[go: up one dir, main page]

JP2000005561A - Fluoride treatment method - Google Patents

Fluoride treatment method

Info

Publication number
JP2000005561A
JP2000005561A JP10171922A JP17192298A JP2000005561A JP 2000005561 A JP2000005561 A JP 2000005561A JP 10171922 A JP10171922 A JP 10171922A JP 17192298 A JP17192298 A JP 17192298A JP 2000005561 A JP2000005561 A JP 2000005561A
Authority
JP
Japan
Prior art keywords
fluoride
gas
membrane separation
separation device
chemically stable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10171922A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sugimori
由章 杉森
Fumiyoshi Endou
文誉 遠藤
Akihiko Nitta
昭彦 新田
Kazuhiro Miyazawa
和浩 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Taiyo Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP10171922A priority Critical patent/JP2000005561A/en
Publication of JP2000005561A publication Critical patent/JP2000005561A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To recover most fluoride in waste gas to economically treat a gas containing a material to be treated by previously removing impurity components except a chemically stable fluoride in the waste gas, concentrating the fluoride with membrane separation to recover and decomposing a trace quantity of the remaining fluoride in the treated waste gas. SOLUTION: A 1st membrane separation device 2 and a 2nd membrane separation device 3 are mounted in the poststage of a pre-treatment equipment 1 and the gas containing the fluoride concentrated in the 1st membrane separating device 2 is introduced into the 2nd membrane separation device 3 through a passage 4 to concentrate the fluoride in 2 stages. The fluoride concentrated in the non-permeated gas side in the 2nd membrane separation device 3 is recovered in a vessel 5 and sent to a purifying equipment. And a fluoride decomposition column 7 for decomposing the fluoride in the gas is provided in a passage 6 for discharging the gas permeated through both membrane separation devices 2, 3. As a result, the chemically stable fluoride in the waste gas discharged from a semiconductor production process is efficiently recovered and a trace quantity of the remaining fluoride is also effectively decomposed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フッ化物の処理方
法に関し、詳しくは、半導体製造工程から排出される排
ガスの無害化とフッ化物の回収とを行うための処理方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating fluoride, and more particularly, to a method for detoxifying exhaust gas discharged from a semiconductor manufacturing process and recovering fluoride.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】半導体
製造工程では、エッチング工程やチャンバークリーニン
グ工程で、パーフルオロカーボン(PFC)やハイドロ
フルオロカーボン(HFC),三フッ化窒素(N
),六フッ化硫黄(SF)等のフッ化物を使用し
ており、半導体製造工程から排出される排ガス中には、
これらのフッ化物が含まれている。このようなフッ化物
は、地球温暖化の原因となる物質であることから、排ガ
スを大気に放出する前にフッ化物を除去しておく必要が
ある。
2. Description of the Related Art In a semiconductor manufacturing process, a perfluorocarbon (PFC), a hydrofluorocarbon (HFC), a nitrogen trifluoride (NFC) is used in an etching process and a chamber cleaning process.
Fluoride such as F 3 ) and sulfur hexafluoride (SF 6 ) is used, and in the exhaust gas discharged from the semiconductor manufacturing process,
These fluorides are included. Since such a fluoride is a substance causing global warming, it is necessary to remove the fluoride before discharging the exhaust gas to the atmosphere.

【0003】しかし、上述のようなパーフルオロカーボ
ン等のフッ化物は、非常に安定で分解処理が困難な化合
物であり、1000℃程度の高温下で分解処理を行わな
ければならず、処理コストが高いだけでなく、さらに、
固形廃棄物やフッ酸等の有害物質が大量に発生するとい
う問題もあり、その解決が求められている。
[0003] However, the above-mentioned fluorides such as perfluorocarbons are compounds that are very stable and difficult to decompose, and must be decomposed at a high temperature of about 1000 ° C, resulting in high processing costs. Not only that,
There is also a problem that a large amount of harmful substances such as solid waste and hydrofluoric acid are generated, and a solution is required.

【0004】そこで本発明は、排ガス中に含まれるフッ
化物の大部分を回収することができ、経済的にフッ化物
を含むガスを処理することができる方法を提供すること
を目的としている。
Accordingly, an object of the present invention is to provide a method capable of recovering most of the fluoride contained in exhaust gas and economically treating a gas containing fluoride.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明のフッ化物の処理方法は、半導体製造工程か
ら排出される排ガス中のフッ化物を処理する方法におい
て、前記排ガスを構成する主成分ガス中に含まれている
パーフルオロカーボン,ハイドロフルオロカーボン,三
フッ化窒素,六フッ化硫黄等の化学的に安定なフッ化物
以外の不純物成分をあらかじめ除去した後、前記化学的
に安定なフッ化物の濃縮処理を行い、濃縮された該フッ
化物を回収するとともに、濃縮処理を終えた主成分ガス
中に残留する微量のフッ化物を分解処理することを特徴
とし、特に、濃縮処理が、膜分離であることを特徴とし
ている。
In order to achieve the above object, a method for treating fluoride according to the present invention is directed to a method for treating fluoride in exhaust gas discharged from a semiconductor manufacturing process. After removing impurity components other than chemically stable fluoride, such as perfluorocarbon, hydrofluorocarbon, nitrogen trifluoride, and sulfur hexafluoride, contained in the component gas in advance, the chemically stable fluoride is removed. And the concentrated fluoride is recovered, and a small amount of fluoride remaining in the main component gas after the concentration treatment is decomposed. In particular, the concentration treatment is performed by membrane separation. It is characterized by being.

【0006】まず、半導体製造工程から排出される排ガ
スは、通常、窒素,酸素,水素等のキャリアガス(ベー
スガス)を主成分とし、これに前述のフッ化物や各種原
料ガス等が含まれた状態となっている。このような排ガ
ス中に含まれているパーフルオロカーボン,ハイドロフ
ルオロカーボン,三フッ化窒素,六フッ化硫黄等の化学
的に安定なフッ化物を回収するためには、フッ化物を回
収する工程に導入する前に排ガスを前処理設備に導入
し、該排ガス中に含まれているフッ化物の中でも、四フ
ッ化ケイ素(SiF),二フッ化カルボニル(COF
),フッ化水素(HF)等の不安定で反応性の高いフ
ッ化物を含む各種ハロゲン化物や、冷却したときに固化
する水分や二酸化炭素等の不純物成分を除去しておく。
この前処理は、適当な吸着剤や除害剤を用いることによ
って周知の方法で行うことができ、このような前処理を
行うことにより、フッ化物回収工程には、化学的に安定
なフッ化物(以下、単にフッ化物という)を含むベース
ガスが導入されることになる。
First, the exhaust gas discharged from the semiconductor manufacturing process usually contains a carrier gas (base gas) such as nitrogen, oxygen, hydrogen or the like as a main component, and contains the above-mentioned fluoride and various raw material gases. It is in a state. In order to recover chemically stable fluorides such as perfluorocarbon, hydrofluorocarbon, nitrogen trifluoride, sulfur hexafluoride and the like contained in such exhaust gas, a process for recovering the fluoride is introduced. Exhaust gas is introduced into a pretreatment facility beforehand, and among the fluorides contained in the exhaust gas, silicon tetrafluoride (SiF 4 ) and carbonyl difluoride (COF)
2 ) Various halides including fluorides such as hydrogen fluoride (HF), which are unstable and highly reactive, and impurities such as water and carbon dioxide which solidify when cooled are removed.
This pretreatment can be performed by a well-known method by using an appropriate adsorbent or a detoxifying agent. By performing such a pretreatment, a chemically stable fluoride can be used in the fluoride recovery step. A base gas containing (hereinafter simply referred to as fluoride) will be introduced.

【0007】フッ化物回収工程は、高分子膜を利用した
膜分離法、活性炭やゼオライトを用いた吸着法、低温流
体で冷却して液化分離する深冷法等の周知の方法で行う
ことができ、ベースガスの種類やフッ化物の種類及び含
有量に応じて最適なものを採用することができる。中で
も、装置構成やランニングコストを考慮すると、膜分離
法が最適であるといえる。また、フッ化物回収工程は、
一段階で行うこともできるが、複数段階で行うことが好
ましい。
The fluoride recovery step can be performed by a known method such as a membrane separation method using a polymer membrane, an adsorption method using activated carbon or zeolite, or a cryogenic method in which liquefaction is performed by cooling with a low-temperature fluid. The most suitable gas can be adopted according to the type of base gas and the type and content of fluoride. Above all, it can be said that the membrane separation method is optimal in consideration of the device configuration and the running cost. In addition, the fluoride recovery step
Although it can be carried out in one step, it is preferable to carry out in a plurality of steps.

【0008】上述のフッ化物回収工程を行うことによ
り、大部分のフッ化物をベースガスから分離して回収す
ることができるが、フッ化物とベースガスとを完全に分
離することは困難であり、分離性能を高めようとする
と、装置が大型化したり、運転コストが非常に高くなっ
たりするというデメリットを生じる。
[0008] By performing the above-described fluoride recovery step, most of the fluoride can be separated and recovered from the base gas, but it is difficult to completely separate the fluoride and the base gas. Attempts to increase the separation performance have the disadvantage of increasing the size of the device and increasing the operating costs.

【0009】したがって、本発明では、フッ化物回収工
程で大部分のフッ化物を分離して回収するとともに、フ
ッ化物回収工程から導出されるベースガスをフッ化物分
解工程に導入し、ベースガス中に残留するフッ化物を分
解処理するようにしている。
Therefore, in the present invention, most of the fluorides are separated and recovered in the fluoride recovery step, and the base gas derived from the fluoride recovery step is introduced into the fluoride decomposition step, so that the base gas is contained in the base gas. The remaining fluoride is decomposed.

【0010】フッ化物分解工程は、可燃性ガス、例え
ば、LPGやLNG,水素等を燃焼させた熱により分解
する方法、CaOやCa(OH)等の塩基性化合物と
フッ化物とを高温化で反応させて分解する方法、金属ナ
トリウムを加熱蒸発させた蒸気とフッ化物とを反応させ
て分解する方法、TiO等の触媒とフッ化物とを高温
下で接触させて分解する方法等、従来から行われている
様々な方法を採用することができ、フッ化物の処理量等
に応じて最適な方法を採用することができる。
[0010] The fluoride decomposition step is a method of decomposing a combustible gas, for example, LPG, LNG, hydrogen, or the like, by the heat of combustion, and increasing the temperature of a basic compound such as CaO or Ca (OH) 2 and the fluoride. Such as a method of decomposing by reacting with sodium, a method of decomposing by reacting a vapor obtained by heating and evaporating metal sodium with a fluoride, and a method of decomposing by contacting a catalyst such as TiO 2 with a fluoride at a high temperature. Can be adopted, and an optimal method can be adopted according to the throughput of the fluoride and the like.

【0011】このように、排ガス中のフッ化物の大部分
を濃縮して回収するとともに、分離回収が困難な極微量
のフッ化物を分解処理することにより、濃縮回収方法の
利点であるランニングコストの安さを生かしながら、分
解処理方法の利点である高い処理効率を生かすことがで
きる。したがって、全体としてのランニングコストを低
く抑えながら、フッ化物の回収処理と分解処理とを効果
的に行うことができる。
As described above, by concentrating and recovering most of the fluoride in the exhaust gas and decomposing the trace amount of fluoride which is difficult to separate and recover, the running cost, which is an advantage of the concentration and recovery method, is reduced. High processing efficiency, which is an advantage of the decomposition method, can be utilized while making use of inexpensiveness. Therefore, the fluoride recovery processing and the decomposition processing can be performed effectively while the running cost as a whole is kept low.

【0012】[0012]

【発明の実施の形態】図1は本発明方法を実施する際の
好ましい装置構成例を示す系統図である。このフッ化物
処理装置は、前処理設備1の後段に、第一膜分離装置2
と第二膜分離装置3とを設置し、第一膜分離装置2でフ
ッ化物が濃縮したガス(非透過ガス)を経路4を通して
第二膜分離装置3に導入し、二段階でフッ化物を濃縮す
るように形成したものであって、第二膜分離装置3で非
透過ガス側に濃縮されたフッ化物は、容器5に回収され
て精製設備に送られ、両膜分離装置2,3で分離膜を透
過したガスを排出する経路6には、該ガス中に含まれる
フッ化物を分解するためのフッ化物分解筒7を設けてい
る。このようにフッ化物の濃縮を二段階で行うことによ
り、フッ化物を高濃度で回収でき、精製処理も容易に行
うことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram showing an example of a preferred apparatus configuration for implementing the method of the present invention. This fluoride treatment device is provided with a first membrane separation device 2
And the second membrane separation device 3 are installed, and a gas (non-permeated gas) in which the fluoride is concentrated in the first membrane separation device 2 is introduced into the second membrane separation device 3 through the path 4 and the fluoride is separated in two stages. The fluoride formed so as to be concentrated and concentrated on the non-permeate gas side in the second membrane separation device 3 is collected in the container 5 and sent to the purification facility, where it is separated by the two membrane separation devices 2 and 3. In a path 6 for discharging gas permeated through the separation membrane, a fluoride decomposing cylinder 7 for decomposing fluoride contained in the gas is provided. By performing the concentration of the fluoride in two stages as described above, the fluoride can be recovered at a high concentration, and the purification treatment can be easily performed.

【0013】なお、分離膜としては、各種高分子膜、例
えば、特開平9−103633号公報に記載されている
ガラス状ポリマー膜等を用いることができる。
As the separation membrane, various polymer membranes, for example, a glassy polymer membrane described in JP-A-9-103633 can be used.

【0014】[0014]

【実施例】試験ガスとして、化学的に安定な四フッ化炭
素(CF)を1%含む窒素ガスを用意し、図1と略同
じ構成の試験装置により四フッ化炭素を回収する実験を
行った。分離膜には、窒素ガスは通過するが、四フッ化
炭素はほとんど通過できない高分子膜を使用し、フッ化
物分解筒内にはCaOを充填して1000℃に加熱し
た。なお、試験ガス中には、前述のような不純物が含ま
れていないため、不純物除去のための前処理は省略し
た。
EXAMPLE As a test gas, a nitrogen gas containing 1% of chemically stable carbon tetrafluoride (CF 4 ) was prepared, and an experiment of recovering carbon tetrafluoride by a test device having substantially the same configuration as in FIG. 1 was conducted. went. For the separation membrane, a polymer membrane that allows nitrogen gas to pass but hardly allows carbon tetrafluoride to pass was used, and the inside of the fluoride decomposition tube was filled with CaO and heated to 1000 ° C. Since the test gas does not contain the above-described impurities, the pretreatment for removing the impurities was omitted.

【0015】前記試験ガスを第一膜分離装置に毎分10
0リットルで導入した。その結果、毎分98リットルの
ガスが分離膜を通過してきた。このガスには、約0.1
%の四フッ化炭素が含まれていた。
The test gas is supplied to the first membrane separation device at a rate of 10 / min.
It was introduced at 0 liter. As a result, 98 liters of gas per minute passed through the separation membrane. This gas contains about 0.1
% Carbon tetrafluoride.

【0016】この第一段目の膜分離により、濃度約45
%に濃縮された四フッ化炭素を含むガスが毎分2リット
ルで得られたので、これを第二膜分離装置に導入して再
度濃縮操作を行った。その結果、四フッ化炭素濃度約9
5%のガスを毎分0.9リットルで回収することができ
た。
By the first stage of membrane separation, a concentration of about 45
Since a gas containing carbon tetrafluoride concentrated to 2% was obtained at a rate of 2 liters per minute, the gas was introduced into the second membrane separation device, and the concentration operation was performed again. As a result, the carbon tetrafluoride concentration was about 9
5% gas could be recovered at 0.9 liters per minute.

【0017】第二膜分離装置で分離膜を通過してきた毎
分1.1リットルの透過ガス中の四フッ化炭素の濃度
は、約4.1%であった。両膜分離装置で分離膜を通過
したガスは、まとめて前記フッ化物分解筒に導入し、四
フッ化炭素の分解処理を行った。フッ化物分解筒から導
出したガスをガスクロマトグラフに導入し、四フッ化炭
素の分析を行ったが、検出限界(10ppm)以下であ
った。
The concentration of carbon tetrafluoride in the permeated gas at a rate of 1.1 liter per minute passed through the separation membrane in the second membrane separation device was about 4.1%. Gases that passed through the separation membranes in both membrane separation devices were collectively introduced into the above-mentioned fluoride decomposition column, where carbon tetrafluoride was decomposed. The gas derived from the fluoride decomposition column was introduced into a gas chromatograph, and the analysis of carbon tetrafluoride was performed. The result was below the detection limit (10 ppm).

【0018】フッ化物分解筒で処理した四フッ化炭素の
量は、毎分0.143リットルであった。この量は、試
験ガスの全量をフッ化物分解筒に導入した場合に比べて
約1/7以下である。この実験結果から、CaOのよう
な処理剤の交換期間を7倍以上にできるとともに、廃棄
物の発生量も1/7以下にできることがわかる。
The amount of carbon tetrafluoride treated in the fluoride decomposition tube was 0.143 liter per minute. This amount is about 1/7 or less as compared with the case where the whole amount of the test gas is introduced into the fluoride decomposition tube. From this experimental result, it can be seen that the replacement period of the treatment agent such as CaO can be increased seven times or more and the amount of waste generated can be reduced to 1/7 or less.

【0019】[0019]

【発明の効果】以上説明したように、本発明のフッ化物
の処理方法によれば、半導体製造工程から排出される排
ガス中に含まれる化学的に安定なフッ化物を効率よく回
収できるとともに、残留する微量のフッ化物の分解処理
も効果的に行うことができる。
As described above, according to the method for treating fluoride of the present invention, it is possible to efficiently recover chemically stable fluoride contained in exhaust gas discharged from a semiconductor manufacturing process, A small amount of fluoride can be effectively decomposed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明方法を実施する際の好ましい装置構成
例を示す系統図である。
FIG. 1 is a system diagram showing an example of a preferred apparatus configuration when implementing the method of the present invention.

【符号の説明】[Explanation of symbols]

1…前処理設備、2…第一膜分離装置、3…第二膜分離
装置、7…フッ化物分解筒
DESCRIPTION OF SYMBOLS 1 ... Pre-processing equipment, 2 ... First membrane separation device, 3 ... Second membrane separation device, 7 ... Fluoride decomposition cylinder

フロントページの続き (72)発明者 新田 昭彦 東京都港区西新橋1−16−7 日本酸素株 式会社内 (72)発明者 宮澤 和浩 東京都港区西新橋1−16−7 日本酸素株 式会社内 Fターム(参考) 4D002 AA22 AC10 BA05 BA12 DA05 DA11 DA21 DA54 DA56 EA01 EA02 EA05 FA01 HA02 HA04 4D006 GA41 KB30 MC09 PA04 PB19 PB70 PC01 Continuing on the front page (72) Inventor Akihiko Nitta 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo Nippon Sanso Co., Ltd. (72) Inventor Kazuhiro Miyazawa 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo Nippon Sanso Corporation F-term in the formula company (reference) 4D002 AA22 AC10 BA05 BA12 DA05 DA11 DA21 DA54 DA56 EA01 EA02 EA05 FA01 HA02 HA04 4D006 GA41 KB30 MC09 PA04 PB19 PB70 PC01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体製造工程から排出される排ガス中
のフッ化物を処理する方法において、前記排ガスを構成
する主成分ガス中の化学的に安定なフッ化物以外の不純
物成分をあらかじめ除去した後、前記化学的に安定なフ
ッ化物の濃縮処理を行い、濃縮された該フッ化物を回収
するとともに、濃縮処理を終えた主成分ガス中に残留す
る微量のフッ化物を分解処理することを特徴とするフッ
化物の処理方法。
In a method for treating a fluoride in an exhaust gas discharged from a semiconductor manufacturing process, after removing in advance a chemically stable impurity component other than a fluoride in a main component gas constituting the exhaust gas, Performing a concentration treatment of the chemically stable fluoride, recovering the concentrated fluoride, and decomposing a trace amount of fluoride remaining in the main component gas after the concentration treatment. How to treat fluoride.
【請求項2】 前記濃縮処理が、膜分離であることを特
徴とする請求項1記載のフッ化物の処理方法。
2. The fluoride treatment method according to claim 1, wherein the concentration treatment is a membrane separation.
【請求項3】 前記化学的に安定なフッ化物が、パーフ
ルオロカーボン,ハイドロフルオロカーボン,三フッ化
窒素,六フッ化硫黄の少なくともいずれか一種であるこ
とを特徴とする請求項1記載のフッ化物の処理方法。
3. The fluoride according to claim 1, wherein the chemically stable fluoride is at least one of perfluorocarbon, hydrofluorocarbon, nitrogen trifluoride, and sulfur hexafluoride. Processing method.
JP10171922A 1998-06-18 1998-06-18 Fluoride treatment method Pending JP2000005561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10171922A JP2000005561A (en) 1998-06-18 1998-06-18 Fluoride treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10171922A JP2000005561A (en) 1998-06-18 1998-06-18 Fluoride treatment method

Publications (1)

Publication Number Publication Date
JP2000005561A true JP2000005561A (en) 2000-01-11

Family

ID=15932346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10171922A Pending JP2000005561A (en) 1998-06-18 1998-06-18 Fluoride treatment method

Country Status (1)

Country Link
JP (1) JP2000005561A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035527A (en) * 2000-07-26 2002-02-05 Japan Atom Energy Res Inst Gas separation equipment
JP2004174391A (en) * 2002-11-27 2004-06-24 Central Res Inst Of Electric Power Ind Method for selectively removing fluorine components from exhaust gas
JP2007319811A (en) * 2006-06-02 2007-12-13 Hitachi Ltd PFC gas concentration method
KR100860835B1 (en) 2007-01-10 2008-09-29 서윤석 Treatment of sulfur hexafluoride
WO2013125792A1 (en) * 2012-02-23 2013-08-29 (주) 파인텍 System for separating and reusing perfluorocarbon compound
WO2013125791A1 (en) * 2012-02-23 2013-08-29 (주) 파인텍 System for separating and reusing perfluorocarbon compound

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035527A (en) * 2000-07-26 2002-02-05 Japan Atom Energy Res Inst Gas separation equipment
JP2004174391A (en) * 2002-11-27 2004-06-24 Central Res Inst Of Electric Power Ind Method for selectively removing fluorine components from exhaust gas
JP2007319811A (en) * 2006-06-02 2007-12-13 Hitachi Ltd PFC gas concentration method
KR100860835B1 (en) 2007-01-10 2008-09-29 서윤석 Treatment of sulfur hexafluoride
WO2013125792A1 (en) * 2012-02-23 2013-08-29 (주) 파인텍 System for separating and reusing perfluorocarbon compound
WO2013125791A1 (en) * 2012-02-23 2013-08-29 (주) 파인텍 System for separating and reusing perfluorocarbon compound
KR101410914B1 (en) 2012-02-23 2014-06-24 (주)파인텍 The separation and recycling system for a perfluoro compounds

Similar Documents

Publication Publication Date Title
US7794523B2 (en) Method for the recovery and re-use of process gases
JP3152389B2 (en) Separation and recovery method of fluorochemical by membrane
JPH10245210A (en) Production of krypton-xenon
US7892322B2 (en) Apparatus and method for separating gas
JP5216220B2 (en) Neon recovery method
KR20160018645A (en) Device and method for recovering low concentration sulfur hexafluoride gas
KR20010067156A (en) Process for removing the fluorocompounds or fluorosulphur compounds from a stream of xenon and/or krypton by permeation
JP2000005561A (en) Fluoride treatment method
RU2159742C1 (en) Method of processing uranium hexafluoride/hydrogen fluoride mixture
JP3548135B2 (en) PFC mixed exhaust gas recovery pretreatment method
JP3650588B2 (en) Perfluoro compound recycling method
JP4683543B2 (en) Gas separation method and gas separation apparatus
JP2000015056A (en) How to collect fluoride
JPH0446607B2 (en)
JP4157328B2 (en) Membrane separator
JP2000117052A (en) Fluoride recovery method and apparatus
JPH01139124A (en) Method for recovering and purifying ketone solvent
JP2000239007A (en) Method and apparatus for recovering and cleaning nitrous oxide included in waste gas
JP2000334249A (en) Separation of fluorine compound from exhaust gas in semiconductor production using membrane and adsorption continuously
JP3463873B2 (en) How to recycle perfluoro compounds
JP2002284512A (en) Method for manufacturing high-purity nitrogen trifluoride
JP2001000837A (en) Exhaust gas treatment equipment for semiconductor manufacturing equipment
JP2000325732A (en) Method for recovery by separation of fluordochemicals from exhaust gas exausted from semi-conductor manufacturing process while vacuum pump diluent is recycled
US20250236520A1 (en) Coupling Claus Process with Carbon Dioxide Capture Using Gas Hydrate
JPH1025102A (en) Apparatus for removing chlorine and method for separating oxygen in pressure swing adsorption method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024