[go: up one dir, main page]

EP3267040B1 - Turbomolecular pump - Google Patents

Turbomolecular pump Download PDF

Info

Publication number
EP3267040B1
EP3267040B1 EP16177824.6A EP16177824A EP3267040B1 EP 3267040 B1 EP3267040 B1 EP 3267040B1 EP 16177824 A EP16177824 A EP 16177824A EP 3267040 B1 EP3267040 B1 EP 3267040B1
Authority
EP
European Patent Office
Prior art keywords
pump
stage
turbomolecular
backing
pump stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16177824.6A
Other languages
German (de)
French (fr)
Other versions
EP3267040A1 (en
Inventor
Mirko Mekota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP16177824.6A priority Critical patent/EP3267040B1/en
Publication of EP3267040A1 publication Critical patent/EP3267040A1/en
Application granted granted Critical
Publication of EP3267040B1 publication Critical patent/EP3267040B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps

Definitions

  • the present invention relates to a turbomolecular pump with a pump inlet and a pump outlet, which are formed in a common pump housing, and with at least one turbomolecular pump stage, which has an inlet region associated with the pump inlet and an outlet region.
  • Vacuum pumps play an important role in vacuum technology and are used in a wide variety of technical applications for suction of mostly gaseous media and for the evacuation of cavities.
  • turbomolecular pumps also known as turbopumps, are used.
  • Turbomolecular pumps work in the molecular, i.e. non-viscous, range and are suitable for generating a vacuum with a very high level of purity.
  • a turbomolecular pump typically includes a housing that encloses a pump chamber with a rotor shaft. At least one pump structure of the turbomolecular pump is arranged in the pump room, which conveys a gas present in the pump room or in an area to be evacuated from an inlet to an outlet of the turbomolecular pump and thereby pumps it.
  • a drive for the rotor shaft is usually arranged in a storage room that is separate from the pump room.
  • Turbomolecular pumps are torque transfer pumps in which gas molecules entering the pump of a gas to be pumped receive a torque through an impact on the moving rotor blades of the rotor shaft.
  • the Pump usually contains several pump stages of rotor and stator disks arranged in series or one behind the other. Each pump stage generally consists of at least one rotor and stator disk, which are arranged in pairs. If necessary, a pump stage can also consist of only one rotor disk, and this applies in particular to the pump stage located at the downstream end. In this case, the pump ends with a rotor disk.
  • the gas molecules receive a movement component parallel to the axis of the pump due to the position of the rotor and stator disks relative to one another, the axis usually corresponding to the rotor shaft.
  • multiple pump stages increase the pressure of the gas from the inlet to the outlet of the pump.
  • a turbomolecular pump basically only works effectively in pressure ranges in the molecular flow range and does not evacuate or deliver to atmospheric pressure, but is usually supported by a backing pump, which then ejects against a gas pressure of more than 1 mbar.
  • the working pressure range of the turbomolecular pump can be expanded by coupling a molecular pump stage driven by the same rotor shaft, for example a Holweck pump stage or Siegbahn pump stage, to the outlet of the turbomolecular pump within the pump housing. This makes it possible to use backing pumps with lower performance because the outlet pressure of the gas is increased.
  • Backing pumps for example diaphragm pumps and spiral or scroll pumps, are self-sufficient pumps that are arranged separately from the turbomolecular pump in question, the suction side of which is connected to the outlet of the turbomolecular pump via lines.
  • such an arrangement involves a certain amount of effort in terms of an airtight and electrical connection of both pumps. A risk of functional impairment due to leaks and errors in the electrical connection cannot generally be ruled out.
  • the EP 1 213 482 A1 shows a turbomolecular pump according to a related technology.
  • the object of the present invention is to provide a turbomolecular pump which overcomes the disadvantages described above, i.e. a compact, easy-to-integrate turbomolecular pump, the commissioning of which is as simple as possible and therefore has few sources of error, while at the same time the turbomolecular pump can be produced with as little effort as possible and also a should have a long service life.
  • turbomolecular pump with the features of claim 1.
  • the turbomolecular pump according to the invention comprises at least one pre-pump stage effective between the outlet region of the turbomolecular pump stage and the pump outlet, which is designed to compress gas conveyed by the turbomolecular pump stage and to expel it against a gas pressure of more than 1 mbar, in particular against atmospheric pressure.
  • the turbomolecular pump according to the invention is characterized in particular by the integration of the pre-pumping stage.
  • the turbomolecular pump according to the invention is therefore particularly advantageously a compact unit that can be put into operation immediately without having to connect a separate backing pump as a further component. For the user, this results in significant time savings during installation and space savings. The risk of errors occurring during installation is greatly reduced due to the integral design.
  • the pump according to the invention can be handled like a conventional pump of the respective type, especially with regard to the minimal space requirement and the arbitrary installation position.
  • the pump has its own pre-pump stage, so to speak, "on board”, so that it can also generate a high vacuum pressure on the suction side and, on the discharge side, directly against a relatively high pressure and in particular against atmospheric pressure, while at least largely retaining all the advantages of a conventional pump of the respective type can eject.
  • the invention can be realized in particular by using a special small design of a pump type suitable as a pre-pumping stage.
  • a pump type suitable as a pre-pumping stage.
  • mini pre-pumps Such backing pumps can work in continuous operation without their own backing pumps and can eject against a relatively high pressure, for example of more than 1 mbar, or even against atmospheric pressure. It has Surprisingly, it has been shown that such pumps can be used as backing pumps integrated into turbomolecular pumps and can therefore make the use of conventional backing pumps unnecessary. A lot of energy can be saved by eliminating a separate backing pump.
  • a conventional separate backing pump can be helpful for initially evacuating a recipient.
  • the integrated pre-pump stage according to the invention is sufficient, i.e. the conventional separate pre-pump then only needs to be used for the initial evacuation, for example by temporarily connecting in parallel.
  • the pre-pumping stage is based on a type of pump drive movement that is different from that of the turbomolecular pumping stage.
  • the pre-pumping stage develops its pumping effect through components that orbit relative to one another during operation. In other words, the pre-pumping stage is based on an orbiting relative movement of its pumping components.
  • the pre-pump stage is based on an orbiting relative movement of its pumping components.
  • the pump stage comprises at least one stationary conveying element and at least one conveying element that moves during operation relative to the stationary conveying element, wherein the stationary delivery element of the pre-pumping stage is at least partially formed by the pump housing.
  • the stationary conveying element is, for example, a spiral-shaped stator of a spiral vacuum pump or scroll vacuum pump.
  • the pre-pumping stage can have at least one axis of movement, with respect to which at least two components of the pre-pumping stage move relative to one another during operation, the axis of movement of the pre-pumping stage and a rotation axis of a rotor shaft of the turbomolecular pumping stage not coinciding.
  • the pre-pumping stage can have at least one axis of symmetry that does not coincide with the axis of rotation of the rotor shaft of the turbomolecular pumping stage.
  • the two components are the spiral rotor and the spiral stator of a spiral or scroll vacuum pump.
  • the pre-pump stage is a dependent unit, the operation of which requires one or more functional parts of the turbomolecular pump.
  • a common control and/or a common energy supply can be provided for the turbomolecular pump stage and for the pre-pump stage.
  • the functional parts of the turbomolecular pump can be, for example, an electric motor, an accessory connection, a data interface, a flood inlet, a barrier or coolant connection, a rotor shaft or structural elements forming gas flow paths.
  • the pre-pumping stage is preferably dependent on the energy supply of the turbomolecular pumping stage and possibly further pumping stages and shares a common control with this pumping stage or these pumping stages.
  • the pre-pump stage is of the type of a spiral or scroll vacuum pump.
  • Spiral or scroll vacuum pumps usually have crescent-shaped scoop spaces, which are formed by a rotor with a spiral cross-section in engagement with a similar spiral-shaped stator, the rotor being set into an orbiting movement by an eccentric drive. This type of pump is therefore based on an orbiting pump drive movement.
  • the priming stage is of a type different from a side channel or regeneration vacuum pump.
  • the side channel pump power is transferred from a rotor rotating concentrically in the housing to a medium to be pumped in a side channel arranged next to the rotor.
  • the medium moves back and forth several times between individual areas of the rotor and the side channel.
  • momentum exchange energy is transferred between the medium, which rotates at approximately the rotational speed of the rotor, and the medium, which flows more slowly in the side channel.
  • the delivery performance is based on this exchange of impulses.
  • This type of pump is therefore based on a rotating pump drive movement.
  • the pre-pumping stage is integrated into the turbomolecular pump completely independently of the position of the rotor shaft of the turbomolecular pumping stage.
  • This can in particular simplify retrofitting existing turbomolecular pumps with an integrated pre-pump stage.
  • it may be sufficient to modify only a few components, e.g. the housing, of an existing turbomolecular pump in order to integrate a pre-pump stage.
  • the pre-pump stage comprises a housing which is at least partially formed by the pump housing.
  • At least one, preferably three, in particular five housing side(s) of the housing of the pre-pump stage is/are at least partially formed by the pump housing.
  • the housing of the pre-pump stage can, for example, be placed on the pump housing with one open housing side or inserted or pushed into a corresponding receptacle of the pump housing with several open housing sides.
  • the pre-pump stage can also be at least partially enclosed by a housing within the pump housing, in particular in order to achieve a demarcation from further functional parts of the turbomolecular pump stage.
  • the housing of the pre-pump stage can be connected to the pump housing by fasteners such as screws, rivets or adhesive.
  • the pre-pumping stage or at least one pump-active structure of the pre-pumping stage is arranged in the pump housing or on the pump housing.
  • the pre-pumping stage is arranged in the pump housing or within the pump housing, ie the pre-pumping stage is preferably completely surrounded by the pump housing.
  • the pre-pumping stage is preferably completely surrounded by the pump housing.
  • an optional drive of the fore-pump stage can also be arranged in or on the pump housing.
  • the pre-pumping stage or at least a pump-active structure of the pre-pumping stage is at least partially formed by the pump housing.
  • spiral stator of a spiral or scroll vacuum pump can be designed as an integral part of the pump housing.
  • the pre-pump stage is many times smaller than the pump housing, at least 5 to 10 times, preferably 10 to 15 times.
  • the pre-pumping stage preferably only takes up about a fifth to a tenth, in particular a tenth to a fifteenth, of the total volume of the pump housing.
  • the pre-pump stage is arranged asymmetrically and/or eccentrically with respect to the axis of rotation of the rotor shaft of the turbomolecular pump stage.
  • the arrangement of the pre-pump stage is independent of the position of the rotor shaft of the turbomolecular pump stage.
  • the pre-pumping stage can be arranged within a limited angular range around the axis of rotation of the rotor shaft of the turbomolecular pumping stage, whereby the Angular range is less than 180°, in particular less than 135°, preferably less than 90°.
  • an outlet region of the pre-pumping stage forms the pump outlet.
  • the outlet region of the pre-pump stage may be connected to the pump outlet directly or via a gas flow path that is delimited by one or more housing parts and/or stationary, fixed structural elements located within the pump housing.
  • the gas flow path is, for example, a channel which is formed in particular in a wall of the pump housing.
  • the inlet region of the pre-pump stage is connected directly to the outlet region of the turbomolecular pump stage or to an outlet region of a further pump stage arranged between the turbo-molecular pump stage and the pre-pump stage.
  • the further pump stage is in particular a molecular pump stage, for example a Siegbahn and/or Holweck pump stage.
  • Several further pump stages can be arranged between the turbomolecular pump stage and the pre-pump stage.
  • a gas flow path between the outlet region of the turbomolecular pump or the outlet region of the further pump stage arranged between the turbomolecular pump stage and the pre-pump stage on the one hand and the inlet region of the pre-pump stage on the other hand by one or more housing parts and / or stationary, fixed ones within the pump housing structural elements located is limited.
  • a preferred embodiment of the turbomolecular pump according to the invention has a turbomolecular pump stage, a molecular pump stage, in particular a Holweck pump stage, and a pre-pump stage.
  • the pre-pump stage is a miniaturized spiral or scroll vacuum pump compared to the dimensions of the pump housing of the turbomolecular pump, the spiral-shaped stator of which is formed by a structural element of the pump housing.
  • the spiral or scroll vacuum pump preferably has its own electric motor drive, which draws its energy from the energy supply of the turbomolecular pump stage and/or the molecular pump stage.
  • the spiral or scroll vacuum pump including its drive motor is arranged in the pump housing and the outlet area of the spiral or scroll vacuum pump is connected to the pump outlet via a gas flow path, which is in particular designed as a simple bore.
  • the external dimensions of a turbomolecular pump according to the invention are at least essentially the same as the dimensions of a corresponding conventional turbomolecular pump which does not include an integrated pre-pump stage.
  • the inventive integration of the pre-pump stage into the turbomolecular pump significantly increases the compactness of a high vacuum pump system, which previously usually consisted of at least two separate components - the turbomolecular pump and the fore-vacuum pump. This significantly reduces the space requirement. Installation is particularly simplified for the user because there is no need to wire two separate components.
  • the short gas flow paths within the turbomolecular pump housing created by integrating the pre-pump stage also reduce the risk of leaks.
  • Turbomolecular pump 111 shown comprises a pump inlet 115 surrounded by an inlet flange 113, to which a recipient, not shown, can be connected in a manner known per se.
  • the gas from the recipient can be sucked out of the recipient via the pump inlet 115 and conveyed through the pump to a pump outlet 117 to which a backing pump, such as a rotary vane pump, can be connected.
  • the inlet flange 113 forms the alignment of the vacuum pump according to Fig. 1 the upper end of the housing 119 of the vacuum pump 111.
  • the housing 119 comprises a lower part 121, on which an electronics housing 123 is arranged laterally. Electrical and/or electronic components of the vacuum pump 111 are accommodated in the electronics housing 123, for example for operating an electric motor 125 arranged in the vacuum pump (cf. Fig. 3 ).
  • Several connections 127 for accessories are provided on the electronics housing 123.
  • a data interface 129 for example according to the RS485 standard, and a power supply connection 131 are arranged on the electronics housing 123.
  • a flood inlet 133 in particular in the form of a flood valve, is provided on the housing 119 of the turbomolecular pump 111, via which the vacuum pump 111 can be ventilated.
  • a sealing gas connection 135, which is also referred to as a flushing gas connection via which flushing gas to protect the electric motor 125 from the gas delivered by the pump into the engine compartment 137, in which the electric motor 125 in the vacuum pump 111 accommodated, can be brought (cf. Fig. 3 ).
  • Two coolant connections 139 are also arranged in the lower part 121, one of the coolant connections being provided as an inlet and the other coolant connection as an outlet for coolant, which can be passed through the vacuum pump for cooling purposes.
  • the lower side 141 of the vacuum pump can serve as a standing surface, so that the vacuum pump 111 can be operated standing on the underside 141.
  • the vacuum pump 111 can also be attached to a recipient via the inlet flange 113 and can therefore be operated hanging, so to speak.
  • the vacuum pump 111 can be designed so that it is also in operation can be taken if it is oriented in a different way than in Fig. 1 is shown.
  • Embodiments of the vacuum pump can also be implemented in which the underside 141 can be arranged not facing downwards, but facing to the side or facing upwards.
  • a bearing cover 145 is attached to the underside 141.
  • Fastening holes 147 are also arranged on the underside 141, via which the pump 111 can be fastened to a support surface, for example.
  • a coolant line 148 is shown, in which the coolant introduced and discharged via the coolant connections 139 can circulate.
  • the vacuum pump comprises several process gas pumping stages for conveying the process gas present at the pump inlet 115 to the pump outlet 117.
  • a rotor 149 is arranged in the housing 119 and has a rotor shaft 153 which can be rotated about a rotation axis 151.
  • the turbomolecular pump 111 comprises a plurality of turbomolecular pump stages connected in series with one another and having a plurality of radial rotor disks 155 attached to the rotor shaft 153 and stator disks 157 arranged between the rotor disks 155 and fixed in the housing 119.
  • a rotor disk 155 and an adjacent stator disk 157 each form a turbomolecular pump pump stage. Together, the pairs form rotor disk 155 and stator disk 157, a turbomolecular pump stage 250.
  • the stator disks 157 are held at a desired axial distance from one another by spacer rings 159.
  • the vacuum pump also includes Holweck pump stages that are arranged one inside the other in the radial direction and are effectively connected in series.
  • the rotor of the Holweck pump stages includes a rotor hub 161 arranged on the rotor shaft 153 and two cylindrical jacket-shaped Holweck rotor sleeves 163, 165 which are fastened to the rotor hub 161 and supported by it, which are oriented coaxially to the axis of rotation 151 and nested in one another in the radial direction.
  • two cylindrical jacket-shaped Holweck stator sleeves 167, 169 are provided, which are also oriented coaxially to the axis of rotation 151 and are nested within one another when viewed in the radial direction.
  • the pump-active surfaces of the Holweck pump stages are formed by the lateral surfaces, i.e. by the radial inner and/or outer surfaces, of the Holweck rotor sleeves 163, 165 and the Holweck stator sleeves 167, 169.
  • the radial inner surface of the outer Holweck stator sleeve 167 lies opposite the radial outer surface of the outer Holweck rotor sleeve 163, forming a radial Holweck gap 171 and with this forms the first Holweck pump stage following the turbomolecular pumps.
  • the radial inner surface of the outer Holweck rotor sleeve 163 faces the radial outer surface of the inner Holweck stator sleeve 169 to form a radial Holweck gap 173 and forms a second Holweck pump stage with this.
  • the radial inner surface of the inner Holweck stator sleeve 169 lies opposite the radial outer surface of the inner Holweck rotor sleeve 165, forming a radial Holweck gap 175 and with this forms the third Holweck pump stage.
  • a radially extending channel can be provided, via which the radially outer Holweck gap 171 communicates with the middle Holweck gap 173 is connected.
  • a radially extending channel can be provided at the upper end of the inner Holweck stator sleeve 169, via which the middle Holweck gap 173 is connected to the radially inner Holweck gap 175. This means that the nested Holweck pump stages are connected in series with one another.
  • a connecting channel 179 to the outlet 117 can also be provided.
  • the above-mentioned pump-active surfaces of the Holweck stator sleeves 163, 165 each have a plurality of Holweck grooves running spirally around the axis of rotation 151 in the axial direction, while the opposite lateral surfaces of the Holweck rotor sleeves 163, 165 are smooth and the gas is used to operate the Drive vacuum pump 111 into the Holweck grooves.
  • a rolling bearing 181 is provided in the area of the pump outlet 117 and a permanent magnet bearing 183 in the area of the pump inlet 115.
  • a conical injection nut 185 with an outer diameter increasing towards the rolling bearing 181 is provided on the rotor shaft 153.
  • the injection nut 185 is in sliding contact with at least one wiper of an operating medium storage.
  • the operating medium storage comprises several absorbent disks 187 stacked on top of one another, which are soaked with an operating medium for the rolling bearing 181, for example with a lubricant.
  • the operating fluid is transferred by capillary action from the operating fluid storage via the wiper to the rotating injection nut 185 and, as a result of the centrifugal force, is conveyed along the injection nut 185 in the direction of the increasing outer diameter of the injection nut 185 to the rolling bearing 181, where it e.g. fulfills a lubricating function.
  • the rolling bearing 181 and the operating fluid storage are enclosed in the vacuum pump by a trough-shaped insert 189 and the bearing cover 145.
  • the permanent magnet bearing 183 comprises a rotor-side bearing half 191 and a stator-side bearing half 193, each of which comprises a ring stack made up of a plurality of permanent magnetic rings 195, 197 stacked on top of one another in the axial direction.
  • the ring magnets 195, 197 lie opposite one another to form a radial bearing gap 199, with the rotor-side ring magnets 195 being arranged radially on the outside and the stator-side ring magnets 197 being arranged radially on the inside.
  • the magnetic field present in the bearing gap 199 causes magnetic repulsion forces between the ring magnets 195, 197, which cause the rotor shaft 153 to be supported radially.
  • the rotor-side ring magnets 195 are carried by a carrier section 201 of the rotor shaft 153, which surrounds the ring magnets 195 on the radial outside.
  • the stator-side ring magnets 197 are supported by a stator-side support section 203, which extends through the ring magnets 197 and is suspended on radial struts 205 of the housing 119.
  • the rotor-side ring magnets 195 are fixed parallel to the rotation axis 151 by a cover element 207 coupled to the carrier section 203.
  • the stator-side ring magnets 197 are fixed parallel to the rotation axis 151 in one direction by a fastening ring 209 connected to the carrier section 203 and a fastening ring 211 connected to the carrier section 203.
  • a disc spring 213 can also be provided between the fastening ring 211 and the ring magnets 197.
  • An emergency or safety bearing 215 is provided within the magnetic bearing, which rests without contact during normal operation of the vacuum pump 111 and only comes into engagement when there is an excessive radial deflection of the rotor 149 relative to the stator in order to create a radial stop for the rotor 149 form, thereby preventing a collision between the rotor-side structures and the stator-side structures becomes.
  • the backup bearing 215 is designed as an unlubricated rolling bearing and forms a radial gap with the rotor 149 and/or the stator, which causes the backup bearing 215 to be disengaged during normal pumping operation.
  • the radial deflection at which the backup bearing 215 comes into engagement is large enough so that the backup bearing 215 does not come into engagement during normal operation of the vacuum pump, and at the same time small enough so that a collision of the rotor-side structures with the stator-side structures occurs under all circumstances is prevented.
  • the vacuum pump 111 includes the electric motor 125 for rotating the rotor 149.
  • the armature of the electric motor 125 is formed by the rotor 149, the rotor shaft 153 of which extends through the motor stator 217.
  • a permanent magnet arrangement can be arranged radially on the outside or embedded on the section of the rotor shaft 153 that extends through the motor stator 217.
  • a gap 219 is arranged, which comprises a radial motor gap, via which the motor stator 217 and the permanent magnet arrangement can magnetically influence each other for transmitting the drive torque.
  • the motor stator 217 is fixed in the housing within the engine compartment 137 provided for the electric motor 125.
  • a sealing gas which is also referred to as purge gas and which can be, for example, air or nitrogen, can reach the engine compartment 137 via the sealing gas connection 135.
  • the barrier gas can be used to protect the electric motor 125 from process gas, for example from corrosive components of the process gas.
  • the engine compartment 137 can also be evacuated via the pump outlet 117, ie in the engine compartment 137 there is at least approximately the vacuum pressure caused by the backing vacuum pump connected to the pump outlet 117.
  • a so-called and known labyrinth seal 223 can also be provided between the rotor hub 161 and a wall 221 delimiting the engine compartment 137, in particular in order to achieve a better sealing of the engine compartment 217 compared to the Holweck pump stages located radially outside.
  • Fig. 6 shows schematically a possible basic structure of a turbomolecular pump 110 according to the invention, which has a turbomolecular pump stage 250 arranged in a housing 119, a molecular pump stage 270 connected downstream of it and a pre-pump stage 300 connected downstream of the molecular pump stage 270.
  • the pre-pumping stage 300 has a housing 302, which is partially formed by the housing 119. As can be seen from the representation of the Fig. 6 As becomes clear, the housing 302 of the pre-pumping stage 300 is much smaller than the pump housing 119. The pre-pumping stage 300 is thus integrated into the turbomolecular pump 110.
  • a gas flow path 312 is indicated by arrows.
  • a gas to be pumped enters the turbomolecular pump stage 250 from a recipient (not shown) via an inlet region 116. After passing through an outlet region 118 of the turbomolecular pumping stage 250, the gas enters the molecular pumping stage 270 and passes from its outlet region 272 into an inlet region 316 of the pre-pumping stage 300.
  • the pre-pumping stage 300 pushes the gas against a comparatively high pressure of more than compared to a vacuum 1 mbar and in particular against atmospheric pressure, namely via an outlet region 310 of the pre-pumping stage 300. It can therefore be the pre-pumping stage 300 that forms the outlet 117 of the pump 110.
  • Fig. 7 shows a schematic cross section through the turbomolecular pump 110 Fig. 6 , which is shown here as a square for simplicity. Alternatively, the cross section can be circular. It can be seen that the pre-pumping stage 300 is arranged within an angular range of less than 90° about an axis of rotation 151 of a rotor shaft 153.
  • the rotor shaft 153 is both the turbomolecular pump stage 250 and the molecular pump stage 270 are assigned.
  • the arrangement of the pre-pumping stage 300 in the housing 119 is in principle independent of the position of the rotor shaft 153, since the pre-pumping stage 300 is not part of the rotor shaft 153 and is not driven by the rotor shaft 153.
  • the Fig. 6 and 7 It can be seen that the pre-pumping stage 300 is arranged in a bottom edge region of the pump housing 119.
  • the Fig. 8 to 10 each show a turbomolecular pump 110 according to the invention, which differs from the pump according to Fig. 1 to 5 each essentially differ by the integrated pre-pump stage 300, the arrangement of the pump outlet 117 and the arrangement of the sealing gas connection 135. Corresponding components are only partially provided with identical reference numbers for reasons of clarity. Matches between the pumps 110 are sometimes only made in connection with one of the Fig. 8 to 10 explained.
  • the turbomolecular pump 110 includes a molecular pump stage 270 in the form of three Holweck pump stages, which are connected downstream of the turbomolecular pump stage 250.
  • the outlet region 272 of the molecular pump stage 270 is connected to the inlet region of the pre-pump stage 300 via a gas flow path 312, which is designed as a bore in a structural element of the housing 119.
  • the outlet region 310 of the pre-pumping stage 300 forms the pump outlet 117, through which the gas to be pumped can be expelled against atmospheric pressure.
  • the pre-pumping stage 300 is, for example, an in Fig. 8 Spiral or scroll vacuum pump, not shown, which is surrounded by a housing 302. Parts of the housing 302 are formed by the housing 119. Conversely, the housing 302 of the pre-pumping stage 300 forms part of the actual Pump housing 119.
  • the pre-pump stage 300 can also include another type of pump in a small design.
  • the pre-pumping stage 300 further comprises its own drive motor, which is arranged within the housing 302 and is connected to the electronics housing 123 and in particular to the power supply connection 131 via a schematically indicated power supply line 124.
  • Pre-pumping stage 300, molecular pumping stage 270 and turbomolecular pumping stage 250 thus share an energy source, i.e. pre-pumping stage 300 is not an independent unit.
  • the pre-pumping stage 300 is therefore not only spatially but also functionally integrated into the turbomolecular pump 110.
  • Fig. 9 shows a further embodiment of a turbomolecular pump 110 according to the invention, in which the pre-pumping stage 300 is located completely within the pump housing 119.
  • the outlet region 310 of the pre-pumping stage 300 is connected to the pump outlet 117 via a gas flow path 312.
  • Fig. 10 shows a further embodiment of the turbomolecular pump 110 according to the invention, in which a stationary delivery element 306 of the pre-pump stage 300 is formed by the pump housing 119.
  • the stationary conveying element 306 is a spiral-shaped stator of a spiral or scroll vacuum pump forming the pre-pumping stage 300.
  • the spiral stator can either be milled into the housing 119 or formed on a separate insert that can be inserted into the housing 119 and fixed.
  • the pre-pumping stage 300 further comprises a moving conveying element 308 in the form of a spiral-shaped rotor, which is driven by an electric motor 318.
  • the rotor 308 and the motor 318 can be inserted into a receiving space of the pump housing 119 to assemble the rotor 308 and stator 306.
  • the rotor 308 and the stator 306 can be formed on one insert be that closes the pump housing 119. Alternatively, a separate closure element can be provided.
  • the motor 318 is in turn connected to the electronics housing 123 via a line 124.
  • the outlet region 310 of the pre-pumping stage 300 is connected to the pump outlet 117 via a gas flow path 312 in the form of a bore formed in the housing 119.
  • Fig. 11 shows a further embodiment of a turbomolecular pump 110 according to the invention, in which the pre-pumping stage 300 is located completely within the pump housing 119.
  • the pre-pump stage 300 is a spiral or scroll vacuum pump, which comprises a spiral-shaped stator as a stationary conveying element 306 and a spiral-shaped orbiter as a moving conveying element 308.
  • This conveying element 308 is driven by an electric motor 318 connected to the electronics housing 123 via a line 124.
  • the outlet area of the pre-pump stage 300 is connected to the pump outlet 117 in a manner not shown in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

Die vorliegende Erfindung betrifft eine Turbomolekularpumpe mit einem Pumpeneinlass und einem Pumpenauslass, die in einem gemeinsamen Pumpengehäuse ausgebildet sind, und mit zumindest einer Turbomolekularpumpstufe, die einen dem Pumpeneinlass zugeordneten Einlassbereich und einen Auslassbereich aufweist.The present invention relates to a turbomolecular pump with a pump inlet and a pump outlet, which are formed in a common pump housing, and with at least one turbomolecular pump stage, which has an inlet region associated with the pump inlet and an outlet region.

Vakuumpumpen spielen in der Vakuumtechnik eine wichtige Rolle und werden in den unterschiedlichsten technischen Anwendungen zum Absaugen von meist gasförmigen Medien und zur Evakuierung von Hohlräumen eingesetzt. Dabei kommen unter anderem Turbomolekularpumpen, die auch als Turbopumpen bezeichnet werden, zum Einsatz. Turbomolekularpumpen arbeiten im molekularen, d.h. nicht-viskosen, Bereich und sind dazu geeignet, ein Vakuum mit einer sehr hohen Reinheit zu erzeugen.Vacuum pumps play an important role in vacuum technology and are used in a wide variety of technical applications for suction of mostly gaseous media and for the evacuation of cavities. Among other things, turbomolecular pumps, also known as turbopumps, are used. Turbomolecular pumps work in the molecular, i.e. non-viscous, range and are suitable for generating a vacuum with a very high level of purity.

Eine Turbomolekularpumpe umfasst typischerweise ein Gehäuse, das einen Pumpenraum mit einer Rotorwelle einschließt. In dem Pumpenraum ist zumindest eine Pumpstruktur der Turbomolekularpumpe angeordnet, die ein in dem Pumpenraum bzw. in einem zu evakuierenden Bereich vorhandenes Gas von einem Einlass zu einem Auslass der Turbomolekularpumpe fördert und dadurch pumpt. Ein Antrieb für die Rotorwelle ist üblicherweise in einem von dem Pumpenraum getrennten Lagerraum angeordnet.A turbomolecular pump typically includes a housing that encloses a pump chamber with a rotor shaft. At least one pump structure of the turbomolecular pump is arranged in the pump room, which conveys a gas present in the pump room or in an area to be evacuated from an inlet to an outlet of the turbomolecular pump and thereby pumps it. A drive for the rotor shaft is usually arranged in a storage room that is separate from the pump room.

Turbomolekularpumpen sind Drehmomenttransferpumpen, bei denen in die Pumpe eintretende Gasmoleküle eines zu pumpenden Gases durch einen Aufprall auf die sich bewegenden Rotorblätter der Rotorwelle ein Drehmoment erhalten. Die Pumpe enthält üblicherweise mehrere Pumpstufen von in Reihe oder hintereinander angeordneten Rotor- und Statorscheiben. Jede Pumpstufe besteht also in der Regel zumindest aus je einer Rotor- und Statorscheibe, die paarweise angeordnet sind. Gegebenenfalls kann eine Pumpstufe auch nur aus einer Rotorscheibe bestehen, wobei dies insbesondere für die am stromabwärts gelegenen Ende befindliche Pumpstufe gilt. In diesem Fall endet die Pumpe mit einer Rotorscheibe. Neben dem Drehmoment erhalten die Gasmoleküle aufgrund der Stellung von Rotorund Statorscheiben zueinander eine Bewegungskomponente parallel zur Achse der Pumpe, wobei die Achse üblicherweise der Rotorwelle entspricht. Generell erhöhen mehrere Pumpstufen den Druck des Gases von dem Einlass zum Auslass der Pumpe.Turbomolecular pumps are torque transfer pumps in which gas molecules entering the pump of a gas to be pumped receive a torque through an impact on the moving rotor blades of the rotor shaft. The Pump usually contains several pump stages of rotor and stator disks arranged in series or one behind the other. Each pump stage generally consists of at least one rotor and stator disk, which are arranged in pairs. If necessary, a pump stage can also consist of only one rotor disk, and this applies in particular to the pump stage located at the downstream end. In this case, the pump ends with a rotor disk. In addition to the torque, the gas molecules receive a movement component parallel to the axis of the pump due to the position of the rotor and stator disks relative to one another, the axis usually corresponding to the rotor shaft. Generally, multiple pump stages increase the pressure of the gas from the inlet to the outlet of the pump.

Eine Turbomolekularpumpe arbeitet grundsätzlich nur effektiv in Druckbereichen im Molekularstrombereich und evakuiert oder fördert nicht zu atmosphärischem Druck, sondern wird meist von einer Vorvakuumpumpe unterstützt, die dann gegen einen Gasdruck von mehr als 1 mbar ausstößt. Der Arbeitsdruckbereich der Turbomolekularpumpe kann erweitert werden, indem eine von der gleichen Rotorwelle angetrieben Molekularpumpstufe, beispielsweise eine Holweck-Pumpstufe oder Siegbahn-Pumpstufe, an den Auslass der Turbomolekularpumpe innerhalb des Pumpgehäuses gekoppelt wird. Dies ermöglicht, Vorvakuumpumpen mit geringerer Leistung einzusetzen, da der Auslassdruck des Gases erhöht ist.A turbomolecular pump basically only works effectively in pressure ranges in the molecular flow range and does not evacuate or deliver to atmospheric pressure, but is usually supported by a backing pump, which then ejects against a gas pressure of more than 1 mbar. The working pressure range of the turbomolecular pump can be expanded by coupling a molecular pump stage driven by the same rotor shaft, for example a Holweck pump stage or Siegbahn pump stage, to the outlet of the turbomolecular pump within the pump housing. This makes it possible to use backing pumps with lower performance because the outlet pressure of the gas is increased.

Vorvakuumpumpen, beispielsweise Membranpumpen und Spiral- oder Scrollpumpen, sind autarke und zu der betreffenden Turbomolekularpumpe separat angeordnete Pumpen, deren Ansaugseite über Leitungen mit dem Auslass der Turbomolekularpumpe verbunden ist. Für den Anwender ist eine derartige Anordnung mit einem gewissen Aufwand hinsichtlich einer luftdichten und elektrischen Verbindung beider Pumpen verbunden. Ein Risiko von Funktionsbeeinträchtigungen durch Leckagen sowie Fehler im elektrischen Anschluss kann grundsätzlich nicht ausgeschlossen werden.Backing pumps, for example diaphragm pumps and spiral or scroll pumps, are self-sufficient pumps that are arranged separately from the turbomolecular pump in question, the suction side of which is connected to the outlet of the turbomolecular pump via lines. For the user, such an arrangement involves a certain amount of effort in terms of an airtight and electrical connection of both pumps. A risk of functional impairment due to leaks and errors in the electrical connection cannot generally be ruled out.

Aus dem Stand der Technik bekannt sind sogenannte Pumpstände, bei welchen eine Turbomolekularpumpe und eine Vorvakuumpumpe auf einen gemeinsamen Rahmen montiert und herstellerseitig bereits luftdicht und elektrisch verbunden sind. Derartige Anordnungen sind meist allerdings relativ groß und haben daher einen großen Platzbedarf. Ferner sind sie in Bezug auf ihre Einbaulage oft beschränkt und lassen sich daher in bereits bestehende Systeme nur schwierig integrieren.Known from the prior art are so-called pumping stations, in which a turbomolecular pump and a fore-vacuum pump are mounted on a common frame and are already airtight and electrically connected by the manufacturer. However, such arrangements are usually relatively large and therefore require a lot of space. Furthermore, they are often limited in terms of their installation position and are therefore difficult to integrate into existing systems.

Aus der EP 2 644 893 A2 ist eine Turbomolekularpumpe gemäß dem Oberbergriff des Anspruchs 1 bekannt.From the EP 2 644 893 A2 a turbomolecular pump according to the preamble of claim 1 is known.

Ferner ist auch aus der DE 698 15 806 T2 eine Turbomolekularpumpe gemäß dem Oberbegriff des Anspruch 1 bekannt.Furthermore, it is also from the DE 698 15 806 T2 a turbomolecular pump according to the preamble of claim 1 is known.

Die EP 1 213 482 A1 zeigt eine Turbomolekularpumpe gemäß einer verwandten Technologie.The EP 1 213 482 A1 shows a turbomolecular pump according to a related technology.

Zum Stand der Technik wird außerdem verwiesen auf DE 601 01 368 T2 sowie EP 2 631 488 A1 .Reference is also made to the state of the art DE 601 01 368 T2 as well as EP 2 631 488 A1 .

Aufgabe der vorliegenden Erfindung ist es, eine Turbomolekularpumpe bereitzustellen, welche die vorstehend beschriebenen Nachteile überwindet, d.h. eine kompakte, gut zu integrierende Turbomolekularpumpe, deren Inbetriebnahme möglichst einfach und daher wenige Fehlerquellen aufweist, wobei gleichzeitig die Turbomolekularpumpe mit möglichst geringem Aufwand herstellbar sein und zudem eine hohe Lebensdauer aufweisen soll.The object of the present invention is to provide a turbomolecular pump which overcomes the disadvantages described above, i.e. a compact, easy-to-integrate turbomolecular pump, the commissioning of which is as simple as possible and therefore has few sources of error, while at the same time the turbomolecular pump can be produced with as little effort as possible and also a should have a long service life.

Die Lösung der Aufgabe erfolgt erfindungsgemäß durch eine Turbomolekularpumpe mit den Merkmalen des Anspruchs 1. Die erfindungsgemäße Turbomolekularpumpe umfasst wenigstens eine zwischen dem Auslassbereich der Turbomolekularpumpstufe und dem Pumpenauslass wirksame Vorpumpstufe, die dazu ausgebildet ist, von der Turbomolekularpumpstufe gefördertes Gas zu verdichten und gegen einen Gasdruck von mehr als 1 mbar, insbesondere gegen Atmosphärendruck, auszustoßen.The problem is solved according to the invention by a turbomolecular pump with the features of claim 1. The turbomolecular pump according to the invention comprises at least one pre-pump stage effective between the outlet region of the turbomolecular pump stage and the pump outlet, which is designed to compress gas conveyed by the turbomolecular pump stage and to expel it against a gas pressure of more than 1 mbar, in particular against atmospheric pressure.

Die erfindungsgemäße Turbomolekularpumpe zeichnet sich also insbesondere durch die Integration der Vorpumpstufe aus.The turbomolecular pump according to the invention is characterized in particular by the integration of the pre-pumping stage.

Bei der erfindungsgemäßen Turbomolekularpumpe handelt es sich daher mit besonderem Vorteil um eine kompakte Einheit, die unmittelbar in Betrieb genommen werden kann, ohne dass als eine weitere Komponente eine separate Vorvakuumpumpe angeschlossen werden muss. Für den Anwender resultieren daraus zum einen eine erhebliche Zeitersparnis bei der Installation und zum anderen eine Platzersparnis. Das Risiko für während der Installation auftretende Fehler ist durch die integrale Bauweise stark reduziert. Mit anderen Worten kann die erfindungsgemäße Pumpe wie eine herkömmliche Pumpe der jeweiligen Art gehandhabt werden, insbesondere was den minimalen Platzbedarf und die beliebige Einbaulage anbetrifft. Die Pumpe hat ihre eigene Vorpumpstufe sozusagen mit "an Bord", so dass sie unter zumindest weitgehender Beibehaltung aller Vorteile einer herkömmlichen Pumpe der jeweiligen Art darüber hinaus auf der Saugseite einen Hochvakuumdruck erzeugen und auf der Ausstoßseite direkt gegen einen relativ hohen Druck und insbesondere gegen Atmosphärendruck ausstoßen kann.The turbomolecular pump according to the invention is therefore particularly advantageously a compact unit that can be put into operation immediately without having to connect a separate backing pump as a further component. For the user, this results in significant time savings during installation and space savings. The risk of errors occurring during installation is greatly reduced due to the integral design. In other words, the pump according to the invention can be handled like a conventional pump of the respective type, especially with regard to the minimal space requirement and the arbitrary installation position. The pump has its own pre-pump stage, so to speak, "on board", so that it can also generate a high vacuum pressure on the suction side and, on the discharge side, directly against a relatively high pressure and in particular against atmospheric pressure, while at least largely retaining all the advantages of a conventional pump of the respective type can eject.

Die Erfindung kann insbesondere durch Nutzung einer besonderen Kleinbauweise eines als Vorpumpstufe geeigneten Pumpentyps realisiert werden. In diesem Zusammenhang kann auch von miniaturisierten Vorpumpstufen oder einfach von "Minivorpumpen" gesprochen werden. Derartige Vorpumpen können im Dauerbetrieb ohne eigene Vorpumpen arbeiten und gegen einen relativ hohen Druck z.B. von mehr als 1 mbar oder sogar gegen Atmosphärendruck ausstoßen. Es hat sich überraschend gezeigt, dass derartige Pumpen als in Turbomolekularpumpen integrierte Vorpumpstufen eingesetzt werden und somit den Einsatz herkömmlicher Vorpumpen überflüssig machen können. Durch den Wegfall einer separaten Vorpumpe kann viel Energie gespart werden.The invention can be realized in particular by using a special small design of a pump type suitable as a pre-pumping stage. In this context, one can also speak of miniaturized pre-pump stages or simply “mini pre-pumps”. Such backing pumps can work in continuous operation without their own backing pumps and can eject against a relatively high pressure, for example of more than 1 mbar, or even against atmospheric pressure. It has Surprisingly, it has been shown that such pumps can be used as backing pumps integrated into turbomolecular pumps and can therefore make the use of conventional backing pumps unnecessary. A lot of energy can be saved by eliminating a separate backing pump.

In manchen Anwendungsfällen kann eine herkömmliche separate Vorpumpe zum anfänglichen Evakuieren eines Rezipienten hilfreich sein. Im eigentlichen Dauerbetrieb genügt dann allerdings die erfindungsgemäße integrierte Vorpumpstufe, d.h. die herkömmliche separate Vorpumpe braucht dann ausschließlich für das anfängliche Evakuieren eingesetzt zu werden, z.B. durch vorübergehendes Parallelschalten.In some applications, a conventional separate backing pump can be helpful for initially evacuating a recipient. In actual continuous operation, however, the integrated pre-pump stage according to the invention is sufficient, i.e. the conventional separate pre-pump then only needs to be used for the initial evacuation, for example by temporarily connecting in parallel.

Der Vorpumpstufe liegt eine Art von Pumpantriebsbewegung zugrunde, die von jener der Turbomolekularpumpstufe verschieden ist. Dabei entfaltet die Vorpumpstufe ihre Pumpwirkung durch sich im Betrieb relativ zueinander orbitierend bewegende Komponenten. Mit anderen Worten liegt der Vorpumpstufe eine orbitierende Relativbewegung ihrer pumpwirksamen Komponenten zugrunde.The pre-pumping stage is based on a type of pump drive movement that is different from that of the turbomolecular pumping stage. The pre-pumping stage develops its pumping effect through components that orbit relative to one another during operation. In other words, the pre-pumping stage is based on an orbiting relative movement of its pumping components.

Im Vergleich zu Turbomolekularpumpstufen oder Molekularpumpstufen, deren Pumpwirkung grundsätzlich auf sich im Betrieb relativ zueinander rotierend bewegenden Komponenten beruht, basiert die Vorpumpstufe also auf einer orbitierenden Relativbewegung ihrer pumpwirksamen Komponenten. Überraschenderweise hat sich herausgestellt, dass sich die jeweils aus den unterschiedlichen Pumpantriebsbewegungen von Turbomolekularpumpstufe und Vorpumpstufe hervorgerufenen Schwingungen zumindest teilweise gegeneinander aufheben können. Insgesamt kann folglich auf diese Weise - gewissermaßen als Nebeneffekt - eine zumindest schwingungsärmere Turbomolekularpumpe realisiert werden.In comparison to turbomolecular pump stages or molecular pump stages, the pumping effect of which is fundamentally based on components that rotate relative to one another during operation, the pre-pump stage is based on an orbiting relative movement of its pumping components. Surprisingly, it has been found that the vibrations caused by the different pump drive movements of the turbomolecular pump stage and pre-pump stage can at least partially cancel each other out. Overall, in this way - as a side effect, so to speak - a turbomolecular pump with at least less vibration can be realized.

Die Pumpstufe umfasst zumindest ein stationäres Förderelement und wenigstens ein sich im Betrieb relativ zu dem stationären Förderelement bewegendes Förderelement, wobei das stationäre Förderelement der Vorpumpstufe zumindest teilweise von dem Pumpengehäuse gebildet ist. Bei dem stationären Förderelement handelt es sich beispielsweise um einen spiralförmigen Stator einer Spiralvakuumpumpe oder Scrollvakuumpumpe.The pump stage comprises at least one stationary conveying element and at least one conveying element that moves during operation relative to the stationary conveying element, wherein the stationary delivery element of the pre-pumping stage is at least partially formed by the pump housing. The stationary conveying element is, for example, a spiral-shaped stator of a spiral vacuum pump or scroll vacuum pump.

Ferner kann die Vorpumpstufe zumindest eine Bewegungsachse aufweisen, bezüglich welcher wenigstens zwei Komponenten der Vorpumpstufe sich im Betrieb relativ zueinander bewegen, wobei die Bewegungsachse der Vorpumpstufe und eine Rotationsachse einer Rotorwelle der Turbomolekularpumpstufe nicht zusammenfallen. Alternativ oder zusätzlich kann die Vorpumpstufe zumindest eine Symmetrieachse aufweisen, die mit der Rotationsachse der Rotorwelle der Turbomolekularpumpstufe nicht zusammenfällt. Beispielsweise handelt es sich bei den zwei Komponenten um den spiralförmigen Rotor und den spiralförmigen Stator einer Spiral- oder Scrollvakuumpumpe.Furthermore, the pre-pumping stage can have at least one axis of movement, with respect to which at least two components of the pre-pumping stage move relative to one another during operation, the axis of movement of the pre-pumping stage and a rotation axis of a rotor shaft of the turbomolecular pumping stage not coinciding. Alternatively or additionally, the pre-pumping stage can have at least one axis of symmetry that does not coincide with the axis of rotation of the rotor shaft of the turbomolecular pumping stage. For example, the two components are the spiral rotor and the spiral stator of a spiral or scroll vacuum pump.

Gemäß einer bevorzugten Ausführungsform ist die Vorpumpstufe eine unselbständige Einheit, zu deren Betrieb ein oder mehrere Funktionsteile der Turbomolekularpumpe erforderlich sind. Alternativ oder zusätzlich kann für die Turbomolekularpumpstufe und für die Vorpumpstufe eine gemeinsame Steuerung und/oder eine gemeinsame Energieversorgung vorgesehen sein.According to a preferred embodiment, the pre-pump stage is a dependent unit, the operation of which requires one or more functional parts of the turbomolecular pump. Alternatively or additionally, a common control and/or a common energy supply can be provided for the turbomolecular pump stage and for the pre-pump stage.

Bei den Funktionsteilen der Turbomolekularpumpe kann es sich beispielsweise um einen Elektromotor, einen Zubehöranschluss, eine Datenschnittstelle, einen Fluteinlass, einen Sperr- oder Kühlmittelanschluss, eine Rotorwelle oder Gasströmungswege ausbildende Strukturelemente handeln. Vorzugsweise ist die Vorpumpstufe von der Energieversorgung der Turbomolekularpumpstufe und gegebenenfalls weiteren Pumpstufen abhängig und teilt sich mit dieser Pumpstufe oder diesen Pumpstufen eine gemeinsame Steuerung.The functional parts of the turbomolecular pump can be, for example, an electric motor, an accessory connection, a data interface, a flood inlet, a barrier or coolant connection, a rotor shaft or structural elements forming gas flow paths. The pre-pumping stage is preferably dependent on the energy supply of the turbomolecular pumping stage and possibly further pumping stages and shares a common control with this pumping stage or these pumping stages.

Gemäß einer weiteren Ausführungsform ist die Vorpumpstufe vom Typ einer Spiral- oder Scrollvakuumpumpe.According to a further embodiment, the pre-pump stage is of the type of a spiral or scroll vacuum pump.

Spiral- oder Scrollvakuumpumpen weisen in der Regel sichelförmige Schöpfräume auf, die durch einen im Querschnitt spiralförmigen Rotor im Eingriff mit einem gleichartigen spiralförmigen Stator gebildet werden, wobei der Rotor durch einen exzentrischen Antrieb in eine orbitierende Bewegung versetzt wird. Dieser Pumpentyp basiert folglich auf einer orbitierenden Pumpantriebsbewegung.Spiral or scroll vacuum pumps usually have crescent-shaped scoop spaces, which are formed by a rotor with a spiral cross-section in engagement with a similar spiral-shaped stator, the rotor being set into an orbiting movement by an eccentric drive. This type of pump is therefore based on an orbiting pump drive movement.

Die Vorpumpstufe ist von einem Typ, der von einer Seitenkanal- oder Regenerationsvakuumpumpe verschieden ist.The priming stage is of a type different from a side channel or regeneration vacuum pump.

Bei der Seitenkanalpumpe wird Leistung von einem konzentrisch im Gehäuse rotierenden Läufer auf ein zu förderndes Medium in einem neben dem Läufer angeordneten Seitenkanal übertragen. Während des Umlaufs bewegt sich das Medium mehrfach zwischen einzelnen Bereichen des Läufers sowie dem Seitenkanal hin und her. Durch Impulsaustausch kommt es zu einer Energieübertragung zwischen dem Medium, das annähernd mit der Umlaufgeschwindigkeit des Läufers rotiert, und dem Medium, das langsamer im Seitenkanal strömt. Auf diesem Impulsaustausch beruht die Förderleistung. Dieser Pumpentyp basiert folglich auf einer rotierenden Pumpantriebsbewegung.In the side channel pump, power is transferred from a rotor rotating concentrically in the housing to a medium to be pumped in a side channel arranged next to the rotor. During circulation, the medium moves back and forth several times between individual areas of the rotor and the side channel. Through momentum exchange, energy is transferred between the medium, which rotates at approximately the rotational speed of the rotor, and the medium, which flows more slowly in the side channel. The delivery performance is based on this exchange of impulses. This type of pump is therefore based on a rotating pump drive movement.

Es hat sich herausgestellt, dass die oben jeweils als Weiterbildung der Erfindung genannten Pumpentypen für eine erfindungsgemäße Integration in eine Turbomolekularpumpe besonders geeignet sind.It has been found that the pump types mentioned above as further developments of the invention are particularly suitable for integration according to the invention into a turbomolecular pump.

Vorzugsweise ist die Vorpumpstufe völlig unabhängig von der Lage der Rotorwelle der Turbomolekularpumpstufe in die Turbomolekularpumpe integriert. Dies kann insbesondere eine Nachrüstung bereits bestehender Turbomolekularpumpen mit einer integrierten Vorpumpstufe vereinfachen. Beispielsweise kann es genügen, nur einige wenige Bauteile, z.B. das Gehäuse, einer bestehenden Turbomolekularpumpe zu modifizieren, um eine Vorpumpstufe zu integrieren.Preferably, the pre-pumping stage is integrated into the turbomolecular pump completely independently of the position of the rotor shaft of the turbomolecular pumping stage. This can in particular simplify retrofitting existing turbomolecular pumps with an integrated pre-pump stage. For example, it may be sufficient to modify only a few components, e.g. the housing, of an existing turbomolecular pump in order to integrate a pre-pump stage.

Die Vorpumpstufe umfasst ein Gehäuse, das zumindest teilweise von dem Pumpengehäuse gebildet ist.The pre-pump stage comprises a housing which is at least partially formed by the pump housing.

Vorzugsweise ist/sind zumindest eine, bevorzugt drei, insbesondere fünf Gehäuseseite(n) des Gehäuses der Vorpumpstufe zumindest teilweise von dem Pumpengehäuse gebildet. Das Gehäuse der Vorpumpstufe kann dazu beispielsweise mit einer offenen Gehäuseseite auf das Pumpengehäuse aufgesetzt oder mit mehreren offenen Gehäuseseiten in eine entsprechende Aufnahme des Pumpengehäuses eingesetzt oder eingeschoben sein.Preferably, at least one, preferably three, in particular five housing side(s) of the housing of the pre-pump stage is/are at least partially formed by the pump housing. For this purpose, the housing of the pre-pump stage can, for example, be placed on the pump housing with one open housing side or inserted or pushed into a corresponding receptacle of the pump housing with several open housing sides.

Die Vorpumpstufe kann auch innerhalb des Pumpengehäuses von einem Gehäuse zumindest teilweise umschlossen sein, insbesondere um eine Abgrenzung hin zu weiteren Funktionsteilen der Turbomolekularpumpstufe zu realisieren.The pre-pump stage can also be at least partially enclosed by a housing within the pump housing, in particular in order to achieve a demarcation from further functional parts of the turbomolecular pump stage.

Das Gehäuse der Vorpumpstufe kann mit dem Pumpengehäuse durch Befestigungsmittel wie Schrauben, Nieten oder Klebstoff verbunden sein.The housing of the pre-pump stage can be connected to the pump housing by fasteners such as screws, rivets or adhesive.

Gemäß einer Ausführungsform ist die Vorpumpstufe oder zumindest eine pumpaktive Struktur der Vorpumpstufe im Pumpengehäuse oder am Pumpengehäuse angeordnet.According to one embodiment, the pre-pumping stage or at least one pump-active structure of the pre-pumping stage is arranged in the pump housing or on the pump housing.

Besonders bevorzugt ist die Vorpumpstufe im Pumpengehäuse bzw. innerhalb des Pumpengehäuses angeordnet, d.h. die Vorpumpstufe ist vorzugsweise vollständig von dem Pumpengehäuse umgeben. Auf diese Weise entfallen zusätzliche Befestigungsmittel zwischen dem Pumpengehäuse und einem Gehäuse der Vorpumpstufe. Ferner erhöht dies die Kompaktheit bzw. die Funktionsdichte der Turbomolekularpumpe, da keine zusätzlichen ab- oder vorvorstehenden Auf- oder Ansätze auf einer Außenfläche des Pumpengehäuses vorhanden sind. Dies sorgt auch für eine verbesserte Handhabung und eine erleichterte Installation der Turbomolekularpumpe.Particularly preferably, the pre-pumping stage is arranged in the pump housing or within the pump housing, ie the pre-pumping stage is preferably completely surrounded by the pump housing. In this way, additional fastening means between the pump housing and a housing of the pre-pump stage are eliminated. Furthermore, this increases the compactness or the functional density of the turbomolecular pump, since there are no additional protruding or projecting surfaces Approaches are present on an outer surface of the pump housing. This also ensures improved handling and easier installation of the turbomolecular pump.

Zusätzlich zu der pumpaktiven Struktur der Vorvakuumpumpe, wie beispielsweise zwei miteinander im Eingriff stehende spiralförmige Förderelemente einer Spiraloder Scrollvakuumpumpe, kann auch ein gegebenenfalls vorhandener Antrieb der Vorpumpstufe im oder am Pumpengehäuse angeordnet sein.In addition to the pump-active structure of the fore-vacuum pump, such as two meshing spiral-shaped conveying elements of a spiral or scroll vacuum pump, an optional drive of the fore-pump stage can also be arranged in or on the pump housing.

Gemäß einer weiteren Ausführungsform ist die Vorpumpstufe oder zumindest eine pumpaktive Struktur der Vorpumpstufe zumindest teilweise von dem Pumpengehäuse gebildet.According to a further embodiment, the pre-pumping stage or at least a pump-active structure of the pre-pumping stage is at least partially formed by the pump housing.

Beispielsweise kann der spiralförmige Stator einer Spiral- oder Scrollvakuumpumpe als integraler Bestandteil des Pumpengehäuses ausgebildet sein.For example, the spiral stator of a spiral or scroll vacuum pump can be designed as an integral part of the pump housing.

Gemäß einer weiteren Ausführungsform ist die Vorpumpstufe um ein Vielfaches, wenigstens um das 5- bis 10-fache, bevorzugt um das 10- bis 15-fache, kleiner als das Pumpengehäuse. Vorzugsweise nimmt die Vorpumpstufe nur etwa ein Fünftel bis ein Zehntel, insbesondere ein Zehntel bis ein Fünfzehntel, des Gesamtvolumens des Pumpengehäuses ein.According to a further embodiment, the pre-pump stage is many times smaller than the pump housing, at least 5 to 10 times, preferably 10 to 15 times. The pre-pumping stage preferably only takes up about a fifth to a tenth, in particular a tenth to a fifteenth, of the total volume of the pump housing.

Gemäß einer Ausführungsform ist die Vorpumpstufe bezüglich der Drehachse der Rotorwelle der Turbomolekularpumpstufe asymmetrisch und/oder exzentrisch angeordnet. Insbesondere ist die Anordnung der Vorpumpstufe unabhängig von der Lage der Rotorwelle der Turbomolekularpumpstufe.According to one embodiment, the pre-pump stage is arranged asymmetrically and/or eccentrically with respect to the axis of rotation of the rotor shaft of the turbomolecular pump stage. In particular, the arrangement of the pre-pump stage is independent of the position of the rotor shaft of the turbomolecular pump stage.

Die Vorpumpstufe kann innerhalb eines begrenzten Winkelbereiches um die Drehachse der Rotorwelle der Turbomolekularpumpstufe angeordnet sein, wobei der Winkelbereich weniger als 180°, insbesondere weniger als 135°, bevorzugt weniger als 90°, beträgt.The pre-pumping stage can be arranged within a limited angular range around the axis of rotation of the rotor shaft of the turbomolecular pumping stage, whereby the Angular range is less than 180°, in particular less than 135°, preferably less than 90°.

Gemäß einer weiteren Ausführungsform bildet ein Auslassbereich der Vorpumpstufe den Pumpenauslass. Alternativ kann der Auslassbereich der Vorpumpstufe mit dem Pumpenauslass direkt oder über einen Gasströmungsweg verbunden sein, der durch ein oder mehrere Gehäuseteile und/oder stationäre, feste, innerhalb des Pumpengehäuses befindliche Strukturelemente begrenzt ist.According to a further embodiment, an outlet region of the pre-pumping stage forms the pump outlet. Alternatively, the outlet region of the pre-pump stage may be connected to the pump outlet directly or via a gas flow path that is delimited by one or more housing parts and/or stationary, fixed structural elements located within the pump housing.

Bei dem Gasströmungsweg handelt es sich z.B. um einen Kanal, der insbesondere in einer Wandung des Pumpengehäuses ausgebildet ist.The gas flow path is, for example, a channel which is formed in particular in a wall of the pump housing.

Vorzugsweise ist der Einlassbereich der Vorpumpstufe direkt mit dem Auslassbereich der Turbomolekularpumpstufe oder mit einem Auslassbereich einer weiteren zwischen der Turbomolekularpumpstufe und der Vorpumpstufe angeordneten Pumpstufe verbunden.Preferably, the inlet region of the pre-pump stage is connected directly to the outlet region of the turbomolecular pump stage or to an outlet region of a further pump stage arranged between the turbo-molecular pump stage and the pre-pump stage.

Bei der weiteren Pumpstufe handelt es sich insbesondere um eine Molekularpumpstufe, beispielsweise eine Siegbahn- und/oder Holweck-Pumpstufe. Es können zwischen der Turbomolekularpumpstufe und der Vorpumpstufe mehrere weitere Pumpstufen angeordnet sein.The further pump stage is in particular a molecular pump stage, for example a Siegbahn and/or Holweck pump stage. Several further pump stages can be arranged between the turbomolecular pump stage and the pre-pump stage.

Des Weiteren kann vorgesehen sein, dass ein Gasströmungsweg zwischen dem Auslassbereich der Turbomolekularpumpe oder dem Auslassbereich der weiteren, zwischen der Turbomolekularpumpstufe und der Vorpumpstufe angeordneten Pumpstufe einerseits und dem Einlassbereich der Vorpumpstufe andererseits durch ein oder mehrere Gehäuseteile und/oder stationäre, feste, innerhalb des Pumpengehäuses befindliche Strukturelemente begrenzt ist.Furthermore, it can be provided that a gas flow path between the outlet region of the turbomolecular pump or the outlet region of the further pump stage arranged between the turbomolecular pump stage and the pre-pump stage on the one hand and the inlet region of the pre-pump stage on the other hand by one or more housing parts and / or stationary, fixed ones within the pump housing structural elements located is limited.

Eine bevorzugte Ausführungsform der erfindungsgemäßen Turbomolekularpumpe weist eine Turbomolekularpumpstufe, eine Molekularpumpstufe, insbesondere eine Holweck-Pumpstufe, und eine Vorpumpstufe auf. Bei der Vorpumpstufe handelt es sich um eine im Vergleich zu den Abmessungen des Pumpengehäuses der Turbomolekularpumpe miniaturisierte Spiral- oder Scrollvakuumpumpe, deren spiralförmiger Stator durch ein Strukturelement des Pumpengehäuses gebildet ist. Die Spiral- oder Scrollvakuumpumpe weist vorzugsweise einen eigenen elektromotorischen Antrieb auf, der seine Energie aus der Energieversorgung der Turbomolekularpumpstufe und/oder der Molekularpumpstufe bezieht. Die Spiral- oder Scrollvakuumpumpe einschließlich ihres Antriebsmotors ist im Pumpengehäuse angeordnet und der Auslassbereich der Spiral- oder Scrollvakuumpumpe ist über einen Gasströmungsweg, der insbesondere als einfache Bohrung ausgeführt ist, mit dem Pumpenauslass verbunden.A preferred embodiment of the turbomolecular pump according to the invention has a turbomolecular pump stage, a molecular pump stage, in particular a Holweck pump stage, and a pre-pump stage. The pre-pump stage is a miniaturized spiral or scroll vacuum pump compared to the dimensions of the pump housing of the turbomolecular pump, the spiral-shaped stator of which is formed by a structural element of the pump housing. The spiral or scroll vacuum pump preferably has its own electric motor drive, which draws its energy from the energy supply of the turbomolecular pump stage and/or the molecular pump stage. The spiral or scroll vacuum pump including its drive motor is arranged in the pump housing and the outlet area of the spiral or scroll vacuum pump is connected to the pump outlet via a gas flow path, which is in particular designed as a simple bore.

Vorzugsweise sind die äußeren Abmessungen einer erfindungsgemäßen Turbomolekularpumpe zumindest im Wesentlichen gleich den Abmessungen einer entsprechenden herkömmlichen Turbomolekularpumpe, die keine integrierte Vorpumpstufe umfasst.Preferably, the external dimensions of a turbomolecular pump according to the invention are at least essentially the same as the dimensions of a corresponding conventional turbomolecular pump which does not include an integrated pre-pump stage.

Die erfindungsgemäße Integration der Vorpumpstufe in die Turbomolekularpumpe erhöht wesentlich die Kompaktheit eines Hochvakuumpumpensystems, das bislang üblicherweise aus zumindest zwei separaten Komponenten - der Turbomolekularpumpe und der Vorvakuumpumpe - besteht. Der Platzbedarf wird dadurch erheblich verringert. Für den Anwender vereinfacht sich insbesondere die Installation, da eine Verkabelung zweier separater Komponenten entfällt. Die durch die Integration der Vorpumpstufe realisierten kurzen Gasströmungswege innerhalb des Turbomolekularpumpengehäuses vermindern ferner das Risiko von Leckagen.The inventive integration of the pre-pump stage into the turbomolecular pump significantly increases the compactness of a high vacuum pump system, which previously usually consisted of at least two separate components - the turbomolecular pump and the fore-vacuum pump. This significantly reduces the space requirement. Installation is particularly simplified for the user because there is no need to wire two separate components. The short gas flow paths within the turbomolecular pump housing created by integrating the pre-pump stage also reduce the risk of leaks.

Nachfolgend wird die Erfindung beispielhaft anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen:

Fig. 1
eine perspektivische Ansicht einer Turbomolekularpumpe,
Fig. 2
eine Ansicht der Unterseite der Turbomolekularpumpe von Fig. 1,
Fig. 3
einen Querschnitt der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie A-A,
Fig. 4
eine Querschnittsansicht der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie B-B,
Fig. 5
eine Querschnittsansicht der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie C-C,
Fig. 6
eine schematische Längsschnittansicht einer erfindungsgemäßen Turbomolekularpumpe,
Fig. 7
eine schematische Querschnittsansicht der Turbomolekularpumpe von Fig. 6 und,
Fig. 8-11
verschiedene Ausführungsformen einer erfindungsgemäßen Turbomolekularpumpe.
The invention is described below by way of example using advantageous embodiments with reference to the attached figures. Show it:
Fig. 1
a perspective view of a turbomolecular pump,
Fig. 2
a view of the bottom of the turbomolecular pump of Fig. 1 ,
Fig. 3
a cross section of the turbomolecular pump along the in Fig. 2 shown section line AA,
Fig. 4
a cross-sectional view of the turbomolecular pump along the in Fig. 2 shown cutting line BB,
Fig. 5
a cross-sectional view of the turbomolecular pump along the in Fig. 2 shown cutting line CC,
Fig. 6
a schematic longitudinal section view of a turbomolecular pump according to the invention,
Fig. 7
a schematic cross-sectional view of the turbomolecular pump of Fig. 6 and,
Fig. 8-11
various embodiments of a turbomolecular pump according to the invention.

Die in Fig. 1 gezeigte Turbomolekularpumpe 111 umfasst einen von einem Einlassflansch 113 umgebenen Pumpeneinlass 115, an welchen in an sich bekannter Weise ein nicht dargestellter Rezipient angeschlossen werden kann. Das Gas aus dem Rezipienten kann über den Pumpeneinlass 115 aus dem Rezipienten gesaugt und durch die Pumpe hindurch zu einem Pumpenauslass 117 gefördert werden, an den eine Vorvakuumpumpe, wie etwa eine Drehschieberpumpe, angeschlossen sein kann.In the Fig. 1 Turbomolecular pump 111 shown comprises a pump inlet 115 surrounded by an inlet flange 113, to which a recipient, not shown, can be connected in a manner known per se. The gas from the recipient can be sucked out of the recipient via the pump inlet 115 and conveyed through the pump to a pump outlet 117 to which a backing pump, such as a rotary vane pump, can be connected.

Der Einlassflansch 113 bildet bei der Ausrichtung der Vakuumpumpe gemäß Fig. 1 das obere Ende des Gehäuses 119 der Vakuumpumpe 111. Das Gehäuse 119 umfasst ein Unterteil 121, an welchem seitlich ein Elektronikgehäuse 123 angeordnet ist. In dem Elektronikgehäuse 123 sind elektrische und/oder elektronische Komponenten der Vakuumpumpe 111 untergebracht, z.B. zum Betreiben eines in der Vakuumpumpe angeordneten Elektromotors 125 (vgl. Fig. 3). Am Elektronikgehäuse 123 sind mehrere Anschlüsse 127 für Zubehör vorgesehen. Außerdem sind eine Datenschnittstelle 129, z.B. gemäß dem RS485-Standard, und ein Stromversorgungsanschluss 131 am Elektronikgehäuse 123 angeordnet.The inlet flange 113 forms the alignment of the vacuum pump according to Fig. 1 the upper end of the housing 119 of the vacuum pump 111. The housing 119 comprises a lower part 121, on which an electronics housing 123 is arranged laterally. Electrical and/or electronic components of the vacuum pump 111 are accommodated in the electronics housing 123, for example for operating an electric motor 125 arranged in the vacuum pump (cf. Fig. 3 ). Several connections 127 for accessories are provided on the electronics housing 123. In addition, a data interface 129, for example according to the RS485 standard, and a power supply connection 131 are arranged on the electronics housing 123.

Am Gehäuse 119 der Turbomolekularpumpe 111 ist ein Fluteinlass 133, insbesondere in Form eines Flutventils, vorgesehen, über den die Vakuumpumpe 111 belüftet werden kann. Im Bereich des Unterteils 121 ist ferner noch ein Sperrgasanschluss 135, der auch als Spülgasanschluss bezeichnet wird, angeordnet, über welchen Spülgas zum Schutz des Elektromotors 125 vor dem von der Pumpe geförderten Gas in den Motorraum 137, in welchem der Elektromotor 125 in der Vakuumpumpe 111 untergebracht ist, gebracht werden kann (vgl. Fig. 3). Im Unterteil 121 sind ferner noch zwei Kühlmittelanschlüsse 139 angeordnet, wobei einer der Kühlmittelanschlüsse als Einlass und der andere Kühlmittelanschluss als Auslass für Kühlmittel vorgesehen ist, das zu Kühlzwecken durch die Vakuumpumpe geleitet werden kann.A flood inlet 133, in particular in the form of a flood valve, is provided on the housing 119 of the turbomolecular pump 111, via which the vacuum pump 111 can be ventilated. In the area of the lower part 121 there is also a sealing gas connection 135, which is also referred to as a flushing gas connection, via which flushing gas to protect the electric motor 125 from the gas delivered by the pump into the engine compartment 137, in which the electric motor 125 in the vacuum pump 111 accommodated, can be brought (cf. Fig. 3 ). Two coolant connections 139 are also arranged in the lower part 121, one of the coolant connections being provided as an inlet and the other coolant connection as an outlet for coolant, which can be passed through the vacuum pump for cooling purposes.

Die untere Seite 141 der Vakuumpumpe kann als Standfläche dienen, sodass die Vakuumpumpe 111 auf der Unterseite 141 stehend betrieben werden kann. Die Vakuumpumpe 111 kann aber auch über den Einlassflansch 113 an einem Rezipienten befestigt werden und somit gewissermaßen hängend betrieben werden. Außerdem kann die Vakuumpumpe 111 so gestaltet sein, dass sie auch in Betrieb genommen werden kann, wenn sie auf andere Weise ausgerichtet ist als in Fig. 1 gezeigt ist. Es lassen sich auch Ausführungsformen der Vakuumpumpe realisieren, bei der die Unterseite 141 nicht nach unten, sondern zur Seite gewandt oder nach oben gerichtet angeordnet werden kann.The lower side 141 of the vacuum pump can serve as a standing surface, so that the vacuum pump 111 can be operated standing on the underside 141. The vacuum pump 111 can also be attached to a recipient via the inlet flange 113 and can therefore be operated hanging, so to speak. In addition, the vacuum pump 111 can be designed so that it is also in operation can be taken if it is oriented in a different way than in Fig. 1 is shown. Embodiments of the vacuum pump can also be implemented in which the underside 141 can be arranged not facing downwards, but facing to the side or facing upwards.

An der Unterseite 141, die in Fig. 2 dargestellt ist, sind noch diverse Schrauben 143 angeordnet, mittels denen hier nicht weiter spezifizierte Bauteile der Vakuumpumpe aneinander befestigt sind. Beispielsweise ist ein Lagerdeckel 145 an der Unterseite 141 befestigt.At the bottom 141, the in Fig. 2 is shown, various screws 143 are arranged, by means of which components of the vacuum pump that are not specified here are fastened to one another. For example, a bearing cover 145 is attached to the underside 141.

An der Unterseite 141 sind außerdem Befestigungsbohrungen 147 angeordnet, über welche die Pumpe 111 beispielsweise an einer Auflagefläche befestigt werden kann.Fastening holes 147 are also arranged on the underside 141, via which the pump 111 can be fastened to a support surface, for example.

In den Fig. 2 bis 5 ist eine Kühlmittelleitung 148 dargestellt, in welcher das über die Kühlmittelanschlüsse 139 ein- und ausgeleitete Kühlmittel zirkulieren kann.In the Fig. 2 to 5 a coolant line 148 is shown, in which the coolant introduced and discharged via the coolant connections 139 can circulate.

Wie die Schnittdarstellungen der Fig. 3 bis 5 zeigen, umfasst die Vakuumpumpe mehrere Prozessgaspumpstufen zur Förderung des an dem Pumpeneinlass 115 anstehenden Prozessgases zu dem Pumpenauslass 117.Like the sectional views of the Fig. 3 to 5 show, the vacuum pump comprises several process gas pumping stages for conveying the process gas present at the pump inlet 115 to the pump outlet 117.

In dem Gehäuse 119 ist ein Rotor 149 angeordnet, der eine um eine Rotationsachse 151 drehbare Rotorwelle 153 aufweist.A rotor 149 is arranged in the housing 119 and has a rotor shaft 153 which can be rotated about a rotation axis 151.

Die Turbomolekularpumpe 111 umfasst mehrere pumpwirksam miteinander in Serie geschaltete turbomolekulare Pumpstufen mit mehreren an der Rotorwelle 153 befestigten radialen Rotorscheiben 155 und zwischen den Rotorscheiben 155 angeordneten und in dem Gehäuse 119 festgelegten Statorscheiben 157. Dabei bilden eine Rotorscheibe 155 und eine benachbarte Statorscheibe 157 jeweils eine turbomolekulare Pumpstufe. Gemeinsam bilden die Paare aus Rotorscheibe 155 und Statorscheibe 157 eine Turbomolekularpumpstufe 250. Die Statorscheiben 157 sind durch Abstandsringe 159 in einem gewünschten axialen Abstand zueinander gehalten.The turbomolecular pump 111 comprises a plurality of turbomolecular pump stages connected in series with one another and having a plurality of radial rotor disks 155 attached to the rotor shaft 153 and stator disks 157 arranged between the rotor disks 155 and fixed in the housing 119. A rotor disk 155 and an adjacent stator disk 157 each form a turbomolecular pump pump stage. Together, the pairs form rotor disk 155 and stator disk 157, a turbomolecular pump stage 250. The stator disks 157 are held at a desired axial distance from one another by spacer rings 159.

Die Vakuumpumpe umfasst außerdem in radialer Richtung ineinander angeordnete und pumpwirksam miteinander in Serie geschaltete Holweck-Pumpstufen. Der Rotor der Holweck-Pumpstufen umfasst eine an der Rotorwelle 153 angeordnete Rotornabe 161 und zwei an der Rotornabe 161 befestigte und von dieser getragene zylindermantelförmige Holweck-Rotorhülsen 163, 165, die koaxial zur Rotationsachse 151 orientiert und in radialer Richtung ineinander geschachtelt sind. Ferner sind zwei zylindermantelförmige Holweck-Statorhülsen 167, 169 vorgesehen, die ebenfalls koaxial zu der Rotationsachse 151 orientiert und in radialer Richtung gesehen ineinander geschachtelt sind.The vacuum pump also includes Holweck pump stages that are arranged one inside the other in the radial direction and are effectively connected in series. The rotor of the Holweck pump stages includes a rotor hub 161 arranged on the rotor shaft 153 and two cylindrical jacket-shaped Holweck rotor sleeves 163, 165 which are fastened to the rotor hub 161 and supported by it, which are oriented coaxially to the axis of rotation 151 and nested in one another in the radial direction. Furthermore, two cylindrical jacket-shaped Holweck stator sleeves 167, 169 are provided, which are also oriented coaxially to the axis of rotation 151 and are nested within one another when viewed in the radial direction.

Die pumpaktiven Oberflächen der Holweck-Pumpstufen sind durch die Mantelflächen, also durch die radialen Innen- und/oder Außenflächen, der Holweck-Rotorhülsen 163, 165 und der Holweck-Statorhülsen 167, 169 gebildet. Die radiale Innenfläche der äußeren Holweck-Statorhülse 167 liegt der radialen Außenfläche der äußeren Holweck-Rotorhülse 163 unter Ausbildung eines radialen Holweck-Spalts 171 gegenüber und bildet mit dieser die der Turbomolekularpumpen nachfolgende erste Holweck-Pumpstufe. Die radiale Innenfläche der äußeren Holweck-Rotorhülse 163 steht der radialen Außenfläche der inneren Holweck-Statorhülse 169 unter Ausbildung eines radialen Holweck-Spalts 173 gegenüber und bildet mit dieser eine zweite Holweck-Pumpstufe. Die radiale Innenfläche der inneren Holweck-Statorhülse 169 liegt der radialen Außenfläche der inneren Holweck-Rotorhülse 165 unter Ausbildung eines radialen Holweck-Spalts 175 gegenüber und bildet mit dieser die dritte Holweck-Pumpstufe.The pump-active surfaces of the Holweck pump stages are formed by the lateral surfaces, i.e. by the radial inner and/or outer surfaces, of the Holweck rotor sleeves 163, 165 and the Holweck stator sleeves 167, 169. The radial inner surface of the outer Holweck stator sleeve 167 lies opposite the radial outer surface of the outer Holweck rotor sleeve 163, forming a radial Holweck gap 171 and with this forms the first Holweck pump stage following the turbomolecular pumps. The radial inner surface of the outer Holweck rotor sleeve 163 faces the radial outer surface of the inner Holweck stator sleeve 169 to form a radial Holweck gap 173 and forms a second Holweck pump stage with this. The radial inner surface of the inner Holweck stator sleeve 169 lies opposite the radial outer surface of the inner Holweck rotor sleeve 165, forming a radial Holweck gap 175 and with this forms the third Holweck pump stage.

Am unteren Ende der Holweck-Rotorhülse 163 kann ein radial verlaufender Kanal vorgesehen sein, über den der radial außenliegende Holweck-Spalt 171 mit dem mittleren Holweck-Spalt 173 verbunden ist. Außerdem kann am oberen Ende der inneren Holweck-Statorhülse 169 ein radial verlaufender Kanal vorgesehen sein, über den der mittlere Holweck-Spalt 173 mit dem radial innenliegenden Holweck-Spalt 175 verbunden ist. Dadurch werden die ineinander geschachtelten Holweck-Pumpstufen in Serie miteinander geschaltet. Am unteren Ende der radial innenliegenden Holweck-Rotorhülse 165 kann ferner ein Verbindungskanal 179 zum Auslass 117 vorgesehen sein.At the lower end of the Holweck rotor sleeve 163, a radially extending channel can be provided, via which the radially outer Holweck gap 171 communicates with the middle Holweck gap 173 is connected. In addition, a radially extending channel can be provided at the upper end of the inner Holweck stator sleeve 169, via which the middle Holweck gap 173 is connected to the radially inner Holweck gap 175. This means that the nested Holweck pump stages are connected in series with one another. At the lower end of the radially inner Holweck rotor sleeve 165, a connecting channel 179 to the outlet 117 can also be provided.

Die vorstehend genannten pumpaktiven Oberflächen der Holweck-Statorhülsen 163, 165 weisen jeweils mehrere spiralförmig um die Rotationsachse 151 herum in axialer Richtung verlaufende Holweck-Nuten auf, während die gegenüberliegenden Mantelflächen der Holweck-Rotorhülsen 163, 165 glatt ausgebildet sind und das Gas zum Betrieb der Vakuumpumpe 111 in den Holweck-Nuten vorantreiben.The above-mentioned pump-active surfaces of the Holweck stator sleeves 163, 165 each have a plurality of Holweck grooves running spirally around the axis of rotation 151 in the axial direction, while the opposite lateral surfaces of the Holweck rotor sleeves 163, 165 are smooth and the gas is used to operate the Drive vacuum pump 111 into the Holweck grooves.

Zur drehbaren Lagerung der Rotorwelle 153 sind ein Wälzlager 181 im Bereich des Pumpenauslasses 117 und ein Permanentmagnetlager 183 im Bereich des Pumpeneinlasses 115 vorgesehen.To rotatably support the rotor shaft 153, a rolling bearing 181 is provided in the area of the pump outlet 117 and a permanent magnet bearing 183 in the area of the pump inlet 115.

Im Bereich des Wälzlagers 181 ist an der Rotorwelle 153 eine konische Spritzmutter 185 mit einem zu dem Wälzlager 181 hin zunehmenden Außendurchmesser vorgesehen. Die Spritzmutter 185 steht mit mindestens einem Abstreifer eines Betriebsmittelspeichers in gleitendem Kontakt. Der Betriebsmittelspeicher umfasst mehrere aufeinander gestapelte saugfähige Scheiben 187, die mit einem Betriebsmittel für das Wälzlager 181, z.B. mit einem Schmiermittel, getränkt sind.In the area of the rolling bearing 181, a conical injection nut 185 with an outer diameter increasing towards the rolling bearing 181 is provided on the rotor shaft 153. The injection nut 185 is in sliding contact with at least one wiper of an operating medium storage. The operating medium storage comprises several absorbent disks 187 stacked on top of one another, which are soaked with an operating medium for the rolling bearing 181, for example with a lubricant.

Im Betrieb der Vakuumpumpe 111 wird das Betriebsmittel durch kapillare Wirkung von dem Betriebsmittelspeicher über den Abstreifer auf die rotierende Spritzmutter 185 übertragen und in Folge der Zentrifugalkraft entlang der Spritzmutter 185 in Richtung des größer werdenden Außendurchmessers der Spritzmutter 185 zu dem Wälzlager 181 hin gefördert, wo es z.B. eine schmierende Funktion erfüllt.During operation of the vacuum pump 111, the operating fluid is transferred by capillary action from the operating fluid storage via the wiper to the rotating injection nut 185 and, as a result of the centrifugal force, is conveyed along the injection nut 185 in the direction of the increasing outer diameter of the injection nut 185 to the rolling bearing 181, where it e.g. fulfills a lubricating function.

Das Wälzlager 181 und der Betriebsmittelspeicher sind durch einen wannenförmigen Einsatz 189 und den Lagerdeckel 145 in der Vakuumpumpe eingefasst.The rolling bearing 181 and the operating fluid storage are enclosed in the vacuum pump by a trough-shaped insert 189 and the bearing cover 145.

Das Permanentmagnetlager 183 umfasst eine rotorseitige Lagerhälfte 191 und eine statorseitige Lagerhälfte 193, welche jeweils einen Ringstapel aus mehreren in axialer Richtung aufeinander gestapelten permanentmagnetischen Ringen 195, 197 umfassen. Die Ringmagnete 195, 197 liegen einander unter Ausbildung eines radialen Lagerspalts 199 gegenüber, wobei die rotorseitigen Ringmagnete 195 radial außen und die statorseitigen Ringmagnete 197 radial innen angeordnet sind. Das in dem Lagerspalt 199 vorhandene magnetische Feld ruft magnetische Abstoßungskräfte zwischen den Ringmagneten 195, 197 hervor, welche eine radiale Lagerung der Rotorwelle 153 bewirken. Die rotorseitigen Ringmagnete 195 sind von einem Trägerabschnitt 201 der Rotorwelle 153 getragen, welcher die Ringmagnete 195 radial außenseitig umgibt. Die statorseitigen Ringmagnete 197 sind von einem statorseitigen Trägerabschnitt 203 getragen, welcher sich durch die Ringmagnete 197 hindurch erstreckt und an radialen Streben 205 des Gehäuses 119 aufgehängt ist. Parallel zu der Rotationsachse 151 sind die rotorseitigen Ringmagnete 195 durch ein mit dem Trägerabschnitt 203 gekoppeltes Deckelelement 207 festgelegt. Die statorseitigen Ringmagnete 197 sind parallel zu der Rotationsachse 151 in der einen Richtung durch einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 209 sowie einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 211 festgelegt. Zwischen dem Befestigungsring 211 und den Ringmagneten 197 kann außerdem eine Tellerfeder 213 vorgesehen sein.The permanent magnet bearing 183 comprises a rotor-side bearing half 191 and a stator-side bearing half 193, each of which comprises a ring stack made up of a plurality of permanent magnetic rings 195, 197 stacked on top of one another in the axial direction. The ring magnets 195, 197 lie opposite one another to form a radial bearing gap 199, with the rotor-side ring magnets 195 being arranged radially on the outside and the stator-side ring magnets 197 being arranged radially on the inside. The magnetic field present in the bearing gap 199 causes magnetic repulsion forces between the ring magnets 195, 197, which cause the rotor shaft 153 to be supported radially. The rotor-side ring magnets 195 are carried by a carrier section 201 of the rotor shaft 153, which surrounds the ring magnets 195 on the radial outside. The stator-side ring magnets 197 are supported by a stator-side support section 203, which extends through the ring magnets 197 and is suspended on radial struts 205 of the housing 119. The rotor-side ring magnets 195 are fixed parallel to the rotation axis 151 by a cover element 207 coupled to the carrier section 203. The stator-side ring magnets 197 are fixed parallel to the rotation axis 151 in one direction by a fastening ring 209 connected to the carrier section 203 and a fastening ring 211 connected to the carrier section 203. A disc spring 213 can also be provided between the fastening ring 211 and the ring magnets 197.

Innerhalb des Magnetlagers ist ein Not- bzw. Fanglager 215 vorgesehen, welches im normalen Betrieb der Vakuumpumpe 111 ohne Berührung ruht und erst bei einer übermäßigen radialen Auslenkung des Rotors 149 relativ zu dem Stator in Eingriff gelangt, um einen radialen Anschlag für den Rotor 149 zu bilden, damit eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen verhindert wird. Das Fanglager 215 ist als ungeschmiertes Wälzlager ausgebildet und bildet mit dem Rotor 149 und/oder dem Stator einen radialen Spalt, welcher bewirkt, dass das Fanglager 215 im normalen Pumpbetrieb außer Eingriff ist. Die radiale Auslenkung, bei der das Fanglager 215 in Eingriff gelangt, ist groß genug bemessen, sodass das Fanglager 215 im normalen Betrieb der Vakuumpumpe nicht in Eingriff gelangt, und gleichzeitig klein genug, sodass eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen unter allen Umständen verhindert wird.An emergency or safety bearing 215 is provided within the magnetic bearing, which rests without contact during normal operation of the vacuum pump 111 and only comes into engagement when there is an excessive radial deflection of the rotor 149 relative to the stator in order to create a radial stop for the rotor 149 form, thereby preventing a collision between the rotor-side structures and the stator-side structures becomes. The backup bearing 215 is designed as an unlubricated rolling bearing and forms a radial gap with the rotor 149 and/or the stator, which causes the backup bearing 215 to be disengaged during normal pumping operation. The radial deflection at which the backup bearing 215 comes into engagement is large enough so that the backup bearing 215 does not come into engagement during normal operation of the vacuum pump, and at the same time small enough so that a collision of the rotor-side structures with the stator-side structures occurs under all circumstances is prevented.

Die Vakuumpumpe 111 umfasst den Elektromotor 125 zum drehenden Antreiben des Rotors 149. Der Anker des Elektromotors 125 ist durch den Rotor 149 gebildet, dessen Rotorwelle 153 sich durch den Motorstator 217 hindurch erstreckt. Auf den sich durch den Motorstator 217 hindurch erstreckenden Abschnitt der Rotorwelle 153 kann radial außenseitig oder eingebettet eine Permanentmagnetanordnung angeordnet sein. Zwischen dem Motorstator 217 und dem sich durch den Motorstator 217 hindurch erstreckenden Abschnitt des Rotors 149 ist ein Zwischenraum 219 angeordnet, welcher einen radialen Motorspalt umfasst, über den sich der Motorstator 217 und die Permanentmagnetanordnung zur Übertragung des Antriebsmoments magnetisch beeinflussen können.The vacuum pump 111 includes the electric motor 125 for rotating the rotor 149. The armature of the electric motor 125 is formed by the rotor 149, the rotor shaft 153 of which extends through the motor stator 217. A permanent magnet arrangement can be arranged radially on the outside or embedded on the section of the rotor shaft 153 that extends through the motor stator 217. Between the motor stator 217 and the section of the rotor 149 that extends through the motor stator 217, a gap 219 is arranged, which comprises a radial motor gap, via which the motor stator 217 and the permanent magnet arrangement can magnetically influence each other for transmitting the drive torque.

Der Motorstator 217 ist in dem Gehäuse innerhalb des für den Elektromotor 125 vorgesehenen Motorraums 137 festgelegt. Über den Sperrgasanschluss 135 kann ein Sperrgas, das auch als Spülgas bezeichnet wird, und bei dem es sich beispielsweise um Luft oder um Stickstoff handeln kann, in den Motorraum 137 gelangen. Über das Sperrgas kann der Elektromotor 125 vor Prozessgas, z.B. vor korrosiv wirkenden Anteilen des Prozessgases, geschützt werden. Der Motorraum 137 kann auch über den Pumpenauslass 117 evakuiert werden, d.h. im Motorraum 137 herrscht zumindest annäherungsweise der von der am Pumpenauslass 117 angeschlossenen Vorvakuumpumpe bewirkte Vakuumdruck.The motor stator 217 is fixed in the housing within the engine compartment 137 provided for the electric motor 125. A sealing gas, which is also referred to as purge gas and which can be, for example, air or nitrogen, can reach the engine compartment 137 via the sealing gas connection 135. The barrier gas can be used to protect the electric motor 125 from process gas, for example from corrosive components of the process gas. The engine compartment 137 can also be evacuated via the pump outlet 117, ie in the engine compartment 137 there is at least approximately the vacuum pressure caused by the backing vacuum pump connected to the pump outlet 117.

Zwischen der Rotornabe 161 und einer den Motorraum 137 begrenzenden Wandung 221 kann außerdem eine sog. und an sich bekannte Labyrinthdichtung 223 vorgesehen sein, insbesondere um eine bessere Abdichtung des Motorraums 217 gegenüber den radial außerhalb liegenden Holweck-Pumpstufen zu erreichen.A so-called and known labyrinth seal 223 can also be provided between the rotor hub 161 and a wall 221 delimiting the engine compartment 137, in particular in order to achieve a better sealing of the engine compartment 217 compared to the Holweck pump stages located radially outside.

Fig. 6 zeigt schematisch einen möglichen prinzipiellen Aufbau einer erfindungsgemäßen Turbomolekularpumpe 110, die in einem Gehäuse 119 angeordnet eine Turbomolekularpumpstufe 250, eine dieser nachgeschaltete Molekularpumpstufe 270 sowie eine der Molekularpumpstufe 270 nachgeschaltete Vorpumpstufe 300 aufweist. Die Vorpumpstufe 300 weist ein Gehäuse 302 auf, das teilweise von dem Gehäuse 119 gebildet ist. Wie aus der Darstellung der Fig. 6 deutlich wird, ist das Gehäuse 302 der Vorpumpstufe 300 viel kleiner als das Pumpengehäuse 119. Die Vorpumpstufe 300 ist somit in die Turbomolekularpumpe 110 integriert. Fig. 6 shows schematically a possible basic structure of a turbomolecular pump 110 according to the invention, which has a turbomolecular pump stage 250 arranged in a housing 119, a molecular pump stage 270 connected downstream of it and a pre-pump stage 300 connected downstream of the molecular pump stage 270. The pre-pumping stage 300 has a housing 302, which is partially formed by the housing 119. As can be seen from the representation of the Fig. 6 As becomes clear, the housing 302 of the pre-pumping stage 300 is much smaller than the pump housing 119. The pre-pumping stage 300 is thus integrated into the turbomolecular pump 110.

Ein Gasströmungsweg 312 ist mit Pfeilen angedeutet. Aus einem Rezipienten (nicht dargestellt) tritt ein zu pumpendes Gas über einen Einlassbereich 116 in die Turbomolekularpumpstufe 250 ein. Nach dem Passieren eines Auslassbereichs 118 der Turbomolekularpumpstufe 250 tritt das Gas in die Molekularpumpstufe 270 ein und gelangt von deren Auslassbereich 272 in einen Einlassbereich 316 der Vorpumpstufe 300. Die Vorpumpstufe 300 stößt das Gas gegen einen im Vergleich zu einem Vakuum vergleichsweise hohen Druck von mehr als 1 mbar und insbesondere gegen Atmosphärendruck aus, und zwar über einen Auslassbereich 310 der Vorpumpstufe 300. Es kann also die Vorpumpstufe 300 sein, die den Auslass 117 der Pumpe 110 bildet.A gas flow path 312 is indicated by arrows. A gas to be pumped enters the turbomolecular pump stage 250 from a recipient (not shown) via an inlet region 116. After passing through an outlet region 118 of the turbomolecular pumping stage 250, the gas enters the molecular pumping stage 270 and passes from its outlet region 272 into an inlet region 316 of the pre-pumping stage 300. The pre-pumping stage 300 pushes the gas against a comparatively high pressure of more than compared to a vacuum 1 mbar and in particular against atmospheric pressure, namely via an outlet region 310 of the pre-pumping stage 300. It can therefore be the pre-pumping stage 300 that forms the outlet 117 of the pump 110.

Fig. 7 zeigt einen schematischen Querschnitt durch die Turbomolekularpumpe 110 der Fig. 6, der hier der Einfachheit halber quadratisch dargestellt ist. Alternativ kann der Querschnitt kreisförmig sein. Es ist erkennbar, dass die Vorpumpstufe 300 innerhalb eines Winkelbereichs von weniger als 90° um eine Drehachse 151 einer Rotorwelle 153 angeordnet ist. Der Rotorwelle 153 sind sowohl die Turbomolekularpumpstufe 250 als auch die Molekularpumpstufe 270 zugeordnet. Die Anordnung der Vorpumpstufe 300 im Gehäuse 119 ist prinzipiell unabhängig von der Lage der Rotorwelle 153, da die Vorpumpstufe 300 kein Bestandteil der Rotorwelle 153 ist und auch nicht mittels der Rotorwelle 153 angetrieben wird. Fig. 7 shows a schematic cross section through the turbomolecular pump 110 Fig. 6 , which is shown here as a square for simplicity. Alternatively, the cross section can be circular. It can be seen that the pre-pumping stage 300 is arranged within an angular range of less than 90° about an axis of rotation 151 of a rotor shaft 153. The rotor shaft 153 is both the turbomolecular pump stage 250 and the molecular pump stage 270 are assigned. The arrangement of the pre-pumping stage 300 in the housing 119 is in principle independent of the position of the rotor shaft 153, since the pre-pumping stage 300 is not part of the rotor shaft 153 and is not driven by the rotor shaft 153.

Den Fig. 6 und 7 ist zu entnehmen, dass die Vorpumpstufe 300 in einem bodenseitigen Randbereich des Pumpengehäuses 119 angeordnet ist.The Fig. 6 and 7 It can be seen that the pre-pumping stage 300 is arranged in a bottom edge region of the pump housing 119.

Die Fig. 8 bis 10 zeigen jeweils eine erfindungsgemäße Turbomolekularpumpe 110, die sich von der Pumpe gemäß den Fig. 1 bis 5 jeweils im Wesentlichen durch die integrierte Vorpumpstufe 300, die Anordnung des Pumpenauslasses 117 und die Anordnung des Sperrgasanschlusses 135 unterscheiden. Einander entsprechende Bauteile sind - aus Gründen der Übersichtlichkeit nur teilweise - mit identischen Bezugszeichen versehen. Übereinstimmungen zwischen den Pumpen 110 werden zum Teil nur in Verbindung mit einer der Fig. 8 bis 10 erläutert.The Fig. 8 to 10 each show a turbomolecular pump 110 according to the invention, which differs from the pump according to Fig. 1 to 5 each essentially differ by the integrated pre-pump stage 300, the arrangement of the pump outlet 117 and the arrangement of the sealing gas connection 135. Corresponding components are only partially provided with identical reference numbers for reasons of clarity. Matches between the pumps 110 are sometimes only made in connection with one of the Fig. 8 to 10 explained.

Die Turbomolekularpumpe 110 gemäß Fig. 8 umfasst eine Molekularpumpstufe 270 in Form von drei Holweck-Pumpstufen, die der Turbomolekularpumpstufe 250 nachgeschaltet sind. Der Auslassbereich 272 der Molekularpumpstufe 270 ist über einen Gasströmungsweg 312, der als Bohrung in einem Strukturelement des Gehäuses 119 ausgebildet ist, mit dem Einlassbereich der Vorpumpstufe 300 verbunden. Der Auslassbereich 310 der Vorpumpstufe 300 bildet den Pumpenauslass 117, durch welchen das zu pumpende Gas gegen Atmosphärendruck ausgestoßen werden kann.The turbomolecular pump 110 according to Fig. 8 includes a molecular pump stage 270 in the form of three Holweck pump stages, which are connected downstream of the turbomolecular pump stage 250. The outlet region 272 of the molecular pump stage 270 is connected to the inlet region of the pre-pump stage 300 via a gas flow path 312, which is designed as a bore in a structural element of the housing 119. The outlet region 310 of the pre-pumping stage 300 forms the pump outlet 117, through which the gas to be pumped can be expelled against atmospheric pressure.

Bei der Vorpumpstufe 300 handelt es sich z.B. um eine in Fig. 8 nicht näher dargestellte Spiral- oder Scrollvakuumpumpe, die von einem Gehäuse 302 umgeben ist. Teile des Gehäuses 302 sind dabei durch das Gehäuse 119 gebildet. Umgekehrt bildet das Gehäuse 302 der Vorpumpstufe 300 einen Teil des eigentlichen Pumpengehäuses 119. Die Vorpumpstufe 300 kann auch einen anderen Pumpentyp in Kleinbauweise umfassen.The pre-pumping stage 300 is, for example, an in Fig. 8 Spiral or scroll vacuum pump, not shown, which is surrounded by a housing 302. Parts of the housing 302 are formed by the housing 119. Conversely, the housing 302 of the pre-pumping stage 300 forms part of the actual Pump housing 119. The pre-pump stage 300 can also include another type of pump in a small design.

Die Vorpumpstufe 300 umfasst ferner einen eigenen Antriebsmotor, der innerhalb des Gehäuses 302 angeordnet und über eine schematisch angedeutete Energieversorgungsleitung 124 mit dem Elektronikgehäuse 123 und insbesondere mit dem Stromversorgungsanschluss 131 verbunden ist. Vorpumpstufe 300, Molekularpumpstufe 270 und Turbomolekularpumpstufe 250 teilen sich somit eine Energiequelle, d.h. die Vorpumpstufe 300 ist keine selbständige Einheit. Die Vorpumpstufe 300 ist also nicht nur räumlich, sondern auch funktional in die Turbomolekularpumpe 110 integriert.The pre-pumping stage 300 further comprises its own drive motor, which is arranged within the housing 302 and is connected to the electronics housing 123 and in particular to the power supply connection 131 via a schematically indicated power supply line 124. Pre-pumping stage 300, molecular pumping stage 270 and turbomolecular pumping stage 250 thus share an energy source, i.e. pre-pumping stage 300 is not an independent unit. The pre-pumping stage 300 is therefore not only spatially but also functionally integrated into the turbomolecular pump 110.

Fig. 9 zeigt eine weitere Ausführungsform einer erfindungsgemäßen Turbomolekularpumpe 110, bei welcher sich die Vorpumpstufe 300 vollständig innerhalb des Pumpengehäuses 119 befindet. Der Auslassbereich 310 der Vorpumpstufe 300 ist über einen Gasströmungsweg 312 mit dem Pumpenauslass 117 verbunden. Fig. 9 shows a further embodiment of a turbomolecular pump 110 according to the invention, in which the pre-pumping stage 300 is located completely within the pump housing 119. The outlet region 310 of the pre-pumping stage 300 is connected to the pump outlet 117 via a gas flow path 312.

Fig. 10 zeigt eine weitere Ausführungsform der erfindungsgemäßen Turbomolekularpumpe 110, bei welcher ein stationäres Förderelement 306 der Vorpumpstufe 300 von dem Pumpengehäuse 119 gebildet ist. Bei dem stationären Förderelement 306 handelt es sich um einen spiralförmigen Stator einer die Vorpumpstufe 300 bildenden Spiral- oder Scrollvakuumpumpe. Der spiralförmige Stator kann entweder in das Gehäuse 119 gefräst oder an einem separaten Einsatz ausgebildet sein, der in das Gehäuse 119 eingeschoben und fixiert werden kann. Fig. 10 shows a further embodiment of the turbomolecular pump 110 according to the invention, in which a stationary delivery element 306 of the pre-pump stage 300 is formed by the pump housing 119. The stationary conveying element 306 is a spiral-shaped stator of a spiral or scroll vacuum pump forming the pre-pumping stage 300. The spiral stator can either be milled into the housing 119 or formed on a separate insert that can be inserted into the housing 119 and fixed.

Die Vorpumpstufe 300 umfasst ferner ein sich bewegendes Förderelement 308 in Form eines spiralförmigen Rotors, der von einem Elektromotor 318 angetrieben wird. Der Rotor 308 und der Motor 318 können in einen Aufnahmeraum des Pumpengehäuses 119 eingesetzt werden, um Rotor 308 und Stator 306 zusammenzusetzen. Dabei können der Rotor 308 und der Stator 306 an einem Einsatz ausgebildet sein, der das Pumpengehäuse 119 verschließt. Alternativ kann ein separates Verschlusselement vorgesehen sein.The pre-pumping stage 300 further comprises a moving conveying element 308 in the form of a spiral-shaped rotor, which is driven by an electric motor 318. The rotor 308 and the motor 318 can be inserted into a receiving space of the pump housing 119 to assemble the rotor 308 and stator 306. The rotor 308 and the stator 306 can be formed on one insert be that closes the pump housing 119. Alternatively, a separate closure element can be provided.

Der Motor 318 ist wiederum über eine Leitung 124 an das Elektronikgehäuse 123 angeschlossen. Der Auslassbereich 310 der Vorpumpstufe 300 ist über einen Gasströmungsweg 312 in Form einer im Gehäuse 119 ausgebildeten Bohrung mit dem Pumpenauslass 117 verbunden.The motor 318 is in turn connected to the electronics housing 123 via a line 124. The outlet region 310 of the pre-pumping stage 300 is connected to the pump outlet 117 via a gas flow path 312 in the form of a bore formed in the housing 119.

Fig. 11 zeigt eine weitere Ausführungsform einer erfindungsgemäßen Turbomolekularpumpe 110, bei welcher sich die Vorpumpstufe 300 vollständig innerhalb des Pumpengehäuses 119 befindet. Bei der Vorpumpstufe 300 handelt es sich um eine Spiral- oder Scrollvakuumpumpe, die als ein stationäres Förderelement 306 einen spiralförmigen Stator und als ein sich bewegendes Förderelement 308 einen spiralförmigen Orbiter umfasst. Dieses Förderelement 308 wird durch einen über eine Leitung 124 an das Elektronikgehäuse 123 angeschlossenen Elektromotor 318 angetrieben. Der Auslassbereich der Vorpumpstufe 300 ist in hier nicht im Detail dargestellter Weise mit dem Pumpenauslass 117 verbunden. Fig. 11 shows a further embodiment of a turbomolecular pump 110 according to the invention, in which the pre-pumping stage 300 is located completely within the pump housing 119. The pre-pump stage 300 is a spiral or scroll vacuum pump, which comprises a spiral-shaped stator as a stationary conveying element 306 and a spiral-shaped orbiter as a moving conveying element 308. This conveying element 308 is driven by an electric motor 318 connected to the electronics housing 123 via a line 124. The outlet area of the pre-pump stage 300 is connected to the pump outlet 117 in a manner not shown in detail here.

BezugszeichenlisteReference symbol list

110, 111110, 111
TurbomolekularpumpeTurbomolecular pump
113113
Einlassflanschinlet flange
115115
PumpeneinlassPump inlet
116116
EinlassbereichInlet area
117117
PumpenauslassPump outlet
118118
Auslassbereichoutlet area
119119
GehäuseHousing
121121
UnterteilBottom part
123123
ElektronikgehäuseElectronics housing
124124
EnergieversorgungsleitungPower supply line
125125
ElektromotorElectric motor
127127
ZubehöranschlussAccessory connection
129129
DatenschnittstelleData interface
131131
StromversorgungsanschlussPower supply connection
133133
FluteinlassFlood inlet
135135
SperrgasanschlussSealing gas connection
137137
MotorraumEngine compartment
139139
KühlmittelanschlussCoolant connection
141141
Unterseitebottom
143143
Schraubescrew
145145
LagerdeckelBearing cap
147147
Befestigungsbohrungmounting hole
148148
KühlmittelleitungCoolant line
149149
Rotorrotor
151151
RotationsachseAxis of rotation
153153
RotorwelleRotor shaft
155155
RotorscheibeRotor disc
157157
Statorscheibestator disk
159159
AbstandsringSpacer ring
161161
RotornabeRotor hub
163163
Holweck-RotorhülseHolweck rotor sleeve
165165
Holweck-RotorhülseHolweck rotor sleeve
167167
Holweck-StatorhülseHolweck stator sleeve
169169
Holweck-StatorhülseHolweck stator sleeve
171171
Holweck-SpaltHolweck gap
173173
Holweck-SpaltHolweck gap
175175
Holweck-SpaltHolweck gap
179179
Verbindungskanalconnection channel
181181
Wälzlagerroller bearing
183183
PermanentmagnetlagerPermanent magnet bearings
185185
SpritzmutterInjection nut
187187
Scheibedisc
189189
EinsatzMission
191191
rotorseitige Lagerhälfterotor side bearing half
193193
statorseitige Lagerhälftestator side bearing half
195195
RingmagnetRing magnet
197197
RingmagnetRing magnet
199199
LagerspaltBearing gap
201201
TrägerabschnittSupport section
203203
TrägerabschnittSupport section
205205
radiale Streberadial strut
207207
DeckelelementLid element
209209
StützringSupport ring
211211
BefestigungsringFastening ring
213213
TellerfederDisc spring
215215
Not- bzw. FanglagerEmergency or detention camp
217217
MotorstatorMotor stator
219219
Zwischenraumspace
221221
Wandungwall
223223
LabyrinthdichtungLabyrinth seal
250250
TurbomolekularpumpstufeTurbomolecular pumping stage
270270
Pumpstufepump stage
272272
Auslassbereichoutlet area
300300
VorpumpstufePre-pumping stage
302302
GehäuseHousing
304304
pumpaktive Strukturpump-active structure
306306
stationäres Förderelementstationary conveyor element
308308
sich bewegendes Förderelementmoving conveyor element
310310
Auslassbereichoutlet area
312312
GasströmungswegGas flow path
314314
StrukturelementStructural element
316316
EinlassbereichInlet area
318318
ElektromotorElectric motor

Claims (13)

  1. A turbomolecular pump (110) comprising
    a pump inlet (115) and a pump outlet (117) which are formed in a common pump housing (119);
    at least one turbomolecular pump stage (250) which has an inlet region (116) associated with the pump inlet (115) and an outlet region (118); and at least one backing pump stage (300) which acts between the outlet region (118) of the turbomolecular pump stage (250) and the pump outlet (117) and which is configured to compress gas conveyed by the turbomolecular pump stage (250) and to expel it against a gas pressure of more than 1 mbar, in particular against atmospheric pressure,
    wherein the backing pump stage (300) is integrated into the turbomolecular pump (110), and
    wherein the backing pump stage (300) is based on an orbiting relative movement of its pump-active components which is different from the pump driving movement of the turbomolecular pump stage (250), characterized in that
    the backing pump stage (300) comprises at least one stationary conveying element (306) and at least one conveying element (308) moving relative to the stationary conveying element (306) during operation, wherein the stationary conveying element (306) of the backing pump stage (300) is at least partly formed by the pump housing (119).
  2. A turbomolecular pump (110) according to claim 1, characterized in that the backing pump stage (300) has at least one axis of movement with respect to which at least two components of the backing pump stage (300) move relative to one another during operation, with the axis of movement of the backing pump stage (300) and an axis of rotation (151) of a rotor shaft (153) of the turbomolecular pump stage (250) not coinciding, and/or in that the backing pump stage (300) has at least one axis of symmetry which does not coincide with an axis of rotation (151) of a rotor shaft (153) of the turbomolecular pump stage (250).
  3. A turbomolecular pump (110) according to claim 1 or 2, characterized in that the backing pump stage (300) is a dependent unit for whose operation one or more functional parts of the turbomolecular pump (110) are required, and/or in that a common control and/or a common energy supply is/are provided for the turbomolecular pump stage (250) and for the backing pump stage (300).
  4. A turbomolecular pump according to any one of the preceding claims, characterized in that the backing pump stage (300) is of a spiral or scroll vacuum pump type.
  5. A turbomolecular pump according to any one of the preceding claims, characterized in that the backing pump stage (300) is of a type that is different from a side channel pump or a regeneration vacuum pump.
  6. A turbomolecular pump according to any one of the preceding claims, characterized in that the backing pump stage (300) comprises a housing (302) which is at least partly formed by the pump housing (119), and/or in that the backing pump stage (300) or at least one pump-active structure (304) of the backing pump stage (300) is arranged in the pump housing (119) or at the pump housing (119).
  7. A turbomolecular pump according to any one of the preceding claims, characterized in that the backing pump stage (300) or at least one pump-active structure (304) of the backing pump stage (300) is at least partly formed by the pump housing (119).
  8. A turbomolecular pump according to any one of the preceding claims, characterized in that the backing pump stage (300) is smaller by a multiple, at least 5 to 10 times smaller, than the pump housing (119).
  9. A turbomolecular pump according to any one of the preceding claims, characterized in that the backing pump stage (300) is arranged asymmetrically and/or eccentrically with respect to an axis of rotation (151) of a rotor shaft (153) of the turbomolecular pump stage (250).
  10. A turbomolecular pump according to any one of the preceding claims, characterized in that the backing pump stage (300) is arranged within a limited angular range about an axis of rotation (151) of a rotor shaft (153) of the turbomolecular pump stage (250), with the angular range being less than 180°, in particular less than 135°, preferably less than 90°.
  11. A turbomolecular pump according to any one of the preceding claims, characterized in that an outlet region (310) of the backing pump stage (300) forms the pump outlet (117), or in that the outlet region (310) of the backing pump stage (300) is directly connected to the pump outlet (117) or via a gas flow path (312) which is bounded by one or more housing parts and/or stationary, fixed structural elements (314) located within the pump housing (119).
  12. A turbomolecular pump according to any one of the preceding claims, characterized in that an inlet region (316) of the backing pump stage (300) is directly connected to the outlet region (118) of the turbomolecular pump stage (250) or to an outlet region (272) of a further pump stage (270) arranged between the turbomolecular pump stage (250) and the backing pump stage (300).
  13. A turbomolecular pump according to any one of the preceding claims, characterized in that a gas flow path (312) between the outlet region (118) of the turbomolecular pump (250) or an outlet region (272) of a further pump stage (270) arranged between the turbomolecular pump stage (250) and the backing pump stage (300), on the one hand, and an inlet region (316) of the backing pump stage (300), on the other hand, is bounded by one or more housing parts and/or stationary, fixed structural elements (314) located within the pump housing (119).
EP16177824.6A 2016-07-04 2016-07-04 Turbomolecular pump Active EP3267040B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16177824.6A EP3267040B1 (en) 2016-07-04 2016-07-04 Turbomolecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16177824.6A EP3267040B1 (en) 2016-07-04 2016-07-04 Turbomolecular pump

Publications (2)

Publication Number Publication Date
EP3267040A1 EP3267040A1 (en) 2018-01-10
EP3267040B1 true EP3267040B1 (en) 2023-12-20

Family

ID=56321867

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16177824.6A Active EP3267040B1 (en) 2016-07-04 2016-07-04 Turbomolecular pump

Country Status (1)

Country Link
EP (1) EP3267040B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020239975A1 (en) * 2019-05-29 2020-12-03 Edwards Limited A turbomolecular pump, a vacuum pumping system and a method of evacuating a vacuum chamber

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1297347B1 (en) 1997-12-24 1999-09-01 Varian Spa VACUUM PUMP.
JP2002168192A (en) * 2000-12-01 2002-06-14 Seiko Instruments Inc Vacuum pump
DE60101368T2 (en) 2001-02-22 2004-10-14 Varian S.P.A., Leini vacuum pump
DE102012003680A1 (en) 2012-02-23 2013-08-29 Pfeiffer Vacuum Gmbh vacuum pump
JP6009193B2 (en) * 2012-03-30 2016-10-19 株式会社荏原製作所 Vacuum exhaust device
DE102015113821B4 (en) * 2014-08-27 2020-06-04 Pfeiffer Vacuum Gmbh Vacuum pump

Also Published As

Publication number Publication date
EP3267040A1 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
EP2826999B1 (en) Vacuum pump
EP1252445B1 (en) Turbomolecular pump
EP2060794B1 (en) Vacuum pump with lubricant pump
EP3657021B1 (en) Vacuum pump
WO2001057403A1 (en) Dynamic seal
EP2295812A1 (en) Vacuum pump
EP2039941B1 (en) Vacuum pump
DE60319585T2 (en) VACUUM PUMP
EP3267040B1 (en) Turbomolecular pump
EP3693610B1 (en) Molecular vacuum pump
EP4194700B1 (en) Vacuum pump with a holweck pump stage with variable holweck geometry
EP4108932A1 (en) Recipient and high vacuum pump
EP3135932B1 (en) Vacuum pump and permanent magnet bearing
EP3196471B1 (en) Vacuum pump
DE102015113821B4 (en) Vacuum pump
EP3845764A2 (en) Vacuum pump and vacuum pump system
WO2003031823A1 (en) Axially discharging friction vacuum pump
EP3327293B1 (en) Vacuum pump having multiple inlets
EP3628883B1 (en) Vacuum pump
EP3767109B1 (en) Vacuum system
EP3564538B1 (en) Vacuum system and method for manufacturing the same
EP4108931B1 (en) Method for operating a molecular vacuum pump to achieve improved suction capacity
EP4293232A1 (en) Pump
EP4474654A1 (en) Turbomolecular vacuum pump
EP4273405A1 (en) Vacuum pump with a holweck pumping stage with a varying holweck geometry

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20171214

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191106

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231004

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016016282

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240321

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240321

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240320

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240624

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240422

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240422

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016016282

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240926

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240725

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240725

Year of fee payment: 9

26N No opposition filed

Effective date: 20240923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL