EP4417915A1 - Method and apparatus for liquefying a carbon dioxide rich gas - Google Patents
Method and apparatus for liquefying a carbon dioxide rich gas Download PDFInfo
- Publication number
- EP4417915A1 EP4417915A1 EP24155741.2A EP24155741A EP4417915A1 EP 4417915 A1 EP4417915 A1 EP 4417915A1 EP 24155741 A EP24155741 A EP 24155741A EP 4417915 A1 EP4417915 A1 EP 4417915A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- flow
- gas
- natural gas
- liquefied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 125
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 59
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims description 20
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 66
- 239000007789 gas Substances 0.000 claims abstract description 60
- 239000003949 liquefied natural gas Substances 0.000 claims abstract description 40
- 239000003345 natural gas Substances 0.000 claims abstract description 32
- 239000007788 liquid Substances 0.000 claims description 37
- 238000009833 condensation Methods 0.000 claims description 9
- 230000005494 condensation Effects 0.000 claims description 9
- 238000004821 distillation Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 6
- 230000005611 electricity Effects 0.000 claims description 5
- 239000012263 liquid product Substances 0.000 claims description 5
- 230000004907 flux Effects 0.000 description 8
- 239000013535 sea water Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000011084 recovery Methods 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0027—Oxides of carbon, e.g. CO2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/005—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0221—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0266—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/067—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/70—Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/02—Multiple feed streams, e.g. originating from different sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/04—Mixing or blending of fluids with the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/06—Splitting of the feed stream, e.g. for treating or cooling in different ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/62—Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/04—Recovery of liquid products
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/80—Carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/80—Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
- F25J2220/82—Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/80—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/80—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/70—Steam turbine, e.g. used in a Rankine cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/90—Hot gas waste turbine of an indirect heated gas for power generation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
- F25J2270/904—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
Definitions
- the present invention relates to a method and apparatus for liquefying a gas rich in carbon dioxide.
- a carbon dioxide-rich gas contains at least 90 mol% carbon dioxide, preferably at least 95 mol% carbon dioxide, or even at least 99 mol% carbon dioxide.
- LNG In liquefied natural gas (LNG) terminals, LNG is stored in cryogenic conditions at low pressure. In order to use it in gaseous form and transport it over long distances by pipeline, LNG must be pumped and vaporized. At most LNG terminals installed worldwide, this vaporization is achieved by using either seawater as a heating medium or flue gases produced by burning part of the natural gas. In both cases, the cold is simply lost to the environment, which is not efficient.
- LNG liquefied natural gas
- ORC cycle While the Rankine cycle can operate with water as the working fluid for applications such as geothermal heat recovery, the use of organic fluids that evaporate at low temperatures makes it possible to exploit low-temperature cold sources. This is known as the organic Rankine cycle or ORC cycle. ORC cycles are traditionally industrialized using LNG as the cold source and seawater as the hot source, but they have relatively low energy yields, of the order of 20 kWh per ton of LNG vaporized, i.e. 0.015 kWh/Nm 3 .
- WO2021/019132 A1 describes a process in which a gas is liquefied at a temperature close to the temperature of the LNG providing part of the frigories for liquefaction. It is therefore not suitable for liquefying a gas rich in carbon dioxide which would be solid at such temperatures.
- the second heat exchanger has two ends, the carbon dioxide-rich gas stream at a pressure of at least 20 barg being sent to one end of the second heat exchanger to at least partially liquefy by indirect heat exchange with the reheated stream and the at least partially liquefied stream exiting the other end of the second heat exchanger.
- the first and second heat exchangers may constitute a single exchange line, such that the liquefied natural gas (or not) passes from the first to the second heat exchanger without leaving the exchange line.
- the first and second exchangers may form part of the same stack of plates forming passages between them.
- first and second exchangers can be separated from each other.
- FIG.1 illustrates that in this process, the liquefied natural gas LNG is introduced into a brazed aluminum heat exchanger E1 at high pressure, typically between 40 and 120 bar g, in the supercritical state.
- the liquefied natural gas is at a temperature of at most -100°C and can be replaced by natural gas or supercritical natural gas. Under these conditions, the densities decrease as the temperature increases and the natural gas NG leaves the exchanger E1 between -10 and - 50°C.
- the cold NG is introduced into an exchanger E3 supplied with seawater which allows it to be heated between 0 and 15°C depending on the temperature of the seawater.
- the fluid in liquid form is stored in tank V1, pumped by pump P1 and partially or completely vaporized in exchanger E1.
- the HM cycle fluid is still cold (between -10°C and -50°C) and possibly not completely vaporized and must be heated to room temperature by exchanger E2 supplied with seawater before being expanded in a turbine T1.
- exchanger E2 supplied with seawater before being expanded in a turbine T1.
- a tank V2 protects the turbine from liquid overflows in the event of a malfunction.
- the energy recovered by the turbine is converted into electricity by the generator. This allows a recovery of 35 kWh/t LNG but some of the cold is still lost in the sea water.
- the present invention proposes to use the frigories from the vaporization of liquefied natural gas or from the heating of natural gas to provide cold for an organic Rankine cycle and then to liquefy a CO2-rich stream.
- a flow of liquefied natural gas LNG is heated in a heat exchanger E1 and vaporized in a heat exchanger EC101 to produce natural gas NG at the hot end of the exchanger EC101.
- the liquefied natural gas is at a temperature of at most 100°C and can be replaced by natural gas or supercritical natural gas.
- a gas flow 1 containing at least 90 mol% carbon dioxide, preferably at least 95 mol% carbon dioxide, or even at least 99 mol% carbon dioxide is compressed in a first stage K101-1 of a centrifugal compressor forming a compressed gas 3 and is then cooled forming a cooled gas 5.
- the flow 1 contains at least one other component lighter than carbon dioxide, for example nitrogen, oxygen, argon, carbon monoxide, hydrogen, methane.
- the gas 5 is compressed to at least 20 bar g, for example 22 bar g in a second stage K101-2 of the compressor. After cooling the compressed gas 7 in the second stage is sent to the hot end of the heat exchanger EC101 where it cools by flowing through the entire exchanger and partially condensing.
- phase separator V102 whose gas 11 feeds a washing column C in the tank.
- the liquid 13 from the phase separator V102 is expanded in a valve and mixed with a tank liquid 35 from the column C.
- the two flows 13 and 14 are expanded to a pressure of approximately 5500mbarg and sent to a phase separator V103.
- the gas 23 formed in the separator V103 is enriched in at least one lighter component and is sent to mix with the compressed and cooled gas 5.
- the remainder 25 of the liquid is pressurized by pump P2.
- the liquid 25 pumped into P2 is divided into two, a portion 27 being returned to the separator V103 and the remainder 26 serving as washing liquid for column C.
- the overhead gas 34 of column C contains carbon dioxide as well as at least one light impurity present in gas 1 such as oxygen, nitrogen, argon, carbon monoxide, etc. This gas 34 is sent to the atmosphere. Otherwise at least a portion 17 of the gas heats up in the heat exchanger EC101.
- This scheme allows 1.7 tonnes of CO2 to be liquefied for 1 tonne of vaporized liquefied natural gas.
- This scheme allows liquefying 2 tons of CO2 for 1 ton of vaporized liquefied natural gas. If the process is a little less efficient than the previous one in terms of energy consumption, this scheme on the other hand minimizes the approach of temperatures in the EC101 exchanger, which allows the use of a brazed aluminum plate and fin exchanger less expensive than the technology necessary for the [ FIG.1 ] which requires the use of a brazed stainless steel exchanger or a printed circuit heat exchanger or a diffusion bonded heat exchanger.
- Stream 8 is not necessarily formed by overpressurizing a portion of stream 7 but may be an independent CO2-rich stream available at a higher pressure, such that the KB compressor is not required.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Un appareil de liquéfaction d'au moins un gaz riche en dioxyde de carbone comprend un premier échangeur de chaleur (E1), un deuxième échangeur de chaleur (EC101), un cycle de Rankine organique comprenant une turbine (T1) et une pompe (P1), des moyens pour envoyer un débit de gaz naturel liquéfié (LNG) au premier échangeur de chaleur où il se réchauffe formant un débit réchauffé, des moyens pour envoyer le débit réchauffé se réchauffer dans le deuxième échangeur de chaleur formant un débit de gaz naturel (NG), des moyens pour envoyer seulement le ou les flux de gaz riche en dioxyde de carbone (1) au deuxième échangeur de chaleur pour se liquéfier au moins partiellement par échange de chaleur indirect avec le débit réchauffé, le cycle de Rankine organique étant relié au premier échangeur de chaleur pour y fournir toute la chaleur. An apparatus for liquefying at least one carbon dioxide-rich gas comprises a first heat exchanger (E1), a second heat exchanger (EC101), an organic Rankine cycle comprising a turbine (T1) and a pump (P1), means for sending a flow of liquefied natural gas (LNG) to the first heat exchanger where it heats up forming a reheated flow, means for sending the reheated flow to heat up in the second heat exchanger forming a flow of natural gas (NG), means for sending only the flow or flows of carbon dioxide-rich gas (1) to the second heat exchanger to liquefy at least partially by indirect heat exchange with the reheated flow, the organic Rankine cycle being connected to the first heat exchanger to provide all the heat there.
Description
La présente invention est relative à un procédé et à un appareil de liquéfaction d'un gaz riche en dioxyde de carbone.The present invention relates to a method and apparatus for liquefying a gas rich in carbon dioxide.
Un gaz riche en dioxyde de carbone contient au moins 90% mol de dioxyde de carbone, de préférence au moins 95% mol de dioxyde de carbone, voire au moins 99% mol de dioxyde de carbone.A carbon dioxide-rich gas contains at least 90 mol% carbon dioxide, preferably at least 95 mol% carbon dioxide, or even at least 99 mol% carbon dioxide.
Dans les terminaux de gaz naturel liquéfié (GNL), le GNL est stocké dans des conditions cryogéniques à basse pression. Afin de l'utiliser sous forme gazeuse et de le transporter sur de longues distances par gazoduc, le GNL doit être pompé et vaporisé. Sur la plupart des terminaux GNL installés dans le monde, cette vaporisation est assurée en utilisant d'une part de l'eau de mer comme moyen de chauffage ou des gaz de combustion produits par la combustion d'une partie du gaz naturel. Dans les deux cas, le froid est simplement perdu dans l'environnement, ce qui n'est pas efficace.In liquefied natural gas (LNG) terminals, LNG is stored in cryogenic conditions at low pressure. In order to use it in gaseous form and transport it over long distances by pipeline, LNG must be pumped and vaporized. At most LNG terminals installed worldwide, this vaporization is achieved by using either seawater as a heating medium or flue gases produced by burning part of the natural gas. In both cases, the cold is simply lost to the environment, which is not efficient.
Aujourd'hui, l'utilisation des cycles organiques de Rankine est étudiée et des installations de démonstration commencent à être installées dans le monde entier. Ce procédé repose sur l'utilisation de composants purs ou mélangés comme moyen de chauffage.Today, the use of organic Rankine cycles is being studied and demonstration plants are beginning to be installed around the world. This process is based on the use of pure or mixed components as a heating medium.
Si le cycle de Rankine peut fonctionner avec de l'eau comme fluide de travail pour des applications telles que la récupération de chaleur d'origine géothermique, l'utilisation de fluides organiques s'évaporant à basse température permet d'exploiter des sources froides à faible température. On parle alors de cycle organique de Rankine ou cycle ORC (pour « Organic Rankine Cycle » en anglais). Les cycles ORC sont classiquement industrialisés en utilisant le GNL comme source froide et de l'eau de mer comme source chaude, mais ils présentent des rendements énergétiques relativement faibles, de l'ordre de 20 kWh par tonne de GNL vaporisée, c'est-à-dire 0,015 kWh/Nm3.While the Rankine cycle can operate with water as the working fluid for applications such as geothermal heat recovery, the use of organic fluids that evaporate at low temperatures makes it possible to exploit low-temperature cold sources. This is known as the organic Rankine cycle or ORC cycle. ORC cycles are traditionally industrialized using LNG as the cold source and seawater as the hot source, but they have relatively low energy yields, of the order of 20 kWh per ton of LNG vaporized, i.e. 0.015 kWh/Nm 3 .
Selon un objet de l'invention, il est prévu un procédé de liquéfaction d'au moins un gaz, le seul gaz liquéfié ou tous les gaz liquéfiés étant riche en dioxyde de carbone dans lequel :
- i) Un débit de gaz naturel liquéfié ou de gaz naturel, ou de gaz naturel supercritique, le débit étant à au plus -100°C, est envoyé à un premier échangeur de chaleur où il se réchauffe formant un débit réchauffé
- ii) Le débit réchauffé se réchauffe dans un deuxième échangeur de chaleur formant un débit de gaz naturel à une température supérieure à 0°C
- iii) Le flux de gaz riche en dioxyde de carbone à une pression d'au moins 20 barg est envoyé au deuxième échangeur de chaleur pour se liquéfier au moins partiellement par échange de chaleur indirect avec le débit réchauffé et un flux au moins partiellement liquéfié sort du deuxième échangeur de chaleur
- iv) Un cycle de Rankine organique fournit de la chaleur au premier échangeur de chaleur en y envoyant un gaz détendu dans une turbine du cycle, le gaz détendu se liquéfié dans le premier échangeur de chaleur formant un liquide, le liquide est pressurisé par une pompe, le liquide pressurisé se réchauffe dans le premier échangeur et ensuite dans le deuxième échangeur avant d'être envoyé à la turbine.
- (i) A flow of liquefied natural gas or natural gas, or supercritical natural gas, the flow being at most -100°C, is sent to a first heat exchanger where it heats up forming a heated flow
- ii) The heated flow is reheated in a second heat exchanger forming a natural gas flow at a temperature above 0°C.
- (iii) The carbon dioxide-rich gas stream at a pressure of at least 20 barg is sent to the second heat exchanger to at least partially liquefy by indirect heat exchange with the reheated flow and an at least partially liquefied stream exits the second heat exchanger.
- iv) An organic Rankine cycle provides heat to the first heat exchanger by sending an expanded gas into a turbine in the cycle, the expanded gas liquefies in the first heat exchanger forming a liquid, the liquid is pressurized by a pump, the pressurized liquid heats up in the first exchanger and then in the second exchanger before being sent to the turbine.
Selon d'autres aspects facultatifs:
- le gaz naturel liquéfié se vaporise dans le premier échangeur de chaleur.
- le liquide pressurisé se vaporise au moins partiellement dans le premier échangeur de chaleur.
- le liquide pressurisé ou le liquide pressurisé au moins partiellement vaporise entre dans le deuxième échangeur à entre -10°C et -50°C.
- un deuxième débit riche en CO2 à une pression d'au moins 40 bars g, se liquéfie dans le deuxième échangeur de chaleur formant un deuxième flux liquéfié.
- le flux partiellement liquéfié sortant du deuxième échangeur est séparé par condensation partielle et/ou par distillation pour former un produit liquide riche en CO2 et un gaz contenant du CO2 qui est renvoyé au flux de gaz riche en dioxyde de carbone à une pression moins de 20 bars g, étant comprimé avec le flux de gaz riche en dioxyde de carbone dans un compresseur.
- le flux partiellement liquéfié sortant du deuxième échangeur est séparé par condensation partielle et/ou par distillation pour former un produit liquide riche en CO2 et un gaz contenant du CO2, au moins une partie du gaz se réchauffant dans le deuxième échangeur de chaleur.
- on génère de l'électricité au moyen d'un générateur relié à la turbine.
- un liquide formé par condensation partielle et/ou distillation est détendu jusqu'à une première pression, éventuellement inférieure à la pression d'un stockage, envoyé à un séparateur de phases opérant à cette première pression et le liquide du séparateur est pressurisé jusqu'à une pression supérieure à la première pression.
- le premier échangeur a deux extrémités, le débit de gaz naturel liquéfié ou de gaz naturel, ou de gaz naturel supercritique étant envoyé à une extrémité du premier échangeur de chaleur le gaz détendu dans la turbine (T1) étant envoyé à l'autre extrémité du premier échangeur de chaleur.
- toute la chaleur pour réchauffer le débit de gaz naturel liquéfié (LNG) ou de gaz naturel, ou de gaz naturel supercritique dans le premier échangeur de chaleur (E1) provient du cycle de Rankine.
- Liquefied natural gas vaporizes in the first heat exchanger.
- the pressurized liquid vaporizes at least partially in the first heat exchanger.
- the pressurized liquid or the pressurized liquid at least partially vaporizes enters the second exchanger at between -10°C and -50°C.
- a second flow rich in CO2 at a pressure of at least 40 bar g, liquefies in the second heat exchanger forming a second liquefied flow.
- the partially liquefied stream exiting the second exchanger is separated by partial condensation and/or by distillation to form a liquid product rich in CO2 and a gas containing CO2 which is returned to the gas stream rich in carbon dioxide at a pressure of less than 20 bar g, being compressed with the gas stream rich in carbon dioxide in a compressor.
- the partially liquefied flow leaving the second exchanger is separated by partial condensation and/or by distillation to form a liquid product rich in CO2 and a CO2-containing gas, at least part of the gas being heated in the second heat exchanger.
- Electricity is generated by means of a generator connected to the turbine.
- a liquid formed by partial condensation and/or distillation is expanded to a first pressure, possibly lower than the pressure of a storage, sent to a phase separator operating at this first pressure and the liquid of the separator is pressurized to a pressure higher than the first pressure.
- the first exchanger has two ends, the flow of liquefied natural gas or natural gas, or supercritical natural gas being sent to one end of the first heat exchanger the gas expanded in the turbine (T1) being sent to the other end of the first heat exchanger.
- All the heat to warm the flow of liquefied natural gas (LNG) or natural gas, or supercritical natural gas in the first heat exchanger (E1) comes from the Rankine cycle.
Le deuxième échangeur de chaleur a deux extrémités, le flux de gaz riche en dioxyde de carbone à une pression d'au moins 20 barg étant envoyé à une extrémité du deuxième échangeur de chaleur pour se liquéfier au moins partiellement par échange de chaleur indirect avec le débit réchauffé et le flux au moins partiellement liquéfié sortant de l'autre extrémité du deuxième échangeur de chaleur.The second heat exchanger has two ends, the carbon dioxide-rich gas stream at a pressure of at least 20 barg being sent to one end of the second heat exchanger to at least partially liquefy by indirect heat exchange with the reheated stream and the at least partially liquefied stream exiting the other end of the second heat exchanger.
Selon un autre objet de l'invention, il est prévu un appareil de liquéfaction d'un gaz riche en dioxyde de carbone comprenant un premier échangeur de chaleur, un deuxième échangeur de chaleur, un cycle de Rankine organique comprenant une turbine et une pompe, des moyens pour envoyer un débit de gaz naturel liquéfié ou de gaz naturel ou de gaz naturel supercritique, le débit étant à au plus -100°C, au premier échangeur de chaleur où il se réchauffe formant un débit réchauffé, des moyens pour envoyer le débit réchauffé se réchauffer dans le deuxième échangeur de chaleur formant un débit de gaz naturel à une température supérieure à 0°C, des moyens pour envoyer un flux de gaz riche en dioxyde de carbone à une pression d'au moins 20 barg au deuxième échangeur de chaleur pour se liquéfier au moins partiellement par échange de chaleur indirect avec le débit réchauffé, des moyens pour sortir un flux au moins partiellement liquéfié du deuxième échangeur de chaleur, le cycle de Rankine organique étant relié au premier échangeur de chaleur pour y fournir de la chaleur en y envoyant un gaz détendu dans la turbine du cycle, des moyens pour envoyer le gaz détendu liquéfié dans le premier échangeur de chaleur formant un liquide à la pompe, des moyens pour envoyer le liquide pressurisé de la pompe au premier échangeur de chaleur pour s'y réchauffer et s'y vaporiser, des moyens pour envoyer le liquide vaporisé dans le premier échangeur de chaleur au deuxième échangeur de chaleur et des moyens pour envoyer le liquide vaporisé réchauffé dans le deuxième échangeur de chaleur à la turbine. Selon d'autres aspects de l'invention :
- l'appareil comprend des moyens pour liquéfier un deuxième flux riche en dioxyde de carbone à une pression supérieure à 20 barg, voire au moins égale à 40 barg au moins partiellement dans le deuxième échangeur de chaleur.
- the apparatus comprises means for liquefying a second stream rich in carbon dioxide at a pressure greater than 20 barg, or even at least equal to 40 barg at least partially in the second heat exchanger.
Le premier et le deuxième échangeurs de chaleur peuvent constituer une seule ligne d'échange, de sorte que le gaz naturel liquéfié (ou pas) passe du premier au deuxième échangeur de chaleur sans sortir de la ligne d'échange. Dans ce cas, le premier et le deuxième échangeurs peuvent former partie d'un même empilement de plaques formant des passages entre eux.The first and second heat exchangers may constitute a single exchange line, such that the liquefied natural gas (or not) passes from the first to the second heat exchanger without leaving the exchange line. In this case, the first and second exchangers may form part of the same stack of plates forming passages between them.
Sinon le premier et le deuxième échangeurs peuvent séparés l'un de l'autre.Otherwise the first and second exchangers can be separated from each other.
[
Du côté du fluide caloporteur, le fluide sous forme liquide est stocké dans la cuve V1, pompé par la pompe P1 et vaporisé partiellement ou totalement dans l'échangeur E1. A la sortie de l'échangeur E1, le fluide de cycle HM est encore froid (entre -10°C et -50°C) et éventuellement pas totalement vaporisé et doit être réchauffé à température ambiante par l'échangeur E2 alimenté en eau de mer avant d'être détendu dans une turbine T1. Plus la température est élevée à l'entrée de la turbine, meilleure est la récupération d'énergie. Un réservoir V2 protège la turbine des débordements de liquide en cas de dysfonctionnement. L'énergie récupérée par la turbine est convertie en électricité par le générateur. Cela permet une récupération de 35 kWh/t LNG mais une partie du froid est encore perdue dans l'eau de mer.On the heat transfer fluid side, the fluid in liquid form is stored in tank V1, pumped by pump P1 and partially or completely vaporized in exchanger E1. At the outlet of exchanger E1, the HM cycle fluid is still cold (between -10°C and -50°C) and possibly not completely vaporized and must be heated to room temperature by exchanger E2 supplied with seawater before being expanded in a turbine T1. The higher the temperature at the turbine inlet, the better the energy recovery. A tank V2 protects the turbine from liquid overflows in the event of a malfunction. The energy recovered by the turbine is converted into electricity by the generator. This allows a recovery of 35 kWh/t LNG but some of the cold is still lost in the sea water.
Comme les effets du réchauffement de la planète sont chaque jour plus perceptibles, on étudie la capture et la liquéfaction de CO2 dans les régions industrialisées, ce CO2 étant ensuite transporté par bateau vers des stockages souterrains très éloignés.As the effects of global warming become more noticeable, studies are being carried out on the capture and liquefaction of CO2 in industrialized regions, with this CO2 then being transported by ship to very distant underground storage sites.
Chaque site industriel produit des gaz contenant du CO2 avec des compositions différentes. C'est pour cette raison que des procédés de purification de CO2 sont souvent éloignés des procédés de liquéfaction qui collectent le CO2 de plusieurs sources.Each industrial site produces CO2-containing gases with different compositions. This is why CO2 purification processes are often far removed from liquefaction processes that collect CO2 from multiple sources.
Il est connu de
La présente invention propose d'utiliser les frigories de la vaporisation de gaz naturel liquéfié ou de réchauffement de gaz naturel pour fournir du froid pour un cycle organique de Rankine et ensuite pour liquéfier un débit riche en CO2.The present invention proposes to use the frigories from the vaporization of liquefied natural gas or from the heating of natural gas to provide cold for an organic Rankine cycle and then to liquefy a CO2-rich stream.
L'invention sera décrite de manière plus détaillée en se référant aux figures où:
- [
FIG.2 ] représente un procédé selon l'invention. - [
FIG.3 ] représente un procédé selon l'invention.
- [
FIG.2 ] represents a method according to the invention. - [
FIG.3 ] represents a method according to the invention.
Dans la [
Un débit gazeux 1 contenant au moins 90% mol de dioxyde de carbone, de préférence au moins 95% mol de dioxyde de carbone, voire au moins 99% mol de dioxyde de carbone est comprimé dans un premier étage K101-1 d'un compresseur centrifuge formant un gaz comprimé 3 et est ensuite refroidi formant un gaz refroidi 5. Le débit 1 contient au moins un autre composant plus léger que le dioxyde de carbone, par exemple l'azote, l'oxygène, l'argon, le monoxyde de carbone, l'hydrogène, le méthane. Le gaz 5 est comprimé jusqu'à au moins 20 bar g, par exemple 22 bars g dans un deuxième étage K101-2 du compresseur. Après refroidissement le gaz 7 comprimé dans le deuxième étage est envoyé au bout chaud de l'échangeur de chaleur EC101 où il se refroidit en parcourant tout l'échangeur et en se condensant partiellement. Le débit partiellement condensé est séparé dans un séparateur de phases V102 dont le gaz 11 alimente une colonne de lavage C en cuve. Le liquide 13 du séparateur de phases V102 est détendu dans une vanne et mélangé avec un liquide de cuve 35 de la colonne C. Les deux débits 13 et 14 sont détendus jusqu'à une pression d'environ 5500mbarg et envoyés à un séparateur de phases V103.A gas flow 1 containing at least 90 mol% carbon dioxide, preferably at least 95 mol% carbon dioxide, or even at least 99 mol% carbon dioxide is compressed in a first stage K101-1 of a centrifugal compressor forming a
Le gaz 23 formé dans le séparateur V103 est enrichi en l'au moins un composant plus léger et est envoyé se mélanger avec le gaz comprimé et refroidi 5.The
Le liquide du séparateur V103 est divisé en deux, une partie 29 étant pressurisée par une pompe P3. Le liquide pompé dans P3 est divisé en deux, une partie 31 étant renvoyée au séparateur V103 et le reste 33 servant de produit liquide à 7 barg. Le stockage (non-illustré) auquel le liquide 33 est destiné est à basse pression et souvent pas tout à côté de l'unité de liquéfaction de la
Ainsi le liquide 33 est pressurisé par la pompe P3 en aval du séparateur V103 pour arriver à la pression de stockage en passant par une canalisation, ce qui implique d'en vaincre les pertes de charge.Thus, the liquid 33 is pressurized by the pump P3 downstream of the separator V103 to reach the storage pressure via a pipeline, which involves overcoming the pressure losses.
Le reste 25 du liquide est pressurisé par la pompe P2. Le liquide 25 pompé dans P2 est divisé en deux, une partie 27 étant renvoyée au séparateur V103 et le reste 26 servant de liquide de lavage de la colonne C.The
Le gaz de tête 34 de la colonne C contient du dioxyde de carbone ainsi que au moins une impureté légère présente dans le gaz 1 telles que l'oxygène, l'azote, l'argon, le monoxyde de carbone... Ce gaz 34 est envoyé à l'atmosphère. Sinon au moins une partie 17 du gaz se réchauffe dans l'échangeur de chaleur EC101.The
Un cycle de production de froid relie les deux échangeurs de chaleur EC101, E1. Un gaz 4 est détendu dans une turbine T1 formant le débit détendu 43 qui se refroidit dans l'échangeur E1 contre le débit LNG. Le gaz détendu se condense partiellement dans l'échangeur E1 et arrive dans un séparateur de phases V1. Le liquide formé 45 est pressurisé par une pompe P1 et renvoyé en partie 47 au séparateur V1. Le reste du liquide pressurisé se vaporise dans l'échangeur E1 formant le débit 49 qui se réchauffe dans l'échangeur EC101 pour être envoyé à un séparateur V2 et ensuite comme débit 4 à la turbine T1, formant un cycle fermé.A cold production cycle connects the two heat exchangers EC101, E1. A gas 4 is expanded in a turbine T1 forming the expanded
On génère de l'électricité au moyen d'un générateur relié à la turbine T1.Electricity is generated by means of a generator connected to turbine T1.
Ce schéma permet de liquéfier 1,7 tonne de CO2 pour 1 tonne de gaz naturel liquéfié vaporisé.This scheme allows 1.7 tonnes of CO2 to be liquefied for 1 tonne of vaporized liquefied natural gas.
Dans une variante plus simple, le ou les débits partiellement liquéfiés sont séparés par condensation partielle ou par distillation. La présence de la colonne C n'est pas essentielle.In a simpler variant, the partially liquefied flow(s) are separated by partial condensation or distillation. The presence of column C is not essential.
[
Ce schéma permet de liquéfier 2 tonnes de CO2 pour 1 tonne de gaz naturel liquéfié vaporisé. Si le procédé est un peu moins efficace que le précédent en termes de consommation d'énergie, ce schéma par contre minimise l'approche de températures dans l'échangeur EC101, ce qui permet l'usage d'un échangeur brasé en aluminium à plaques et à ailettes moins cher que la technologie nécessaire pour la [
Claims (13)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2301521A FR3145971B1 (en) | 2023-02-17 | 2023-02-17 | Process and apparatus for liquefying a gas rich in carbon dioxide |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4417915A1 true EP4417915A1 (en) | 2024-08-21 |
Family
ID=86272185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP24155741.2A Pending EP4417915A1 (en) | 2023-02-17 | 2024-02-05 | Method and apparatus for liquefying a carbon dioxide rich gas |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4417915A1 (en) |
JP (1) | JP2024117749A (en) |
KR (1) | KR20240128610A (en) |
FR (1) | FR3145971B1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100107634A1 (en) * | 2008-11-06 | 2010-05-06 | Air Products And Chemicals, Inc. | Rankine Cycle For LNG Vaporization/Power Generation Process |
EP2278210A1 (en) * | 2009-07-16 | 2011-01-26 | Shell Internationale Research Maatschappij B.V. | Method for the gasification of a liquid hydrocarbon stream and an apparatus therefore |
CN105545390A (en) | 2016-01-25 | 2016-05-04 | 辽宁石油化工大学 | LNG cold energy cascade utilization method |
CN106016968A (en) * | 2016-07-14 | 2016-10-12 | 王嘉文 | Method and equipment for liquefaction and purification of carbon dioxide |
WO2021019132A1 (en) | 2019-07-30 | 2021-02-04 | Shield | Filtration device for a controlled-atmosphere installation, corresponding installation and corresponding implementation method |
WO2021019143A1 (en) * | 2019-07-26 | 2021-02-04 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for recovering refrigerating energy with electricity production or liquefying of a gaseous stream |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2014776A1 (en) * | 1970-03-26 | 1971-09-30 | Linde Ag, 6200 Wiesbaden | Liquid carbon dioxide as coolant for natural gas |
CN110864498B (en) * | 2019-10-17 | 2021-08-27 | 深圳市燃气集团股份有限公司 | LNG cold energy cascade utilization device and method |
CN115263466A (en) * | 2022-07-13 | 2022-11-01 | 江苏科技大学 | Low-temperature carbon capture coupling cold energy and waste heat cascade utilization system of LNG power ship |
-
2023
- 2023-02-17 FR FR2301521A patent/FR3145971B1/en active Active
-
2024
- 2024-02-05 EP EP24155741.2A patent/EP4417915A1/en active Pending
- 2024-02-15 JP JP2024021027A patent/JP2024117749A/en active Pending
- 2024-02-16 KR KR1020240022580A patent/KR20240128610A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100107634A1 (en) * | 2008-11-06 | 2010-05-06 | Air Products And Chemicals, Inc. | Rankine Cycle For LNG Vaporization/Power Generation Process |
EP2278210A1 (en) * | 2009-07-16 | 2011-01-26 | Shell Internationale Research Maatschappij B.V. | Method for the gasification of a liquid hydrocarbon stream and an apparatus therefore |
CN105545390A (en) | 2016-01-25 | 2016-05-04 | 辽宁石油化工大学 | LNG cold energy cascade utilization method |
CN106016968A (en) * | 2016-07-14 | 2016-10-12 | 王嘉文 | Method and equipment for liquefaction and purification of carbon dioxide |
WO2021019143A1 (en) * | 2019-07-26 | 2021-02-04 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for recovering refrigerating energy with electricity production or liquefying of a gaseous stream |
WO2021019132A1 (en) | 2019-07-30 | 2021-02-04 | Shield | Filtration device for a controlled-atmosphere installation, corresponding installation and corresponding implementation method |
Non-Patent Citations (2)
Title |
---|
ASPELUND A ET AL: "A liquefied energy chain for transport and utilization of natural gas for power production with CO"2 capture and storage - Part 1", APPLIED ENERGY, ELSEVIER SCIENCE PUBLISHERS, GB, vol. 86, no. 6, 1 June 2009 (2009-06-01), pages 781 - 792, XP025962954, ISSN: 0306-2619, [retrieved on 20081125], DOI: 10.1016/J.APENERGY.2008.10.010 * |
ASPELUND ET AL: "Gas conditioning-The interface between CO"2 capture and transport", 20070616, vol. 1, no. 3, 16 June 2007 (2007-06-16), pages 343 - 354, XP022119495 * |
Also Published As
Publication number | Publication date |
---|---|
KR20240128610A (en) | 2024-08-26 |
FR3145971A1 (en) | 2024-08-23 |
JP2024117749A (en) | 2024-08-29 |
FR3145971B1 (en) | 2025-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5709793B2 (en) | Natural gas liquefaction method and apparatus, computer simulation process thereof, liquefied natural gas product | |
JP6561196B2 (en) | Increased efficiency in LNG production systems by pre-cooling natural gas feed streams | |
EP2344821B1 (en) | Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant | |
FR2703762A1 (en) | Method and installation for cooling a fluid, in particular for liquefying natural gas. | |
FR2675890A1 (en) | METHOD FOR THE REFRIGERATION TRANSFER OF NATURAL GAS LIQUEFIED TO A CRYOGENIC AIR SEPARATION UNIT USING THE HIGH PRESSURE NITROGEN CURRENT. | |
FR2675891A1 (en) | PROCESS FOR PRODUCING LIQUID NITROGEN USING LIQUEFIED NATURAL GAS AS THE ONLY REFRIGERANT. | |
FR2675888A1 (en) | PROCESS FOR THE USE OF LIQUEFIED NATURAL GAS (LNG) ASSOCIATED WITH A COLD EXPANDER TO PRODUCE LIQUID NITROGEN | |
FR2803851A1 (en) | PROCESS FOR PARTIAL LIQUEFACTION OF A HYDROCARBON CONTAINING FLUID SUCH AS NATURAL GAS | |
EP2959243B1 (en) | Separation at sub-ambient temperature of a gaseous mixture containing carbon dioxide and a lighter contaminant | |
FR2865024A1 (en) | Separation of air by cryogenic distillation involves use of double or triple separation column and operating at high pressure | |
TW201940679A (en) | Method and system for liquefaction of natural gas using liquid nitrogen | |
EP4417915A1 (en) | Method and apparatus for liquefying a carbon dioxide rich gas | |
Joy et al. | Safe design of liquid oxygen plant that absorbs LNG cold energy and offsets supply disruption by injecting liquid nitrogen | |
WO2014049259A1 (en) | Method and appliance for separating a mixture containing carbon dioxide by cryogenic distillation | |
EP4279848B1 (en) | Method and apparatus for cooling a co2-rich flow | |
EP2938414B1 (en) | Method and apparatus for separating a carbon dioxide-rich gas | |
EP3058296B1 (en) | Method for denitrogenation of natural gas with or without helium recovery | |
WO2024083386A1 (en) | Gas recovery method and apparatus for a compressor | |
EP4390280A1 (en) | Method and apparatus for separating a carbon dioxide-containing gas mixture | |
FR3150853A1 (en) | Process and apparatus for liquefying and/or solidifying a gas rich in carbon dioxide | |
WO2024235661A1 (en) | Method and apparatus for separating a mixture containing co2 | |
FR3148836A1 (en) | Method and apparatus for separating a mixture containing CO2 | |
WO2023148045A1 (en) | Method and apparatus for cooling carbon dioxide and hydrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |