FR2690927A1 - Aluminium@ alloy - contains silicon, and either magnesium@, copper@ or nickel@ with titanium@, zirconium@ and vanadium@ to increase hot creep resistance - Google Patents
Aluminium@ alloy - contains silicon, and either magnesium@, copper@ or nickel@ with titanium@, zirconium@ and vanadium@ to increase hot creep resistance Download PDFInfo
- Publication number
- FR2690927A1 FR2690927A1 FR9205760A FR9205760A FR2690927A1 FR 2690927 A1 FR2690927 A1 FR 2690927A1 FR 9205760 A FR9205760 A FR 9205760A FR 9205760 A FR9205760 A FR 9205760A FR 2690927 A1 FR2690927 A1 FR 2690927A1
- Authority
- FR
- France
- Prior art keywords
- titanium
- alloy
- zirconium
- vanadium
- magnesium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 26
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 16
- 229910052726 zirconium Inorganic materials 0.000 title claims abstract description 13
- 229910052720 vanadium Inorganic materials 0.000 title claims abstract description 12
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 11
- 229910052710 silicon Inorganic materials 0.000 title claims description 8
- 239000010703 silicon Substances 0.000 title claims description 8
- 229910052802 copper Inorganic materials 0.000 title claims description 7
- 229910052749 magnesium Inorganic materials 0.000 title claims description 7
- 229910052759 nickel Inorganic materials 0.000 title claims description 4
- 239000000956 alloy Substances 0.000 claims abstract description 25
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 14
- 239000010936 titanium Substances 0.000 claims description 14
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 11
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 10
- 238000000465 moulding Methods 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 2
- 238000005266 casting Methods 0.000 abstract description 2
- 239000004411 aluminium Substances 0.000 abstract 1
- 238000007792 addition Methods 0.000 description 10
- 229910000838 Al alloy Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000005336 cracking Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Abstract
Description
ALLIAGES DE MOULAGE A BASE D'ALUMINIUM
AYANT UNE BONNE RESISTANCE AU FLUAGE A CHAUD
DOMAINE TECHNIQUE DE L'INVENTION.
La présente invention est relative à des alliages d'aluminium aptes au moulage présentant une bonne résistance au fluage à chaud, une bonne ductilité et destinés plus particulièrement à la confection de pièces de moteurs d'automobile telles que, par exemple, les pistons et les culasses.ALUMINUM-BASED MOLDING ALLOYS
HAVING GOOD RESISTANCE TO HOT CREEK
TECHNICAL FIELD OF THE INVENTION.
The present invention relates to aluminum alloys suitable for molding having good resistance to hot creep, good ductility and intended more particularly for the manufacture of parts of automobile engines such as, for example, pistons and cylinder heads.
Il est connu que pour ce type d'application, l'emploi d'alliages de moulage à base d'aluminium et de silicium présente, outre l'avantage d'un faible poids des pièces, l'intérêt d'une bonne aptitude au moulage ceci étant important pour la réalisation de culasses ou de pistons de forme souvent complexe.It is known that for this type of application, the use of molding alloys based on aluminum and silicon has, in addition to the advantage of a low weight of the parts, the advantage of good suitability for molding this being important for the production of cylinder heads or pistons of often complex shape.
La bonne conductivité thermique constitue par ailleurs une autre raison du fort développement de ces alliages en raison des propriétés de bon échange thermique que doivent présenter les dites pièces.The good thermal conductivity is also another reason for the strong development of these alloys due to the good heat exchange properties that said parts must have.
A l'heure actuelle, les alliages les plus utilisés sont pour les culasses, l'A-S7G03 ou 1'A-S5U3G et pour les pistons, l'A-S12UN ou l'A-S18UNG, ces références correspondant suivant les normes de l'Aluminum Association respectivement aux désignations suivantes : AA356, AA319, AA413 et AA392.At present, the most used alloys are for cylinder heads, A-S7G03 or 1'A-S5U3G and for pistons, A-S12UN or A-S18UNG, these references corresponding according to standards of the Aluminum Association respectively with the following designations: AA356, AA319, AA413 and AA392.
Mais, du fait de l'augmentation de puissance des moteurs et, notamment, dans le cas des turbo diesels, ces pièces sont de plus en plus sollicitées thermomécaniquement, ce qui pose le problème du fluage ( enfoncement en service des zones d'appui des sièges de soupapes ) et de fatigue thermique fissuration du pontet intersoupapes des culasses et des têtes de pistons ) problèmes auxquels les alliages traditionnels cités plus haut ne peuvent plus répondre.However, due to the increase in power of the engines and, in particular, in the case of turbo diesels, these parts are increasingly thermomechanically stressed, which poses the problem of creep (depression in service of the bearing zones of the valve seats) and thermal fatigue cracking of the inter-valve trigger guard of cylinder heads and piston heads) problems which the traditional alloys mentioned above can no longer respond to.
Compte tenu de la nécessité de conserver de bonnes propriétés de moulage, de bonnes caractéristiques mécaniques à température ambiante et d'éviter un surcoût, des solutions ont été recherchées à ces problèmes telles que l'ajout à des teneurs inférieures à 1% d'éléments susceptibles d'améliorer les propriétés à chaud des alliages traditionnels pour accroître leurs performances en service.Given the need to maintain good molding properties, good mechanical properties at room temperature and to avoid additional cost, solutions have been sought to these problems such as adding elements below 1% likely to improve the hot properties of traditional alloys to increase their performance in service.
ETAT DE LA TECHNIQUE.
Une des solutions enseignées par l'art antérieur pour améliorer la résistance au fluage à chaud de ces alliages consiste à ajouter du titane.STATE OF THE ART.
One of the solutions taught by the prior art for improving the resistance to hot creep of these alloys consists in adding titanium.
On peut citer, par exemple
-la demande de brevet japonais publiée en 1981 sous le numéro 56-9351 qui décrit un alliage d'aluminium de moulage résistant à chaud contenant en poids 10,5-11,5% de silicium, 3,0-4,0% de cuivre, 1,0-2,5% de magnésium auquel on a ajouté 0,25-0,40* de titane, le dit alliage étant destiné à la fabrication de pistons de moteurs d'automobiles.We can cite, for example
the Japanese patent application published in 1981 under the number 56-9351 which describes a heat resistant cast aluminum alloy containing by weight 10.5-11.5% of silicon, 3.0-4.0% of copper, 1.0-2.5% of magnesium to which 0.25-0.40 * of titanium has been added, the said alloy being intended for the manufacture of pistons of automobile engines.
-la demande de brevet japonais publiée en 1982 sous le numéro 57-9426 qui décrit, pour la fabrication de pistons, un alliage d'aluminium contenant en poids 4-14% de silicium, 1-5% de cuivre, 0,2-0,8% de magnésium et pouvant contenir également 0,5-2,5% de nickel ou 0,5-2,0% de manganèse ou 0,05-0,2% de titane. -the Japanese patent application published in 1982 under number 57-9426 which describes, for the manufacture of pistons, an aluminum alloy containing by weight 4-14% of silicon, 1-5% of copper, 0.2- 0.8% magnesium and may also contain 0.5-2.5% nickel or 0.5-2.0% manganese or 0.05-0.2% titanium.
I1 faut noter que l'utilisation de titane pour l'affinage de l'aluminium primaire dans les aluminium-silicium hypoeutectiques ( Si < 13% ) est connu depuis longtemps. It should be noted that the use of titanium for the refining of primary aluminum in hypoeutectic aluminum-silicon (Si <13%) has been known for a long time.
Une autre solution consiste en un ajout de zirconium. Ainsi,
-la demande de brevet japonais publiée en 1979 sous le numéro 54-89913 qui décrit un alliage d'aluminium possédant une résistance améliorée à chaud et de bonnes propriètés de coulabilité contenant en poids 1,5-5% de silicium, 0,8-2 de cuivre, 0,3-1,5% de manganèse, 0,3-3,5% de magnésium, 0,01 0,3% de fer et auquel on ajoute soit du titane soit du zirconium en quantité comprise entre 0,01 et 0,3%. Another solution consists in adding zirconium. So,
-the Japanese patent application published in 1979 under number 54-89913 which describes an aluminum alloy having improved resistance to hot and good flowability properties containing by weight 1.5-5% silicon, 0.8- 2 copper, 0.3-1.5% manganese, 0.3-3.5% magnesium, 0.01 0.3% iron and to which is added either titanium or zirconium in an amount between 0 , 01 and 0.3%.
Une troisième solution est relative à l'ajout de vanadium.A third solution relates to the addition of vanadium.
A ce sujet, on peut lire la demande japonaise publiée en 1983 sous le numéro 83-100654 qui enseigne l'utilisation pour la fabrication de pièces de moteurs d'automobiles, un alliage d'aluminium contenant 8-13% de silicium, 2,0-5t de cuivre, 0,2-0,8% de magnésium auquel on a ajouté pour améliorer sa résistance à chaud 0,05-0,5% de vanadium.On this subject, one can read the Japanese application published in 1983 under the number 83-100654 which teaches the use for the manufacture of parts of automobile engines, an aluminum alloy containing 8-13% of silicon, 2, 0-5t copper, 0.2-0.8% magnesium to which was added to improve its heat resistance 0.05-0.5% vanadium.
PROBLEME POSE.
Au cours des essais menés pour vérifier l'influence de l'ajout de titane, de zirconium ou de vanadium, on a constaté que
-aucun de ces ajouts ne permettait d'obtenir un gain de résistance au fluage excédant 15% à 300"C. PROBLEM.
During the tests carried out to verify the influence of the addition of titanium, zirconium or vanadium, it was found that
- none of these additions made it possible to obtain a gain in creep resistance exceeding 15% at 300 "C.
-l'emploi de ces ajouts au delà d'une concentration critique provoque l'apparition de phases intermétalliques grossières inefficaces pour l'amélioration de la résistance au fluage et très nuisibles pour la ductilité de l'alliage et pour le comportement à la fissuration en service. the use of these additions beyond a critical concentration causes the appearance of coarse intermetallic phases which are ineffective for improving the creep resistance and very harmful for the ductility of the alloy and for the cracking behavior in service.
Ces teneurs critiques sont de l'ordre de 0,20% pour le titane, 0,20% pour le zirconium et 0,40% pour le vanadium. These critical contents are of the order of 0.20% for titanium, 0.20% for zirconium and 0.40% for vanadium.
EXPOSE DE L'INVENTION.-
C'est dans le but d'augmenter davantage cette résistance au fluage à chaud sans nuire à la ductilité et au comportement à la fissuration que la demanderesse a mis au point des alliages de moulage à base d'aluminium contenant du silicium en quantité comprise entre 4 et 23% en poids et au moins un élément choisi parmi le magnésium à une teneur comprise entre 0,1-1% en poids, le cuivre entre 0,3 et 4,5 et le nickel entre 0,2 et 3% ainsi que les impuretés habituelles caractérisés en ce que dans le but d'améliorer leur résistance au fluage à chaud sans nuire à leur ductilité, les dits alliages contiennent également en poids 0,1 à 0,2t de titane, 0,1 à 0,2% de zirconium et 0,2 à 0,4t de vanadium.PRESENTATION OF THE INVENTION.-
It is with the aim of further increasing this resistance to hot creep without harming ductility and cracking behavior that the applicant has developed aluminum-based molding alloys containing silicon in an amount between 4 and 23% by weight and at least one element chosen from magnesium at a content of between 0.1-1% by weight, copper between 0.3 and 4.5 and nickel between 0.2 and 3% as well than the usual impurities, characterized in that in order to improve their resistance to hot creep without harming their ductility, the said alloys also contain by weight 0.1 to 0.2 t of titanium, 0.1 to 0.2 % zirconium and 0.2 to 0.4t of vanadium.
Ainsi, l'invention consiste en l'ajout simultané de trois éléments dans des proportions bien définies.Thus, the invention consists in the simultaneous addition of three elements in well defined proportions.
En effet, en deçà des valeurs minima des fourchettes indiquées, l'amélioration existe mais demeure insuffisante par contre, au delà des valeurs maxima indiquées, on ne constate plus d'améliorations sensibles de la résistance au fluage mais, au contraire une diminution de la ductilité de l'alliage due à l'apparition de phases grossières consécutives à la formation de précipités de composés intermétalliques grossiers.Indeed, below the minimum values of the ranges indicated, the improvement exists but remains insufficient on the other hand, beyond the maximum values indicated, there is no longer any noticeable improvement in the creep resistance but, on the contrary a reduction in the alloy ductility due to the appearance of coarse phases following the formation of precipitates of coarse intermetallic compounds.
On note également que cette amélioration croît en fonction de la teneur de chacun des trois éléments.We also note that this improvement increases as a function of the content of each of the three elements.
L'invention réside sur la constatation surprenante suivante : compte-tenu du fait que les éléments titane, zirconium et vanadium sont des éléments aux propriétés physicochimiques voisines, l'homme de l'art aurait pu s'attendre à ne pas obtenir un gain substantiel des propriétés à chaud par addition simultanée de ces trois éléments par rapport à celles accessibles par addition d'un seul de ces trois éléments ; l'idée implicitement admise a priori étant que chacun des éléments peut se substituer à l'autre, comme cela découle d'ailleurs de la demande japonaise 54-89913 citée plus haut et où on substitue le zirconium au titane.The invention resides in the following surprising observation: given the fact that the elements titanium, zirconium and vanadium are elements with similar physicochemical properties, those skilled in the art could have expected not to obtain a substantial gain hot properties by simultaneous addition of these three elements compared to those accessible by addition of only one of these three elements; the idea implicitly accepted a priori being that each of the elements can replace the other, as this follows from the Japanese application 54-89913 cited above and where we substitute zirconium for titanium.
Or, on a constaté que l'ajout simultané des trois éléments à des teneurs supérieures à celles précisées ci-dessus permet d'obtenir toutes choses égales par ailleurs, une performance en fluage bien supérieure à celles des alliages ne contenant qu'un seul ou deux des trois éléments et ceci sans perte notable de ductilité.However, it has been found that the simultaneous addition of the three elements to contents higher than those specified above makes it possible to obtain all other things equal, a creep performance much higher than that of alloys containing only one or two of the three elements and this without significant loss of ductility.
De préférence, les alliages d'aluminium utilisés dans l'invention sont choisis parmi les alliages du type AA356,
AA319, AA413 et AA392 suivant les normes de l'Aluminum
Association.Preferably, the aluminum alloys used in the invention are chosen from alloys of the AA356 type,
AA319, AA413 and AA392 according to Aluminum standards
Association.
EXEMPLES D'APPLICATION.-
Dans les exemples donnés ci-dessous, la résistance au fluage indiquée est celle mesurée après 100 heures de maintien à 300"C sans contrainte et correspond à la contrainte conduisant à une déformation de 0,1% ( fluage par traction après 100 heures d'essai.APPLICATION EXAMPLES.
In the examples given below, the creep resistance indicated is that measured after 100 hours of holding at 300 "C without stress and corresponds to the stress leading to a deformation of 0.1% (creep by traction after 100 hours of test.
La ductilité indiquée est chiffrée par un essai de traction à 250"C et correspond à l'allongement à la rupture en %.The ductility indicated is calculated by a tensile test at 250 "C and corresponds to the elongation at break in%.
Exemple 1.
Un alliage de moulage à base d'aluminium du type A-S5U3G contenant moins de 100 ppm en poids de chacun des éléments titane, zirconium et vanadium et traité thermiquement à l'état T6 suivant les normes de l'Aluminum Association a été maintenu pendant 100 heures à 300"C. La mesure de la résistance au fluage a donné une valeur de 24 MPa et l'allongement était de 24r0
Exemple 2.
A un alliage ayant la composition de celui de l'exemple 1, on a ajouté 0,13% en poids de titane et on l'a traité thermiquement de la même manière que le précédent. La mesure de la résistance au fluage a donné une valeur de 27 MPa soit une augmentation de 12,5% et l'allongement était de 19,5% correspondant à une diminution relativement faible de la valeur obtenue sans ajout.Example 1.
An aluminum-based casting alloy of the A-S5U3G type containing less than 100 ppm by weight of each of the titanium, zirconium and vanadium elements and heat treated in the T6 state according to the standards of the Aluminum Association was maintained for 100 hours at 300 "C. The measurement of the creep resistance gave a value of 24 MPa and the elongation was 24r0
Example 2.
To an alloy having the composition of that of Example 1, 0.13% by weight of titanium was added and it was heat treated in the same manner as the previous one. The measurement of the creep resistance gave a value of 27 MPa, ie an increase of 12.5% and the elongation was 19.5% corresponding to a relatively small decrease in the value obtained without addition.
Exemple 3.
A un alliage ayant la composition de celui de l'exemple 2, on a ajouté 0,15% en poids de zirconium et on l'a traité dans les mêmes conditions que l'exemple précédent. On a noté une valeur de résistance au fluage de 29,7 MPa soit une nouvelle augmentation de 10% et l'allongement était de 19%,0 valeur comparable à celui de l'exemple précédent. Aucune présence de phases grossières n'a eté constaté.Example 3.
To an alloy having the composition of that of Example 2, 0.15% by weight of zirconium was added and it was treated under the same conditions as the previous example. A creep resistance value of 29.7 MPa was noted, ie a further increase of 10% and the elongation was 19%, 0 value comparable to that of the previous example. No presence of coarse phases was noted.
Exemple 4.
A un alliage ayant la composition de celui de l'exemple 3, on a ajouté 0,3% de vanadium et on l'a traité dans les mêmes conditions que les précédents. La valeur de la résistance au fluage est alors 31,8 MPa soit une nouvelle augmentation de 7% sans qu'on observe l'apparition de phases grossières, l'allongement se maintenant à 19%.Example 4.
To an alloy having the composition of that of Example 3, 0.3% of vanadium was added and it was treated under the same conditions as the previous ones. The value of the creep resistance is then 31.8 MPa, ie a further increase of 7% without observing the appearance of coarse phases, the elongation remaining at 19%.
Au total, le gain en résistance au fluage à chaud est de 32% et la diminution d'allongement est comparable à celle de l'ajout de 0,13% de titane seul ou de 0,15% de zirconium seul ou de 0,3% de vanadium seul. In total, the gain in resistance to hot creep is 32% and the reduction in elongation is comparable to that of the addition of 0.13% of titanium alone or of 0.15% of zirconium alone or of 0, 3% vanadium alone.
Des résultats similaires ont été obtenus avec des alliages du type A-S5U3 traités thermiquement pendant 10 heures à 515"C. Similar results have been obtained with alloys of the A-S5U3 type heat treated for 10 hours at 515 "C.
L'invention trouve son application dans la confection de culasses et de pistons de moteurs d'automobiles. The invention finds its application in the manufacture of cylinder heads and pistons of automobile engines.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9205760A FR2690927B1 (en) | 1992-05-06 | 1992-05-06 | ALUMINUM-BASED MOLDING ALLOYS HAVING GOOD RESISTANCE TO HOT CREAM. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9205760A FR2690927B1 (en) | 1992-05-06 | 1992-05-06 | ALUMINUM-BASED MOLDING ALLOYS HAVING GOOD RESISTANCE TO HOT CREAM. |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2690927A1 true FR2690927A1 (en) | 1993-11-12 |
FR2690927B1 FR2690927B1 (en) | 1995-06-16 |
Family
ID=9429718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR9205760A Expired - Lifetime FR2690927B1 (en) | 1992-05-06 | 1992-05-06 | ALUMINUM-BASED MOLDING ALLOYS HAVING GOOD RESISTANCE TO HOT CREAM. |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2690927B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2841164A1 (en) * | 2002-06-25 | 2003-12-26 | Pechiney Aluminium | ALLOY MOLDING WITH HIGH FLUID RESISTANCE |
FR2857378A1 (en) * | 2003-07-10 | 2005-01-14 | Pechiney Aluminium | Cast component of an aluminium with a high resistance to flow when subjected to elevated thermal and mechanical stress, notably a cylinder head for an internal combustion engine |
FR2859484A1 (en) * | 2003-09-04 | 2005-03-11 | Pechiney Aluminium | Cast aluminum alloy component with high flow resistance for use in turbo-charged petrol and diesel engines, e.g. pistons for internal combustion engines |
WO2006056686A2 (en) * | 2004-11-26 | 2006-06-01 | Ks Kolbenschmidt Gmbh | Aluminium alloy for component with high hot process mechanical strength |
WO2010012875A1 (en) * | 2008-07-30 | 2010-02-04 | Alcan International Limited | Casting made from aluminium alloy, having high hot creep and fatigue resistance |
FR2954355A1 (en) * | 2009-12-22 | 2011-06-24 | Alcan Int Ltd | COPPER ALUMINUM ALLOY MOLDED MECHANICAL AND HOT FLUID MOLDED PART |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2210669A1 (en) * | 1972-12-15 | 1974-07-12 | Schmidt Gmbh Karl | Sub-eutectic aluminium-silicon alloys for eg pistons - also contg. copper, magnesium, manganese, nickel and zirconium |
DE2529439A1 (en) * | 1975-07-02 | 1977-01-13 | Schmidt Gmbh Karl | Eutectic aluminium silicon alloy for engine pistons etc. - where zirconium is added to obtain pronounced improvement in creep strength |
DE2529062A1 (en) * | 1975-06-30 | 1977-02-03 | Schmidt Gmbh Karl | Hypo-eutectic aluminium silicon alloy - contg. zirconium for improved creep strength |
JPS569351A (en) * | 1979-07-02 | 1981-01-30 | Honda Kinzoku Gijutsu Kk | Heat resistant alminum alloy for casting |
JPS6342344A (en) * | 1986-08-06 | 1988-02-23 | Honda Motor Co Ltd | Al alloy for powder metallurgy excellent in high temperature strength characteristic |
EP0366134A1 (en) * | 1988-10-27 | 1990-05-02 | Toyo Aluminium Kabushiki Kaisha | Aluminum alloy useful in powder metallurgy process |
-
1992
- 1992-05-06 FR FR9205760A patent/FR2690927B1/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2210669A1 (en) * | 1972-12-15 | 1974-07-12 | Schmidt Gmbh Karl | Sub-eutectic aluminium-silicon alloys for eg pistons - also contg. copper, magnesium, manganese, nickel and zirconium |
DE2529062A1 (en) * | 1975-06-30 | 1977-02-03 | Schmidt Gmbh Karl | Hypo-eutectic aluminium silicon alloy - contg. zirconium for improved creep strength |
DE2529439A1 (en) * | 1975-07-02 | 1977-01-13 | Schmidt Gmbh Karl | Eutectic aluminium silicon alloy for engine pistons etc. - where zirconium is added to obtain pronounced improvement in creep strength |
JPS569351A (en) * | 1979-07-02 | 1981-01-30 | Honda Kinzoku Gijutsu Kk | Heat resistant alminum alloy for casting |
JPS6342344A (en) * | 1986-08-06 | 1988-02-23 | Honda Motor Co Ltd | Al alloy for powder metallurgy excellent in high temperature strength characteristic |
EP0366134A1 (en) * | 1988-10-27 | 1990-05-02 | Toyo Aluminium Kabushiki Kaisha | Aluminum alloy useful in powder metallurgy process |
Non-Patent Citations (5)
Title |
---|
CHEMICAL ABSTRACTS, vol. 91, no. 18 Columbus, Ohio, US; abstract no. 144547, KOMIYAMA, YOSHIRO ET AL. 'High temperature properties of new nickel-free aluminum casting alloy for pistons' * |
CHEMICAL ABSTRACTS, vol. 98, no. 16 Columbus, Ohio, US; abstract no. 130770, HOLECEK, STANISLAV ET AL. 'Mechanical properties and thermal fatigue of aluminum-silicon-copper (AlSiCu) piston alloys' * |
PATENT ABSTRACTS OF JAPAN vol. 5, no. 58 (C-051)21 Avril 1981 & JP-A-56 009 351 ( HONDA KINZOKU GIJUTSU KK ) 30 Janvier 1981 * |
Section Ch, 1988 Derwent Publications Ltd., London, GB; Class M22, AN 88-089558 & JP-A-63 042 344 ((HOND) HONDA MOTOR IND KK) 23 Février 1988 * |
W. HUFNAGEL 'ALUMINIUM-SCHLUESSEL' 1983 , ALUMINIUM VERLAG , DUESSELDORF, DE * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2841164A1 (en) * | 2002-06-25 | 2003-12-26 | Pechiney Aluminium | ALLOY MOLDING WITH HIGH FLUID RESISTANCE |
WO2004001079A2 (en) * | 2002-06-25 | 2003-12-31 | Aluminium Pechiney | Part cast from aluminium alloy with high hot strength |
WO2004001079A3 (en) * | 2002-06-25 | 2004-04-15 | Pechiney Aluminium | Part cast from aluminium alloy with high hot strength |
NO339371B1 (en) * | 2002-06-25 | 2016-12-05 | Pechiney Aluminium | Molded part of aluminum alloy with high heat resistance. |
FR2857378A1 (en) * | 2003-07-10 | 2005-01-14 | Pechiney Aluminium | Cast component of an aluminium with a high resistance to flow when subjected to elevated thermal and mechanical stress, notably a cylinder head for an internal combustion engine |
WO2005007911A1 (en) * | 2003-07-10 | 2005-01-27 | Aluminium Pechiney | Moulded al-si-cu aluminium alloy component with high hot-process resistance |
FR2859484A1 (en) * | 2003-09-04 | 2005-03-11 | Pechiney Aluminium | Cast aluminum alloy component with high flow resistance for use in turbo-charged petrol and diesel engines, e.g. pistons for internal combustion engines |
WO2006056686A3 (en) * | 2004-11-26 | 2007-02-15 | Ks Kolbenschmidt Gmbh | Aluminium alloy for component with high hot process mechanical strength |
FR2878534A1 (en) * | 2004-11-26 | 2006-06-02 | Ks Kolbenschmidt Gmbh | ALUMINUM ALLOY FOR HIGH HARD MECHANICAL RESISTANCE PIECE |
WO2006056686A2 (en) * | 2004-11-26 | 2006-06-01 | Ks Kolbenschmidt Gmbh | Aluminium alloy for component with high hot process mechanical strength |
WO2010012875A1 (en) * | 2008-07-30 | 2010-02-04 | Alcan International Limited | Casting made from aluminium alloy, having high hot creep and fatigue resistance |
FR2934607A1 (en) * | 2008-07-30 | 2010-02-05 | Alcan Int Ltd | ALUMINUM ALLOY MOLDED PART WITH HIGH FATIGUE AND HOT FLUID RESISTANCE |
KR20110050652A (en) * | 2008-07-30 | 2011-05-16 | 리오 틴토 알칸 인터내셔널 리미티드 | Aluminum alloy casting parts with high temperature creep resistance and fatigue resistance |
US20110126947A1 (en) * | 2008-07-30 | 2011-06-02 | Rio Tinto Alcan International Limited | Casting made from aluminium alloy, having high hot creep and fatigue resistance |
JP2011529529A (en) * | 2008-07-30 | 2011-12-08 | リオ ティント アルカン インターナショナル リミテッド | Aluminum alloy castings with high resistance to fatigue and hot creep |
KR101639826B1 (en) | 2008-07-30 | 2016-07-14 | 리오 틴토 알칸 인터내셔널 리미티드 | Casting made from aluminium alloy, having high hot creep and fatigue resistance |
US9982328B2 (en) | 2008-07-30 | 2018-05-29 | Rio Tinto Alcan International Limited | Casting made from aluminium alloy, having high hot creep and fatigue resistance |
FR2954355A1 (en) * | 2009-12-22 | 2011-06-24 | Alcan Int Ltd | COPPER ALUMINUM ALLOY MOLDED MECHANICAL AND HOT FLUID MOLDED PART |
WO2011083209A1 (en) * | 2009-12-22 | 2011-07-14 | Rio Tinto Alcan International Limited | Copper aluminum alloy molded part having high mechanical strength and hot creep resistance |
Also Published As
Publication number | Publication date |
---|---|
FR2690927B1 (en) | 1995-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2489349C (en) | Part cast from aluminium alloy with high hot strength | |
EP1651787B1 (en) | Moulded al-si-cu aluminium alloy component with high hot-process resistance | |
EP2395118B1 (en) | Internal combustion engine cylinder head composed of an aluminium alloy casting | |
JP6445432B2 (en) | Improved 6xxx aluminum alloy | |
JP5442961B2 (en) | Heat resistant aluminum alloy | |
CN109868393B (en) | High temperature cast aluminum alloy for cylinder heads | |
CN101838760A (en) | Scandium, zirconium and strontium compound microalloyed 6013 type aluminium alloy and preparation method thereof | |
FR2737225A1 (en) | AL-CU-MG ALLOY WITH HIGH FLOW RESISTANCE | |
FR2690927A1 (en) | Aluminium@ alloy - contains silicon, and either magnesium@, copper@ or nickel@ with titanium@, zirconium@ and vanadium@ to increase hot creep resistance | |
JPH1112674A (en) | Aluminum alloy for internal combustion engine piston, and piston made of aluminum alloy | |
GB2332448A (en) | Aluminium alloy. | |
JP4648559B2 (en) | Heat-resistant aluminum die-cast product | |
JPH01180938A (en) | Wear-resistant aluminum alloy | |
JP2001123239A (en) | Aluminum alloy and cast aluminum alloy for high strength casting | |
EP1972696A1 (en) | Cast aluminium alloy | |
EP1190107B1 (en) | Aluminum-base alloy for cylinder heads | |
FR2878534A1 (en) | ALUMINUM ALLOY FOR HIGH HARD MECHANICAL RESISTANCE PIECE | |
FR2859484A1 (en) | Cast aluminum alloy component with high flow resistance for use in turbo-charged petrol and diesel engines, e.g. pistons for internal combustion engines | |
KR20080102560A (en) | High heat resistant aluminum alloy for cylinder head | |
JPH0448856B2 (en) | ||
JP3303661B2 (en) | Heat resistant high strength aluminum alloy | |
JP2002047526A (en) | Aluminum alloy casting excellent in strength and thermal shock characteristics and method for producing the same | |
JP5910206B2 (en) | Aluminum alloy | |
EP0291492B1 (en) | Heat resisting zinc base alloy | |
EP0756016B1 (en) | Aircraft body member, more particularly for supersonic aircraft, made from a long-living, damage tolerant aluminium alloy with good stress corrosion resistance |