EP4108931B1 - Method for operating a molecular vacuum pump to achieve improved suction capacity - Google Patents
Method for operating a molecular vacuum pump to achieve improved suction capacity Download PDFInfo
- Publication number
- EP4108931B1 EP4108931B1 EP22193499.5A EP22193499A EP4108931B1 EP 4108931 B1 EP4108931 B1 EP 4108931B1 EP 22193499 A EP22193499 A EP 22193499A EP 4108931 B1 EP4108931 B1 EP 4108931B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pump
- carrier gas
- turbomolecular
- inlet
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 65
- 239000007789 gas Substances 0.000 claims description 85
- 239000012159 carrier gas Substances 0.000 claims description 83
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 19
- 238000011144 upstream manufacturing Methods 0.000 claims description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 238000005086 pumping Methods 0.000 description 42
- 239000002826 coolant Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000012530 fluid Substances 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- 238000007789 sealing Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/042—Turbomolecular vacuum pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0207—Surge control by bleeding, bypassing or recycling fluids
- F04D27/0238—Details or means for fluid reinjection
Definitions
- the present invention relates to a method according to the preamble of claim 1 for operating a molecular vacuum pump to achieve an improved suction capacity, such as the type essentially consisting of EP 0 974 756 A2 known. Furthermore, EP 3 438 460 A1 , JP H03 233193 A , US 5 092 740 A and EN 25 07 430 A1 pointed out.
- Molecular vacuum pumps operate in the high and ultra-high vacuum range, with the pressure in the high vacuum range being between 10 -3 and 10 -7 hPa and in the ultra-high vacuum range being less than and 10 -7 hPa.
- the process gas to be pumped from the pump inlet to the pump outlet tends to flow back from the pump outlet to the pump inlet due to the fact that the pressure at the pump inlet is lower than the pressure at the pump outlet.
- This tendency for backflow is greater the higher the pump pre-pressure, i.e. the pressure at the pump outlet of the vacuum pump. Accordingly, due to the tendency for backflow described, the pumping speed of a turbomolecular pump is lower in the range of high pre-pressures than the pumping speed of the turbomolecular pump at lower pre-pressures.
- the described backflow problem occurs particularly when pumping process gases that have a relatively low molar mass. This is due to the fact that heavier process gases are easier to pumped than lighter process gases. With relatively light process gases such as hydrogen or helium, a smaller pressure difference between the pump inlet and the pump outlet or a smaller pressure ratio is therefore achieved at the same pre-pressure and other boundary conditions than with heavier process gases, which means that the backflow problem is greater with process gases with a lower molar mass than with process gases with a higher molar mass.
- the invention is therefore based on the object of reducing the described backflow problem in molecular vacuum pumps such as turbomolecular vacuum pumps and thus ensuring an improved suction capacity.
- the object underlying the same is achieved with a method for operating a molecular vacuum pump, in particular a turbomolecular vacuum pump, according to claim 1.
- the tendency of the process gas to flow back can be reduced the more the more carrier gas is introduced; however, the power consumption of the pump increases as the amount of carrier gas increases. Too small carrier gas quantities, on the other hand, do not have the desired effect in terms of reducing the tendency of the process gas to flow back. Tests were therefore carried out to determine the optimum ratio between the amount of process gas and the amount of carrier gas.
- this can be an operating state during which the molecular vacuum pump is continuously operated with at least 75% of its maximum permissible power or at least 75% of its maximum permissible speed.
- the carrier gas is continuously introduced into the pump mechanism during at least 50% of this time window, i.e. during the time window during which the molecular vacuum pump is continuously operated with at least 75% of its maximum permissible power or at least 75% of its maximum permissible speed.
- the carrier gas can be continuously introduced into the pumping mechanism during at least 60% of the time of this time window, in particular during at least 70% of the time of this time window and particularly preferably during at least 80% of the time of this time window.
- the entraining gas is not only introduced into the pump mechanism temporarily for a relatively short period of time; rather, according to the invention, the entraining gas is introduced into the pump mechanism for the majority of the time during which process gas is conveyed by means of the pump, in order to reduce the tendency of the process gas to flow back in favor of improving the pumping capacity of the pump.
- the carrier gas is continuously introduced into the pump mechanism over a period of at least one hour during the conveyance of process gas, in particular over a period of at least 10 hours and preferably over a period of more than 24 hours.
- the carrier gas in order to optimize the momentum transfer from the carrier gas molecules to the process gas molecules, it may prove advantageous, as stated above, to use a gas as the carrier gas that has a larger molar mass than the process gas. Accordingly, it may prove particularly advantageous to use nitrogen and/or argon, for example, as the carrier gas, particularly when the process gas is a relatively light gas, such as hydrogen or helium.
- the pump stage closest to the pump inlet is referred to as the first pump stage and the pump stage closest to the pump outlet is referred to as the Nth pump stage, whereby the individual pump stages are numbered consecutively with whole numbers from the first to the Nth in the direction of the pump outlet.
- M 6
- M 5
- turbomolecular pump stage closest to the pump inlet is the first and the turbomolecular pump stage closest to the pump outlet is the Nth pump stage, with the individual turbomolecular pump stages being numbered consecutively with whole numbers from the first to the Nth in the direction of the pump outlet.
- carrier gas a gas other than the process gas into the pump mechanism of the turbomolecular pump through the carrier gas connection during operation, which is also referred to below as carrier gas
- carrier gas a gas other than the process gas
- the tendency of the process gas to flow back from the pump outlet to the pump inlet is reduced, since the molecules of the process gas are entrained or dragged along by the molecules of the carrier gas in the direction of the pump outlet, hence the term "carrier gas".
- the molecules of the carrier gas transfer their momentum to the molecules of the process gas, so that the process gas molecules are dragged along by the carrier gas molecules in the direction of the pump outlet.
- the greater the molecular weight of the carrier gas the greater the momentum transfer from the carrier gas to the process gas.
- a gas with a higher molar mass than the process gas should be used as the carrier gas, which is why, for example, in the case of helium or hydrogen as the process gas, nitrogen and/or argon can be used as the carrier gas.
- the pressure at the pump inlet is reduced at the same pre-pressure, which results in an increase of the pumping speed.
- the effective high-vacuum side pumping speed of the turbomolecular pump is thus increased by introducing a carrier gas into the pump mechanism, since introducing a carrier gas into the pump mechanism reduces the tendency of the process gas to flow back.
- This effect is more noticeable the closer the carrier gas connection is to the pump inlet, since in this case more time is available during which the carrier gas molecules can transfer their momentum to the process gas molecules.
- the carrier gas connection should not be located too close to the pump inlet, since in this case there is a risk that the carrier gas will flow back towards the pump inlet due to the vacuum at the pump inlet. Accordingly, regardless of the number of pump stages, the carrier gas connection should always be located downstream of the first, preferably downstream of the second, pump stage in order to prevent the carrier gas from flowing back towards the pump inlet.
- the entraining gas connection should be located downstream of the first pumping stage, preferably downstream of the second pumping stage, in order to prevent the entraining gas from flowing back towards the pump inlet.
- the entraining gas connection should be located downstream of the first pumping stage, preferably downstream of the second pumping stage, in order to prevent the entraining gas from flowing back towards the pump inlet.
- the turbomolecular pump 111 shown comprises a pump inlet 115 surrounded by an inlet flange 113, to which a recipient (not shown) can be connected in a manner known per se.
- the gas from the recipient can be sucked out of the recipient via the pump inlet 115 and conveyed through the pump to a pump outlet 117, to which a backing pump, such as a rotary vane pump, can be connected.
- the inlet flange 113 forms the vacuum pump in the alignment according to Fig.1 the upper end of the housing 119 of the vacuum pump 111.
- the housing 119 comprises a lower part 121, on which an electronics housing 123 is arranged on the side. Electrical and/or electronic components of the vacuum pump 111 are housed in the electronics housing 123, e.g. for operating an electric motor 125 arranged in the vacuum pump (see also Fig.3 ).
- Several connections 127 for accessories are provided on the electronics housing 123.
- a data interface 129 e.g. according to the RS485 standard, and a power supply connection 131 are arranged on the electronics housing 123.
- turbomolecular pumps that do not have such an attached electronics housing, but are connected to external drive electronics.
- a flood inlet 133 in particular in the form of a flood valve, is provided on the housing 119 of the turbomolecular pump 111, via which the vacuum pump 111 can be flooded.
- a sealing gas connection 135, which is also referred to as a purge gas connection is also arranged, via which purge gas can be fed to protect the electric motor 125 (see e.g. Fig.3 ) can be let into the motor compartment 137, in which the electric motor 125 is housed in the vacuum pump 111, before the gas delivered by the pump.
- two coolant connections 139 are also arranged, one of the coolant connections being provided as an inlet and the other coolant connection as an outlet for coolant that can be fed into the vacuum pump for cooling purposes.
- Other existing turbomolecular vacuum pumps (not shown) are operated exclusively with air cooling.
- the lower side 141 of the vacuum pump can serve as a base so that the vacuum pump 111 can be operated standing on the underside 141.
- the vacuum pump 111 can also be attached to a recipient via the inlet flange 113 and thus operated in a hanging position.
- the vacuum pump 111 can be designed in such a way that it can also be put into operation when it is aligned in a different way than in Fig.1 is shown. It is also possible to realize embodiments of the vacuum pump in which the underside 141 is not arranged facing downwards, but to the side or facing upwards. In principle, any angle is possible.
- Mounting holes 147 are also arranged on the underside 141, via which the pump 111 can be attached to a support surface, for example. This is not possible with other existing turbomolecular vacuum pumps (not shown), which are in particular larger than the pump shown here.
- a coolant line 148 is shown in which the coolant introduced and discharged via the coolant connections 139 can circulate.
- the vacuum pump comprises several process gas pumping stages for conveying the process gas present at the pump inlet 115 to the pump outlet 117.
- a rotor 149 is arranged in the housing 119 and has a rotor shaft 153 rotatable about a rotation axis 151.
- the turbomolecular pump 111 comprises several turbomolecular pump stages connected in series with a pumping effect, with several radial rotor disks 155 attached to the rotor shaft 153 and stator disks 157 arranged between the rotor disks 155 and fixed in the housing 119.
- a rotor disk 155 and an adjacent stator disk 157 each form a turbomolecular pump stage.
- the stator disks 157 are held at a desired axial distance from one another by spacer rings 159.
- the vacuum pump also includes Holweck pump stages arranged radially one inside the other and connected in series to pump effectively. There are other turbomolecular vacuum pumps (not shown) that do not have Holweck pumping stages.
- the rotor of the Holweck pump stages comprises a rotor hub 161 arranged on the rotor shaft 153 and two cylinder-jacket-shaped Holweck rotor sleeves 163, 165 which are fastened to and supported by the rotor hub 161 and which are oriented coaxially to the rotation axis 151 and nested in one another in the radial direction. Furthermore, two cylinder-jacket-shaped Holweck stator sleeves 167, 169 are provided, which are also oriented coaxially to the rotation axis 151 and are nested in one another in the radial direction.
- the pump-active surfaces of the Holweck pump stages are formed by the lateral surfaces, i.e. by the radial inner and/or outer surfaces, of the Holweck rotor sleeves 163, 165 and the Holweck stator sleeves 167, 169.
- the radial inner surface of the outer Holweck stator sleeve 167 is opposite the radial outer surface of the outer Holweck rotor sleeve 163, forming a radial Holweck gap 171, and together with this forms the first Holweck pump stage following the turbomolecular pumps.
- the radial inner surface of the outer Holweck rotor sleeve 163 is opposite the radial outer surface of the inner Holweck stator sleeve 169, forming a radial Holweck gap 173, and together with this forms a second Holweck pump stage.
- the radial inner surface of the inner Holweck stator sleeve 169 lies opposite the radial outer surface of the inner Holweck rotor sleeve 165, forming a radial Holweck gap 175 and together forming the third Holweck pumping stage.
- a radially extending channel can be provided at the lower end of the Holweck rotor sleeve 163, via which the radially outer Holweck gap 171 is connected to the central Holweck gap 173.
- a radially extending channel can be provided at the upper end of the inner Holweck stator sleeve 169, via which the central Holweck gap 173 is connected to the radially inner Holweck gap 175.
- the nested Holweck pump stages are connected in series with one another.
- a connecting channel 179 to the outlet 117 can also be provided.
- the above-mentioned pump-active surfaces of the Holweck stator sleeves 167, 169 each have a plurality of Holweck grooves running spirally around the rotation axis 151 in the axial direction, while the opposite lateral surfaces of the Holweck rotor sleeves 163, 165 are smooth and propel the gas in the Holweck grooves for operating the vacuum pump 111.
- a rolling bearing 181 is provided in the area of the pump outlet 117 and a permanent magnet bearing 183 is provided in the area of the pump inlet 115.
- a conical spray nut 185 with an outer diameter that increases towards the roller bearing 181 is provided on the rotor shaft 153.
- the spray nut 185 is in sliding contact with at least one scraper of a fluid reservoir.
- a spray screw can be provided instead of a spray nut. Since different designs are thus possible, the term "spray tip" is also used in this context.
- the operating fluid storage comprises several absorbent disks 187 stacked on top of each other, which are impregnated with an operating fluid for the rolling bearing 181, e.g. with a lubricant.
- the operating fluid is transferred by capillary action from the operating fluid reservoir via the scraper to the rotating spray nut 185 and, as a result of the centrifugal force, is pressed along the spray nut 185 into
- the fluid is pumped in the direction of the increasing outer diameter of the injection nut 185 to the roller bearing 181, where it fulfills a lubricating function, for example.
- the roller bearing 181 and the operating fluid reservoir are enclosed in the vacuum pump by a trough-shaped insert 189 and the bearing cover 145.
- the permanent magnet bearing 183 comprises a rotor-side bearing half 191 and a stator-side bearing half 193, each of which comprises a ring stack of several permanent magnet rings 195, 197 stacked on top of one another in the axial direction.
- the ring magnets 195, 197 lie opposite one another to form a radial bearing gap 199, with the rotor-side ring magnets 195 being arranged radially on the outside and the stator-side ring magnets 197 being arranged radially on the inside.
- the magnetic field present in the bearing gap 199 causes magnetic repulsion forces between the ring magnets 195, 197, which cause the rotor shaft 153 to be radially supported.
- the rotor-side ring magnets 195 are carried by a support section 201 of the rotor shaft 153, which surrounds the ring magnets 195 on the radial outside.
- the stator-side ring magnets 197 are supported by a stator-side support section 203 which extends through the ring magnets 197 and is suspended from radial struts 205 of the housing 119.
- the rotor-side ring magnets 195 are fixed parallel to the rotation axis 151 by a cover element 207 coupled to the support section 201.
- the stator-side ring magnets 197 are fixed parallel to the rotation axis 151 in one direction by a fastening ring 209 connected to the support section 203 and a fastening ring 211 connected to the support section 203.
- a disc spring 213 can also be provided between the fastening ring 211 and the ring magnets 197.
- An emergency or safety bearing 215 is provided within the magnetic bearing, which runs empty without contact during normal operation of the vacuum pump 111 and only comes into contact with the rotor 149 when there is an excessive radial deflection relative to the stator. engages to form a radial stop for the rotor 149 so that a collision of the rotor-side structures with the stator-side structures is prevented.
- the safety bearing 215 is designed as an unlubricated roller bearing and forms a radial gap with the rotor 149 and/or the stator, which causes the safety bearing 215 to be disengaged during normal pumping operation.
- the radial deflection at which the safety bearing 215 engages is large enough so that the safety bearing 215 does not engage during normal operation of the vacuum pump, and at the same time small enough so that a collision of the rotor-side structures with the stator-side structures is prevented under all circumstances.
- the vacuum pump 111 comprises the electric motor 125 for rotating the rotor 149.
- the armature of the electric motor 125 is formed by the rotor 149, whose rotor shaft 153 extends through the motor stator 217.
- a permanent magnet arrangement can be arranged radially on the outside or embedded on the section of the rotor shaft 153 extending through the motor stator 217.
- the motor stator 217 is fixed in the housing within the motor compartment 137 provided for the electric motor 125.
- a sealing gas which is also referred to as purge gas and which can be air or nitrogen, for example, can enter the motor compartment 137 via the sealing gas connection 135.
- the electric motor 125 can be protected from process gas, e.g. from corrosive components of the process gas, via the sealing gas.
- the motor compartment 137 can also be evacuated via the pump outlet 117, ie in the motor compartment 137, the vacuum pressure prevails at least approximately as that produced by the forevacuum pump connected to the pump outlet 117.
- a so-called labyrinth seal 223, which is known per se, can be provided between the rotor hub 161 and a wall 221 delimiting the motor compartment 137, in particular in order to achieve a better sealing of the motor compartment 217 with respect to the Holweck pump stages located radially outside.
- turbomolecular pump 111 is largely identical to the one previously mentioned with reference to the Figs. 1 to 5 designed turbomolecular pump 111, which is why the basic structure of the turbomolecular pump 111 according to Fig.6 to the above description of the turbomolecular pump 111 according to the Figs. 1 to 5 Compared to the previous one with reference to the Figs. 1 to 5
- the turbomolecular pump 111 described in Fig.6 additionally has a towing gas connection 225, the position and function of which will be discussed in more detail below.
- the previously described turbomolecular pump 111 has a flood inlet 133 which opens into the Holweck pump stage of the pump 111.
- a flood inlet 133 can also be provided in the area of the series-connected turbomolecular pump stages, in which case the flood inlet 133 is usually located in the downstream area of the pump mechanism which is formed by the series-connected turbomolecular pump stages.
- the flood inlet 133 can be located, for example, in the area of the seventh pump stage.
- the pump 111 can be flooded with air, for example, via such a flood inlet 133 after the pump 111 was taken out of service or the power supply to the electric motor 125 was interrupted.
- the turbomolecular vacuum pump 111 has, in addition to or instead of the flood inlet 133, a carrier gas connection which is connected to the Fig.6 is identified purely schematically with the reference symbol "225".
- the carrier gas connection 225 is a housing opening through which a carrier gas can be introduced into the pump mechanism formed by the turbomolecular pump stages.
- the housing opening 227 of the carrier gas connection 225 can be closed, for example, with a screw cap (not shown here), which can be removed if necessary in order to be able to connect a supply line to the carrier gas connection 225, via which a carrier gas can be supplied to the carrier gas connection 225.
- a flow control valve (not shown here) can be connected to the housing opening 227 of the carrier gas connection 225, the flow cross-section of which can be continuously changed in order to be able to continuously adjust and in particular regulate the amount of carrier gas supplied to the carrier gas connection 225.
- M ⁇ N + 1 / 2 ⁇ .
- the nomenclature is chosen such that the turbomolecular pump stage closest to the pump inlet 115 is referred to as the first and the turbomolecular pump stage closest to the pump outlet 117 is referred to as the Nth pump stage, with the individual turbomolecular pump stages from the first to the Nth being numbered consecutively with whole numbers in the direction of the pump outlet 117.
- the carrier gas connection thus opens upstream of the sixth turbomolecular pump stage into the pump mechanism formed by the turbomolecular pump stages. If the turbomolecular pump has However, if, for example, the pumping system has eight turbomolecular pump stages, the carrier gas connection 225 opens upstream of the fifth turbomolecular pump stage into the pump mechanism formed by the turbomolecular pump stages.
- the carrier gas connection 225 should in any case be provided downstream of the first turbomolecular pump stage, preferably downstream of the second turbomolecular pump stage, in order to prevent a backflow of the carrier gas in the direction of the pump inlet 115.
- a carrier gas is not introduced into the pump mechanism via the carrier gas connection 225 only after the pump has been switched off; rather, the invention provides that carrier gas is introduced into the pump mechanism via the carrier gas connection 225 during operation of the turbomolecular pump 111 and thus during the conveyance of process gas from the pump inlet 115 to the pump outlet 117.
- the carrier gas is introduced into the pump mechanism while the electric motor 125 is energized.
- the carrier gas is thus introduced into the pump mechanism via the carrier gas connection 225 during the normal pumping operation of the turbomolecular pump 111.
- This normal pumping operation can be defined as a time window during which the turbomolecular vacuum pump 111 is continuously operated at at least 75% of its maximum permissible power and/or at at least 75% of its maximum permissible speed.
- the carrier gas is introduced into the pump mechanism through the carrier gas connection 225 during at least 50% of the time of the time window defined in this way.
- the carrier gas is continuously introduced into the pump mechanism over a period of at least one hour during the conveyance of process gas, in particular over a period of 10 hours and preferably over a period of more than 24 hours.
- the carrier gas introduced via the carrier gas connection 225 entrains or drags the process gas conveyed from the pump inlet 115 to the pump outlet 117 and in particular prevents process gas from flowing back from the pump outlet 117 to the pump inlet 115.
- the pressure at the pump inlet thus drops in the desired manner, so that the pumping capacity increases in the desired manner.
- turbomolecular vacuum pump 111 has a Holweck pumping stage downstream of the turbomolecular pumping stages in the manner described above. However, like the flood inlet 133, this is optional and is not required to achieve the entraining gas effect according to the invention.
- the turbomolecular vacuum pump 111 according to the invention can therefore have a Holweck pumping stage, but does not have to.
- the top diagram line shows an operating state of the pump in which no gases were introduced into the pump mechanism via the flood inlet or the carrier gas connection.
- the middle diagram line refers to an operating state during which nitrogen was introduced into the pump mechanism via the flood inlet in the area of the seventh turbomolecular pump stage while the pump was operating.
- the bottom diagram line refers to an operating state of the pump in which nitrogen was introduced into the pump mechanism via the carrier gas connection in the area of the fourth turbomolecular pump stage.
- the pump was operated during all three operating states in such a way that 1,000 sccm of hydrogen gas were pumped as process gas from the pump inlet 115 to the pump outlet 117.
- the introduction of nitrogen gas through the flood inlet already results in a reduction in the pressure at the pump inlet compared to the operating condition in which no carrier gas is introduced into the pump mechanism according to the top line of the diagram.
- the pump inlet pressure drops even further if nitrogen is introduced into the pump mechanism as a carrier gas not via the flood inlet in the area of the seventh turbomolecular pump stage, but via the carrier gas connection in the area of the fourth turbomolecular pump.
- the pump was operated in such a way that it continuously delivers 1,000 sccm of H 2 , with 100 sccm of nitrogen being introduced into the pump mechanism via the flood inlet or the seal gas connection 225.
- Tests have shown that at a ratio of around 10:1 (standard cubic centimetres of process gas per minute: standard cubic centimetres of carrier gas per minute), the previously described backflow problem can be reliably reduced and the pump's suction capacity can thus be increased without this being at the expense of the pump's power consumption.
- the ratio of the amount of entraining gas introduced into the pump mechanism measured in standard cubic centimeters per minute (sccm) to the amount of process gas conveyed measured in standard cubic centimeters per minute (sccm) is 1:X, where 5 ⁇ X ⁇ 15, where the ratio of the amount of entraining gas introduced into the pump mechanism to the amount of process gas conveyed is constant during the conveying of process gas.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Non-Positive Displacement Air Blowers (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 zum Betreiben einer Molekularvakuumpumpe zur Erzielung eines verbesserten Sauqvermöqens, wie der Art nach im Wesentlichen aus der
Molekularvakuumpumpen arbeiten im Hoch- sowie im Ultrahochvakuumbereich, wobei der Druck im Hochvakuumbereich zwischen 10-3 und10-7 hPa liegt und im Ultrahochvakuumbereich geringer als und10-7 hPa ist.Molecular vacuum pumps operate in the high and ultra-high vacuum range, with the pressure in the high vacuum range being between 10 -3 and 10 -7 hPa and in the ultra-high vacuum range being less than and 10 -7 hPa.
Bei Molekularvakuumpumpen, wie beispielsweise Turbomolekularpumpen, tendiert dabei das vom Pumpeneinlass zum Pumpenauslass zu pumpende Prozessgas aufgrund der Tatsache, dass der Druck am Pumpeneinlass geringer ist als der Druck am Pumpenauslass, dazu, vom Pumpenauslass zum Pumpeneinlass zurückzuströmen. Diese Rückströmungstendenz ist dabei umso größer, je höher der Pumpenvordruck, also der Druck am Pumpenauslass der Vakuumpumpe ist. Dementsprechend ist das Saugvermögen einer Turbomolekularpumpe aufgrund der beschriebenen Rückströmungstendenz im Bereich hoher Vordrücke geringer als das Saugvermögen der Turbomolekularpumpe bei geringeren Vordrücken.In molecular vacuum pumps, such as turbomolecular pumps, the process gas to be pumped from the pump inlet to the pump outlet tends to flow back from the pump outlet to the pump inlet due to the fact that the pressure at the pump inlet is lower than the pressure at the pump outlet. This tendency for backflow is greater the higher the pump pre-pressure, i.e. the pressure at the pump outlet of the vacuum pump. Accordingly, due to the tendency for backflow described, the pumping speed of a turbomolecular pump is lower in the range of high pre-pressures than the pumping speed of the turbomolecular pump at lower pre-pressures.
Die beschriebene Rückströmungsproblematik stellt sich insbesondere bei zu pumpenden Prozessgasen ein, die eine verhältnismäßig geringe molare Masse aufweisen. Dies ist darauf zurückzuführen, dass sich schwerere Prozessgase besser fördern lassen, als leichtere Prozessgase. Bei verhältnismäßig leichten Prozessgasen wie beispielsweise Wasserstoff oder Helium stellt sich somit bei gleichem Vordruck und ansonsten gleichbleibenden Randbedingungen eine geringere Druckdifferenz zwischen dem Pumpeneinlass und dem Pumpenauslass bzw. ein geringeres Druckverhältnis ein als bei schwereren Prozessgasen, was zur Folge hat, dass die Rückströmungsproblematik bei Prozessgasen mit geringerer molarer Masse höher ist als bei Prozessgasen mit größerer molarer Masse.The described backflow problem occurs particularly when pumping process gases that have a relatively low molar mass. This is due to the fact that heavier process gases are easier to pumped than lighter process gases. With relatively light process gases such as hydrogen or helium, a smaller pressure difference between the pump inlet and the pump outlet or a smaller pressure ratio is therefore achieved at the same pre-pressure and other boundary conditions than with heavier process gases, which means that the backflow problem is greater with process gases with a lower molar mass than with process gases with a higher molar mass.
Der Erfindung liegt daher die Aufgabe zugrunde, bei Molekularvakuumpumpen wie beispielsweise Turbomolekularvakuumpumpen für eine Reduzierung der beschriebenen Rückströmproblematik und somit für ein verbessertes Saugvermögen zu sorgen.The invention is therefore based on the object of reducing the described backflow problem in molecular vacuum pumps such as turbomolecular vacuum pumps and thus ensuring an improved suction capacity.
Gemäß der vorliegenden Erfindung wird die derselben zugrundeliegende Aufgabe mit einem Verfahren zum Betreiben einer Molekularvakuumpumpe, insbesondere einer Turbomolekularvakuumpumpe, nach Anspruch 1 gelöst.According to the present invention, the object underlying the same is achieved with a method for operating a molecular vacuum pump, in particular a turbomolecular vacuum pump, according to claim 1.
Zwar kann die Rückströmungstendenz des Prozessgases umso mehr reduziert werden, je mehr Schleppgas eingeleitet wird; mit zunehmender Schleppgasmenge nimmt jedoch die Leistungsaufnahme der Pumpe zu. Zu geringe Schleppgasmengen erbringen hingegen nicht den gewünschten Effekt hinsichtlich der Reduzierung der Rückströmungstendenz des Prozessgases. Es wurden daher Versuche durchgeführt, um das optimale Verhältnis zwischen Prozess- und Schleppgasmenge zu ermitteln. Diese Versuche haben gezeigt, dass es sich als vorteilhaft erweist, wenn sich die in den Pumpmechanismus eingeleitete Menge des Schleppgases, die in Standardkubikzentimeter pro Minute (sccm) gemessen wird, zur Menge des geförderten Prozessgases - ebenfalls gemessen in Standardkubikzentimetern pro Minute - verhält wie 1 : X, wobei gilt: 5 ≤ X ≤ 15, insbesondere 7 ≤ X ≤ 13, vorzugsweise 9 ≤ X ≤ 11 und insbesondere bevorzugt X im Wesentlichen gleich oder gleich 10.The tendency of the process gas to flow back can be reduced the more the more carrier gas is introduced; however, the power consumption of the pump increases as the amount of carrier gas increases. Too small carrier gas quantities, on the other hand, do not have the desired effect in terms of reducing the tendency of the process gas to flow back. Tests were therefore carried out to determine the optimum ratio between the amount of process gas and the amount of carrier gas. These tests have shown that it is advantageous if the amount of carrier gas introduced into the pump mechanism, which is measured in standard cubic centimeters per minute (sccm), is related to the amount of process gas conveyed - also measured in standard cubic centimeters per minute - as 1 : X, where: 5 ≤ X ≤ 15, in particular 7 ≤ X ≤ 13, preferably 9 ≤ X ≤ 11 and particularly preferably X is substantially equal to or equal to 10.
Sofern hier von einem normalen Pumpenbetrieb die Rede ist, so kann es sich hierbei um einen Betriebszustand handeln, währenddessen die Molekularvakuumpumpe kontinuierlich mit zumindest 75% ihrer maximal zulässigen Leistung oder mit zumindest 75% ihrer maximal zulässigen Drehzahl betrieben wird. Vorzugsweise kann es dabei vorgesehen sein, dass das Schleppgas kontinuierlich während zumindest 50% dieses Zeitfensters in den Pumpmechanismus eingeleitet wird, also während des Zeitfensters, währenddessen die Molekularvakuumpumpe kontinuierlich mit zumindest 75% ihrer maximal zulässigen Leistung oder mit zumindest 75% ihrer maximal zulässigen Drehzahl betrieben wird.If normal pump operation is mentioned here, this can be an operating state during which the molecular vacuum pump is continuously operated with at least 75% of its maximum permissible power or at least 75% of its maximum permissible speed. Preferably, it can be provided that the carrier gas is continuously introduced into the pump mechanism during at least 50% of this time window, i.e. during the time window during which the molecular vacuum pump is continuously operated with at least 75% of its maximum permissible power or at least 75% of its maximum permissible speed.
Vorzugsweise kann das Schleppgas kontinuierlich während zumindest 60% der Zeit dieses Zeitfensters in den Pumpmechanismus eingeleitet werden, insbesondere während zumindest 70% der Zeit dieses Zeitfensters und besonders bevorzugt während zumindest 80% der Zeit dieses Zeitfensters.Preferably, the carrier gas can be continuously introduced into the pumping mechanism during at least 60% of the time of this time window, in particular during at least 70% of the time of this time window and particularly preferably during at least 80% of the time of this time window.
Anders als beim Fluten einer Turbomolekularvakuumpumpe über einen Fluteinlass wird also das Schleppgas nicht nur temporär während eines verhältnismäßig kurzen Zeitraums in den Pumpmechanismus eingeleitet; vielmehr wird erfindungsgemäß das Schleppgas während der überwiegenden Zeit, während der mittels der Pumpe Prozessgas gefördert wird, Schleppgas in den Pumpmechanismus eingeleitet, um so die Rückströmungstendenz des Prozessgases zugunsten einer Verbesserung des Saugvermögens der Pumpe zu reduzieren.Unlike when flooding a turbomolecular vacuum pump via a flood inlet, the entraining gas is not only introduced into the pump mechanism temporarily for a relatively short period of time; rather, according to the invention, the entraining gas is introduced into the pump mechanism for the majority of the time during which process gas is conveyed by means of the pump, in order to reduce the tendency of the process gas to flow back in favor of improving the pumping capacity of the pump.
Insbesondere kann es dabei vorgesehen sein, dass das Schleppgas kontinuierlich über einen Zeitraum von zumindest einer Stunde während des Förderns von Prozessgas in den Pumpmechanismus eingeleitet wird, insbesondere über einen Zeitraum von zumindest 10 Stunden und vorzugsweise über einen Zeitraum von mehr als 24 Stunden.In particular, it can be provided that the carrier gas is continuously introduced into the pump mechanism over a period of at least one hour during the conveyance of process gas, in particular over a period of at least 10 hours and preferably over a period of more than 24 hours.
Um die Impulsübertragung von den Schleppgasmolekülen auf die Prozessgasmoleküle zu optimieren, kann es sich entsprechend den voranstehenden Ausführungen als vorteilhaft erweisen, als Schleppgas ein Gas zu verwenden, das eine größere molare Masse als das Prozessgas aufweist. Dementsprechend kann es sich insbesondere als vorteilhaft erweisen, als Schleppgas beispielsweise Stickstoff und/oder Argon zu verwenden, und zwar insbesondere dann, wenn es sich bei dem Prozessgas um ein verhältnismäßig leichtes Gas, wie beispielsweise Wasserstoff oder Helium handelt.In order to optimize the momentum transfer from the carrier gas molecules to the process gas molecules, it may prove advantageous, as stated above, to use a gas as the carrier gas that has a larger molar mass than the process gas. Accordingly, it may prove particularly advantageous to use nitrogen and/or argon, for example, as the carrier gas, particularly when the process gas is a relatively light gas, such as hydrogen or helium.
Das Gehäuse der Pumpe weist einen Schleppgasanschluss auf, durch den während des Betriebs der Molekularvakuumpumpe ein Gas in den Pumpmechanismus eingeleitet werden kann, wobei es vorgesehen ist, dass dieser Schleppgasanschluss stromaufwärts einer Pumpstufe M in den Pumpmechanismus mündet, wobei gilt
Die am nächsten am Pumpeneinlass befindliche Pumpstufe wird dabei als die erste und die am nächsten am Pumpenauslass befindliche Pumpstufe als die N-te Pumpstufe bezeichnet, wobei die einzelnen Pumpstufen von der ersten bis zur N-ten in Richtung des Pumpenauslasses fortlaufend mit ganzen Zahlen durchnummeriert sind.The pump stage closest to the pump inlet is referred to as the first pump stage and the pump stage closest to the pump outlet is referred to as the Nth pump stage, whereby the individual pump stages are numbered consecutively with whole numbers from the first to the Nth in the direction of the pump outlet.
Sofern hier zur Definition der Position des Schleppgasanschlusses die Aufrundungsfunktion unter Verwendung oberer Gaußklammern verwendet wird, so ist diese Aufrundungsfunktion so definiert, dass für eine reelle Zahl x gilt:
Indem während des Betriebs einer Turbomolekularpumpe durch den Schleppgasanschluss ein vom Prozessgas verschiedenes Gas in den Pumpmechanismus der Turbomolekularpumpe eingeleitet wird, das nachfolgend auch als Schleppgas bezeichnet wird, wird die Rückströmungstendenz des Prozessgases vom Pumpenauslass zum Pumpeneinlass reduziert, da die Moleküle des Prozessgases von den Molekülen des Schleppgases in Richtung des Pumpenauslasses mitgerissen bzw. mitgeschleppt werden, daher der Begriff "Schleppgas". Die Moleküle des Schleppgases übertragen dabei ihren Impuls auf die Moleküle des Prozessgases, so dass die Prozessgasmoleküle von den Schleppgasmolekülen in Richtung des Pumpenauslasses mitgerissen werden. Die Impulsübertragung von dem Schleppgas auf das Prozessgas ist dabei umso höher, je größer das molekulare Gewicht des Schleppgases ist. In jedem Falle sollte jedoch als Schleppgas ein Gas verwendet werden, das eine größere molare Masse als das Prozessgas aufweist, weshalb beispielsweise im Falle von Helium oder Wasserstoff als Prozessgas Stickstoff und/oder Argon als Schleppgas zum Einsatz kommen können.By introducing a gas other than the process gas into the pump mechanism of the turbomolecular pump through the carrier gas connection during operation, which is also referred to below as carrier gas, the tendency of the process gas to flow back from the pump outlet to the pump inlet is reduced, since the molecules of the process gas are entrained or dragged along by the molecules of the carrier gas in the direction of the pump outlet, hence the term "carrier gas". The molecules of the carrier gas transfer their momentum to the molecules of the process gas, so that the process gas molecules are dragged along by the carrier gas molecules in the direction of the pump outlet. The greater the molecular weight of the carrier gas, the greater the momentum transfer from the carrier gas to the process gas. In any case, however, a gas with a higher molar mass than the process gas should be used as the carrier gas, which is why, for example, in the case of helium or hydrogen as the process gas, nitrogen and/or argon can be used as the carrier gas.
Dadurch, dass die Rückströmungstendenz des Prozessgases verhindert wird, reduziert sich bei gleichem Vordruck der Druck am Pumpeneinlass, was eine Erhöhung des Saugvermögens der Pumpe bedeutet. Das effektive hochvakuumseitige Saugvermögen der Turbomolekularpumpe wird somit durch die Einleitung eines Schleppgases in den Pumpmechanismus erhöht, da durch die Einleitung eines Schleppgases in den Pumpmechanismus die Rückströmungstendenz des Prozessgases verringert wird. Dieser Effekt macht sich dabei umso deutlicher bemerkbar, je näher sich der Schleppgasanschluss am Pumpeneinlass befindet, da in diesem Falle mehr Zeit zur Verfügung steht, während der die Schleppgasmoleküle ihren Impuls auf die Prozessgasmoleküle übertragen können. Andererseits sollte jedoch der Schleppgasanschluss auch nicht zu nahe am Pumpeneinlass gelegen sein, da in diesem Falle die Gefahr besteht, dass das Schleppgas aufgrund des am Pumpeneinlass befindlichen Vakuums in Richtung des Pumpeneinlasses zurückströmt. Dementsprechend sollte der Schleppgasanschluss ungeachtet der Anzahl der Pumpstufen stets stromabwärts der ersten, vorzugsweise stromabwärts der zweiten Pumpstufe gelegen sein, um ein Rückströmen des Schleppgases in Richtung des Pumpeneinlasses zu verhindern.By preventing the tendency of the process gas to flow back, the pressure at the pump inlet is reduced at the same pre-pressure, which results in an increase of the pumping speed. The effective high-vacuum side pumping speed of the turbomolecular pump is thus increased by introducing a carrier gas into the pump mechanism, since introducing a carrier gas into the pump mechanism reduces the tendency of the process gas to flow back. This effect is more noticeable the closer the carrier gas connection is to the pump inlet, since in this case more time is available during which the carrier gas molecules can transfer their momentum to the process gas molecules. On the other hand, however, the carrier gas connection should not be located too close to the pump inlet, since in this case there is a risk that the carrier gas will flow back towards the pump inlet due to the vacuum at the pump inlet. Accordingly, regardless of the number of pump stages, the carrier gas connection should always be located downstream of the first, preferably downstream of the second, pump stage in order to prevent the carrier gas from flowing back towards the pump inlet.
Im Falle einer Molekularvakuumpumpe, insbesondere einer Turbomolekularvakuumpumpe, mit vier oder mehr Pumpstufen gilt für die Beziehung zwischen M und N vorzugsweise
Besonders vorteilhaft hat es sich bei Molekularvakuumpumpen, insbesondere bei Turbomolekularpumpen, mit sechs oder mehr Pumpstufen als vorteilhaft erwiesen, die Beziehung zwischen M und N so zu wählen, dass gilt:
Nachfolgend wird die Erfindung beispielhaft anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen, jeweils schematisch:
- Fig. 1
- eine perspektivische Ansicht einer Turbomolekularpumpe,
- Fig. 2
- eine Ansicht der Unterseite der Turbomolekularpumpe von
Fig. 1 , - Fig. 3
- einen Querschnitt der Turbomolekularpumpe längs der in
Fig. 2 gezeigten Schnittlinie A-A, - Fig. 4
- eine Querschnittsansicht der Turbomolekularpumpe längs der in
Fig. 2 gezeigten Schnittlinie B-B, - Fig. 5
- eine Querschnittsansicht der Turbomolekularpumpe längs der in
Fig. 2 gezeigten Schnittlinie C-C, - Fig. 6
- eine Querschnittsansicht einer Turbomolekularpumpe, und
- Fig. 7
- ein Diagramm zur Erläuterung des erfindungsgemäßen Schleppgaseffekts.
- Fig.1
- a perspective view of a turbomolecular pump,
- Fig.2
- a view of the bottom of the turbomolecular pump from
Fig.1 , - Fig.3
- a cross section of the turbomolecular pump along the
Fig.2 shown section line AA, - Fig.4
- a cross-sectional view of the turbomolecular pump along the
Fig.2 shown cutting line BB, - Fig.5
- a cross-sectional view of the turbomolecular pump along the
Fig.2 shown section line CC, - Fig.6
- a cross-sectional view of a turbomolecular pump, and
- Fig.7
- a diagram to explain the entraining gas effect according to the invention.
Die in
Der Einlassflansch 113 bildet bei der Ausrichtung der Vakuumpumpe gemäß
Es existieren auch Turbomolekularpumpen, die kein derartiges angebrachtes Elektronikgehäuse aufweisen, sondern an eine externe Antriebselektronik angeschlossen werden.There are also turbomolecular pumps that do not have such an attached electronics housing, but are connected to external drive electronics.
Am Gehäuse 119 der Turbomolekularpumpe 111 ist ein Fluteinlass 133, insbesondere in Form eines Flutventils, vorgesehen, über den die Vakuumpumpe 111 geflutet werden kann. Im Bereich des Unterteils 121 ist ferner noch ein Sperrgasanschluss 135, der auch als Spülgasanschluss bezeichnet wird, angeordnet, über welchen Spülgas zum Schutz des Elektromotors 125 (siehe z.B.
Die untere Seite 141 der Vakuumpumpe kann als Standfläche dienen, sodass die Vakuumpumpe 111 auf der Unterseite 141 stehend betrieben werden kann. Die Vakuumpumpe 111 kann aber auch über den Einlassflansch 113 an einem Rezipienten befestigt werden und somit gewissermaßen hängend betrieben werden. Außerdem kann die Vakuumpumpe 111 so gestaltet sein, dass sie auch in Betrieb genommen werden kann, wenn sie auf andere Weise ausgerichtet ist als in
Andere existierende Turbomolekularvakuumpumpen (nicht dargestellt), die insbesondere größer sind als die hier dargestellte Pumpe, können nicht stehend betrieben werden.Other existing turbomolecular vacuum pumps (not shown), which are particularly larger than the pump shown here, cannot be operated in an upright position.
An der Unterseite 141, die in
An der Unterseite 141 sind außerdem Befestigungsbohrungen 147 angeordnet, über welche die Pumpe 111 beispielsweise an einer Auflagefläche befestigt werden kann. Dies ist bei anderen existierenden Turbomolekularvakuumpumpen (nicht dargestellt), die insbesondere größer sind als die hier dargestellte Pumpe, nicht möglich.Mounting
In den
Wie die Schnittdarstellungen der
In dem Gehäuse 119 ist ein Rotor 149 angeordnet, der eine um eine Rotationsachse 151 drehbare Rotorwelle 153 aufweist.A
Die Turbomolekularpumpe 111 umfasst mehrere pumpwirksam miteinander in Serie geschaltete turbomolekulare Pumpstufen mit mehreren an der Rotorwelle 153 befestigten radialen Rotorscheiben 155 und zwischen den Rotorscheiben 155 angeordneten und in dem Gehäuse 119 festgelegten Statorscheiben 157. Dabei bilden eine Rotorscheibe 155 und eine benachbarte Statorscheibe 157 jeweils eine turbomolekulare Pumpstufe. Die Statorscheiben 157 sind durch Abstandsringe 159 in einem gewünschten axialen Abstand zueinander gehalten.The
Die Vakuumpumpe umfasst außerdem in radialer Richtung ineinander angeordnete und pumpwirksam miteinander in Serie geschaltete Holweck-Pumpstufen. Es existieren andere Turbomolekularvakuumpumpen (nicht dargestellt), die keine Holweck-Pumpstufen aufweisen.The vacuum pump also includes Holweck pump stages arranged radially one inside the other and connected in series to pump effectively. There are other turbomolecular vacuum pumps (not shown) that do not have Holweck pumping stages.
Der Rotor der Holweck-Pumpstufen umfasst eine an der Rotorwelle 153 angeordnete Rotornabe 161 und zwei an der Rotornabe 161 befestigte und von dieser getragene zylindermantelförmige Holweck-Rotorhülsen 163, 165, die koaxial zur Rotationsachse 151 orientiert und in radialer Richtung ineinander geschachtelt sind. Ferner sind zwei zylindermantelförmige Holweck-Statorhülsen 167, 169 vorgesehen, die ebenfalls koaxial zu der Rotationsachse 151 orientiert und in radialer Richtung gesehen ineinander geschachtelt sind.The rotor of the Holweck pump stages comprises a
Die pumpaktiven Oberflächen der Holweck-Pumpstufen sind durch die Mantelflächen, also durch die radialen Innen- und/oder Außenflächen, der Holweck-Rotorhülsen 163, 165 und der Holweck-Statorhülsen 167, 169 gebildet. Die radiale Innenfläche der äußeren Holweck-Statorhülse 167 liegt der radialen Außenfläche der äußeren Holweck-Rotorhülse 163 unter Ausbildung eines radialen Holweck-Spalts 171 gegenüber und bildet mit dieser die der Turbomolekularpumpen nachfolgende erste Holweck-Pumpstufe. Die radiale Innenfläche der äußeren Holweck-Rotorhülse 163 steht der radialen Außenfläche der inneren Holweck-Statorhülse 169 unter Ausbildung eines radialen Holweck-Spalts 173 gegenüber und bildet mit dieser eine zweite Holweck-Pumpstufe. Die radiale Innenfläche der inneren Holweck-Statorhülse 169 liegt der radialen Außenfläche der inneren Holweck-Rotorhülse 165 unter Ausbildung eines radialen Holweck-Spalts 175 gegenüber und bildet mit dieser die dritte Holweck-Pumpstufe.The pump-active surfaces of the Holweck pump stages are formed by the lateral surfaces, i.e. by the radial inner and/or outer surfaces, of the
Am unteren Ende der Holweck-Rotorhülse 163 kann ein radial verlaufender Kanal vorgesehen sein, über den der radial außenliegende Holweck-Spalt 171 mit dem mittleren Holweck-Spalt 173 verbunden ist. Außerdem kann am oberen Ende der inneren Holweck-Statorhülse 169 ein radial verlaufender Kanal vorgesehen sein, über den der mittlere Holweck-Spalt 173 mit dem radial innenliegenden Holweck-Spalt 175 verbunden ist. Dadurch werden die ineinander geschachtelten Holweck-Pumpstufen in Serie miteinander geschaltet. Am unteren Ende der radial innenliegenden Holweck-Rotorhülse 165 kann ferner ein Verbindungskanal 179 zum Auslass 117 vorgesehen sein.A radially extending channel can be provided at the lower end of the
Die vorstehend genannten pumpaktiven Oberflächen der Holweck-Statorhülsen 167, 169 weisen jeweils mehrere spiralförmig um die Rotationsachse 151 herum in axialer Richtung verlaufende Holweck-Nuten auf, während die gegenüberliegenden Mantelflächen der Holweck-Rotorhülsen 163, 165 glatt ausgebildet sind und das Gas zum Betrieb der Vakuumpumpe 111 in den Holweck-Nuten vorantreiben.The above-mentioned pump-active surfaces of the
Zur drehbaren Lagerung der Rotorwelle 153 sind ein Wälzlager 181 im Bereich des Pumpenauslasses 117 und ein Permanentmagnetlager 183 im Bereich des Pumpeneinlasses 115 vorgesehen.For the rotatable mounting of the
Im Bereich des Wälzlagers 181 ist an der Rotorwelle 153 eine konische Spritzmutter 185 mit einem zu dem Wälzlager 181 hin zunehmenden Außendurchmesser vorgesehen. Die Spritzmutter 185 steht mit mindestens einem Abstreifer eines Betriebsmittelspeichers in gleitendem Kontakt. Bei anderen existierenden Turbomolekularvakuumpumpen (nicht dargestellt) kann anstelle einer Spritzmutter eine Spritzschraube vorgesehen sein. Da somit unterschiedliche Ausführungen möglich sind, wird in diesem Zusammenhang auch der Begriff "Spritzspitze" verwendet.In the area of the
Der Betriebsmittelspeicher umfasst mehrere aufeinander gestapelte saugfähige Scheiben 187, die mit einem Betriebsmittel für das Wälzlager 181, z.B. mit einem Schmiermittel, getränkt sind.The operating fluid storage comprises several
Im Betrieb der Vakuumpumpe 111 wird das Betriebsmittel durch kapillare Wirkung von dem Betriebsmittelspeicher über den Abstreifer auf die rotierende Spritzmutter 185 übertragen und in Folge der Zentrifugalkraft entlang der Spritzmutter 185 in Richtung des größer werdenden Außendurchmessers der Spritzmutter 185 zu dem Wälzlager 181 hin gefördert, wo es z.B. eine schmierende Funktion erfüllt. Das Wälzlager 181 und der Betriebsmittelspeicher sind durch einen wannenförmigen Einsatz 189 und den Lagerdeckel 145 in der Vakuumpumpe eingefasst.During operation of the
Das Permanentmagnetlager 183 umfasst eine rotorseitige Lagerhälfte 191 und eine statorseitige Lagerhälfte 193, welche jeweils einen Ringstapel aus mehreren in axialer Richtung aufeinander gestapelten permanentmagnetischen Ringen 195, 197 umfassen. Die Ringmagnete 195, 197 liegen einander unter Ausbildung eines radialen Lagerspalts 199 gegenüber, wobei die rotorseitigen Ringmagnete 195 radial außen und die statorseitigen Ringmagnete 197 radial innen angeordnet sind. Das in dem Lagerspalt 199 vorhandene magnetische Feld ruft magnetische Abstoßungskräfte zwischen den Ringmagneten 195, 197 hervor, welche eine radiale Lagerung der Rotorwelle 153 bewirken. Die rotorseitigen Ringmagnete 195 sind von einem Trägerabschnitt 201 der Rotorwelle 153 getragen, welcher die Ringmagnete 195 radial außenseitig umgibt. Die statorseitigen Ringmagnete 197 sind von einem statorseitigen Trägerabschnitt 203 getragen, welcher sich durch die Ringmagnete 197 hindurch erstreckt und an radialen Streben 205 des Gehäuses 119 aufgehängt ist. Parallel zu der Rotationsachse 151 sind die rotorseitigen Ringmagnete 195 durch ein mit dem Trägerabschnitt 201 gekoppeltes Deckelelement 207 festgelegt. Die statorseitigen Ringmagnete 197 sind parallel zu der Rotationsachse 151 in der einen Richtung durch einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 209 sowie einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 211 festgelegt. Zwischen dem Befestigungsring 211 und den Ringmagneten 197 kann außerdem eine Tellerfeder 213 vorgesehen sein.The
Innerhalb des Magnetlagers ist ein Not- bzw. Fanglager 215 vorgesehen, welches im normalen Betrieb der Vakuumpumpe 111 ohne Berührung leer läuft und erst bei einer übermäßigen radialen Auslenkung des Rotors 149 relativ zu dem Stator in Eingriff gelangt, um einen radialen Anschlag für den Rotor 149 zu bilden, damit eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen verhindert wird. Das Fanglager 215 ist als ungeschmiertes Wälzlager ausgebildet und bildet mit dem Rotor 149 und/oder dem Stator einen radialen Spalt, welcher bewirkt, dass das Fanglager 215 im normalen Pumpbetrieb außer Eingriff ist. Die radiale Auslenkung, bei der das Fanglager 215 in Eingriff gelangt, ist groß genug bemessen, sodass das Fanglager 215 im normalen Betrieb der Vakuumpumpe nicht in Eingriff gelangt, und gleichzeitig klein genug, sodass eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen unter allen Umständen verhindert wird.An emergency or
Die Vakuumpumpe 111 umfasst den Elektromotor 125 zum drehenden Antreiben des Rotors 149. Der Anker des Elektromotors 125 ist durch den Rotor 149 gebildet, dessen Rotorwelle 153 sich durch den Motorstator 217 hindurch erstreckt. Auf den sich durch den Motorstator 217 hindurch erstreckenden Abschnitt der Rotorwelle 153 kann radial außenseitig oder eingebettet eine Permanentmagnetanordnung angeordnet sein. Zwischen dem Motorstator 217 und dem sich durch den Motorstator 217 hindurch erstreckenden Abschnitt des Rotors 149 ist ein Zwischenraum 219 angeordnet, welcher einen radialen Motorspalt umfasst, über den sich der Motorstator 217 und die Permanentmagnetanordnung zur Übertragung des Antriebsmoments magnetisch beeinflussen können.The
Der Motorstator 217 ist in dem Gehäuse innerhalb des für den Elektromotor 125 vorgesehenen Motorraums 137 festgelegt. Über den Sperrgasanschluss 135 kann ein Sperrgas, das auch als Spülgas bezeichnet wird, und bei dem es sich beispielsweise um Luft oder um Stickstoff handeln kann, in den Motorraum 137 gelangen. Über das Sperrgas kann der Elektromotor 125 vor Prozessgas, z.B. vor korrosiv wirkenden Anteilen des Prozessgases, geschützt werden. Der Motorraum 137 kann auch über den Pumpenauslass 117 evakuiert werden, d.h. im Motorraum 137 herrscht zumindest annäherungsweise der von der am Pumpenauslass 117 angeschlossenen Vorvakuumpumpe bewirkte Vakuumdruck.The
Zwischen der Rotornabe 161 und einer den Motorraum 137 begrenzenden Wandung 221 kann außerdem eine sog. und an sich bekannte Labyrinthdichtung 223 vorgesehen sein, insbesondere um eine bessere Abdichtung des Motorraums 217 gegenüber den radial außerhalb liegenden Holweck-Pumpstufen zu erreichen.Furthermore, a so-called
Im Folgenden wird nun unter Bezugnahme auf die
Wie bereits zuvor erwähnt, weist die zuvor beschriebene Turbomolekularpumpe 111 einen Fluteinlass 133 auf, der in die Holweckpumpstufe der Pumpe 111 mündet. Gleichermaßen kann jedoch ein Fluteinlass 133 auch im Bereich der in Serie geschalteten turbomolekularen Pumpstufen vorgesehen sein, wobei sich in diesem Falle der Fluteinlass 133 üblicherweise im stromabwärtigen Bereich des Pumpmechanismus befindet, der durch die in Serie geschalteten turbomolekularen Pumpstufen gebildet wird. Bei einer Turbomolekularpumpe mit beispielsweise zehn turbomolekularen Pumpstufen kann sich der Fluteinlass 133 beispielsweise im Bereich der siebten Pumpstufe befinden. Über solch einen Fluteinlass 133 kann die Pumpe 111 beispielsweise mit Luft geflutet werden, nachdem die Pumpe 111 außer Betrieb genommen wurde bzw. die Stromversorgung des Elektromotors 125 unterbrochen wurde.As already mentioned, the previously described
Die Turbomolekularvakuumpumpe 111 weist zusätzlich oder anstelle des Fluteinlasses 133 einen Schleppgasanschluss auf, der in den
Erfindungsgemäß mündet der Schleppgasanschluss 225 stromaufwärts einer Turbomolekularpumpstufe M in den durch die N Turbomolekularpumpstufen gebildeten Pumpmechanismus, wobei gilt:
Grundsätzlich erweist es sich jedoch als vorteilhaft, den Schleppgasanschluss 225 nahe des stromaufwärtigen Endes des Turbomolekularpumpmechanismus und insbesondere im stromaufwärtigen Drittel des durch die Turbomolekularpumpstufen gebildeten Pumpmechanismus vorzusehen, was sich beispielsweise durch die Beziehung
Im Unterschied zu dem Fluteinlass 133 wird über den Schleppgasanschluss 225 ein Schleppgas nicht etwa erst nach erfolgter Abschaltung der Pumpe in den Pumpmechanismus eingeleitet; vielmehr ist es erfindungsgemäß vorgesehen, dass über den Schleppgasanschluss 225 während des Betriebs der Turbomolekularpumpe 111 und somit während des Förderns von Prozessgas von dem Pumpeneinlass 115 zu dem Pumpenauslass 117 Schleppgas in den Pumpenmechanismus eingeleitet wird. Nochmals anders ausgedrückt, wird also das Schleppgas in den Pumpenmechanismus eingeleitet, während der Elektromotor 125 bestromt wird.In contrast to the
Das Schleppgas wird also über den Schleppgasanschluss 225 während des normalen Pumpbetriebs der Turbomolekularpumpe 111 in den Pumpenmechanismus eingeleitet. Dieser normale Pumpbetrieb kann dabei als ein Zeitfenster definiert werden, währenddessen die Turbomolekularvakuumpumpe 111 kontinuierlich mit zumindest 75% ihrer maximal zulässigen Leistung und/oder mit zumindest 75% ihrer maximal zulässigen Drehzahl betrieben wird. Insbesondere kann es dabei vorgesehen sein, dass während zumindest 50% der Zeit des so definierten Zeitfensters das Schleppgas durch den Schleppgasanschluss 225 in den Pumpmechanismus eingeleitet wird. Beispielsweise kann es dabei vorgesehen sein, dass das Schleppgas kontinuierlich über einen Zeitraum von zumindest einer Stunde während des Förderns von Prozessgas in den Pumpenmechanismus eingeleitet wird, insbesondere über einen Zeitraum von 10 Stunden und vorzugsweise über einen Zeitraum von mehr als 24 Stunden.The carrier gas is thus introduced into the pump mechanism via the carrier gas connection 225 during the normal pumping operation of the
Das über den Schleppgasanschluss 225 eingeleitete Schleppgas reißt bzw. schleppt dabei das vom Pumpeneinlass 115 zum Pumpenauslass 117 geförderte Prozessgas mit sich und verhindert dabei insbesondere, dass Prozessgas vom Pumpenauslass 117 zum Pumpeneinlass 115 zurückströmen kann. Der Druck am Pumpeneinlass sinkt somit in der gewünschten Weise ab, sodass das Saugvermögen der Pumpe in der gewünschten Weise zunimmt.The carrier gas introduced via the carrier gas connection 225 entrains or drags the process gas conveyed from the
Zwar weist die hier unter Bezugnahme auf die
Im Folgenden werden unter Bezugnahme auf die
Die oberste Diagrammlinie zeigt dabei einen Betriebszustand der Pumpe, bei dem weder über den Fluteinlass noch über den Schleppgasanschluss Gase in den Pumpmechanismus eingeleitet wurden. Die mittlere Diagrammlinie bezieht sich hingegen auf einen Betriebszustand, während dessen über den Fluteinlass im Bereich der siebten Turbomolekularpumpstufe während des Betriebs der Pumpe Stickstoff in den Pumpmechanismus eingeleitet wurde. Die unterste Diagrammlinie bezieht sich hingegen auf einen Betriebszustand der Pumpe, während dessen über dem Schleppgasanschluss im Bereich der vierten Turbomolekularpumpstufe Stickstoff in den Pumpmechanismus eingeleitet wurde. Die Pumpe wurde dabei während aller drei Betriebszustände so betrieben, dass 1.000 sccm Wasserstoffgas als Prozessgas vom Pumpeneinlass 115 zum Pumpenauslass 117 gefördert wurden.The top diagram line shows an operating state of the pump in which no gases were introduced into the pump mechanism via the flood inlet or the carrier gas connection. The middle diagram line, on the other hand, refers to an operating state during which nitrogen was introduced into the pump mechanism via the flood inlet in the area of the seventh turbomolecular pump stage while the pump was operating. The bottom diagram line, on the other hand, refers to an operating state of the pump in which nitrogen was introduced into the pump mechanism via the carrier gas connection in the area of the fourth turbomolecular pump stage. The pump was operated during all three operating states in such a way that 1,000 sccm of hydrogen gas were pumped as process gas from the
Wie der mittleren Diagrammlinie entnommen werden kann, stellt sich bereits durch das Einleiten von Stickstoffgas durch den Fluteinlass eine Reduzierung des Drucks am Pumpeneinlass gegenüber dem Betriebszustand ein, bei dem in den Pumpenmechanismus gemäß der obersten Diagrammlinie kein Schleppgas in den Pumpenmechanismus eingeleitet wird.As can be seen from the middle line of the diagram, the introduction of nitrogen gas through the flood inlet already results in a reduction in the pressure at the pump inlet compared to the operating condition in which no carrier gas is introduced into the pump mechanism according to the top line of the diagram.
Zwar wird somit bereits durch die Einleitung von Stickstoff über den Fluteinlass das Saugvermögen der Pumpe verbessert; wie jedoch der untersten Diagrammlinie entnommen werden kann, sinkt der Pumpeneinlassdruck nochmals weiter ab, wenn Stickstoff als Schleppgas nicht über den Fluteinlass im Bereich der siebten Turbomolekularpumpstufe, sondern über den Schleppgasanschluss im Bereich der vierten Turbomolekularpumpe in den Pumpenmechanismus eingeleitet wird.Although the pump's suction capacity is improved by introducing nitrogen via the flood inlet, as can be seen from the bottom line of the diagram, the pump inlet pressure drops even further if nitrogen is introduced into the pump mechanism as a carrier gas not via the flood inlet in the area of the seventh turbomolecular pump stage, but via the carrier gas connection in the area of the fourth turbomolecular pump.
Bei den zuvor erläuterten Versuchsergebnissen wurde die Pumpe so betrieben, dass diese kontinuierlich 1.000 sccm H2 fördert, wobei über den Fluteinlass bzw. über den Sperrgasanschluss 225 100 sccm Stickstoff in den Pumpenmechanismus eingeleitet wurden. So hat sich nämlich durch Versuche herausgestellt, dass bei einem Verhältnis von etwa 10:1 (Standardkubikzentimeter Prozessgas pro Minute: Standardkubikzentimeter Schleppgas pro Minute) zuverlässig die zuvor beschriebene Rückströmproblematik reduzieren und damit das Saugvermögen der Pumpe steigern lässt, ohne dass dies übermäßig zu Lasten der Leistungsaufnahme der Pumpe geht. Erfindungsgemäß verhält sich die in den Pumpmechanismus eingeleitete Menge des Schleppgases gemessen in Standardkubikzentimeter pro Minute (sccm) zur Menge des geförderten Prozessgases gemessen in Standardkubikzentimeter pro Minute (sccm) wie 1 : X, wobei gilt 5 ≤ X ≤ 15, wobei das Verhältnis von der in den Pumpmechanismus eingeleiteten Menge des Schleppgases zur Menge des geförderten Prozessgases während des Förderns von Prozessgases konstant ist.In the test results explained above, the pump was operated in such a way that it continuously delivers 1,000 sccm of H 2 , with 100 sccm of nitrogen being introduced into the pump mechanism via the flood inlet or the seal gas connection 225. Tests have shown that at a ratio of around 10:1 (standard cubic centimetres of process gas per minute: standard cubic centimetres of carrier gas per minute), the previously described backflow problem can be reliably reduced and the pump's suction capacity can thus be increased without this being at the expense of the pump's power consumption. According to the invention, the ratio of the amount of entraining gas introduced into the pump mechanism measured in standard cubic centimeters per minute (sccm) to the amount of process gas conveyed measured in standard cubic centimeters per minute (sccm) is 1:X, where 5 ≤ X ≤ 15, where the ratio of the amount of entraining gas introduced into the pump mechanism to the amount of process gas conveyed is constant during the conveying of process gas.
- 111111
- TurbomolekularpumpeTurbomolecular pump
- 113113
- EinlassflanschInlet flange
- 115115
- PumpeneinlassPump inlet
- 117117
- PumpenauslassPump outlet
- 119119
- GehäuseHousing
- 121121
- UnterteilBottom part
- 123123
- ElektronikgehäuseElectronic housing
- 125125
- ElektromotorElectric motor
- 127127
- ZubehöranschlussAccessory connection
- 129129
- DatenschnittstelleData interface
- 131131
- StromversorgungsanschlussPower supply connection
- 133133
- FluteinlassFlood inlet
- 135135
- SperrgasanschlussSealing gas connection
- 137137
- MotorraumEngine compartment
- 139139
- KühlmittelanschlussCoolant connection
- 141141
- Unterseitebottom
- 143143
- Schraubescrew
- 145145
- LagerdeckelBearing cap
- 147147
- BefestigungsbohrungMounting hole
- 148148
- KühlmittelleitungCoolant line
- 149149
- Rotorrotor
- 151151
- RotationsachseRotation axis
- 153153
- RotorwelleRotor shaft
- 155155
- RotorscheibeRotor disc
- 157157
- StatorscheibeStator disc
- 159159
- AbstandsringSpacer ring
- 161161
- RotornabeRotor hub
- 163163
- Holweck-RotorhülseHolweck rotor sleeve
- 165165
- Holweck-RotorhülseHolweck rotor sleeve
- 167167
- Holweck-StatorhülseHolweck stator sleeve
- 169169
- Holweck-StatorhülseHolweck stator sleeve
- 171171
- Holweck-SpaltHolweck gap
- 173173
- Holweck-SpaltHolweck gap
- 175175
- Holweck-SpaltHolweck gap
- 179179
- VerbindungskanalConnecting channel
- 181181
- Wälzlagerroller bearing
- 183183
- PermanentmagnetlagerPermanent magnet bearings
- 185185
- SpritzmutterInjection nut
- 187187
- Scheibedisc
- 189189
- EinsatzMission
- 191191
- rotorseitige Lagerhälfterotor-side bearing half
- 193193
- statorseitige Lagerhälftestator side bearing half
- 195195
- RingmagnetRing magnet
- 197197
- RingmagnetRing magnet
- 199199
- LagerspaltBearing gap
- 201201
- TrägerabschnittCarrier section
- 203203
- TrägerabschnittCarrier section
- 205205
- radiale Streberadial strut
- 207207
- DeckelelementCover element
- 209209
- StützringSupport ring
- 211211
- BefestigungsringMounting ring
- 213213
- TellerfederDisc spring
- 215215
- Not- bzw. FanglagerEmergency or rescue camp
- 217217
- MotorstatorMotor stator
- 219219
- ZwischenraumSpace
- 221221
- WandungWall
- 223223
- LabyrinthdichtungLabyrinth seal
- 225225
- SchleppgasanschlussTowing gas connection
- 227227
- GehäuseöffnungHousing opening
Claims (10)
- A method of operating a molecular vacuum pump (111) comprising a housing (119) for receiving a pump mechanism, which is driven by a rotor shaft (153) by means of an electric motor, for conveying a process gas from a pump inlet (115) to a pump outlet (117), wherein the pump mechanism comprises a plurality of N pump stages connected to one another in series in a pump-active manner between the pump inlet (115) and the pump outlet (117), wherein the pump stage closest to the pump inlet (115) is the first pump stage and the pump stage closest to the pump outlet (117) is the Nth pump stage, wherein the housing (119) has a carrier gas connection (225) which opens into the pump mechanism upstream of a pump stage M, wherewherein a quantity of a carrier gas is introduced into the pump mechanism through the carrier gas connection (225) during the conveying of process gas from the pump inlet (115) to the pump outlet (117),characterized in thatthe quantity of the carrier gas introduced into the pump mechanism, measured in standard cubic centimeters per minute (sccm), relates to the quantity of the conveyed process gas, measured in standard cubic centimeters per minute (sccm), as 1 : X, where 5 ≤ X ≤ 15 applies, wherein the ratio of the quantity of the carrier gas introduced into the pump mechanism to the quantity of the conveyed process gas is constant during the conveying of process gas.
- A method according to claim 1,
wherein the carrier gas is introduced into the pump mechanism while the electric motor is energized. - A method according to claim 1 and/or 2,
wherein the quantity of the carrier gas introduced into the pump mechanism, measured in standard cubic centimeters per minute (sccm), relates to the quantity of the conveyed process gas, measured in standard cubic centimeters per minute (sccm), as 1 : X, where 9 ≤ X ≤ 11 applies, and in particular X is substantially equal to 10 or equal to 10. - A method according to any one of the claims 1 to 3, wherein the method is carried out using a molecular vacuum pump (111) which has a housing (119) for receiving a pump mechanism, which is driven by a rotor shaft (153), for conveying a process gas from a pump inlet (115) to a pump outlet (117), wherein the pump mechanism comprises a plurality of N pump stages connected to one another in series in a pump-active manner between the pump inlet (115) and the pump outlet (117), wherein the pump stage closest to the pump inlet (115) is the first pump stage and the pump stage closest to the pump outlet (117) is the Nth pump stage, wherein the housing (119) has a carrier gas connection (225) which opens into the pump mechanism upstream of a pump stage M, wherein
- A method according to any one of the claims 4 to 6,
wherein the molecular vacuum pump (111) is a turbomolecular vacuum pump (111) which comprises a plurality of N turbomolecular pump stages which are connected to one another in series in a pump-active manner and each of which comprise a rotor disk (155) fastened to the rotor shaft (153) and a stationary stator disk (157). - A method according to any one of the claims 1 to 7, wherein a gas which has a greater molar mass than the process gas is used as the carrier gas, wherein it is in particular provided that nitrogen and/or argon is used as the carrier gas.
- A method according to any one of the claims 1 to 8, wherein the carrier gas is continuously introduced over a period of at least one hour during the conveying of process gas, in particular over a period of at least 10 hours, preferably over a period of more than 24 hours.
- A method according to any one of the claims 1 to 9, wherein the carrier gas is continuously introduced during at least 50% of the time of a time window during which the molecular vacuum pump (111) is continuously operated with at least 75% of its maximum permissible power or with at least 75% of its maximum permissible rotational speed.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22193499.5A EP4108931B1 (en) | 2022-09-01 | 2022-09-01 | Method for operating a molecular vacuum pump to achieve improved suction capacity |
JP2023072957A JP7629956B2 (en) | 2022-09-01 | 2023-04-27 | Molecular vacuum pump with improved pumping speed and method of operating a molecular vacuum pump to achieve improved pumping speed - Patents.com |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22193499.5A EP4108931B1 (en) | 2022-09-01 | 2022-09-01 | Method for operating a molecular vacuum pump to achieve improved suction capacity |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4108931A1 EP4108931A1 (en) | 2022-12-28 |
EP4108931B1 true EP4108931B1 (en) | 2024-06-26 |
Family
ID=83151393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22193499.5A Active EP4108931B1 (en) | 2022-09-01 | 2022-09-01 | Method for operating a molecular vacuum pump to achieve improved suction capacity |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4108931B1 (en) |
JP (1) | JP7629956B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2507430C2 (en) * | 1975-02-21 | 1985-04-04 | Franz-Josef Dipl.-Phys. Dr. 5300 Bonn Schittko | Molecular vacuum pump with high compression ratio for light molecules |
JPH01277698A (en) * | 1988-04-30 | 1989-11-08 | Nippon Ferrofluidics Kk | Combined vacuum pump |
JP2808470B2 (en) * | 1990-02-06 | 1998-10-08 | 日本原子力研究所 | Vacuum pump |
JP3038432B2 (en) * | 1998-07-21 | 2000-05-08 | セイコー精機株式会社 | Vacuum pump and vacuum device |
EP3438460B1 (en) * | 2017-08-04 | 2024-03-20 | Pfeiffer Vacuum Gmbh | Vacuum pump |
-
2022
- 2022-09-01 EP EP22193499.5A patent/EP4108931B1/en active Active
-
2023
- 2023-04-27 JP JP2023072957A patent/JP7629956B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP4108931A1 (en) | 2022-12-28 |
JP7629956B2 (en) | 2025-02-14 |
JP2024035054A (en) | 2024-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2826999B1 (en) | Vacuum pump | |
EP2829734B1 (en) | Vacuum pump | |
EP2295812B1 (en) | Vacuum pump | |
EP3851680B1 (en) | Molecular vacuum pump and method for influencing the suction performance of same | |
EP3112687B1 (en) | Detection of the circulation of a flow of auxiliary gas that is supplied to a vacuum pump | |
EP4108931B1 (en) | Method for operating a molecular vacuum pump to achieve improved suction capacity | |
EP4194700B1 (en) | Vacuum pump with a holweck pump stage with variable holweck geometry | |
DE102020116770B4 (en) | VACUUM PUMP WITH INTEGRATED MINIATURE VALVE | |
EP2990656A2 (en) | Vacuum pump | |
DE102015113821B4 (en) | Vacuum pump | |
EP3196471B1 (en) | Vacuum pump | |
EP3845764B1 (en) | Vacuum pump and vacuum pump system | |
EP3650702B1 (en) | Use of a synthetic oil in a vacuum pump and vacuum pump | |
EP3734078B1 (en) | Turbomolecular pump and method of manufacturing a stator disc for such a pump | |
EP3135932A1 (en) | Vacuum pump and permanent magnet bearing | |
EP4379216A1 (en) | Turbomolecular vacuum pump with compact design | |
EP3267040B1 (en) | Turbomolecular pump | |
EP3462036B1 (en) | Turbomolecular vacuum pump | |
EP3926175B1 (en) | Vacuum pump with roller bearing | |
EP3628883B1 (en) | Vacuum pump | |
EP4390145A2 (en) | Vacuum pump | |
EP3032106B1 (en) | Vacuum pump | |
EP4293232A1 (en) | Pump | |
EP4155549B1 (en) | Vacuum pump with improved suction capacity of the holweck pump stage | |
EP4459131A2 (en) | Turbomolecular vacuum pump with optimized barrier gas supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230124 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230320 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04D 29/68 20060101ALN20240314BHEP Ipc: F04D 29/58 20060101ALN20240314BHEP Ipc: F04D 27/02 20060101ALI20240314BHEP Ipc: F04D 19/04 20060101AFI20240314BHEP |
|
INTG | Intention to grant announced |
Effective date: 20240405 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502022001119 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240927 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240826 Year of fee payment: 3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240926 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240927 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241028 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241127 Year of fee payment: 3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240930 Year of fee payment: 3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241026 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240626 |