[go: up one dir, main page]

JP2000049266A - Boiling cooler - Google Patents

Boiling cooler

Info

Publication number
JP2000049266A
JP2000049266A JP11141388A JP14138899A JP2000049266A JP 2000049266 A JP2000049266 A JP 2000049266A JP 11141388 A JP11141388 A JP 11141388A JP 14138899 A JP14138899 A JP 14138899A JP 2000049266 A JP2000049266 A JP 2000049266A
Authority
JP
Japan
Prior art keywords
heating element
mounting portion
cooling device
element mounting
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11141388A
Other languages
Japanese (ja)
Inventor
Koji Tanaka
公司 田中
Kazuo Kobayashi
和雄 小林
Masayoshi Terao
公良 寺尾
Seiji Kawaguchi
清司 川口
Tatsuto Matsumoto
達人 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP11141388A priority Critical patent/JP2000049266A/en
Priority to US09/317,382 priority patent/US6227287B1/en
Publication of JP2000049266A publication Critical patent/JP2000049266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a boiling cooler having high cooling performance and excellent in high volume productivity. SOLUTION: A porous sintered material 6 is arranged along a heat receiving wall 7 and refrigerant standing at the lower section is transported to the vicinity of a heater fixing part 6a through capillarity of the porous sintered material 6. Since the refrigerant is boiled in the vicinity of a heater fixing part 6a over a relatively wide range, degree of superheating is reduced at the heater fixing part 7a. Since liquid refrigerant standing at the lower section in a container 5 is transported through the porous sintered material 6, condensing area of heat dissipating wall 8 not immersed into the liquid refrigerant is increased and degree of supercooling of the heat dissipating wall 8 is reduced. More specifically, cooling capacity of a boiling cooler 1 is enhanced through reduction of degree of superheating and supercooling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、容器内において冷
媒の蒸発と凝縮の循環ループを形成して発熱体を冷却す
る沸騰冷却装置に関するもので、CPUなどの半導体集
積回路の冷却に用いて好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling apparatus for cooling a heating element by forming a circulation loop for evaporating and condensing a refrigerant in a container, and is suitable for cooling a semiconductor integrated circuit such as a CPU. It is something.

【0002】[0002]

【従来の技術】本出願人は、CPUの冷却装置として好
適な小型の沸騰冷却装置を出願した(特願平9−995
0号、特願平9−29987号および特願平9−246
297号)。この沸騰冷却装置は、偏平な箱型を成す密
閉容器の対向する一方の壁面(受熱壁)に発熱体(CP
U)が固定され、他方の壁面(放熱壁)に放熱フィンが
取り付けられ、容器の内部に所定量の冷媒が封入される
ものである。CPUの熱は受熱壁を介して内部の冷媒に
伝達されて冷媒を沸騰させ、沸騰した蒸気冷媒が放熱面
に凝縮する際に凝縮潜熱として放出され、その凝縮潜熱
が放熱壁より放熱フィンを介して大気に放出される。
2. Description of the Related Art The present applicant has filed an application for a small-sized boiling cooling device suitable as a cooling device for a CPU (Japanese Patent Application No. 9-995).
0, Japanese Patent Application Nos. 9-29987 and 9-246
297). This boiling cooling device is provided with a heating element (CP) on one of the opposed wall surfaces (heat receiving walls) of a flat box-shaped closed container.
U) is fixed, a radiating fin is attached to the other wall surface (radiating wall), and a predetermined amount of refrigerant is sealed inside the container. The heat of the CPU is transmitted to the internal refrigerant via the heat receiving wall to boil the refrigerant, and is released as condensing latent heat when the boiling vapor refrigerant condenses on the heat radiating surface. Released to the atmosphere.

【0003】[0003]

【発明が解決しようとする課題】沸騰冷却装置は、CP
Uを配置する基板の配置や、基板を収納する筐体の置き
方等によって、様々な向きに配置される。そこで、先願
の沸騰冷却装置は、CPUを容器の側面に配置して使用
する(つまり密閉容器を立てて使用する)サイドヒート
時においても、CPUが取り付けられる発熱体取付部に
冷媒の液面が達して、発熱体取付部で沸騰が行われるよ
うに設けられていた。ところが、このようなサイドヒー
ト時では、発熱体取付部の全面に冷媒が漬からず、沸騰
面積が少なくなってしまい、発熱体取付部の過熱度が上
昇してしまう。逆に、放熱壁側では、多くの放熱壁が冷
媒に漬かるため、蒸気冷媒の凝縮面積が少なくなってし
まい、凝縮壁の過冷度も上昇してしまう。
The boiling cooling device is a CP
They are arranged in various directions depending on the arrangement of the substrate on which the U is arranged, the manner of placing the housing for accommodating the substrate, and the like. Therefore, the boiling cooling device of the prior application uses the CPU by arranging it on the side surface of the container (that is, standing up and using the closed container), even in the side heat mode, the liquid level of the refrigerant is kept at the heating element mounting portion where the CPU is mounted. Was reached, and boiling was performed at the heating element mounting portion. However, at the time of such side heating, the refrigerant is not immersed in the entire surface of the heating element mounting portion, the boiling area is reduced, and the degree of superheating of the heating element mounting portion is increased. Conversely, on the heat radiating wall side, since many heat radiating walls are immersed in the refrigerant, the condensing area of the vapor refrigerant is reduced, and the degree of supercooling of the condensing wall is also increased.

【0004】[0004]

【発明の目的】本発明は、上記の事情に基づいて成され
たもので、その目的は、量産性に優れ、且つ高い冷却性
能を得ることのできる沸騰冷却装置の提供にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a boiling cooling apparatus which is excellent in mass productivity and can obtain high cooling performance.

【0005】[0005]

【課題を解決するための手段】〔請求項1、2の手段〕
沸騰冷却装置は、発熱体取付部を有する面が下向配置さ
れていない状態でも、容器の下部に溜まった冷媒が有孔
金属焼結体の毛細管現象によって発熱体取付部の近傍
(発熱体取付部から受熱して冷媒を蒸発させる部分)に
運搬される。つまり、容器を立てて使用するサイドヒー
ト時や、発熱体を容器の上方に配置して使用するトップ
ヒート時においても、容器内の冷媒を確実に発熱体取付
部の近傍に導くことが可能になる。
[Means for Solving the Problems] [Means for Claims 1 and 2]
In the boiling cooling device, even when the surface having the heating element mounting portion is not arranged downward, the refrigerant accumulated in the lower part of the container is close to the heating element mounting portion due to the capillary phenomenon of the perforated metal sintered body (heating element mounting portion). (A part that receives heat from the part and evaporates the refrigerant). In other words, it is possible to reliably guide the refrigerant in the container to the vicinity of the heating element mounting portion even during side heating when using the container standing up or during top heating when using the heating element arranged above the container. Become.

【0006】このように、有孔金属焼結体の毛細管現象
によって発熱体取付部の近傍に効率良く冷媒を供給する
ことができる。そして、発熱体取付部の近傍という広い
範囲において冷媒を沸騰させることができるため、沸騰
量が増えて発熱体取付部の過熱度を低減できる。また、
容器の下部に溜まった冷媒を有孔金属焼結体が毛細管現
象によって発熱体取付部の近傍に運搬するため、容器内
の冷媒量が少なくて済む。このため、容器を立てて使用
するサイドヒート時において、冷媒に漬かる面積が少な
くなるため、蒸気冷媒の凝縮面積が多くなり、凝縮量が
増えて過冷度も低減できる。このように、発熱体取付部
の過熱度を低減し、放熱側の過冷度も低減でき、結果的
に沸騰冷却装置の冷却性能を向上できる。
As described above, the refrigerant can be efficiently supplied to the vicinity of the heating element mounting portion by the capillary phenomenon of the perforated metal sintered body. Since the refrigerant can be boiled in a wide range near the heating element mounting portion, the amount of boiling increases, and the degree of superheating of the heating element mounting portion can be reduced. Also,
The perforated metal sintered body conveys the refrigerant accumulated in the lower part of the container to the vicinity of the heating element mounting portion by capillary action, so that the amount of refrigerant in the container can be reduced. For this reason, since the area immersed in the refrigerant is reduced during the side heat in which the container is used upright, the condensation area of the vapor refrigerant increases, the amount of condensation increases, and the degree of supercooling can be reduced. As described above, the degree of superheating of the heating element mounting portion can be reduced, and the degree of supercooling on the heat radiation side can be reduced. As a result, the cooling performance of the boiling cooling device can be improved.

【0007】さらに、容器内に有孔金属焼結体を配置し
て沸騰冷却装置が構成されるため、部品点数が少なく、
且つシンプルで済み、沸騰冷却装置の生産性が向上し、
コストを抑えることができる。
[0007] Further, since a perforated metal sintered body is arranged in a container to constitute a boiling cooling device, the number of parts is small.
Simple and simple, the productivity of the ebullient cooling device is improved,
Costs can be reduced.

【0008】〔請求項3の手段〕液冷媒を発熱体取付部
の近傍に運搬する部分の有孔金属焼結体の空孔率が50
%以上、空孔径が10〜100μmの範囲に設けられた
ことにより、有孔金属焼結体の毛細管現象による冷媒の
運搬能力を高くできる。そして、発熱体取付部の近傍へ
の冷媒の供給量が増えることにより、発熱体取付部の過
熱度を低減できる。
[0008] The porosity of the perforated metal sintered body in the portion for transporting the liquid refrigerant to the vicinity of the heating element mounting portion is 50%.
% Or more, and the pore diameter is set in the range of 10 to 100 μm, it is possible to increase the ability of the porous metal sintered body to transport the refrigerant due to the capillary phenomenon. Then, by increasing the supply amount of the refrigerant to the vicinity of the heating element mounting portion, the degree of superheating of the heating element mounting portion can be reduced.

【0009】〔請求項4の手段〕発熱体取付部の近傍の
有孔金属焼結体の空孔率が20%以上、空孔径が10〜
100μmの範囲に設けられたことにより、発熱体取付
部の熱が有孔金属焼結体に効率的に伝達され、発熱体取
付部の過熱度を低減できる。
The porosity of the perforated metal sintered body in the vicinity of the heating element mounting portion is 20% or more, and the porosity is 10 to 10%.
By providing the heating element in the range of 100 μm, the heat of the heating element mounting portion is efficiently transmitted to the perforated metal sintered body, and the degree of superheating of the heating element mounting portion can be reduced.

【0010】〔請求項5の手段〕発熱体取付部の近傍の
有孔金属焼結体に溝や孔が設けられたことにより、その
溝や孔が発熱体取付部の近傍の有孔金属焼結体の沸騰面
積を増やす役割を果たすとともに、有孔金属焼結体内で
発生した蒸気冷媒を抜くための蒸気抜けの促進効果を果
たし、結果的に発熱体取付部の過熱度を低減できる。
[0010] According to a fifth aspect of the present invention, the grooves and holes are provided in the perforated metal sintered body in the vicinity of the heating element mounting portion. In addition to the role of increasing the boiling area of the solidified body, it also has the effect of promoting the escape of steam for removing the steam refrigerant generated in the perforated metal sintered body, and as a result, the degree of superheat of the heating element mounting portion can be reduced.

【0011】〔請求項6の手段〕有孔金属焼結体の少な
くとも発熱体取付部の近傍が容器と一体化して設けられ
たことにより、発熱体取付部の熱が効率良く有孔金属焼
結体の近傍に伝達されるため、発熱体取付部の過熱度を
低減できる。
According to a sixth aspect of the present invention, at least the vicinity of the heating element mounting portion of the perforated metal sintered body is provided integrally with the container, so that the heat of the heating element mounting portion can be efficiently used. Since the heat is transmitted to the vicinity of the body, the degree of superheating of the heating element mounting portion can be reduced.

【0012】〔請求項7の手段〕容器があらゆる姿勢に
配置されても、有孔金属焼結体が下部に溜まった冷媒を
発熱体取付部の近傍に運搬するため、沸騰冷却装置はあ
らゆる姿勢においても使用できる。
According to the present invention, since the perforated metal sintered body transports the refrigerant accumulated in the lower portion to the vicinity of the heating element mounting portion even when the container is disposed in any position, the boiling cooling device is provided in any position. Can also be used.

【0013】〔請求項8の手段〕発熱体取付部で受熱し
た熱を有孔金属焼結体内に伝える伝熱部材を設けたこと
により、有孔金属焼結体への熱伝導性が向上するととも
に、伝熱面積が拡大する。このため、発熱体取付部の熱
が効率良く有孔金属焼結体に伝達されるため、発熱体取
付部の過熱度を低減できる。また、伝熱部材が有孔金属
焼結体を貫通して放熱壁に接続されることで、発熱体取
付部の熱が伝熱部材を介して放熱壁に伝達されるため、
これによっても発熱体取付部の過熱度を低減できる。
According to the present invention, by providing a heat transfer member for transmitting the heat received by the heating element mounting portion into the perforated metal sintered body, the thermal conductivity to the perforated metal sintered body is improved. At the same time, the heat transfer area increases. For this reason, since the heat of the heating element mounting portion is efficiently transmitted to the perforated metal sintered body, the degree of superheating of the heating element mounting portion can be reduced. In addition, since the heat transfer member penetrates the perforated metal sintered body and is connected to the heat radiating wall, the heat of the heating element mounting portion is transmitted to the heat radiating wall via the heat transfer member,
This can also reduce the degree of superheating of the heating element mounting portion.

【0014】〔請求項9の手段〕放熱壁の内面に凝縮フ
ィンが設けられたことにより、凝縮面積を拡大でき、凝
縮壁の他に、凝縮フィンでも蒸気冷媒の凝縮が行われ
る。このため、放熱壁の過冷度を低減できる。
According to a ninth aspect of the present invention, the condensing fins are provided on the inner surface of the heat radiating wall, so that the condensing area can be enlarged. In addition to the condensing walls, the condensing fins condense the vapor refrigerant. For this reason, the degree of supercooling of the heat radiation wall can be reduced.

【0015】〔請求項10の手段〕有孔金属焼結体が、
発熱体取付部を有する容器の内面と、少なくともこの面
に隣合う隣接面とに沿って配置されたことにより、容器
を立てて使用するサイドヒート時や、発熱体を容器の上
方に配置して使用するトップヒート時において、容器の
下部に溜まった冷媒を確実に発熱体取付部に導くことが
できる。
[Means of claim 10] The perforated metal sintered body is
By being arranged along the inner surface of the container having the heating element mounting portion and at least an adjacent surface adjacent to this surface, at the time of side heating when the container is used upright, the heating element is arranged above the container. At the time of the top heat to be used, the refrigerant accumulated in the lower part of the container can be reliably guided to the heating element mounting portion.

【0016】〔請求項11の手段〕有孔金属焼結体が偏
平容器の最も狭い距離で対向する一方の面に配置された
ことにより、有孔金属焼結体の面積が大きく、冷媒の供
給能力が高くなるとともに、対向する放熱壁の面積が大
きくなり、結果的に沸騰冷却装置の冷却能力を高くでき
る。
According to the eleventh aspect, since the perforated metal sintered body is disposed on one surface of the flat container facing the narrowest distance, the area of the perforated metal sintered body is large, and the supply of the refrigerant is performed. As the capacity increases, the area of the opposed heat radiating wall increases, and as a result, the cooling capacity of the boiling cooling device can be increased.

【0017】〔請求項12の手段〕発熱体取付部の近傍
の有孔金属焼結体の空孔率が、他の部分(冷媒を運搬す
る部分)の空孔率に比べて小さく設けられたことによ
り、発熱体取付部の熱が効率的に有孔金属焼結体の内部
に伝わり、発熱体取付部の過熱度を低減できる。また、
他の部分の空孔率が大きいため、発熱体取付部の近傍へ
の冷媒の運搬能力が高くでき、発熱体取付部の近傍への
冷媒の供給量が増えることにより、発熱体取付部の過熱
度を低減できる。このように、発熱体取付部の熱が効率
良く有効金属焼結体内に伝達されるとともに、効率良く
熱が伝わる発熱体取付部の近傍の有孔金属焼結体への冷
媒の供給量が増えることにより、発熱体取付部の過熱度
を低減できる。
According to a twelfth aspect of the present invention, the porosity of the perforated metal sintered body in the vicinity of the heating element mounting portion is set to be smaller than the porosity of another portion (portion for transporting the refrigerant). Thereby, the heat of the heating element mounting portion is efficiently transmitted to the inside of the perforated metal sintered body, and the degree of superheating of the heating element mounting portion can be reduced. Also,
Since the porosity of the other parts is large, the ability to transport the refrigerant to the vicinity of the heating element mounting part can be increased, and the supply amount of the refrigerant to the vicinity of the heating element mounting part increases, so that the heating element mounting part is overheated. The degree can be reduced. In this way, the heat of the heating element mounting portion is efficiently transmitted to the effective metal sintered body, and the supply amount of the refrigerant to the perforated metal sintered body near the heating element mounting portion through which the heat is efficiently transmitted increases. Thereby, the degree of superheating of the heating element mounting portion can be reduced.

【0018】〔請求項13の手段〕発熱体取付部の近傍
において発熱体取付部に対向する側の有孔金属焼結体の
空孔率が、他の部分の空孔率に比べて小さく設けられた
ことにより、発熱体取付部の熱が効率的に有孔金属焼結
体の内部に伝わる。そして、反発熱体取付部側の有孔金
属焼結体の空孔率が大きいため、空孔率の小さい有効金
属焼結体によって内部に伝えられた熱によって蒸発した
蒸気冷媒が、反発熱体取付部側へ効率良く抜ける。この
ように、発熱体取付部の熱が効率良く有効金属焼結体の
内部に伝達されるとともに、内部に伝えられた熱によっ
て蒸発した蒸気冷媒の抜けが促進されるため、結果的に
発熱体取付部の過熱度を低減できる。
According to a thirteenth aspect of the present invention, the porosity of the perforated metal sintered body on the side opposed to the heating element mounting portion in the vicinity of the heating element mounting portion is provided to be smaller than the porosity of other portions. Due to this, the heat of the heating element mounting portion is efficiently transmitted to the inside of the perforated metal sintered body. Since the porosity of the perforated metal sintered body on the side opposite to the heating element mounting portion is large, the vapor refrigerant evaporated by the heat transferred inside by the effective metal sintered body having a small porosity, Efficiently exits to the mounting part side. In this way, the heat of the heating element mounting portion is efficiently transmitted to the inside of the effective metal sintered body, and the heat transferred to the inside promotes the removal of the evaporated vapor refrigerant, and as a result, the heating element The degree of superheating of the mounting portion can be reduced.

【0019】[0019]

【発明の実施の形態】次に、本発明の実施の形態を、複
数の実施例と変形例に基づき説明する。 〔第1実施例〕第1実施例を図1および図2を用いて説
明する。なお、図1は沸騰冷却装置1の正面図と断面
図、図2は沸騰冷却装置1の使用例を示す斜視図であ
る。沸騰冷却装置1は、図2に示すように、例えばコン
ピュータに搭載されたCPU2(発熱体)を冷却するも
のであり、基板3に取り付けられたCPU2と放熱フィ
ン4との間に介在されて使用される。
Next, embodiments of the present invention will be described based on a plurality of examples and modifications. [First Embodiment] A first embodiment will be described with reference to FIGS. FIG. 1 is a front view and a sectional view of the boiling cooling device 1, and FIG. 2 is a perspective view showing an example of use of the boiling cooling device 1. As shown in FIG. 2, the boiling cooling device 1 cools, for example, a CPU 2 (heating element) mounted on a computer, and is used by being interposed between the CPU 2 mounted on the substrate 3 and the radiation fins 4. Is done.

【0020】沸騰冷却装置1は、CPU2が取り付けら
れる発熱体取付部7aを備えた容器5と、この容器5内
に配置された有孔金属焼結体6と、容器5内に所定量封
入された冷媒(図示しない)とからなる。容器5は、熱
伝導性に優れる金属(例えば、銅、ニッケル、アルミニ
ウム等)により製造され、図1に示すように、横寸法a
および縦寸法bに対して厚さ寸法hが小さい偏平な箱型
に形成されている。
The boiling cooling device 1 includes a container 5 having a heating element mounting portion 7a to which the CPU 2 is mounted, a perforated metal sintered body 6 disposed in the container 5, and a predetermined amount enclosed in the container 5. (Not shown). The container 5 is made of a metal having excellent thermal conductivity (eg, copper, nickel, aluminum, etc.), and has a lateral dimension a as shown in FIG.
And it is formed in a flat box shape whose thickness dimension h is smaller than vertical dimension b.

【0021】容器5の一方の壁面(以下、受熱壁7)に
は、発熱体取付部7aが突出して設けられており、対向
する壁面(以下放熱壁8)には、全面に亘って放熱フィ
ン4が取り付けられる。この実施例の容器5は、図2に
示すように、基板3に配置されたスロット3a等によっ
て容器5の配置に制約を受けるため、受熱壁7の中央部
にCPU2を配置できない。そこで、発熱体取付部7a
は、受熱壁7の中心からオフセットして設けられてい
る。なお、受熱壁7の中心とは、受熱壁7の重心、即ち
受熱壁7の対角線の交差付近である。
A heating element mounting portion 7a is provided so as to protrude from one wall surface (hereinafter referred to as a heat receiving wall 7) of the container 5, and a radiating fin is provided over the entire wall surface (hereinafter referred to as a heat radiating wall 8). 4 is attached. In the container 5 of this embodiment, as shown in FIG. 2, the CPU 2 cannot be arranged at the center of the heat receiving wall 7 because the arrangement of the container 5 is restricted by the slots 3a and the like arranged on the substrate 3. Therefore, the heating element mounting portion 7a
Are provided offset from the center of the heat receiving wall 7. The center of the heat receiving wall 7 is the center of gravity of the heat receiving wall 7, that is, the vicinity of the intersection of the diagonal lines of the heat receiving wall 7.

【0022】沸騰冷却装置1は、あらゆる姿勢での使用
に対応するものであり、有孔金属焼結体6には、どのよ
うな姿勢においても容器5内の下部に溜まった冷媒を発
熱体取付部近傍6a(発熱体取付部7aから受熱して冷
媒を蒸発させる部分)に輸送する高い冷媒輸送能力が要
求される。有孔金属焼結体6は、熱伝導性に優れる金属
(例えば、銅、ニッケル、アルミニウム等)により製造
された多孔質材で、容器5の下部に溜まった冷媒を毛細
管現象によって発熱体取付部近傍6aに運搬するウィッ
クとして機能するものである。
The boiling cooling device 1 is adapted to be used in all postures. The perforated metal sintered body 6 is provided with a heating element for mounting the refrigerant accumulated in the lower portion of the container 5 in any posture. A high refrigerant transport capacity for transporting to the vicinity 6a (portion for receiving the heat from the heating element mounting portion 7a and evaporating the refrigerant) is required. The perforated metal sintered body 6 is a porous material made of a metal having excellent thermal conductivity (for example, copper, nickel, aluminum, or the like). It functions as a wick for transporting to the vicinity 6a.

【0023】有孔金属焼結体6は、所定の空孔率と空孔
径を有するように設けられている。具体的には、液冷媒
を発熱体取付部近傍6aまで運搬する運搬部分が高い毛
細管効果を得るために、空孔率が50%以上、空孔径が
10〜100μmの範囲に設けられることが望ましく、
発熱体取付部近傍6aが、発熱体取付部7aの過熱度低
減のために、空孔率が20%以上、空孔径が10〜10
0μmの範囲に設けられることが望ましい。
The porous metal sintered body 6 is provided to have a predetermined porosity and a predetermined pore diameter. Specifically, in order to obtain a high capillary effect at the transporting portion for transporting the liquid refrigerant to the vicinity of the heating element mounting portion 6a, it is desirable that the porosity is 50% or more and the pore diameter is in the range of 10 to 100 μm. ,
In order to reduce the degree of superheating of the heating element mounting portion 7a, the vicinity of the heating element mounting portion 6a has a porosity of 20% or more and a pore diameter of 10 to 10%.
It is desirable that the thickness be in the range of 0 μm.

【0024】有孔金属焼結体6は、ウィック機能と過熱
度低減機能とを両立するために、上述のように、運搬部
分と蒸発部分とをそれぞれ最適な空孔率となるように製
造することが望ましい。このような有孔金属焼結体6の
製造方法の一例を示す。まず、空孔率が50%以上、空
孔径が10〜100μmの範囲の有孔金属焼結体6を製
造する。そして、蒸発部分、つまり発熱体取付部近傍6
aの部分のみに金属粒子等を埋設し、蒸発部分の空孔率
を20%以上にして焼結する。これによって、ウィック
機能と過熱度低減機能とを両立することができる。ま
た、有孔金属焼結体6は、受熱壁7の内面にほぼ一致す
る大きさの板材であり、受熱壁7と一体に製造されてい
る。このため、発熱体取付部7aで受けた熱が効率良く
発熱体取付部近傍6aに伝えられる。
As described above, the perforated metal sintered body 6 is manufactured so that the transporting portion and the evaporating portion have optimal porosity in order to achieve both the wick function and the superheat reducing function. It is desirable. An example of a method for manufacturing such a perforated metal sintered body 6 will be described. First, a porous metal sintered body 6 having a porosity of 50% or more and a pore diameter of 10 to 100 μm is manufactured. Then, the evaporation portion, that is, the vicinity of the heating element mounting portion 6
Metal particles and the like are embedded only in the portion a, and the porosity of the evaporation portion is set to 20% or more, and sintering is performed. Thereby, both the wick function and the superheat degree reducing function can be achieved. The perforated metal sintered body 6 is a plate having a size substantially matching the inner surface of the heat receiving wall 7, and is manufactured integrally with the heat receiving wall 7. Therefore, the heat received by the heating element mounting portion 7a is efficiently transmitted to the vicinity of the heating element mounting portion 6a.

【0025】一方、容器5の放熱壁8の内面には、放熱
部分での過熱度低減のために、放熱壁8と一体に凝縮フ
ィン8aが形成されている。この凝縮フィン8aのフィ
ン間隔は、過冷度低減のための必要凝縮面積が確保で
き、かつ凝縮した冷媒がフィン間で滞留しない間隔に設
けられている。また、沸騰冷却装置1の熱抵抗を低減す
るために、受熱壁7と放熱壁8と有孔金属焼結体6との
間の良好な熱伝導が得られるように、接合することが望
ましく、例えばろう付け、ハンダ付け等の接合技術で接
合される。容器5内に封入される冷媒は、CPU2の熱
によって蒸発し、空冷によって冷却される放熱壁8で凝
縮するもので、水、アルコール、アセトン、その他の有
機溶剤などから、作動温度域や、沸騰冷却装置1の構成
材料との適合性等に基づいて選定される。なお、一般的
には、銅−水系の冷媒が使用される場合が多い。
On the other hand, on the inner surface of the heat radiating wall 8 of the container 5, a condensing fin 8a is formed integrally with the heat radiating wall 8 to reduce the degree of superheat in the heat radiating portion. The fin interval between the condensing fins 8a is set such that a necessary condensing area for reducing the degree of subcooling can be secured and the condensed refrigerant does not stay between the fins. In order to reduce the thermal resistance of the ebullient cooling device 1, it is desirable to join the heat receiving wall 7, the heat radiating wall 8, and the perforated metal sintered body 6 so as to obtain good heat conduction. For example, they are joined by a joining technique such as brazing or soldering. The refrigerant enclosed in the container 5 evaporates due to the heat of the CPU 2 and condenses on the heat radiating wall 8 cooled by air cooling. The selection is made based on the compatibility with the constituent materials of the cooling device 1 and the like. In addition, generally, a copper-water-based refrigerant is often used.

【0026】沸騰冷却装置1の作動を説明する。CPU
2の熱は、発熱体取付部7aから容器5内の発熱体取付
部近傍6aに伝達され、その発熱体取付部近傍6aに運
搬された液冷媒を沸騰させる。発生した蒸気冷媒は、放
熱フィン4によって温度が低く抑えられる放熱壁8およ
び凝縮フィン8aに凝縮潜熱を放出して凝縮液化し、液
滴となって下部に溜まる液冷媒に還流する。放熱壁8に
放出された熱は、放熱壁8に取り付けられた放熱フィン
4を介して大気に放出される。
The operation of the cooling device 1 will be described. CPU
The heat of No. 2 is transmitted from the heating element mounting portion 7a to the vicinity of the heating element mounting portion 6a in the container 5, and causes the liquid refrigerant conveyed to the heating element mounting portion vicinity 6a to boil. The generated vapor refrigerant discharges latent heat of condensation to the radiating wall 8 and the condensing fins 8a whose temperature is suppressed by the radiating fins 4 to be condensed and liquefied, returned as liquid droplets to the liquid refrigerant accumulated in the lower part. The heat released to the heat radiating wall 8 is radiated to the atmosphere via the heat radiating fins 4 attached to the heat radiating wall 8.

【0027】〔実施例の効果〕本実施例の沸騰冷却装置
1は、容器5の下部に溜まった冷媒が、有孔金属焼結体
6の毛細管現象によって発熱体取付部近傍6aに運搬さ
れるため、発熱体取付部7aが受熱壁7の中心からオフ
セットされ、且つ、図1に示すようなサイドヒート時に
おいても、容器5内の冷媒を確実に発熱体取付部近傍6
aに導くことができる。そして、発熱体取付部近傍6a
という広い範囲において冷媒を沸騰させることができる
ため、沸騰量が増えて、発熱体取付部7aの過熱度を低
減できる。
[Effects of the Embodiment] In the boiling cooling apparatus 1 of the present embodiment, the refrigerant accumulated in the lower part of the container 5 is conveyed to the vicinity of the heating element mounting portion 6a by the capillary phenomenon of the perforated metal sintered body 6. Therefore, the heating element mounting portion 7a is offset from the center of the heat receiving wall 7, and even in the side heat as shown in FIG.
a. Then, the heating element mounting portion vicinity 6a
Since the refrigerant can be boiled in such a wide range, the amount of boiling increases, and the degree of superheat of the heating element mounting portion 7a can be reduced.

【0028】また、容器5の下部に溜まった冷媒が毛細
管現象によって発熱体取付部近傍6aに運搬するため、
容器5内の冷媒量が少なくて済む。このため、容器5を
立てて使用するサイドヒート時において、冷媒に漬かる
放熱壁8の面積が少なくなり、実際的に蒸気冷媒を凝縮
させる凝縮面積が多くなる。この結果、凝縮量が増えて
過冷度も低減できる。このように、発熱体取付部7aの
過熱度を低減し、放熱壁8の過冷度も低減でき、結果的
に沸騰冷却装置1の冷却性能を向上できる。
Also, since the refrigerant accumulated in the lower portion of the container 5 is transported to the vicinity of the heating element mounting portion 6a by capillary action,
The amount of refrigerant in the container 5 can be small. For this reason, at the time of side heat in which the container 5 is used upright, the area of the heat radiating wall 8 immersed in the refrigerant is reduced, and the condensing area for actually condensing the vapor refrigerant is increased. As a result, the amount of condensation increases and the degree of supercooling can be reduced. As described above, the degree of superheating of the heating element mounting portion 7a can be reduced, and the degree of supercooling of the heat radiating wall 8 can also be reduced. As a result, the cooling performance of the boiling cooling device 1 can be improved.

【0029】さらに、沸騰冷却装置1は、容器5、有孔
金属焼結体6および冷媒のみで構成される。つまり、沸
騰冷却装置1は、大変シンプルで済み、沸騰冷却装置1
の生産性が向上し、コストを低く抑えることができる。
Further, the boiling cooling device 1 is composed of only the container 5, the perforated metal sintered body 6, and the refrigerant. That is, the boiling cooling device 1 is very simple, and the boiling cooling device 1
And the cost can be kept low.

【0030】〔第2実施例〕第2実施例を図3〜図5の
グラフを用いて説明する。なお、符号は第1実施例の図
面を参照。CPU2の大きさがパッケージ込みで50m
m×50mm程度であるとする。つまり、発熱体取付部
7aの大きさが50mm×50mm程度であるとする。
このような場合では、容器5の受熱壁7(ベース面)の
大きさは、150mm×150mm程度が用いやすい。
このような場合に、CPU2が受熱壁7に対して偏心し
て取り付けられるとしたら、100mm程度を有孔金属
焼結体6(ウィック)によって冷媒を吸い上げる必要が
ある。そこで、有孔金属焼結体6が毛細管現象によって
冷媒を吸い上げる高さを100mmとした場合、図3の
グラフに示すように、有孔金属焼結体6の空孔半径を
0.01mm以下とすることが望ましい。なお、図3の
実線A1 は水を用いた計算値、破線A2 は冷媒を用いた
実測値である。
[Second Embodiment] A second embodiment will be described with reference to the graphs of FIGS. The reference numerals refer to the drawings of the first embodiment. CPU2 size is 50m including package
It is assumed that it is about mx50 mm. That is, it is assumed that the size of the heating element mounting portion 7a is about 50 mm × 50 mm.
In such a case, the size of the heat receiving wall 7 (base surface) of the container 5 is preferably about 150 mm × 150 mm.
In such a case, if the CPU 2 is mounted eccentrically with respect to the heat receiving wall 7, it is necessary to suck up the refrigerant by about 100 mm by the perforated metal sintered body 6 (wick). Therefore, when the height at which the perforated metal sintered body 6 sucks the refrigerant by the capillary action is 100 mm, as shown in the graph of FIG. 3, the pore radius of the perforated metal sintered body 6 is 0.01 mm or less. It is desirable to do. In FIG. 3, the solid line A1 is a calculated value using water, and the broken line A2 is a measured value using a refrigerant.

【0031】上述したように、有孔金属焼結体6の空孔
半径を0.01mm以下とすることが望ましいが、同等
の実効空孔半径であったとしても、実際の冷媒通路とな
る有孔金属焼結体6の断面は、大きい方が冷媒が通りや
すく、冷媒運搬量が大きい。これは、図4のグラフに示
すような差があり、例えば熱輸送能力60Wに対応しよ
うとすると、空孔率が40%の場合(図中破線B1 )に
有孔金属焼結体6の断面積が100mm2 必要であるの
に対し、空孔率が70%の場合(図中実線B2)に有孔
金属焼結体6の断面積が56mm2 で対応できる。これ
は、空孔径が同一とみなした場合、 100mm2 ×(40%/70%)=57.14mm2 と予測できる必要通路断面積とよく一致している。この
ように、空孔率が70%の有孔金属焼結体6を用いるこ
とで、有孔金属焼結体6の断面積を小さく設計でき、実
質的に有孔金属焼結体6を薄くでき、結果的に沸騰冷却
装置1を薄型化できる。
As described above, the pore radius of the perforated metal sintered body 6 is desirably 0.01 mm or less. However, even if the effective pore radius is the same, an actual refrigerant passage is formed. The larger the cross section of the hole metal sintered body 6, the easier the refrigerant passes through, and the larger the amount of the refrigerant transported. This is because there is a difference as shown in the graph of FIG. 4. For example, when the porosity is 40% (dashed line B1 in the figure), the breaking of the porous metal When the porosity is 70% (solid line B2 in the figure) while the area is required to be 100 mm 2 , the cross-sectional area of the perforated metal sintered body 6 can be adjusted to 56 mm 2 . This is because when the pore diameter is regarded as the same, in good agreement with necessary cross-sectional area can be predicted 100mm 2 × (40% / 70 %) = 57.14mm 2 and. As described above, by using the porous metal sintered body 6 having a porosity of 70%, the cross-sectional area of the porous metal sintered body 6 can be designed to be small, and the porous metal sintered body 6 can be made substantially thin. As a result, the thickness of the boiling cooling device 1 can be reduced.

【0032】有孔金属焼結体6で覆われた面を沸騰面と
した場合、過熱度を大幅に低減できる。つまり、受熱壁
7を有孔金属焼結体6で覆うことにより、受熱壁7の過
熱度を大幅に低減できる。さらに、受熱壁7を覆う有孔
金属焼結体6の空孔率が小さい場合より、大きい場合の
方が受熱壁7の過熱度を低減できる。具体的には、図5
のグラフのように、空孔率が30%の場合(図中実線C
1 )に対して65%のもの(図中実線C2)は、過熱度
を半分以下に低減できる。
When the surface covered with the porous metal sintered body 6 is a boiling surface, the degree of superheat can be greatly reduced. That is, by covering the heat receiving wall 7 with the perforated metal sintered body 6, the degree of superheating of the heat receiving wall 7 can be significantly reduced. Further, the degree of superheat of the heat receiving wall 7 can be reduced when the porosity of the perforated metal sintered body 6 covering the heat receiving wall 7 is larger than when the porosity is small. Specifically, FIG.
As shown in the graph, when the porosity is 30% (solid line C in the figure)
In the case of 65% (solid line C2 in the figure) with respect to 1), the degree of superheat can be reduced to less than half.

【0033】つまり、発熱体取付部7aの大きさが50
mm×50mm程度で、容器5の受熱壁7(ベース面)
の大きさが150mm×150mm程度で、CPU2が
受熱壁7に対して偏心して取り付けられ、100mm程
度を有孔金属焼結体6によって冷媒を吸い上げる必要が
ある場合、有孔金属焼結体6は、空孔半径が0.01m
m以下であり、発熱体取付部近傍6aの空孔率が30%
程に設けられ、他の部分の空孔率が65〜70%程に設
けられる。
That is, the size of the heating element mounting portion 7a is 50
mm × 50 mm, heat receiving wall 7 of container 5 (base surface)
Is about 150 mm × 150 mm, the CPU 2 is mounted eccentrically to the heat receiving wall 7, and it is necessary to suck up the refrigerant by about 100 mm by the perforated metal sintered body 6. , Hole radius is 0.01m
m, and the porosity in the vicinity of the heating element mounting portion 6a is 30%.
And the porosity of other portions is set to about 65 to 70%.

【0034】このように、発熱体取付部近傍6aの有孔
金属焼結体6の空孔率が30%であり、他の部分の空孔
率65〜70%に比べて小さく設けられたことにより、
発熱体取付部7aの熱が効率的に有孔金属焼結体6内に
伝わり、発熱体取付部7aの過熱度を低減できる。ま
た、他の部分の空孔率65〜70%が大きいため、発熱
体取付部近傍6aへの冷媒の運搬能力を高くでき、発熱
体取付部近傍6aへの冷媒の供給量が増え、発熱体取付
部7aの過熱度を低減できるとともに、有孔金属焼結体
6を薄型化できるため、容器5を薄型化できる。さら
に、他の部分(発熱体取付部近傍6aへの冷媒の運搬を
行う部分)の空孔率が65〜70%と大きいため、受熱
壁7の過熱度を低減できる。
As described above, the porosity of the perforated metal sintered body 6 in the vicinity of the heating element mounting portion 6a is 30%, which is smaller than the porosity of the other portions of 65 to 70%. By
The heat of the heating element mounting portion 7a is efficiently transmitted into the perforated metal sintered body 6, and the degree of superheating of the heating element mounting portion 7a can be reduced. In addition, since the porosity of the other portions is large, 65 to 70%, the ability to transport the refrigerant to the vicinity of the heating element attachment portion 6a can be increased, and the supply amount of the refrigerant to the vicinity of the heating element attachment portion 6a increases. The degree of superheating of the mounting portion 7a can be reduced, and the perforated metal sintered body 6 can be made thinner, so that the container 5 can be made thinner. Further, since the porosity of the other portion (portion for transporting the refrigerant to the vicinity of the heating element mounting portion 6a) is as large as 65 to 70%, the degree of superheat of the heat receiving wall 7 can be reduced.

【0035】〔第3実施例〕第3実施例を図6を用いて
説明する。なお、図6のa)、b)、c)は、それぞれ
異なった沸騰冷却装置1の断面図を示す。この第3実施
例は、受熱壁7における発熱体取付部7aの過熱度を低
減させる手段として、発熱体取付部7aの内側に伝熱部
材10を設けたものである。この伝熱部材10は、受熱
壁7と一体に設けられたもので、図6のa)に示すよう
に、有孔金属焼結体6の内部に進入して、発熱体取付部
7aで受熱した熱を有孔金属焼結体6の内部まで伝える
ものである。つまり、この伝熱部材10によって、有孔
金属焼結体6への熱伝導性が向上するとともに、伝熱面
積が拡大され、結果的に発熱体取付部7aの熱流束を下
げて、発熱体取付部7aの過熱度を低減させることがで
きる。
Third Embodiment A third embodiment will be described with reference to FIG. In addition, a), b), and c) of FIG. 6 are cross-sectional views of different boiling cooling devices 1. In the third embodiment, a heat transfer member 10 is provided inside the heating element mounting portion 7a as means for reducing the degree of superheating of the heating element mounting portion 7a in the heat receiving wall 7. The heat transfer member 10 is provided integrally with the heat receiving wall 7 and, as shown in FIG. 6A, enters the inside of the perforated metal sintered body 6 and receives heat at the heating element mounting portion 7a. The generated heat is transmitted to the inside of the perforated metal sintered body 6. That is, the heat transfer member 10 improves the heat conductivity to the perforated metal sintered body 6 and enlarges the heat transfer area. As a result, the heat flux of the heating element mounting portion 7a is reduced, The degree of superheating of the mounting portion 7a can be reduced.

【0036】なお、図6のa)では、伝熱部材10が有
孔金属焼結体6の内部まで突出するのみの例を示すが、
図6のb)、c)に示すように、伝熱部材10が有孔金
属焼結体6を貫通し、放熱壁8に当接するように設けて
も良い。これによって、伝熱部材10の熱が直接放熱壁
8に伝えられて放熱されるため、発熱体取付部7aの過
熱度をさらに低減させることができる。また、伝熱部材
10を放熱壁8に当接配置させることにより、容器5の
強度を向上でき、容器5の変形を抑える効果も得られ
る。
FIG. 6A shows an example in which the heat transfer member 10 only protrudes into the perforated metal sintered body 6.
As shown in b) and c) of FIG. 6, the heat transfer member 10 may be provided so as to penetrate the perforated metal sintered body 6 and abut on the heat radiation wall 8. Thereby, since the heat of the heat transfer member 10 is directly transmitted to the heat radiating wall 8 and radiated, the degree of superheat of the heat generating element mounting portion 7a can be further reduced. In addition, by disposing the heat transfer member 10 in contact with the heat radiating wall 8, the strength of the container 5 can be improved, and an effect of suppressing deformation of the container 5 can be obtained.

【0037】〔第4実施例〕第4実施例を図7を用いて
説明する。なお、図7のa)、b)は、それぞれ異なっ
た有孔金属焼結体6の平面図を示す。この第4実施例
は、受熱壁7における発熱体取付部7aの過熱度を低減
させる手段として、有孔金属焼結体6の発熱体取付部近
傍6aに、溝11aや孔11bを設けたものである。な
お、溝11aや孔11bは、それぞれ有孔金属焼結体6
を貫通したものでも良いし、有孔金属焼結体6の表面
(放熱壁8の対向面)で凹んだものであっても良い。こ
のような溝11aや孔11bを設けたことにより、沸騰
面積を拡大するとともに、蒸気の抜けが促進され、冷媒
流と対向する蒸気流速が下がり、発熱体取付部7aの過
熱度を下げることができる。
[Fourth Embodiment] A fourth embodiment will be described with reference to FIG. 7A and 7B are plan views of different perforated metal sintered bodies 6, respectively. In the fourth embodiment, as a means for reducing the degree of superheating of the heating element mounting portion 7a in the heat receiving wall 7, a groove 11a or a hole 11b is provided in the vicinity of the heating element mounting portion 6a of the perforated metal sintered body 6. It is. The grooves 11a and the holes 11b are respectively formed in the perforated metal sintered body 6.
May be penetrated, or may be concave at the surface of the perforated metal sintered body 6 (the surface facing the heat radiating wall 8). By providing such grooves 11a and holes 11b, it is possible to increase the boiling area, promote the escape of steam, reduce the steam flow rate facing the refrigerant flow, and reduce the degree of superheat of the heating element mounting portion 7a. it can.

【0038】〔第5実施例〕第5実施例を図8を用いて
説明する。なお、図8のa)、b)は、それぞれ異なっ
た有孔金属焼結体6の斜視図を示す。この第5実施例
は、あらゆる姿勢での使用に対応できる有孔金属焼結体
6を示す。つまり、あらゆる姿勢において容器5の下部
の冷媒に有孔金属焼結体6が必ず触れるように、有孔金
属焼結体6の形状をL字形状や、コ字形状に設けたもの
である。この結果、有孔金属焼結体6は、発熱体取付部
7aを有する容器5の内面(受熱壁7の内面)と、この
面に隣合う容器5の内面とに沿って配置される。なお、
有孔金属焼結体6の形状をL字形状に成形する手段とし
て、予めL字形状の型を用いて有孔金属焼結体6を成形
しても良いし、受熱壁7と一体成形する際に、受熱壁7
の一部に剥離剤を塗布し、焼結後に受熱壁7から剥離し
て起こすことでL字形状に加工しても良い。
Fifth Embodiment A fifth embodiment will be described with reference to FIG. 8A and 8B show perspective views of different perforated metal sintered bodies 6, respectively. The fifth embodiment shows a perforated metal sintered body 6 that can be used in any posture. In other words, the perforated metal sintered body 6 is provided in an L-shape or a U-shape so that the perforated metal sintered body 6 always comes into contact with the refrigerant at the lower part of the container 5 in any posture. As a result, the perforated metal sintered body 6 is arranged along the inner surface of the container 5 (the inner surface of the heat receiving wall 7) having the heating element mounting portion 7a and the inner surface of the container 5 adjacent to this surface. In addition,
As means for forming the shape of the perforated metal sintered body 6 into an L-shape, the perforated metal sintered body 6 may be preliminarily formed using an L-shaped mold, or may be integrally formed with the heat receiving wall 7. At this time, the heat receiving wall 7
May be processed into an L-shape by applying a release agent to a part of the heat-receiving wall and peeling it off from the heat receiving wall 7 after sintering.

【0039】〔第6実施例〕第6実施例を図9を用いて
説明する。なお、図9は沸騰冷却装置1の断面図を示
す。この第6実施例の有孔金属焼結体6は、発熱体取付
部近傍6aにおいて、発熱体取付部7aに対向する側
(図中符号6x)の空孔率が30%であり、他の部分
(図中符号6y)の空孔率70%に比べて小さく設けら
れたものである。このように発熱体取付部7aに対向す
る側の空孔率が30%と小さく設けられたことにより、
発熱体取付部7aの熱が効率的に有孔金属焼結体6の内
部に伝わる。そして、反発熱体取付部7a側の有孔金属
焼結体6yの空孔率が70%と大きいため、空孔率が3
0%の有効金属焼結体6xによって内部に伝えられた熱
によって蒸発した蒸気冷媒が、空孔率が70%の有効金
属焼結体6yから効率良く抜ける。
Sixth Embodiment A sixth embodiment will be described with reference to FIG. FIG. 9 is a sectional view of the boiling cooling device 1. The perforated metal sintered body 6 of the sixth embodiment has a porosity of 30% on the side (symbol 6x in the figure) facing the heating element mounting portion 7a in the vicinity of the heating element mounting portion 6a, and other porosity is 30%. It is provided smaller than the porosity of the portion (reference numeral 6y in the figure) of 70%. Since the porosity on the side facing the heating element mounting portion 7a is provided as small as 30%,
The heat of the heating element mounting portion 7a is efficiently transmitted to the inside of the perforated metal sintered body 6. Since the porosity of the perforated metal sintered body 6y on the anti-heating element mounting portion 7a side is as large as 70%, the porosity is 3%.
The vapor refrigerant evaporated by the heat transferred to the inside by the 0% effective metal sintered body 6x efficiently escapes from the 70% effective metal sintered body 6y having the porosity.

【0040】このように、空孔率が30%の有孔金属焼
結体6xによって発熱体取付部の熱が効率良く有孔金属
焼結体6の内部に伝達されるとともに、内部に伝えられ
た熱によって蒸発した蒸気冷媒が空孔率が70%の有孔
金属焼結体6yによって容易に抜けるため、結果的に発
熱体取付部7aの過熱度を低減できる。
As described above, the heat of the heating element mounting portion is efficiently transmitted to the inside of the perforated metal sintered body 6 by the perforated metal sintered body 6x having a porosity of 30%, and is also transmitted to the inside. Since the vapor refrigerant evaporated by the heat is easily removed by the perforated metal sintered body 6y having a porosity of 70%, the degree of superheat of the heating element mounting portion 7a can be reduced as a result.

【0041】〔変形例〕上記の実施例では、受熱壁7に
発熱体取付部7aを突出させた例を示したが、受熱壁7
全体を平面(発熱体取付部7aが突出していない)に形
成しても良い。逆に、発熱体取付部7aを受熱壁7にお
いて凹まして形成しても良い。
[Modification] In the above-described embodiment, an example is shown in which the heating element mounting portion 7a protrudes from the heat receiving wall 7.
The whole may be formed on a flat surface (the heating element mounting portion 7a does not protrude). Conversely, the heating element mounting portion 7a may be formed to be recessed in the heat receiving wall 7.

【図面の簡単な説明】[Brief description of the drawings]

【図1】a)は沸騰冷却装置の正面図、b)は沸騰冷却
装置の断面図を示す(第1実施例)。
1A is a front view of a boiling cooling device, and FIG. 1B is a sectional view of the boiling cooling device (first embodiment).

【図2】沸騰冷却装置の使用例を示す斜視図である(第
1実施例)。
FIG. 2 is a perspective view showing an example of use of a boiling cooling device (first embodiment).

【図3】空孔半径と毛細管高さとの関係を示すグラフで
ある(第2実施例)。
FIG. 3 is a graph showing a relationship between a hole radius and a capillary height (second embodiment).

【図4】有効金属焼結体(ウィック)の断面積と熱輸送
能力との関係を示すグラフである(第2実施例)。
FIG. 4 is a graph showing a relationship between a cross-sectional area of an effective metal sintered body (wick) and a heat transport ability (second embodiment).

【図5】熱流速と過熱度との関係を示すグラフである
(第2実施例)。
FIG. 5 is a graph showing a relationship between a heat flow rate and a degree of superheat (second embodiment).

【図6】a)、b)、c)は、それぞれ異なった沸騰冷
却装置の断面図を示す(第3実施例)。
FIGS. 6 (a), 6 (b) and 6 (c) show cross-sectional views of different boiling cooling devices (third embodiment).

【図7】a)、b)は、それぞれ異なった有孔金属焼結
体の平面図を示す(第4実施例)。
FIGS. 7A and 7B are plan views of different perforated metal sintered bodies (fourth embodiment).

【図8】a)、b)は、それぞれ異なった有孔金属焼結
体の斜視図を示す(第5実施例)。
FIGS. 8A and 8B are perspective views of different perforated metal sintered bodies (fifth embodiment).

【図9】沸騰冷却装置の断面図を示す(第6実施例)。FIG. 9 shows a sectional view of a boiling cooling device (sixth embodiment).

【符号の説明】[Explanation of symbols]

1 沸騰冷却装置 2 CPU(発熱体) 5 容器 6 有孔金属焼結体 6a 発熱体取付部近傍 7 受熱壁 7a 発熱体取付部 8 放熱壁 8a 凝縮フィン 10 伝熱部材 11a 溝 11b 孔 DESCRIPTION OF SYMBOLS 1 Boiling cooling device 2 CPU (heating element) 5 Container 6 Perforated metal sintered body 6a Near heating element mounting part 7 Heat receiving wall 7a Heating element mounting part 8 Heat radiating wall 8a Condensing fin 10 Heat transfer member 11a Groove 11b Hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺尾 公良 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 川口 清司 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 松本 達人 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kimio Terao 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. (72) Inventor Tatsuto Matsumoto 1-1-1 Showa-cho, Kariya-shi, Aichi, Japan

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】発熱体が取り付けられる発熱体取付部を備
えるとともに、内部に所定量の冷媒が封入された容器
と、 この容器内に配置され、液冷媒を毛細管現象によって前
記発熱体取付部の近傍に運搬する有孔金属焼結体と、を
備える沸騰冷却装置。
1. A container having a heating element mounting portion to which a heating element is mounted, and a container in which a predetermined amount of refrigerant is enclosed, and a liquid refrigerant disposed in the container and causing the liquid refrigerant to flow by capillary action. A perforated metal sintered body conveyed to the vicinity.
【請求項2】請求項1の沸騰冷却装置において、 前記有孔金属焼結体は、所定の空孔率と空孔径を有する
ことを特徴とする沸騰冷却装置。
2. The boiling cooling device according to claim 1, wherein the perforated metal sintered body has a predetermined porosity and a predetermined pore diameter.
【請求項3】請求項2の沸騰冷却装置において、 前記有孔金属焼結体は、少なくとも液冷媒を前記発熱体
取付部の近傍に運搬する部分が、空孔率が50%以上、
空孔径が10〜100μmの範囲に設けられたことを特
徴とする沸騰冷却装置。
3. The boiling cooling device according to claim 2, wherein the porous metal sintered body has a porosity of 50% or more at least in a portion for transporting the liquid refrigerant to the vicinity of the heating element mounting portion.
A boiling cooling device, wherein a pore diameter is provided in a range of 10 to 100 μm.
【請求項4】請求項2または請求項3の沸騰冷却装置に
おいて、 前記有孔金属焼結体は、少なくとも前記発熱体取付部の
近傍が、空孔率が20%以上、空孔径が10〜100μ
mの範囲に設けられたことを特徴とする沸騰冷却装置。
4. The boiling cooling device according to claim 2, wherein the perforated metal sintered body has a porosity of 20% or more and a pore diameter of 10 to at least in the vicinity of the heating element mounting portion. 100μ
A boiling cooling device provided in a range of m.
【請求項5】請求項1ないし請求項4のいずれかの沸騰
冷却装置において、 前記有孔金属焼結体は、少なくとも前記発熱体取付部の
近傍に、溝や孔が設けられたことを特徴とする沸騰冷却
装置。
5. The boiling cooling device according to claim 1, wherein the perforated metal sintered body is provided with a groove or a hole at least in the vicinity of the heating element mounting portion. And a boiling cooling device.
【請求項6】請求項1ないし請求項5のいずれかの沸騰
冷却装置において、 前記有孔金属焼結体は、少なくとも前記発熱体取付部の
近傍が前記容器と一体化して設けられたことを特徴とす
る沸騰冷却装置。
6. The boiling cooling device according to claim 1, wherein the perforated metal sintered body is provided at least in the vicinity of the heating element mounting portion so as to be integrated with the container. Characterized boiling cooling device.
【請求項7】請求項1ないし請求項6のいずれかの沸騰
冷却装置において、 前記有孔金属焼結体は、前記容器があらゆる姿勢に配置
されても、下部に溜まった冷媒を前記発熱体取付部の近
傍に運搬するように配置されたことを特徴とする沸騰冷
却装置。
7. The boiling cooling device according to claim 1, wherein the perforated metal sintered body is configured to transfer a refrigerant accumulated in a lower portion to the heating element even when the container is disposed in any posture. A boiling cooling device, which is arranged so as to be conveyed near a mounting portion.
【請求項8】請求項1ないし請求項7のいずれかの沸騰
冷却装置において、 前記発熱体取付部は、前記有孔金属焼結体の内部に進入
して、前記発熱体取付部で受熱した熱を前記有孔金属焼
結体内、あるいは前記発熱体取付部に対向した放熱壁に
伝える伝熱部材を備えることを特徴とする沸騰冷却装
置。
8. The boiling cooling device according to claim 1, wherein the heating element mounting portion enters the inside of the perforated metal sintered body and receives heat at the heating element mounting portion. A boiling cooling device, comprising: a heat transfer member that transmits heat to the perforated metal sintered body or to a heat radiating wall facing the heating element mounting portion.
【請求項9】請求項1ないし請求項8のいずれかの沸騰
冷却装置において、 前記容器は、内部で発生した蒸気冷媒を放熱させる放熱
壁の内面に、凝縮フィンを有することを特徴とする沸騰
冷却装置。
9. The boiling cooling device according to claim 1, wherein the container has a condensing fin on an inner surface of a heat radiating wall for radiating a vapor refrigerant generated inside. Cooling system.
【請求項10】請求項1ないし請求項9のいずれかの沸
騰冷却装置において、 前記有孔金属焼結体は、前記発熱体取付部を有する前記
容器の内面と、少なくともこの面に隣合う隣接面とに沿
って配置されたことを特徴とする沸騰冷却装置。
10. The boiling cooling device according to claim 1, wherein the perforated metal sintered body is adjacent to at least an inner surface of the container having the heating element mounting portion. A boiling cooling device characterized by being disposed along a surface.
【請求項11】請求項1ないし請求項10のいずれかの
沸騰冷却装置において、 前記容器は、偏平形状に設けられ、 前記有孔金属焼結体は、前記容器の最も狭い距離で対向
する2面のうちの一方の面に配置されたことを特徴とす
る沸騰冷却装置。
11. The boiling cooling device according to claim 1, wherein the container is provided in a flat shape, and the perforated metal sintered body is opposed to the container at a narrowest distance from the container. A boiling cooling device, which is disposed on one of the surfaces.
【請求項12】請求項1ないし請求項11のいずれかの
沸騰冷却装置において、 前記有孔金属焼結体は、前記発熱体取付部の近傍の空孔
率が、他の部分の空孔率に比べて小さく設けられたこと
を特徴とする沸騰冷却装置。
12. The boiling cooling device according to claim 1, wherein the porosity of the perforated metal sintered body is such that a porosity near the heating element mounting portion is different from a porosity of another portion. A boiling cooling device characterized by being provided smaller than the above.
【請求項13】請求項1ないし請求項12のいずれかの
沸騰冷却装置において、 前記有孔金属焼結体は、前記発熱体取付部の近傍におい
て前記発熱体取付部に対向する側の空孔率が、他の部分
の空孔率に比べて小さく設けられたことを特徴とする沸
騰冷却装置。
13. The boiling cooling device according to claim 1, wherein the perforated metal sintered body has a hole in the vicinity of the heating element mounting portion, the hole facing the heating element mounting portion in the vicinity of the heating element mounting portion. A boiling cooling device characterized in that the porosity is set smaller than the porosity of other parts.
JP11141388A 1998-05-25 1999-05-21 Boiling cooler Pending JP2000049266A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11141388A JP2000049266A (en) 1998-05-25 1999-05-21 Boiling cooler
US09/317,382 US6227287B1 (en) 1998-05-25 1999-05-24 Cooling apparatus by boiling and cooling refrigerant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-142619 1998-05-25
JP14261998 1998-05-25
JP11141388A JP2000049266A (en) 1998-05-25 1999-05-21 Boiling cooler

Publications (1)

Publication Number Publication Date
JP2000049266A true JP2000049266A (en) 2000-02-18

Family

ID=26473640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11141388A Pending JP2000049266A (en) 1998-05-25 1999-05-21 Boiling cooler

Country Status (1)

Country Link
JP (1) JP2000049266A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101080027B1 (en) 2007-11-28 2011-11-04 가부시키가이샤 도요다 지도숏키 Ebullient cooling device
JP2011226743A (en) * 2010-04-22 2011-11-10 Fujikura Ltd Flat heat pipe
JP2012152210A (en) * 2011-01-25 2012-08-16 Chin-Tai Tsai Passive type water supply planter
JPWO2011145618A1 (en) * 2010-05-19 2013-07-22 日本電気株式会社 Boiling cooler
JP2013243249A (en) * 2012-05-21 2013-12-05 Denso Corp Heat transfer surface for ebullient cooling and ebullient cooling device
WO2014148137A1 (en) * 2013-03-18 2014-09-25 国立大学法人横浜国立大学 Cooler, cooling device using same, and method for cooling heat generation element
WO2015174423A1 (en) * 2014-05-12 2015-11-19 国立大学法人横浜国立大学 Cooler and cooling device using same, and cooling method for heating element
JP2016040505A (en) * 2014-08-12 2016-03-24 国立大学法人横浜国立大学 Cooler, cooling device using the same, and cooling method of heating element
JPWO2014045714A1 (en) * 2012-09-19 2016-08-18 日本電気株式会社 COOLING DEVICE, HEAT RECEIVING UNIT USED FOR THE COOLING DEVICE, BOILING UNIT
JP2018141604A (en) * 2017-02-28 2018-09-13 三菱マテリアル株式会社 Cooling structure in storage space, heat pipe, and method of manufacturing heat pipe
EP3620246A1 (en) 2018-09-07 2020-03-11 Toyota Jidosha Kabushiki Kaisha Evaporator, production method therefor, and loop-type heat pipe including evaporator
JP2021128992A (en) * 2020-02-13 2021-09-02 古河電気工業株式会社 Heat transfer member and cooling device having heat transfer member

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101080027B1 (en) 2007-11-28 2011-11-04 가부시키가이샤 도요다 지도숏키 Ebullient cooling device
JP2011226743A (en) * 2010-04-22 2011-11-10 Fujikura Ltd Flat heat pipe
JPWO2011145618A1 (en) * 2010-05-19 2013-07-22 日本電気株式会社 Boiling cooler
JP2012152210A (en) * 2011-01-25 2012-08-16 Chin-Tai Tsai Passive type water supply planter
JP2013243249A (en) * 2012-05-21 2013-12-05 Denso Corp Heat transfer surface for ebullient cooling and ebullient cooling device
JP2018115858A (en) * 2012-09-19 2018-07-26 日本電気株式会社 Cooling device, heat receiving part and ebullition part for use therein, and method for producing the same
JPWO2014045714A1 (en) * 2012-09-19 2016-08-18 日本電気株式会社 COOLING DEVICE, HEAT RECEIVING UNIT USED FOR THE COOLING DEVICE, BOILING UNIT
WO2014148137A1 (en) * 2013-03-18 2014-09-25 国立大学法人横浜国立大学 Cooler, cooling device using same, and method for cooling heat generation element
JP2014206365A (en) * 2013-03-18 2014-10-30 国立大学法人横浜国立大学 Cooler, cooling device using the same, and cooling method of heating element
WO2015174423A1 (en) * 2014-05-12 2015-11-19 国立大学法人横浜国立大学 Cooler and cooling device using same, and cooling method for heating element
JPWO2015174423A1 (en) * 2014-05-12 2017-04-20 国立大学法人横浜国立大学 COOLER, COOLING DEVICE USING SAME, AND METHOD OF COOLING HEAT GENERATOR
JP2016040505A (en) * 2014-08-12 2016-03-24 国立大学法人横浜国立大学 Cooler, cooling device using the same, and cooling method of heating element
JP2018141604A (en) * 2017-02-28 2018-09-13 三菱マテリアル株式会社 Cooling structure in storage space, heat pipe, and method of manufacturing heat pipe
EP3620246A1 (en) 2018-09-07 2020-03-11 Toyota Jidosha Kabushiki Kaisha Evaporator, production method therefor, and loop-type heat pipe including evaporator
KR20200028843A (en) 2018-09-07 2020-03-17 도요타지도샤가부시키가이샤 Evaporator, production method therefor, and loop-type heat pipe including evaporator
JP2020041727A (en) * 2018-09-07 2020-03-19 トヨタ自動車株式会社 Evaporator, method of manufacturing the same, and loop heat pipe having evaporator
JP2021128992A (en) * 2020-02-13 2021-09-02 古河電気工業株式会社 Heat transfer member and cooling device having heat transfer member
JP7426844B2 (en) 2020-02-13 2024-02-02 古河電気工業株式会社 Heat transfer member and cooling device having heat transfer member

Similar Documents

Publication Publication Date Title
US20130020053A1 (en) Low-profile heat-spreading liquid chamber using boiling
US6490160B2 (en) Vapor chamber with integrated pin array
US5283715A (en) Integrated heat pipe and circuit board structure
US20050286230A1 (en) Apparatuses and methods for cooling electronic devices in computer systems
TW202037872A (en) Cooling device
JP2000049266A (en) Boiling cooler
JP2014143417A (en) Integrated thin film evaporation thermal spreader and planar heat pipe heat sink
JP2000161879A (en) Planar heat pipe
JP2001066080A (en) Loop type heat pipe
JP3900702B2 (en) Boiling cooler
US6679317B2 (en) Cooling device boiling and cooling refrigerant, with main wick and auxiliary wick
JP4278720B2 (en) Plate heat pipe
JPH11330329A (en) Vaporizing cooling device
JPH09303979A (en) Heat pipe
JP4042268B2 (en) Boiling cooler
JP2021188890A (en) Heat transfer member and cooling device having heat transfer member
JP2000193385A (en) Planar heat pipe
JPH11101585A (en) Plate-type heat pump and its packaging structure
JP5682409B2 (en) Loop heat pipe and electronic device
JP2002364990A (en) Plate type heat pipe
JP4648106B2 (en) Cooling system
JP2014013849A (en) Heat dissipation structure for electronic apparatus
JP4267977B2 (en) Cooling module
JP2541939Y2 (en) Heat pipes for cooling integrated circuits
JP2004349652A (en) Boiling cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210