for each requirement.

(化学成分組成)
本発明アルミニウム合金熱延板の化学成分組成は、基本的に、Al−Mg系合金であるJIS 5000系に相当するアルミニウム合金とする。なお、各元素の含有量の%表示は全て質量%の意味である。
(Chemical composition)
The chemical component composition of the aluminum alloy hot-rolled sheet of the present invention is basically an aluminum alloy corresponding to JIS 5000, which is an Al—Mg alloy. In addition,% display of content of each element means the mass% altogether.

本発明熱延板は、非調質な自動車パネル用素材板として、プレス成形性、強度、溶接性、耐食性などの諸特性を満足する必要がある。このため本発明熱延板は、5000系アルミニウム合金の中でも、Mg:2.0〜6.0質量%を含み、更に、Fe、Mn、Cr、Zr及びCuの内から選ばれる一種また二種以上を合計で0.03〜2.5質量%含み、残部がAlおよび不可避的不純物からなる化学成分組成とする。   The hot-rolled sheet of the present invention needs to satisfy various properties such as press formability, strength, weldability, and corrosion resistance as a non-heat treated automotive panel material sheet. Therefore, the hot-rolled sheet of the present invention contains Mg: 2.0 to 6.0% by mass among the 5000 series aluminum alloys, and further, one or two kinds selected from Fe, Mn, Cr, Zr and Cu. A total of 0.03 to 2.5% by mass of the above, with the balance being a chemical composition composed of Al and inevitable impurities.

(不純物)
これら記載元素以外の元素は基本的には不純物である。ただ、Al合金板のリサイクルの観点から、溶解材として、高純度Al地金だけではなく、5000系合金やその他のAl合金スクラップ材、低純度Al地金などを溶解原料として使用した場合には、これらの元素が混入される。そして、これら元素を例えば検出限界以下などに低減すること自体がコストアップとなり、ある程度の含有の許容が必要となる。したがって、本発明では、本発明の目的や効果を阻害しない範囲での記載元素以外の元素の含有を許容する。例えば、Si:0.5%以下、V:0.3%以下、Ti:0.5%以下、B:0.05%以下、Zn:0.5%以下の含有を各々許容する。また、この他の元素も上記不可避的不純物として、本発明Al−Mg系合金板の温間成形性や必要特性を阻害しない範囲で含有を許容する。
(impurities)
Elements other than these described elements are basically impurities. However, from the viewpoint of recycling Al alloy plates, not only high-purity Al bullion but also 5000 series alloys, other Al alloy scrap materials, and low-purity Al bullion are used as melting materials. These elements are mixed. Then, reducing these elements to, for example, below the detection limit itself increases the cost, and it is necessary to allow a certain amount of inclusion. Therefore, in this invention, inclusion of elements other than the description element in the range which does not inhibit the objective and effect of this invention is permitted. For example, Si: 0.5% or less, V: 0.3% or less, Ti: 0.5% or less, B: 0.05% or less, and Zn: 0.5% or less are allowed. In addition, other elements are allowed to be contained as the above-mentioned inevitable impurities as long as they do not impair the warm formability and necessary characteristics of the Al-Mg alloy plate of the present invention.

Mg:2.0〜6.0質量%
Mgは、加工硬化能を高め、熱延板の自動車パネル用素材板としての必要な強度や耐久性を確保する。また、材料を均一に塑性変形させて破断割れ限界を向上させ、成形性を向上させる。Mgの含有量が2.0%未満では、Mg含有のこれら効果発揮が不十分となる。一方、Mgの含有量が6.0%を越えると、板の製造が困難となり、しかもプレス成形時に、却って粒界破壊が発生しやすくなり、プレス成形性が著しく低下する。したがって、Mgの含有量は2.0〜6.0質量%の範囲とする。
Mg: 2.0-6.0 mass%
Mg enhances work hardening ability and secures necessary strength and durability as a material plate for automobile panels of hot-rolled sheets. In addition, the material is uniformly plastically deformed to improve the fracture crack limit and improve the formability. If the content of Mg is less than 2.0%, these effects of containing Mg are insufficient. On the other hand, if the Mg content exceeds 6.0%, it becomes difficult to produce a plate, and intergranular fracture is likely to occur during press molding, which significantly reduces press moldability. Therefore, the Mg content is in the range of 2.0 to 6.0 mass%.

Fe、Mn、Cr、Zr及びCuの内から選ばれる一種また二種以上を合計で0.03〜2.5質量%
Fe、Mn、Cr、Zr及びCuは、少量の含有で結晶粒の微細化に有効である。プレス成形時の粒界破壊は、熱延板の平均結晶粒径が25μmを超えるなど、結晶粒径が大きい場合に発生しやすく、熱延板の結晶粒径は小さいほど好ましい。また、これらの元素は少量の含有で成形性限界を向上させる。更に、熱延板の結晶粒径は小さいほど、成形品表面の肌荒れが抑制される。
0.03 to 2.5% by mass in total of one or more selected from Fe, Mn, Cr, Zr and Cu
Fe, Mn, Cr, Zr, and Cu are effective for refining crystal grains when contained in small amounts. Intergranular fracture during press forming tends to occur when the crystal grain size is large, such as when the average crystal grain size of the hot-rolled sheet exceeds 25 μm, and the smaller the crystal grain size of the hot-rolled sheet, the better. In addition, these elements improve the formability limit when contained in a small amount. Furthermore, as the crystal grain size of the hot-rolled sheet is smaller, the surface roughness of the molded product is suppressed.

Fe、Mn、Cr、Zr及びCuの各含有量の合計が0.03%未満では含有効果がないが、一方、これら各元素の各含有量の合計が2.5%を超えると、これらの元素に起因する粗大な晶出物や析出物が多くなり、これらが破壊の起点になりやすく、却ってプレス成形性を低下させる。したがって、Fe、Mn、Cr、Zr及びCuの内から選ばれる一種また二種以上の含有量は、合計で0.03〜2.5質量%の範囲とする。   If the total content of Fe, Mn, Cr, Zr and Cu is less than 0.03%, there is no content effect. On the other hand, if the total content of these elements exceeds 2.5%, The coarse crystallized substance and precipitate resulting from an element increase, and these are easy to become a starting point of destruction, and on the contrary, press formability falls. Therefore, the content of one or more selected from Fe, Mn, Cr, Zr and Cu is in the range of 0.03 to 2.5% by mass in total.

この各元素の各含有量の合計が上限量を超えない、各元素の上限量の目安は、Fe含有量が0.4%、Mn含有量が0.6%、Cr含有量が0.3%、Zr含有量が0.2%、Cu含有量が1.0%である。   The total of the respective contents of each element does not exceed the upper limit, and the upper limit of each element is as follows: the Fe content is 0.4%, the Mn content is 0.6%, and the Cr content is 0.3. %, Zr content is 0.2%, and Cu content is 1.0%.

(熱延板の組織)
以上の化学成分組成を前提として、本発明では、熱延上がりままの状態の非調質なアルミニウム合金熱延板の組織を、平均結晶粒径が25μm以下であるとともに、Cube方位の平均体積分率が10%以下である再結晶粒組織とする。
(Hot rolled sheet structure)
On the premise of the above chemical composition, in the present invention, the structure of an unheated aluminum alloy hot-rolled sheet in the state of being hot-rolled has an average volume fraction of Cube orientation with an average crystal grain size of 25 μm or less. A recrystallized grain structure having a rate of 10% or less is used.

(平均結晶粒径)
非調質な熱延板の平均結晶粒径は小さいほどプレス成形性が向上する。熱延板の平均結晶粒径が25μmを超えて大きくなると、熱延上がりままの状態のアルミニウム合金熱延板の組織が再結晶粒組織であったとしても、絞り性、バーリング加工性、張出性などのプレス成形性が低下する。また、成形品表面にオレンジピール(肌荒れ)などの成形不良も発生しやすくなり、外観が損なわれる。このため、これら絞り性、バーリング加工性、張出性などのプレス成形性を向上させるために、本発明では、熱延上がりままの状態のアルミニウム合金熱延板再結晶粒組織の平均結晶粒径を25μm以下とする。
(Average crystal grain size)
The smaller the average crystal grain size of the non-heat treated hot rolled sheet, the better the press formability. When the average grain size of the hot-rolled sheet exceeds 25 μm, even if the structure of the hot-rolled aluminum alloy sheet is a recrystallized grain structure, the drawability, burring workability, and overhang The press formability such as the property is lowered. Also, molding defects such as orange peel (rough skin) are likely to occur on the surface of the molded product, and the appearance is impaired. Therefore, in order to improve the press formability such as drawability, burring workability, and stretchability, in the present invention, in the present invention, the average crystal grain size of the recrystallized grain structure of the aluminum alloy hot-rolled sheet in the state of hot-rolling Is 25 μm or less.

ここで言う結晶粒径とは圧延方向の縦断面における圧延方向の結晶粒の最大径である。平均結晶粒径は、後述するSEM−EBSPと、その測定条件を用い、所定の測定領域内に観察される各結晶粒の最大直径を各々測定し、得られた結果の平均値を算出して求める。   The crystal grain size referred to here is the maximum diameter of crystal grains in the rolling direction in a longitudinal section in the rolling direction. The average crystal grain size is determined by measuring the maximum diameter of each crystal grain observed in a predetermined measurement region using SEM-EBSP described later and its measurement conditions, and calculating the average value of the obtained results. Ask.

(Cube方位)
本発明では、熱延上がりままの状態のアルミニウム合金熱延板の再結晶粒組織を、上記平均結晶粒径微細化させるとともに、異方性の無い組織、集合組織が発達していない組織とする。本発明では、この指標として、Cube方位の平均体積分率(Cube方位の平均集積率)を規定し、このCube方位(以下CUBE方位とも言う)の平均体積分率を10%以下と規制する。
(Cube orientation)
In the present invention, the recrystallized grain structure of the aluminum alloy hot-rolled sheet in the state of being hot-rolled is refined to the average crystal grain size, and the structure without anisotropy and texture is not developed. . In the present invention, the average volume fraction of the Cube orientation (average integration rate of the Cube orientation) is defined as the index, and the average volume fraction of the Cube orientation (hereinafter also referred to as CUBE orientation) is regulated to 10% or less.

前記した特許文献2〜4などのように、Cube方位、Goss方位、Brass方位、S方位、Copper方位などの集合組織は、確かに各々成形性に対する挙動が相違し、これらを一定の割合に制御した集合組織とすれば、5000系アルミニウム合金冷延板でも、深絞り成形、張出し成形等のプレス成形性は向上する。しかし、これらの集合組織による成形性の向上は、前記した通り、再結晶焼鈍 (最終焼鈍) を行い軟質化することを前提としている。   As described in Patent Documents 2 to 4, the textures such as the Cube orientation, Goss orientation, Brass orientation, S orientation, and Copper orientation are certainly different in behavior for formability, and these are controlled to a certain ratio. With such a texture, even with a 5000 series aluminum alloy cold-rolled sheet, press formability such as deep drawing and stretch forming is improved. However, the improvement of formability by these textures is premised on softening by recrystallization annealing (final annealing) as described above.

これに対して、本発明のような、熱延後に再結晶焼鈍を含めた調質処理が施されていない、熱延上がりままの状態の非調質なアルミニウム合金熱延板では、再結晶焼鈍を行なって軟質化させた熱延板とは、その成形性に対する挙動が全く相違する。また、前記した特許文献2〜4などのように集合組織を発達させた上で、再結晶焼鈍を行なって軟質化させた冷延板とも、その成形性に対する挙動が全く相違する。   On the other hand, in the case of an unheated aluminum alloy hot-rolled sheet in the state of hot-rolling that has not been subjected to tempering treatment including recrystallization annealing after hot rolling, the recrystallization annealing is performed. The behavior of the hot-rolled sheet softened by performing the process on formability is completely different. Moreover, the behavior with respect to the formability is completely different from the cold-rolled sheet that has been developed by texture recrystallization as described in Patent Documents 2 to 4 and softened by recrystallization annealing.

即ち、このような非調質な本発明熱延板では、却って、異方性が無く、集合組織が発達しない再結晶粒組織の方が、絞り性、バーリング加工性、張出性などのプレス成形性が向上する。   That is, in the non-tempered hot-rolled sheet of the present invention, the recrystallized grain structure having no anisotropy and no texture development is more suitable for pressability, burring workability, stretchability, etc. Formability is improved.

通常のアルミニウム合金板において、集合組織を発達させた場合には、主としてCube方位、Goss方位、Brass方位、S方位、Copper方位から構成される。これに対して、本発明熱延板では、上記した通り、異方性が無く、集合組織が発達しない再結晶粒組織とする。   When a texture is developed in a normal aluminum alloy plate, it is mainly composed of a Cube orientation, a Goss orientation, a Brass orientation, an S orientation, and a Copper orientation. In contrast, the hot-rolled sheet of the present invention has a recrystallized grain structure that has no anisotropy and does not develop a texture as described above.

このような本発明熱延板組織となっているか否かは、上記各結晶方位のうちで、特に、Cube方位の平均体積分率(Cube方位の平均集積率)が少ないことによって、特定および定量化できる。また、上記各結晶方位のうちで、特に、Cube方位は、絞り性、バーリング加工性、張出性などのプレス成形性を低下させる。したがって、Cube方位を規制することによって、上記他の方位の集合組織も規制され、集合組織が発達しない再結晶粒組織となり、プレス成形性が向上する。   Whether or not it is such a hot-rolled sheet structure of the present invention is specified and quantified by the fact that, among the above crystal orientations, in particular, the average volume fraction of the Cube orientation (the average integration rate of the Cube orientation) is small. Can be Of the above crystal orientations, the Cube orientation in particular reduces press formability such as drawability, burring workability, and stretchability. Therefore, by regulating the Cube orientation, the textures in the other orientations are also regulated, resulting in a recrystallized grain structure in which the texture does not develop, and press formability is improved.

以上のように、本発明では、異方性が無く、集合組織が発達しない指標として、Cube方位の平均体積分率(Cube方位の平均集積率)を10%以下に規制する。Cube方位の平均体積分率が10%を超えた場合には、Cube方位自体によって、また、上記他の方位の集合組織も発達することによって、絞り性、バーリング加工性、張出性などのプレス成形性が著しく低下する。   As described above, in the present invention, the average volume fraction of the Cube orientation (average integration rate of the Cube orientation) is regulated to 10% or less as an index that does not have anisotropy and does not develop a texture. When the average volume fraction of the Cube orientation exceeds 10%, the Cube orientation itself or the texture of the other orientations develops, so that presses such as drawability, burring workability, and stretchability Formability is significantly reduced.

(Cube方位の平均体積分率の測定)
結晶粒の結晶方位成分であるCube方位の平均体積分率の測定は、熱延上がりままの状態のアルミニウム合金熱延板の再結晶粒組織における板面方位を、SEM(走査型電子顕微鏡)−EBSP(電子線回折)「Electron Back Scattering Pattern」と、EBSD「Electron Back Scattering Diffraction」によって、測定・解析される。これらの結晶解析は、電子チャネリングパターン法(ECP法)による結晶解析手法を用いている。
(Measurement of average volume fraction of Cube orientation)
The measurement of the average volume fraction of the Cube orientation, which is the crystal orientation component of the crystal grain, is performed by measuring the plane orientation in the recrystallized grain structure of the hot rolled aluminum alloy sheet in the hot-rolled state as SEM (scanning electron microscope) − It is measured and analyzed by EBSD (Electron Diffraction) “Electron Back Scattering Pattern” and EBSD “Electron Back Scattering Diffraction”. These crystal analyzes use a crystal analysis method based on an electronic channeling pattern method (ECP method).

ここで、例えば、熱延板の再結晶粒組織における100個の結晶粒について各結晶粒の方位を求める。そして、上記5つの方位のどれに属するか(Cube方位に属するか否か)を決定し、Cube方位の平均体積分率を算出する。その際に、1個1個の結晶粒の大きさは同じと仮定し、これらの方位から±10度以内の方位のずれは同一の方位因子に属するものとして測定する。   Here, for example, the orientation of each crystal grain is determined for 100 crystal grains in the recrystallized grain structure of the hot-rolled sheet. Then, it is determined which of the five orientations belongs (whether it belongs to the Cube orientation), and the average volume fraction of the Cube orientation is calculated. At that time, it is assumed that the size of each crystal grain is the same, and the deviation of the orientation within ± 10 degrees from these orientations is measured as belonging to the same orientation factor.

熱延板の測定箇所は板厚方向の直角断面とし、板の任意の箇所の表面および板厚方向1/4の深さ部分で測定して、これらの測定結果を平均化する。この際、上記各部位から複数サンプリングした板断面試料表面を機械研磨して、試料表面から約0.25mmを機械研磨により削り落とし、更に、バフ研磨および電解研磨を行なって表面を調整した試料を用意する。測定部位は試料研磨表面、試料の測定領域は1000μm×1000μmとし、測定ステップ間隔は例えば3μmとする。   The hot-rolled sheet is measured at a right-angle cross section in the sheet thickness direction, measured at the surface of an arbitrary position on the sheet and at a depth part in the sheet thickness direction 1/4, and the measurement results are averaged. At this time, mechanically polish the sample surface of the cross-section of the plate sampled multiple times from each of the above parts, scrape about 0.25 mm from the sample surface by mechanical polishing, and prepare a sample whose surface has been adjusted by buffing and electrolytic polishing. To do. The measurement site is the sample polishing surface, the measurement area of the sample is 1000 μm × 1000 μm, and the measurement step interval is 3 μm, for example.

SEM装置として、例えば日本電子社製SEM(JEOLJSM5410)、EBSP測定・解析システムとして、例えばEBSP:TSL社製(OIM)を各々用いる。   For example, SEM (JEOLJSM5410) manufactured by JEOL Ltd. is used as the SEM apparatus, and for example, EBSP: manufactured by TSL (OIM) is used as the EBSP measurement / analysis system.

(製造方法)
本発明5000系(Al−Mg系)熱延板は、熱延(熱間圧延)の工程までは、5052、5154、5083など、通常の成形用Al−Mg系合金の製造工程による製造方法で製造可能である。即ち、鋳造、鋳造、均質化熱処理、熱間圧延の通常の各製造工程を経て製造され、板厚が1.6〜2.5mmであるアルミニウム合金熱延板とされる。
(Production method)
The 5000 series (Al-Mg series) hot-rolled sheet of the present invention is a production method according to the production process of ordinary Al-Mg series alloys for forming, such as 5052, 5154, and 5083, until the hot rolling (hot rolling) process. It can be manufactured. That is, an aluminum alloy hot rolled sheet having a thickness of 1.6 to 2.5 mm is manufactured through normal manufacturing processes such as casting, casting, homogenization heat treatment, and hot rolling.

板厚が1.6mm未満の板は、熱延では製造が困難であり、2.5mmを超える板厚ではプレス成形自体が困難となる。したがって、アルミニウム合金熱延板の板厚は1.6〜2.5mmの範囲とすることが好ましい。   A plate having a thickness of less than 1.6 mm is difficult to produce by hot rolling, and press forming itself is difficult if the thickness exceeds 2.5 mm. Accordingly, the thickness of the aluminum alloy hot-rolled sheet is preferably in the range of 1.6 to 2.5 mm.

この際、本発明熱延板は、前記した通り、熱延後に再結晶焼鈍を含めた調質処理が施されていない、熱延上がりままの状態の非調質なアルミニウム合金熱延板である。但し、本発明熱延板に対して、ユーザ側でプレス成形されるまでに、耐食性向上や潤滑性向上目的などの表面処理を施すことは、その範囲に含む。なお、本発明熱延板に施さない調質処理とは、質別記号で、O(焼きなまし:完全再結晶材)、H1n(H14等の硬質材)、H2n(H24等の硬質材)、H3n(H34等の硬質材)などの調質処理である。   At this time, as described above, the hot-rolled sheet of the present invention is a non-tempered aluminum alloy hot-rolled sheet that has not been subjected to a tempering process including recrystallization annealing after hot-rolling, and remains in the state of hot-rolling . However, the scope of the present invention includes subjecting the hot-rolled sheet of the present invention to surface treatment such as improvement of corrosion resistance and lubricity before being press-formed on the user side. The tempering treatment that is not applied to the hot-rolled sheet of the present invention is a symbol according to quality, which is O (annealing: completely recrystallized material), H1n (hard material such as H14), H2n (hard material such as H24), H3n. Refining treatment such as (hard material such as H34).

ここで、本発明熱延板組織を、再結晶焼鈍 (最終焼鈍) 平均結晶粒径が25μm以下であるとともに、Cube方位の平均体積分率が10%以下である再結晶粒組織とするための、好ましい製造条件について以下に記載する。   Here, the hot rolled sheet structure of the present invention is a recrystallized grain structure having a recrystallization annealing (final annealing) average crystal grain size of 25 μm or less and an average volume fraction of Cube orientation of 10% or less. Preferred production conditions are described below.

アルミニウム合金熱延板をこのような組織にするためには、溶解鋳造されたスラブを450〜550℃で均質化熱処理後に、最終ロールにおける圧延率を30%以上とするとともに、巻き取り温度を300℃以上とした熱間圧延することが好ましい。   In order to make the aluminum alloy hot-rolled sheet into such a structure, after the homogenized heat treatment of the melt-cast slab at 450 to 550 ° C., the rolling rate in the final roll is set to 30% or more, and the winding temperature is set to 300. It is preferable to perform hot rolling at a temperature not lower than ° C.

(均質化熱処理)
本発明熱延板成分組成に溶解鋳造されたスラブを均質化熱処理する際、均質化熱処理温度は450〜550℃の範囲とする。均質化熱処理温度が450℃未満では、続く熱間圧延における巻き取り温度300℃以上を確保できず、上記成分組成の範囲で、熱延板組織を再結晶粒組織とできず、加工組織か、または加工組織が残留する再結晶粒組織との混粒組織となる。このために、熱延板の組織を、平均結晶粒径25μm以下、Cube方位の平均体積分率10%以下とできない。この結果、熱延後に再結晶焼鈍を含めた調質処理が施されていない、熱延上がりままの状態のアルミニウム合金熱延板として、プレス成形性が著しく低下する。一方、均質化熱処理温度を550℃を超えて高温とする必要はなく、却ってバーニングが生じやすく、熱間圧延ができなくなる可能性が高くなる。
(Homogenization heat treatment)
When the slab melt-cast in the hot-rolled sheet component composition of the present invention is subjected to a homogenization heat treatment, the homogenization heat treatment temperature is set to a range of 450 to 550 ° C. If the homogenization heat treatment temperature is less than 450 ° C., it is not possible to ensure a coiling temperature of 300 ° C. or higher in the subsequent hot rolling, and the hot rolled sheet structure cannot be a recrystallized grain structure in the range of the above component composition. Or it becomes a mixed grain structure with the recrystallized grain structure in which the processed structure remains. For this reason, the structure of the hot-rolled sheet cannot be an average crystal grain size of 25 μm or less and an average volume fraction of Cube orientation of 10% or less. As a result, the press formability is significantly reduced as an aluminum alloy hot-rolled sheet that has not been subjected to a tempering treatment including recrystallization annealing after hot-rolling and remains hot-rolled. On the other hand, the homogenization heat treatment temperature does not need to be higher than 550 ° C., and on the contrary, burning is likely to occur, and there is a high possibility that hot rolling cannot be performed.

(熱間圧延)
熱間圧延後の板のコイル状への巻き取り温度は300℃以上とする。熱間圧延後の板の巻き取り温度が300℃未満では、上記した通り、熱延板組織を再結晶粒組織とできず、加工組織か、または加工組織が残留する再結晶粒組織との混粒組織となる。このために、熱延板組織を、上記成分組成の範囲で、平均結晶粒径25μm以下、Cube方位の平均体積分率10%以下とできない。
(Hot rolling)
The coiling temperature of the plate after hot rolling is 300 ° C. or higher. When the coiling temperature of the sheet after hot rolling is less than 300 ° C., as described above, the hot-rolled sheet structure cannot be made into a recrystallized grain structure, and is mixed with the processed structure or the recrystallized grain structure where the processed structure remains. It becomes a grain structure. For this reason, the hot-rolled sheet structure cannot be made to have an average crystal grain size of 25 μm or less and an average volume fraction of Cube orientation of 10% or less within the above component composition range.

熱間圧延時の最終ロール(最終スタンドパス)における圧延率を30%以上とする。即ち、熱間圧延工程や熱間圧延の仕上げ圧延工程を直列に配列される複数の圧延機列からなるタンデム式の仕上げ圧延機などによって行う場合には、最終ロール圧延率を30%以上とする。また、リバース式などの圧延機において複数回のパスによって行う場合でも、最終回のパス(最終ロール)における圧延率を30%以上とする。これら最終ロールにおける圧延率が30%未満では、熱延板組織を再結晶粒組織とできず、加工組織か、または加工組織が残留する再結晶粒組織との混粒組織となる。このために、熱延板組織を、平均結晶粒径25μm以下、Cube方位の平均体積分率10%以下とできない。   The rolling rate in the final roll (final stand pass) during hot rolling is set to 30% or more. That is, when the hot rolling process and the hot rolling finish rolling process are performed by a tandem finish rolling mill composed of a plurality of rolling mill rows arranged in series, the final roll rolling rate is set to 30% or more. . Moreover, even when performing by multiple passes in a reverse rolling mill or the like, the rolling rate in the final pass (final roll) is set to 30% or more. If the rolling rate in these final rolls is less than 30%, the hot-rolled sheet structure cannot be a recrystallized grain structure, and is a processed structure or a mixed grain structure with a recrystallized grain structure in which the processed structure remains. For this reason, the hot-rolled sheet structure cannot have an average crystal grain size of 25 μm or less and an average volume fraction of Cube orientation of 10% or less.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

次に、本発明の実施例を説明する。表1 に示すA〜E(発明例)、F、G(比較例)の各組成のAl−Mg系合金熱延板を製造し、この組織、機械的な特性、成形性を各々測定、評価した。   Next, examples of the present invention will be described. Manufactured Al-Mg based alloy hot-rolled sheets of compositions A to E (invention examples), F, and G (comparative examples) shown in Table 1, and measured and evaluated the structure, mechanical properties, and formability, respectively. did.

熱延板の製造方法は、DC鋳造によって鋳造した400mm厚の鋳塊を、表2に示す各温度で、共通して8時間の均質化熱処理を行い、その後、この均質化熱処理温度近傍にて熱間圧延を開始した。この熱間圧延は、リバース式の粗圧延機およびタンデム式の仕上げ圧延機によって行い、仕上げ圧延機における最終ロール(最終スタンド)における圧延率を表2に示すように変化させた。また、主として前記均質化熱処理温度(熱延開始温度)の違いにより、熱延巻取り温度も表2に示すように変化させた。   The method for producing a hot-rolled plate is to perform a homogenization heat treatment of a 400 mm-thick ingot cast by DC casting at each temperature shown in Table 2 in common for 8 hours, and then at a temperature near the homogenization heat treatment temperature. Hot rolling was started. This hot rolling was performed by a reverse type rough rolling mill and a tandem type finishing rolling mill, and the rolling rate in the final roll (final stand) in the finishing rolling mill was changed as shown in Table 2. Further, the hot rolling coiling temperature was also changed as shown in Table 2 mainly due to the difference in the homogenization heat treatment temperature (hot rolling start temperature).

各例とも共通して、製造したAl−Mg系合金熱延板の板厚は、1.5mmとし、熱延後に再結晶焼鈍を含めた調質処理を施さない、熱延上がりままの状態の非調質な熱延板とした。これら熱延板から試験片あるいは500mm角の四角形状の供試板 (ブランク) を切り出し、各試験、評価を行なった。   In common with each example, the thickness of the manufactured Al-Mg alloy hot-rolled sheet is 1.5 mm, and after the hot rolling, no refining treatment including recrystallization annealing is performed, and the hot-rolled state remains as it is. A non-heat treated hot rolled sheet was used. From these hot-rolled plates, test pieces or 500 mm square test plates (blanks) were cut out and subjected to various tests and evaluations.

(組織)
前記したSEM−EBSPおよびEBSDを用いて、上記各供試板の板の任意の部分における、最表面部と板厚中心部における各5箇所、合計10箇所でのCube方位の平均体積分率(%)を、前記した条件にて測定し、平均化した。また、同時に、これら測定箇所での結晶粒径も測定し、平均した。
(Organization)
Using the SEM-EBSP and EBSD described above, the average volume fraction of the Cube orientation at a total of 10 locations (total 5 locations in the outermost surface portion and the thickness center portion) in any part of the plate of each test plate ( %) Were measured and averaged under the conditions described above. At the same time, the crystal grain sizes at these measurement locations were also measured and averaged.

(機械的特性)
上記各供試板の引張り試験を行い、引張強さ(MPa)、0.2%耐力(MPa)、伸び(%)を各々測定した。これらの結果を表2に示す。試験条件は、熱延板から圧延方向に対し垂直方向のJISZ2201の5号試験片(25mm×50mmGL×板厚)を採取し、引張り試験を行った。引張り試験は、JISZ2241(1980)(金属材料引張り試験方法)に基づき、室温20℃で試験を行った。また、クロスヘッド速度は、5mm/分で、試験片が破断するまで一定の速度で行った。
(Mechanical properties)
Tensile tests were performed on each of the test plates, and tensile strength (MPa), 0.2% proof stress (MPa), and elongation (%) were measured. These results are shown in Table 2. As test conditions, No. 5 test piece (25 mm × 50 mmGL × sheet thickness) of JISZ2201 perpendicular to the rolling direction was sampled from the hot-rolled sheet, and a tensile test was performed. The tensile test was conducted at room temperature of 20 ° C. based on JISZ2241 (1980) (metal material tensile test method). The crosshead speed was 5 mm / min, and the test was performed at a constant speed until the test piece broke.

(穴拡げ率)
伸びフランジ性の評価のための穴拡げ試験は、先ず、1辺が70mmの正方形の板に直径10mmの穴を打ち抜いた。そして、直径33mmの60°円錐ポンチを用いて、バリを上面(ダイス面)側として、しわ押さえ力3トン、ポンチ速度10mm/minで穴拡げ試験を行い、前記打ち抜き穴の縁に破断が発生した段階でポンチを止め、破断後の穴内径(ds )と成型試験前の初期穴径(d0 )から下記式によって穴拡げ率(λ)を求めた。
λ=(ds −d0 )/d0 ×100(%)
(Hole expansion rate)
In the hole expansion test for evaluation of stretch flangeability, a hole having a diameter of 10 mm was first punched into a square plate having a side of 70 mm. Then, using a 60 ° conical punch with a diameter of 33 mm, with a burr on the upper surface (die surface) side, a hole expansion test was performed at a wrinkle holding force of 3 tons and a punch speed of 10 mm / min. At this stage, the punch was stopped, and the hole expansion rate (λ) was obtained from the following formula from the hole inner diameter (ds) after fracture and the initial hole diameter (d0) before the molding test.
λ = (ds−d0) / d0 × 100 (%)

なお、上記穴拡げ試験において、破断後の穴内径については、板の圧延方向と、圧延方向に垂直な方向でそれぞれ測定し、穴拡げ率を各々求めた後に、平均を取って、各サンプルの穴拡げ率とした。さらに、各供試板について3回の穴拡げ試験を行い、その平均値を最終的に穴拡げ率(λ%)とした。   In the hole expansion test, the hole inner diameter after fracture was measured in the rolling direction of the plate and in the direction perpendicular to the rolling direction, and after obtaining the hole expansion ratio, taking the average, The hole expansion rate was used. Further, three hole expansion tests were performed on each test plate, and the average value was finally set as the hole expansion ratio (λ%).

(角筒絞り成形試験)
上記供試板を、プレス機を用いて、40mmW×40mmLの角筒形状に、深絞り成形試験を行なった。BHF(しわ押さえ力)は40kN程度とした。この際、成形は各5回行い、5回とも下死点まで到達させ上記角筒形状に成形した。そして、角筒の底部角部などに割れなどの欠陥が無しに成形できた最高高さmmを測定した。これらの結果も表2に各々示す。
(Square tube drawing test)
The test plate was subjected to a deep-drawing molding test into a square tube shape of 40 mmW × 40 mmL using a press. BHF (wrinkle pressing force) was about 40 kN. At this time, the molding was performed five times, and the molding was performed to reach the bottom dead center in all five times to form the rectangular tube shape. And the maximum height mm which could be shape | molded without defects, such as a crack, in the bottom corner | angular part of a square tube, etc. was measured. These results are also shown in Table 2.

表2の通り、発明例1〜8は本発明範囲内の各組成を有し、均質化熱処理、熱延最終ロールにおける圧延率、巻き取り温度が、前記好ましい条件範囲内で製造されている。このため、熱延後に焼鈍されていない熱延上がりままの状態である非調質なアルミニウム合金熱延板において、平均結晶粒径が25μm以下であるとともに、Cube方位の平均体積分率が10%以下である再結晶粒組織を有する。この結果、発明例1〜8は伸びフランジ性および角筒絞り成形性に優れ、プレス成形性に優れていることが裏付けられる。   As shown in Table 2, Invention Examples 1 to 8 have respective compositions within the scope of the present invention, and the homogenization heat treatment, the rolling rate in the hot-rolled final roll, and the winding temperature are manufactured within the preferable range of conditions. For this reason, in the non-heat treated aluminum alloy hot-rolled sheet that has not been annealed after hot rolling, the average crystal grain size is 25 μm or less, and the average volume fraction of the Cube orientation is 10%. It has the following recrystallized grain structure. As a result, it is confirmed that Invention Examples 1 to 8 are excellent in stretch flangeability and square tube drawing formability, and are excellent in press formability.

一方、比較例9〜12は、本発明範囲内の各組成(C)を有するものの、均質化熱処理、熱延最終ロールにおける圧延率、巻き取り温度などの条件が、前記好ましい条件範囲を外れて製造されている。比較例9は均質化熱処理温度および巻き取り温度が低すぎ、また、熱延最終ロールにおける圧延率も低すぎるために、未再結晶組織となっている。比較例10は熱延最終ロールにおける圧延率が低すぎるために、未再結晶組織となっている。比較例11は均質化熱処理温度が高すぎるために、熱間圧延中に割れが生じ板の製造が不可能であった。   On the other hand, although Comparative Examples 9-12 have each composition (C) within the scope of the present invention, the conditions such as the homogenization heat treatment, the rolling rate in the hot-rolled final roll, the coiling temperature deviate from the preferred condition range. It is manufactured. Comparative Example 9 has an unrecrystallized structure because the homogenization heat treatment temperature and the coiling temperature are too low, and the rolling rate in the hot-rolled final roll is too low. Comparative Example 10 has an unrecrystallized structure because the rolling rate of the hot-rolled final roll is too low. In Comparative Example 11, since the homogenization heat treatment temperature was too high, cracking occurred during hot rolling, and it was impossible to produce a plate.

比較例13は、均質化熱処理、熱延最終ロールにおける圧延率、巻き取り温度が、前記好ましい条件範囲内で製造されているが、Mg含有量が少なすぎるために、平均結晶粒慶賀25μmを超えるとともに、伸びフランジ性および角筒絞り成形性が劣り、プレス成形性が劣る。また、比較例14はMg含有量が多すぎるため、熱間圧延中に割れが生じ板の製造が不可能であった。   In Comparative Example 13, the homogenization heat treatment, the rolling rate in the hot-rolled final roll, and the winding temperature are manufactured within the preferable condition range. However, since the Mg content is too small, the average grain size exceeds 25 μm Keiga. At the same time, stretch flangeability and rectangular tube drawing formability are inferior, and press formability is inferior. Moreover, since the comparative example 14 had too much Mg content, it cracked during hot rolling and the manufacture of the plate was impossible.

以上の実施例から、本発明各要件あるいは好ましい条件の、臨界的な意義が裏付けられる。   The above examples support the critical significance of each requirement or preferred condition of the present invention.

Figure 2008202134
Figure 2008202134

Figure 2008202134
Figure 2008202134

以上説明したように、本発明によれば、熱延後に焼鈍されていない熱延上がりままの状態で、プレス成形できる、非調質なAl−Mg系(5000系)アルミニウム合金熱延板を提供できる。この結果、板をプレス成形して使用される、前記した自動車などの多くの用途へのAl−Mg系アルミニウム合金板の適用を広げるものである。   As described above, according to the present invention, an unheated Al—Mg-based (5000-based) aluminum alloy hot-rolled plate that can be press-formed while being hot-rolled and not annealed after hot-rolling is provided. it can. As a result, the application of the Al—Mg-based aluminum alloy plate to many uses such as the automobile described above, which is used by press-molding the plate, is expanded.

Claims (4)

Mg:2.0〜6.0質量%を含み、更に、Fe、Mn、Cr、Zr及びCuの内から選ばれる一種また二種以上を合計で0.03〜2.5質量%含み、残部がAlおよび不可避的不純物からなり、熱延後に焼鈍されていない熱延上がりままの状態であるアルミニウム合金熱延板であって、再結晶焼鈍 (最終焼鈍) 平均結晶粒径が25μm以下であるとともに、Cube方位の平均体積分率が10%以下である再結晶粒組織を有することを特徴とするプレス成形性に優れたアルミニウム合金熱延板。   Mg: 2.0 to 6.0% by mass, further including one or more selected from Fe, Mn, Cr, Zr and Cu in a total of 0.03 to 2.5% by mass, the balance Is an aluminum alloy hot-rolled sheet made of Al and unavoidable impurities, which has not been annealed after hot rolling and is in a hot-rolled state, and has a recrystallization annealing (final annealing) average grain size of 25 μm or less. An aluminum alloy hot-rolled sheet excellent in press formability, characterized by having a recrystallized grain structure having an average volume fraction of Cube orientation of 10% or less. 前記アルミニウム合金熱延板が、溶解鋳造されたスラブを450〜550℃で均質化熱処理後に、最終ロールにおける圧延率を30%以上とするとともに、巻き取り温度を300℃以上とした熱間圧延されたものである請求項1に記載のアルミニウム合金熱延板。   The aluminum alloy hot-rolled sheet is hot rolled at a rolling rate of 30% or higher and a winding temperature of 300 ° C. or higher after the homogenized heat treatment at 450 to 550 ° C. for the melt-cast slab. The aluminum alloy hot-rolled sheet according to claim 1, wherein 前記アルミニウム合金熱延板の板厚が1.6〜2.5mmである請求項1または2に記載のアルミニウム合金熱延板。   The aluminum alloy hot-rolled sheet according to claim 1 or 2, wherein the aluminum alloy hot-rolled sheet has a thickness of 1.6 to 2.5 mm. 前記アルミニウム合金熱延板が自動車パネル用である請求項1乃至3のいずれか1項に記載のアルミニウム合金熱延板。   The aluminum alloy hot-rolled sheet according to any one of claims 1 to 3, wherein the aluminum alloy hot-rolled sheet is for automobile panels.
JP2007042589A 2007-02-22 2007-02-22 Aluminum alloy hot rolled sheet having excellent press formability Pending JP2008202134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042589A JP2008202134A (en) 2007-02-22 2007-02-22 Aluminum alloy hot rolled sheet having excellent press formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007042589A JP2008202134A (en) 2007-02-22 2007-02-22 Aluminum alloy hot rolled sheet having excellent press formability

Publications (1)

Publication Number Publication Date
JP2008202134A true JP2008202134A (en) 2008-09-04

Family

ID=39779925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042589A Pending JP2008202134A (en) 2007-02-22 2007-02-22 Aluminum alloy hot rolled sheet having excellent press formability

Country Status (1)

Country Link
JP (1) JP2008202134A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029955A1 (en) * 2008-09-09 2010-03-18 株式会社神戸製鋼所 Laminated plate and composite molded body
JP2011208258A (en) * 2010-03-30 2011-10-20 Kobe Steel Ltd Aluminum alloy sheet for resin-covered can barrel and method for producing the same
JP2015532679A (en) * 2012-08-22 2015-11-12 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH Highly formable intergranular corrosion-resistant AlMg strip
JP2019527299A (en) * 2016-07-05 2019-09-26 ナノアル エルエルシー Ribbons and powders from high strength corrosion resistant aluminum alloys
US11603583B2 (en) 2016-07-05 2023-03-14 NanoAL LLC Ribbons and powders from high strength corrosion resistant aluminum alloys

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029955A1 (en) * 2008-09-09 2010-03-18 株式会社神戸製鋼所 Laminated plate and composite molded body
JP2010064307A (en) * 2008-09-09 2010-03-25 Kobe Steel Ltd Laminated plate and composite molding
US8722200B2 (en) 2008-09-09 2014-05-13 Kobe Steel, Ltd. Laminated plate and composite formed article
JP2011208258A (en) * 2010-03-30 2011-10-20 Kobe Steel Ltd Aluminum alloy sheet for resin-covered can barrel and method for producing the same
JP2015532679A (en) * 2012-08-22 2015-11-12 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH Highly formable intergranular corrosion-resistant AlMg strip
JP2019527299A (en) * 2016-07-05 2019-09-26 ナノアル エルエルシー Ribbons and powders from high strength corrosion resistant aluminum alloys
JP7049312B2 (en) 2016-07-05 2022-04-06 ナノアル エルエルシー Ribbons and powders from high-strength corrosion-resistant aluminum alloys
US11603583B2 (en) 2016-07-05 2023-03-14 NanoAL LLC Ribbons and powders from high strength corrosion resistant aluminum alloys

Similar Documents

Publication Publication Date Title
JP4326009B2 (en) Al-Mg alloy plate with excellent press formability
JP4939088B2 (en) Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming
KR20090061604A (en) Aluminum alloy plate for cold press forming, its manufacturing method and cold press forming method of aluminum alloy plate
CN104114726A (en) Aluminum alloy sheet with excellent baking-paint curability
JP4939091B2 (en) Manufacturing method of aluminum alloy plate with excellent bending workability
CN102703773A (en) Aluminum alloy plate and production process thereof
JP2008045192A (en) Aluminum alloy sheet showing excellent ridging-mark resistance at molding
JP7244407B2 (en) Aluminum alloy sheet for automobile structural member, automobile structural member, and method for producing aluminum alloy plate for automobile structural member
JP4495623B2 (en) Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
JP2010227954A (en) Method of press-forming aluminum alloy sheet
JP2011202273A (en) Aluminum alloy cold-rolled sheet for bottle can
JP2008202134A (en) Aluminum alloy hot rolled sheet having excellent press formability
JP4944474B2 (en) Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof
JP5260883B2 (en) Aluminum alloy plate for warm forming and warm forming method
JP4780600B2 (en) Magnesium alloy sheet excellent in deep drawability and manufacturing method thereof
JP5685055B2 (en) Aluminum alloy plate
JP2009148823A (en) Warm press forming method of aluminum alloy cold rolled sheet
JP2009024219A (en) High strength and formable aluminum alloy cold-rolled sheet
JP3838504B2 (en) Aluminum alloy plate for panel forming and manufacturing method thereof
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP2012237035A (en) HIGHLY FORMABLE Al-Mg-BASED ALLOY PLATE AND METHOD OF MANUFACTURING THE SAME
JP2003321754A (en) Method for manufacturing aluminum alloy sheet with excellent bendability
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP4515363B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel