[go: up one dir, main page]

EP3967799B1 - Seil umfassend einen textilen zwirn und verfahren zur herstellung eines zwirns - Google Patents

Seil umfassend einen textilen zwirn und verfahren zur herstellung eines zwirns Download PDF

Info

Publication number
EP3967799B1
EP3967799B1 EP20195558.0A EP20195558A EP3967799B1 EP 3967799 B1 EP3967799 B1 EP 3967799B1 EP 20195558 A EP20195558 A EP 20195558A EP 3967799 B1 EP3967799 B1 EP 3967799B1
Authority
EP
European Patent Office
Prior art keywords
yarn
rope
twisted
length
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20195558.0A
Other languages
English (en)
French (fr)
Other versions
EP3967799C0 (de
EP3967799A1 (de
Inventor
Arno DI REITER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teufelberger Fiber Rope GmbH
Original Assignee
Teufelberger Fiber Rope GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teufelberger Fiber Rope GmbH filed Critical Teufelberger Fiber Rope GmbH
Priority to ES20195558T priority Critical patent/ES3009332T3/es
Priority to EP20195558.0A priority patent/EP3967799B1/de
Priority to US17/468,959 priority patent/US11802372B2/en
Publication of EP3967799A1 publication Critical patent/EP3967799A1/de
Application granted granted Critical
Publication of EP3967799B1 publication Critical patent/EP3967799B1/de
Publication of EP3967799C0 publication Critical patent/EP3967799C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/18Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by combining fibres, filaments, or yarns, having different shrinkage characteristics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/162Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber enveloping sheathing
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • A63B2209/02Characteristics of used materials with reinforcing fibres, e.g. carbon, polyamide fibres
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B29/00Apparatus for mountaineering
    • A63B29/02Mountain guy-ropes or accessories, e.g. avalanche ropes; Means for indicating the location of accidentally buried, e.g. snow-buried, persons
    • A63B29/028Ropes specially adapted for mountaineering
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • D02G3/28Doubled, plied, or cabled threads
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • D06C7/02Setting
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/025Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics comprising high modulus, or high tenacity, polymer filaments or fibres, e.g. liquid-crystal polymers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/14Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
    • D07B1/147Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising electric conductors or elements for information transfer
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1012Rope or cable structures characterised by their internal structure
    • D07B2201/102Rope or cable structures characterised by their internal structure including a core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1092Parallel strands
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1096Rope or cable structures braided
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2036Strands characterised by the use of different wires or filaments
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2041Strands characterised by the materials used
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2083Jackets or coverings
    • D07B2201/2088Jackets or coverings having multiple layers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2083Jackets or coverings
    • D07B2201/209Jackets or coverings comprising braided structures
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2083Jackets or coverings
    • D07B2201/2092Jackets or coverings characterised by the materials used
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/201Polyolefins
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/201Polyolefins
    • D07B2205/2014High performance polyolefins, e.g. Dyneema or Spectra
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2039Polyesters
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2039Polyesters
    • D07B2205/2042High performance polyesters, e.g. Vectran
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2046Polyamides, e.g. nylons
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2046Polyamides, e.g. nylons
    • D07B2205/205Aramides
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2096Poly-p-phenylenebenzo-bisoxazole [PBO]
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/40Machine components
    • D07B2207/404Heat treating devices; Corresponding methods
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/2065Reducing wear
    • D07B2401/2075Reducing wear externally
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2069Climbing or tents

Definitions

  • the invention relates to a rope made of textile fiber material, comprising a rope core and a sheath surrounding the rope core.
  • Fiber ropes are known from the state of the art for various applications. For example, fiber ropes are used to secure people as climbing ropes, cords or lanyards. Ropes can also be used in the mechanical field, for example as winch ropes. The ropes described here are all designed in such a way that they can have a diameter of 5 mm to 60 mm.
  • the fiber ropes should have a predetermined cut resistance.
  • dynamic mountain ropes are used to secure the climber against falling and to brake a fall.
  • Mountain ropes are used in alpine terrain, among other places, where they are often exposed to rock edges - both under static load and under dynamic fall load. It is clear that such ropes should have a high cut resistance in order to avoid accidents.
  • the EP 0 150 702 A2 proposes to produce a mountain rope that is designed to be more durable when diverting around sharp edges.
  • the rope core or the entire rope is wrapped, braided or spun with monofilaments or wires.
  • high-strength fibers especially aramid
  • aramid generally have a higher cut resistance than conventional fibers such as polyamide.
  • US 6,050,077 it is known to produce a safety mountain rope which comprises a sheath consisting of a mixture of high-strength and non-high-strength fibres, which makes the rope better in the sharp edge test.
  • high-strength fibers have disadvantages.
  • high-strength fibers have very low elongation, making them poorly suited to braking a fall, i.e. absorbing energy through stretching.
  • the US 4 375 779 A discloses a sewing thread with a core and a sheath comprising threads each wound with a yarn.
  • the JP 3 185821 B2 discloses a rope that shrinks in boiling water because the sheath contains at least 5% of a thermoplastic synthetic fiber.
  • the DE 10 2011 017273 A1 shows a climbing rope with two rope sections. Special additional sheath threads are guided in the sheath in the first rope section and in the rope core in the second rope section.
  • the DE 40 35 824 A1 describes a fiber rope with a core-sheath structure.
  • the sheath can contain both low-stretch fibers and normal-stretch fibers.
  • the JP H07243138 A shows a thread with two yarns that shrink to different degrees under thermal influence.
  • the GB 1 012 828 A discloses a method for producing twisted yarns, in particular for socks. An elastic yarn is stretched, heat-set and twisted with an inelastic yarn. The temperature is then reduced and the process is terminated.
  • the US 2013/042593 A1 discloses a method for producing a hybrid yarn for car tires. The hybrid yarn is said to have two yarns with different tangent modules. To achieve this, the first yarn is fed at a lower speed than the second yarn during the yarn manufacturing process.
  • a rope made of textile fiber material comprising a rope core and a sheath surrounding the rope core, wherein the sheath, an intermediate sheath located between the sheath and the rope core and/or a reinforcement located between the sheath and the rope core comprises an excess length twisted yarn, the excess length twisted yarn being formed by comprising at least a first yarn and a second yarn which are twisted together, the first yarn having a greater length than the second yarn, measured in an untwisted state of a unit length of the twisted yarn.
  • the extra-long twisted yarn in the rope according to the invention allows some fibers to be in a tension-free state, even when the rope is taut. If the rope and the extra-long twisted yarn contained therein are taut, only the second yarn is taut due to the shorter length and the first yarn remains tension-free due to the longer length. Since fibers have a lower cut resistance when under tension, as already mentioned in the introduction, the first yarn with a longer length enables increased cut resistance when the rope is taut.
  • a fiber rope is created that has increased cut resistance and can be metal-free at least on the surface, thus avoiding the risk of injury in the event of wire breakage.
  • metal wires with electrical conductivity could be present inside the rope, which means that they can be used as conductors or sensors, for example. Due to the properties explained at the outset, the rope according to the invention is particularly suitable for use as a mountain rope, as a rope for connecting devices, for slings or also as a winch rope.
  • the first yarn comprises high-strength fibers, preferably p-aramid fibers, m-aramid fibers, UHMWPE fibers or PBO fibers.
  • high-strength fibers preferably p-aramid fibers, m-aramid fibers, UHMWPE fibers or PBO fibers.
  • the second yarn comprises non-high-strength fibers, preferably PA fibers, PES fibers or PP fibers. Since non-high-strength fibers generally have a higher elongation than high-strength fibers, it is preferable for some applications to manufacture the force-absorbing part of the thread, i.e. the second yarn, from non-high-strength fibers. This is particularly preferred for mountain ropes, so that the second yarn can better absorb energy through elongation.
  • the first yarn is at least 5%, preferably at least 8%, particularly preferably at least 12% longer than the second yarn, measured in the untwisted state of the unit length of the twine.
  • the first yarn is long enough to be tension-free in the tensioned state of the rope or the extra-long twine or the second yarn, even if the rope or the extra-long twine or the first yarn is stretched.
  • the thread is preferably designed in such a way that the weight proportion of the second yarn in the thread with excess length is 30% to 90%, preferably 40% to 75%. This results in a good ratio between the first yarn and the second yarn, whereby the second yarn can absorb sufficient energy under tension on the one hand and the first yarn is present in sufficient quantities to fulfil its function of increasing the cut resistance on the other.
  • the weight proportion of the extra-long twine in the sheath, the intermediate sheath and/or the reinforcement is 50% to 100% of the sheath, the intermediate sheath and/or the reinforcement, respectively. It is clear that the choice of the proportion of twine in the rope depends to a large extent on the desired application, so that for other applications less thread with excess length can be used.
  • the rope core of the rope according to the invention can also be constructed differently depending on the application.
  • the rope core is preferably constructed from one or more twisted or braided cores.
  • the rope when used as a mountain rope, it is usual to provide several cores in the rope core.
  • the rope according to the invention generally only comprises one core as the rope core.
  • the rope core can comprise non-high-strength fibers, preferably PA fibers, PES fibers or PP fibers.
  • the rope can be designed, for example, as a climbing rope in accordance with the EN892 standard. In these embodiments, the rope is therefore particularly suitable for use as a climbing rope.
  • the rope core can also comprise high-strength fibers, preferably aramid fibers, UHMWPE fibers, PBO fibers or Vectran fibers. This embodiment is particularly preferred for use as a winch rope.
  • the diameter of the rope is 5 mm to 60 mm, preferably 5 mm to 13 mm.
  • the extra-long twine for the rope according to the invention can be produced in various variants. However, the following two alternative production methods are particularly preferred.
  • This first preferred manufacturing process uses two yarns that are manufactured in such a way that they shrink to different degrees.
  • fibers made of different materials can be used for this purpose.
  • the shrinking process is preferably carried out in an autoclave. Before the thread is introduced into the autoclave, it is preferably prepared to enable defined shrinking.
  • the preparation can particularly preferably be carried out by knitting, with the knitted fabric being unraveled again after the shrinking process.
  • the type of preparation of the thread e.g. by knitting, and the choice of temperature and/or pressure in the autoclave can be made by the specialist.
  • two yarns can also be used which are manufactured in the same way and whose fibers consist of the same materials.
  • the rope according to the invention is manufactured in one step, whereby the rope core or cores are introduced into a braiding machine and, among other things, are braided around by the extra-long twine, thereby producing the sheath and, if applicable, the intermediate sheath and/or the reinforcement.
  • Figure 1 shows the cross-section of a rope 1.
  • the rope 1 comprises a rope core 2 and a sheath 3 surrounding the rope core 2.
  • the rope 1 is made of a textile fiber material, ie both the rope core 2 and the sheath 3 are made of textile
  • the rope 1 is preferably made metal-free, apart from optional connecting elements or clamps that are attached to the ends of the rope 1 or at another point on the rope 1, or functional, electrically conductive wires guided in the rope 1, which serve, for example, as current conductors, information conductors or sensors.
  • the rope 1 has an intermediate sheath 4, which is provided between the rope core 2 and the sheath 3.
  • this intermediate sheath 4 can also be designed to be metal-free.
  • a textile, preferably metal-free, reinforcement (not shown) can also be used, which is understood here to mean a non-covering intermediate sheath.
  • the rope core 2 has twelve cores 5. In general, however, the rope core can also have only one core 5 or more than one core 5.
  • the cores 5 are, for example, twisted or braided, but could also be manufactured in another way.
  • the rope 1 described here can be used for various purposes, for example as a mountain rope, as a rope for lanyards, for slings or as a winch rope.
  • the rope 1 When used as a mountain rope, the rope 1 is used by a climber, for example, as a fall arrest device or is also used as a static cord for makeshift rescue techniques.
  • a tree care worker When used as a rope for lanyards, for example, a tree care worker can use the rope 1 as a lanyard, whereby the rope 1 is looped around the tree 1 and hooked into a harness of the tree care worker so that the tree care worker can support themselves on the tree in any vertical position.
  • the rope 1 When used as a rope for slings, the rope 1 is used as an auxiliary rope for climbing.
  • When used as a winch rope it is wound onto a winch and is therefore used, in contrast to the aforementioned uses, in mechanical operation and not to protect people from falls.
  • the rope 1 can have a diameter of 5 mm to 60 mm, preferably 5 mm to 13 mm.
  • the rope core 2 should have advantageous dynamic properties.
  • the Rope core non-high-strength fibers preferably polyamide (PA) fibers.
  • PA polyamide
  • the non-high-strength fibers can also be polyester (PES) fibers or polypropylene (PP) fibers.
  • the rope core 2 can also have high-strength fibers.
  • high-strength is understood to mean fibers with a tensile strength of at least 14 cN/dtex, preferably a tensile strength greater than 24 cN/dtex, particularly preferably greater than 30 cN/dtex.
  • Known high-strength fiber types with corresponding tensile strengths include UHMWPE fibers (including Dyneema ® ), aramid fibers, LCP fibers (including Vectran) or PBO fibers.
  • the rope core 2 or the cores 5 can also comprise a mixture of high-strength fibers and non-high-strength fibers.
  • the sheath 3, the intermediate sheath 4 and/or the reinforcement comprises the following Figures 2 and 3 explained twine 6 with excess length ⁇ .
  • the sheath 3, the intermediate sheath 4 and/or the reinforcement can be made completely or partially from several twines 6 with excess length ⁇ .
  • the sheath 3 and the intermediate sheath 4 are braids, so that several twines 6 with excess length ⁇ can be braided together, if necessary with the addition of other twines.
  • the weight proportion of the twine 6 with excess length ⁇ in the sheath 3, in the intermediate sheath 4 and/or in the reinforcement is 50% to 100% in each case.
  • the thread 6 is shown with excess length ⁇ , which can be produced with an indefinite length and wound onto at least one bobbin before the production of the sheath 3, the intermediate sheath 4 or the reinforcement.
  • excess length ⁇ can be produced with an indefinite length and wound onto at least one bobbin before the production of the sheath 3, the intermediate sheath 4 or the reinforcement.
  • an arbitrarily selected unit length E of the thread 6 with excess length ⁇ is shown.
  • the numerical size of the unit length E can be chosen arbitrarily, for example as 1 m.
  • the invention is completely independent of the actually selected length, as explained below, and serves only to determine the excess length ⁇ of the yarn 7 in the thread 6 with excess length ⁇ .
  • twisted yarns are produced by twisting several yarns.
  • the twisted yarn 6 with excess length ⁇ explained here comprises a first yarn 7 and a second yarn 8, which are twisted together.
  • the twisted state of the thread 6 with excess length ⁇ is shown in Figure 2 shown.
  • the actual length of the first yarn 7 in the untwisted state is greater than the length of the second yarn 8 or the unit length E.
  • the first yarn 7 is at least 5%, preferably at least 8%, particularly preferably at least 12% longer than the second yarn 8, measured in the untwisted state of the unit length E of the twisted yarn 6.
  • Standards for measuring the length of yarns are known in the art, such as DIN 53830-3, which specifies, among other things, a pre-tension of 0.5 +/- 0.1 cN/tex for measuring the length of yarns, and can also be used to determine the lengths of the yarns of the rope 1 described here.
  • the first yarn 7 comprises high-strength fibers and the second yarn 8 comprises non-high-strength fibers, with the definition of high-strength being as given above with respect to the rope core 2.
  • the high-strength fibers of the first yarn 7 could be p-aramid fibers (para-aramid fibers), m-aramid fibers (meta-aramid fibers), LCP fibers, UHMWPE fibers or PBO fibers. Fibers sold under the names Kevlar, Twaron and Technora are particularly suitable.
  • PA fibers, PES fibers or PP fibers could be selected, for example.
  • yarns 7, 8 made of different materials can be selected for the twine 6 with excess length ⁇ . In other embodiments, however, yarns made of the same materials can also be selected, although there may be restrictions due to the manufacturing processes described below.
  • the ratio of first yarn 7 to second yarn 8 is selected such that the weight proportion of the first yarn 7 with excess length ⁇ in the twisted yarn is 30% to 90%, preferably 40% to 75%.
  • the structure of the twisted yarn 6 is not limited to twisting just two yarns, but more than two yarns could also be twisted together. In the untwisted state of the twisted yarn 6 with excess length ⁇ , all yarns could then have a different length. In other embodiments, only one yarn could be longer than the other yarns of the same length, or only one yarn could be shorter than the other yarns of the same length. Again, for example, two yarns of the same length could be longer than two other yarns of the same length. It is clear that there are no limits to the structure of the twisted yarn 6 with excess length ⁇ , as long as at least one yarn has a greater length than another yarn, measured in an untwisted state of a unit length E of the twisted yarn 6. In these embodiments, it is particularly preferred if the longest yarn is at least 5%, preferably at least 8%, particularly preferably at least 12% longer than the shortest yarn, measured in the untwisted state of the unit length E of the twisted yarn 6.
  • the twisted yarn 6 with excess length ⁇ can be produced in a variety of ways and is not restricted to a specific manufacturing process. However, manufacturing processes using a shrinking process or under different tensions are particularly suitable, as described below.
  • the first yarn 7 and the second yarn 8 are first provided.
  • the two yarns 7, 8 are generally tension-free or have the same tension.
  • the yarns 7, 8 are then twisted together, creating a yarn without excess length ⁇ .
  • the yarn without excess length ⁇ is exposed to a predetermined temperature in an autoclave after suitable processing, e.g. knitting, so that the first yarn 7 and the second yarn 8 shrink.
  • the yarns 7, 8, in particular their materials, were selected such that they shrink to different degrees under the predetermined conditions, resulting in the yarn 6 with excess length ⁇ .
  • the first yarn 7 and the second yarn 8 are twisted together with different tensions and the twist 6, i.e. its yarns 7, 8, is relaxed after twisting.
  • the choice of tensions to achieve a desired amount of excess length ⁇ of the first yarn 7 in comparison to the second yarn 8 can be determined by the expert based on the elastic modulus of the two yarns 7, 8. It is clear that, for example, a twist in which PA 940 dtex is twisted with aramid 1660 dtex requires a different pre-tension to achieve the twist 6 with excess length ⁇ than a twist in which PA 1400 dtex is twisted with aramid 1660 dtex.
  • a height-adjustable test carrier was provided, on which an 80 cm long granite block 9 with a naturally broken edge 10 (granite sidewalk edge) was attached.
  • a test mass 80 kg steel cylinder
  • Position of the anchor point results in a deflection of the rope at the edge 10 at a deflection angle ⁇ , as shown in Figure 4 is visible.
  • Edge 10 is located at a distance of 4 m from the anchor point (standing position). Immediately after edge 10, the test mass is freely suspended. The forces occurring at the anchor point were recorded by installing a load cell.
  • the force of the lateral pull is introduced directly below the edge 10. Stop bolts at each end of the edge 10 prevent the rope from moving beyond the edge 10. At the end of the tests, the sharpness of the edge 10 is verified using a previously tested rope model. The edge 10 remained unchanged.
  • the first test rope was a state-of-the-art rope, designed according to EN892 with a diameter of 9.8 mm. This was a core-sheath rope with a polyamide sheath. The deflection angle was 45°. A breaking length of approx. 200 cm was achieved.
  • the second test rope was a rope according to the invention with aramid in the intermediate sheath in the construction according to the invention, designed according to EN892 with a diameter of 9.8 mm.
  • a breaking length of approx. 340 cm was achieved. This meant that the breaking length could be increased by 70% compared to the rope according to the state of the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ropes Or Cables (AREA)

Description

  • Die Erfindung betrifft ein Seil aus textilem Fasermaterial, umfassend einen Seilkern sowie eine den Seilkern umgebende Ummantelung.
  • Aus dem Stand der Technik sind Faserseile aus verschiedenen Anwendungsgebieten bekannt. Beispielsweise werden Faserseile zum Absichern von Menschen als Kletterseile, Reepschnüre oder Lanyards eingesetzt. Auch im maschinellen Bereich können Seile eingesetzt werden, beispielsweise als Windenseile. Die hierin beschriebenen Seile sind alle derart ausgestaltet, dass sie einen Durchmesser von 5 mm bis 60 mm aufweisen können.
  • Je nach gewünschtem Anwendungsfall sollen die Faserseile eine vorbestimmte Schnittfestigkeit aufweisen. Beispielsweise werden dynamische Bergseile dazu verwendet, den Kletterer gegen Absturz zu sichern und einen Absturz zu bremsen. Bergseile werden unter anderem im alpinen Gelände eingesetzt und sind dort oft Felskanten ausgesetzt - sowohl unter statischer Belastung als auch unter dynamischer Sturzbelastung. Es ist ersichtlich, dass derartige Seile eine hohe Schnittfestigkeit aufweisen sollen, um Unfälle zu vermeiden.
  • Eine Lösung zur Erhöhung der Lebensdauer von Bergseilen ist in der Schrift FR 2 951 743 offenbart, die eine metallische Manschette zeigt, welche um einen Teil des Seils geführt ist. Soll das Seil um eine scharfe Kante gelegt werden, wird die Manschette in diesem Bereich über das Seil geführt, sodass die scharfe Kante nur auf die Manschette und nicht das textile Seil einwirkt.
  • Die EP 0 150 702 A2 schlägt vor, ein Bergseil herzustellen, das bei der Umleitung um scharfe Kanten eine höhere Lebensdauer aufweisen soll. Zu diesem Zweck wird der Seilkern oder das gesamte Seil von Monofilamenten bzw. Drähten umwunden, umflochten oder umsponnen.
  • Aus dem Stand der Technik ist weiters bekannt, dass hochfeste Fasern, insbesondere Aramid, in der Regel eine höhere Schnittfestigkeit aufweisen als herkömmliche Fasern wie Polyamid. Aus der US 6,050,077 ist beispielsweise bekannt, ein Sicherheitsbergseil herzustellen, welches einen Mantel umfasst, der aus einer Mischung aus hochfesten und nicht-hochfesten Fasern besteht, wodurch das Seil besser im Scharfkantentest ist.
  • Es hat sich jedoch herausgestellt, dass die Verwendung von hochfesten Fasern auch Nachteile mit sich bringt. Insbesondere weisen hochfeste Fasern eine sehr geringe Dehnung auf, sodass sie schlecht dazu geeignet sind, einen Absturz zu bremsen, also Energie durch Dehnung zu absorbieren.
  • Ein weiterer Nachteil von Fasern im Allgemeinen ist, dass die Schnittfestigkeit der Fasern abnimmt, wenn die Fasern unter Spannung sind. Somit wird die höchste Schnittfestigkeit im spannungslosen Zustand erreicht. Die Seile stehen in den vorgenannten Anwendungsfällen jedoch beim Schnitt in der Regel unter Spannung, beispielsweise wenn der genannte Kletterer das Bergseil belastet und dieses dabei über eine Felskante scheuert.
  • Die US 4 375 779 A offenbart einen Nähfaden mit einem Kern und einem Mantel, der Fäden umfasst, die jeweils mit einem Garn umwunden sind. Die JP 3 185821 B2 offenbart ein Seil, das in kochendem Wasser schrumpft, da der Mantel zumindest 5 % einer thermoplastischen synthetischen Faser enthält. Die DE 10 2011 017273 A1 zeigt ein Kletterseil mit zwei Seilabschnitten. Spezielle zusätzliche Mantelfäden werden im ersten Seilabschnitt im Mantel geführt und im zweiten Seilabschnitt im Seilkern. Die DE 40 35 824 A1 beschreibt ein Faserseil mit einem Kern-Mantel-Aufbau. Der Mantel kann sowohl geringdehnende Fasern als auch normaldehnende Fasern umfassen.
  • Die JP H07243138 A zeigt einen Zwirn mit zwei Garnen, welche unter thermischer Einwirkung unterschiedlich stark schrumpfen. Die GB 1 012 828 A offenbart ein Verfahren zum Herstellen von Zwirnen, insbesondere für Socken. Hierbei wird ein elastisches Garn gestreckt, thermofixiert und mit einem unelastischen Garn verzwirnt. Danach wird die Temperatur reduziert und das Verfahren beendet. Die US 2013/042593 A1 offenbart ein Verfahren zur Herstellung eines Hybrid-Zwirns für Autoreifen. Der Hybrid-Zwirn soll zwei Garne mit unterschiedlichen Tangentenmodulen aufweisen. Um dies zu erzielen, wird das erste Garn beim Herstellungsverfahren des Zwirns mit einer geringeren Geschwindigkeit zugeführt wird als das zweite Garn.
  • Es ist die Aufgabe der Erfindung, die Nachteile des Standes der Technik zu überwinden und ein Seil aus textilem Fasermaterial zu schaffen, das auch bei Spannungsbelastung eine erhöhte Schnittfestigkeit aufweist.
  • Diese Aufgabe wird durch ein Seil aus textilem Fasermaterial gelöst, umfassend einen Seilkern sowie eine den Seilkern umgebende Ummantelung, wobei die Ummantelung, ein zwischen der Ummantelung und dem Seilkern befindlicher Zwischenmantel und/oder eine zwischen der Ummantelung und dem Seilkern befindliche Bewehrung einen Zwirn mit Überlänge umfasst, wobei der Zwirn mit Überlänge dadurch gebildet ist, dass er zumindest ein erstes Garn und ein zweites Garn umfasst, welche miteinander verdreht sind, wobei das erste Garn eine größere Länge als das zweite Garn aufweist, gemessen in einem entdrehten Zustand einer Einheitslänge des Zwirns.
  • Der Zwirn mit Überlänge im erfindungsgemäßen Seil ermöglicht, dass einige Fasern in einem spannungslosen Zustand vorliegen, selbst wenn das Seil gespannt ist. Wird das Seil und der darin umfasste Zwirn mit Überlänge gespannt, wird aufgrund der geringeren Länge des zweiten Garns nur dieser gespannt und das erste Garn liegt aufgrund der größeren Länge weiterhin spannungslos vor. Da Fasern wie bereits einleitend erwähnt unter Spannung eine geringere Schnittfestigkeit aufweisen, ermöglicht das erste Garn mit größerer Länge eine erhöhte Schnittfestigkeit im gespannten Zustand des Seils.
  • Im Gegensatz zum Stand der Technik wird somit ein Faserseil geschaffen, welches eine erhöhte Schnittfestigkeit aufweist und zumindest an der Oberfläche metallfrei ausgebildet sein kann, wodurch die Verletzungsgefahr bei Drahtbrüchen vermieden wird. Weiterhin könnten Metalldrähte mit einer elektrischen Leitfähigkeit im Inneren des Seils vorliegen, wodurch diese beispielsweise als Leiter oder Sensoren eingesetzt werden können. Durch die eingangs erläuterten Eigenschaften eignet sich das erfindungsgemäße Seil insbesondere zur Verwendung als Bergseil, als Seil für Verbindungsmittel, für Schlingen oder auch als Windenseil.
  • In einer besonders bevorzugten Ausführungsform umfasst das erste Garn hochfeste Fasern, bevorzugt p-Aramidfasern, m-Aramidfasern, UHMWPE-Fasern oder PBO-Fasern. Dies ermöglich, dass der Zwirn im gespannten Zustand eine besonders hohe Schnittfestigkeit aufweist, da hochfeste Fasern eine bessere Schnittfestigkeit aufweisen als herkömmliche Fasern. In anderen Ausführungsformen ist es jedoch auch möglich, das erste Garn aus nicht-hochfesten Fasern herzustellen, um zumindest eine gewisse Erhöhung der Schnittfestigkeit zu erzielen.
  • In einer weiteren Ausführungsform umfasst das zweite Garn nicht-hochfeste Fasern, bevorzugt PA-Fasern, PES-Fasern oder PP-Fasern. Da nicht-hochfeste Fasern in der Regel eine höhere Dehnung aufweisen als hochfeste Fasern, ist es für einige Anwendungsfälle bevorzugt, den kraftaufnehmenden Teil des Zwirns, d.h. das zweite Garn, aus nicht-hochfesten Fasern zu fertigen. Dies ist insbesondere bei Bergseilen bevorzugt, damit das zweite Garn besser Energie durch Dehnung absorbieren kann.
  • Bevorzugt ist, wenn das erste Garn um zumindest 5 %, bevorzugt um zumindest 8 %, besonders bevorzugt um zumindest 12 %, länger ist als das zweite Garn, gemessen im entdrehten Zustand der Einheitslänge des Zwirns. Dadurch ist das erste Garn lang genug, um im gespannten Zustand des Seils bzw. des Zwirns mit Überlänge bzw. des zweiten Garns spannungsfrei vorzuliegen, selbst wenn das Seil bzw. der Zwirn mit Überlänge bzw. das erste Garn gedehnt ist.
  • Weiters bevorzugt ist der Zwirn derart ausgestaltet, dass der Gewichtsanteil des zweiten Garns im Zwirn mit Überlänge 30 % bis 90 %, bevorzugt 40 % bis 75 %, beträgt. Dies ergibt ein gutes Verhältnis zwischen dem ersten Garn und dem zweiten Garn, wodurch das zweite Garn einerseits unter Spannung genügend Energie aufnehmen kann und das erste Garn andererseits in ausreichendem Maße vorliegt, um seine Funktion zur Erhöhung der Schnittfestigkeit zu erfüllen.
  • Überdies ist vorteilhaft, wenn der Gewichtsanteil des Zwirns mit Überlänge in der Ummantelung, im Zwischenmantel und/oder in der Bewehrung jeweils 50 % bis 100 % der Ummantelung, des Zwischenmantels bzw. der Bewehrung beträgt. Es versteht sich, dass die Wahl des Anteils des Zwirns im Seil in einem großen Maß vom gewünschten Anwendungsfall abhängig ist, sodass für andere Anwendungsfälle auch weniger Zwirn mit Überlänge eingesetzt werden kann.
  • Auch der Seilkern des erfindungsgemäßen Seils kann je nach Anwendungsfall unterschiedlich aufgebaut sein. Bevorzugt ist der Seilkern aus einem oder mehreren gedrehten oder geflochtenen Kernen aufgebaut. Insbesondere wenn das Seil für Anwendungen als Bergseil ausgeführt ist, ist es üblich, mehrere Kerne im Seilkern vorzusehen. In der Anwendung als Windenseil umfasst das erfindungsgemäße Seil jedoch in der Regel bloß einen Kern als Seilkern.
  • Wenn der Seilkern eine hohe Dehnung aufweisen soll, um beispielsweise bei einem Sturz Energie durch Dehnung zu absorbieren, kann der Seilkern nicht-hochfeste Fasern, bevorzugt PA-Fasern, PES-Fasern oder PP-Fasern, umfassen. In dieser Ausführungsform kann das Seil beispielsweise als Kletterseil nach dem Standard EN892 ausgebildet sein. In diesen Ausführungsformen bietet sich somit insbesondere die Verwendung des Seils als Kletterseil an.
  • Spielt die Dehnung des Seilkerns jedoch nur eine untergeordnete Rolle oder soll für die Anwendung gering sein, kann der Seilkern auch hochfeste Fasern, bevorzugt Aramidfasern, UHMWPE-Fasern, PBO-Fasern oder Vectran-Fasern umfassen. Insbesondere für den Verwendungszweck als Windenseil ist diese Ausführungsform bevorzugt.
  • Unabhängig vom Anwendungsfall ist für das erfindungsgemäße Seil bevorzugt, wenn der Durchmesser des Seils 5 mm bis 60 mm, bevorzugt 5 mm bis 13 mm, beträgt.
  • Der Zwirn mit Überlänge für das erfindungsgemäße Seil kann in verschiedenen Ausführungsvarianten hergestellt werden. Besonders bevorzugt werden jedoch die folgenden zwei alternativen Herstellungsverfahren eingesetzt.
  • Das erste bevorzugte Herstellungsverfahren des Zwirns mit Überlänge umfasst die Schritte:
    • Bereitstellen des ersten Garns und des zweiten Garns;
    • Verzwirnen bzw. Verdrehen des ersten Garns mit dem zweiten Garn;
    wobei das erste Garn und das zweite Garn mit im Wesentlichen derselben Spannung und derselben Länge miteinander verdreht werden und der Zwirn nach dem Verdrehen einem Schrumpfvorgang ausgesetzt wird.
  • Bei diesem ersten bevorzugten Herstellungsverfahren werden zwei Garne eingesetzt, die derart gefertigt sind, dass sie unterschiedlich stark schrumpfen. Beispielsweise können hierfür Fasern unterschiedlicher Materialien eingesetzt werden.
  • Bevorzugt wird der Schrumpfvorgang in einem Autoklav durchgeführt. Bevor der Zwirn in den Autoklav eingebracht wird, wird dieser bevorzugt aufbereitet, um ein definiertes Schrumpfen zu ermöglichen. Besonders bevorzugt kann die Aufbereitung durch Stricken erfolgen, wobei das Gestrick nach dem Schrumpfvorgang wieder aufgetrennt wird. Die Art der Aufbereitung der Zwirne, z.B. durch Stricken, die Wahl der Temperatur und/oder des Drucks im Autoklav durch den Fachmann getroffen werden kann.
  • Das zweite bevorzugte Herstellungsverfahren des Zwirns mit Überlänge umfasst die Schritte:
    • Bereitstellen des ersten Garns und des zweiten Garns;
    • Verzwirnen bzw. Verdrehen des ersten Garns mit dem zweiten Garn;
    wobei das erste Garn und das zweite Garn mit unterschiedlicher Spannung miteinander verdreht werden und der Zwirn nach dem Verdrehen entspannt wird.
  • Bei dem zweiten bevorzugten Herstellungsverfahren können auch zwei Garne eingesetzt werden, die gleich hergestellt sind und deren Fasern aus gleichen Materialien bestehen.
  • Die Herstellung des erfindungsgemäßen Seils erfolgt in einem Schritt, wobei der Seilkern bzw. die Kerne in eine Flechtmaschine eingeführt und dabei unter anderem vom Zwirn mit Überlänge umflochten wird bzw. werden, wodurch die Ummantelung und gegebenenfalls der Zwischenmantel und/oder die Bewehrung entsteht.
  • Vorteilhafte und nicht einschränkende Ausführungsformen der Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert.
    • Figur 1 zeigt den Querschnitt des erfindungsgemäßen Seils.
    • Figur 2 zeigt einen Zwirn mit Überlänge, der im Seil von Figur 1 eingearbeitet ist.
    • Figur 3 zeigt den Zwirn von Figur 2 im entdrehten Zustand.
    • Figur 4 zeigt eine Versuchsanordnung zur Ermittlung der Schnittfestigkeit.
  • Figur 1 zeigt den Querschnitt eines Seils 1. Das Seil 1 umfasst einen Seilkern 2 und eine den Seilkern 2 umgebende Ummantelung 3. Das Seil 1 ist aus einem textilen Fasermaterial gefertigt, d.h. sowohl der Seilkern 2 als auch die Ummantelung 3 sind aus textilem
  • Fasermaterial gefertigt. Bevorzugt ist das Seil 1 metallfrei gefertigt, abgesehen von optionalen Verbindungselementen oder Klemmen, die an den Enden des Seils 1 oder an einer anderen Stelle am Seil 1 angebracht sind, oder im Seil 1 geführten funktionalen, elektrisch leitfähigen Drähten, die beispielswiese als Stromleiter, Informationsleiter oder Sensor dienen.
  • Alternativ weist das Seil 1 einen Zwischenmantel 4 auf, der zwischen dem Seilkern 2 und der Ummantelung 3 vorgesehen ist. Je nach Ausführungsform kann auch dieser Zwischenmantel 4 metallfrei ausgebildet sein Alternativ oder zusätzlich zum Zwischenmantel 4 kann auch eine textile, bevorzugt metallfreie, Bewehrung (nicht dargestellt) zum Einsatz kommen, worunter hierin ein nichtdeckender Zwischenmantel verstanden wird.
  • Wie aus Figur 1 ersichtlich ist, weist der Seilkern 2 zwölf Kerne 5 auf. Im Allgemeinen kann der Seilkern jedoch auch nur einen Kern 5 oder mehr als einen Kern 5 aufweisen. Die Kerne 5 sind beispielsweise gedreht oder geflochten, könnten jedoch auch auf eine andere Art hergestellt werden.
  • Das hierin beschriebene Seil 1 kann in verschiedenen Verwendungszwecken eingesetzt werden, beispielsweise als Bergseil, als Seil für Verbindungsmittel, für Schlingen oder als Windenseil. Bei der Verwendung als Bergseil wird das Seil 1 beispielsweise von einem Kletterer als Sturzsicherung eingesetzt oder kommt auch als statische Reepschnur für behelfsmäßige Rettungstechniken zum Einsatz. Bei der Verwendung als Seil für Verbindungsmittel kann beispielsweise ein Baumpflegepersonal das Seil 1 als Verbindungsmittel / Lanyard einsetzen, wobei das Seil 1 um den Baum 1 geschlungen und in einen Gurt des Baumpflegepersonals eingehängt wird, sodass sich das Baumpflegepersonal in einer beliebigen vertikalen Position am Baum abstützen kann. Bei dem Verwendungszweck als Seil für Schlingen wird das Seil 1 als Hilfsseil beim Klettern eingesetzt. Bei dem Verwendungszweck als Windenseil wird dieses auf einer Winde aufgespult und wird daher im Gegensatz zu den vorgenannten Verwendungen im maschinellen Betrieb und nicht zur Sturzsicherung von Menschen eingesetzt.
  • In allen vorgenannten Anwendungen kann das Seil 1 einen Durchmesser von 5 mm bis 60 mm, bevorzugt 5 mm bis 13 mm, aufweisen.
  • Insbesondere wenn das Seil 1 zur Sturzsicherung eingesetzt wird, soll der Seilkern 2 vorteilhafte dynamische Eigenschaften aufweisen. In diesen Ausführungsformen umfasst der Seilkern nicht-hochfeste Fasern, bevorzugt Polyamid (PA)-Fasern. In anderen Anwendungsfällen können die nicht-hochfesten Fasern auch Polyester (PES)-Fasern oder Polypropylen (PP)-Fasern sein.
  • In anderen Ausführungsformen, beispielsweise wenn das Seil 1 als Windenseil eingesetzt wird, kann der Seilkern 2 jedoch auch hochfeste Fasern aufweisen. Als "hochfest" werden für die Zwecke der vorliegenden Erfindung Fasern mit einer Zugfestigkeit von mindestens 14 cN/dtex, bevorzugt einer Zugfestigkeit größer 24 cN/dtex, besonders bevorzugt größer 30 cN/dtex, verstanden. Als hochfeste Faserntypen mit entsprechenden Zugfestigkeiten sind z.B. UHMWPE-Fasern (u.a. Dyneema®), Aramidfasern, LCP-Fasern (u.a. Vectran) oder PBO-Fasern bekannt.
  • Je nach Ausführungsform kann der Seilkern 2 bzw. die Kerne 5 auch eine Mischung aus hochfesten Fasern und nicht-hochfesten Fasern umfassen.
  • Um die Schnittfestigkeit des Seils 1 zu erhöhen, umfasst die genannte Ummantelung 3, der Zwischenmantel 4 und/oder die Bewehrung den im Folgenden anhand der Figuren 2 und 3 erläuterten Zwirn 6 mit Überlänge Δ. Die Ummantelung 3, der Zwischenmantel 4 und/oder die Bewehrung können vollständig oder teilweise aus mehreren Zwirnen 6 mit Überlänge Δ gefertigt sein. Üblicherweise sind die Ummantelung 3 und der Zwischenmantel 4 Geflechte, sodass mehrere Zwirne 6 mit Überlänge Δ miteinander verflochten werden können, gegebenenfalls unter Zugabe anderer Zwirne. Üblicherweise beträgt der Gewichtsanteil des Zwirns 6 mit Überlänge Δ in der Ummantelung 3, im Zwischenmantel 4 und/oder in der Bewehrung jedoch jeweils 50 % bis 100 %.
  • In Figur 2 ist der Zwirn 6 mit Überlänge Δ dargestellt, der mit unbestimmter Länge hergestellt und vor der Herstellung der Ummantelung 3, des Zwischenmantels 4 oder der Bewehrung auf zumindest einem Klöppel aufgespult sein kann. In Figur 2 ist zudem eine willkürlich herausgegriffene Einheitslänge E des Zwirns 6 mit Überlänge Δ dargestellt. Die numerische Größe der Einheitslänge E kann beliebig gewählt werden, beispielsweise als 1 m. Die Erfindung ist jedoch völlig unabhängig von der tatsächlich gewählten Länge, wie im Folgenden erläutert wird, und dient lediglich zur Bestimmung der Überlänge Δ des Garnes 7 im Zwirn 6 mit Überlänge Δ.
  • Wie dem Fachmann bekannt ist, werden Zwirne durch Verdrehung mehrere Garne hergestellt. Der hier erläuterte Zwirn 6 mit Überlänge Δ umfasst ein erstes Garn 7 und ein zweites Garn 8, welche miteinander verdreht sind. Der verdrehte Zustand des Zwirns 6 mit Überlänge Δ ist in Figur 2 dargestellt.
  • Figur 3 zeigt den Abschnitt der Einheitslänge E des Zwirns 6 mit Überlänge Δ in einem entdrehten Zustand. Es ist ersichtlich, dass das erste Garn 7 eine größere Länge als das zweite Garn 8 aufweist. In einem praktischen Beispiel wurde für die Einheitslänge E = 1 m gewählt. Wie jedoch bereits aus Figur 2 ersichtlich ist, ist das erste Garn 7 mit dem zweiten Garn 8 verdreht, sodass sich teilweise kleine Schlaufen des ersten Garns 7 um das zweite Garn 8 bilden.
  • Wie aus Figur 3 ersichtlich ist, ist die tatsächliche Länge des ersten Garns 7 im entdrehten Zustand größer als die Länge des zweiten Garns 8 bzw. der Einheitslänge E. Im vorgenannten Beispiel, in dem die Einheitslänge E = 1 m gewählt wurde, ergab sich im entdrehten Zustand des Zwirns 6 mit Überlänge Δ für das erste Garn 7 eine Länge L1 = 1,15 m und für das zweite Garn 8 eine Länge L2 = 1 m. In diesem Beispiel ist das erste Garn 7 im entdrehten Zustand des Zwirns 6 mit Überlänge Δ somit um 15 % länger als das zweite Garn 8, wobei sich der Prozentsatz P berechnet durch P = 100*(L1-L2)/L2.
  • Aus dem vorgenannten Beispiel ist ersichtlich, dass die Wahl der Einheitslänge E beliebig ist und nur zum Bestimmen der relativen Länge des ersten Garns 6 zum zweiten Garn verwendet wird. Würde die Einheitslänge E = 2 m gewählt werden, wäre die Länge L1 des ersten Garns 7 im entdrehten Zustand des Zwirns 6 mit Überlänge Δ 2,3 m und die Länge L2 des zweiten Garns 8 gleich 2 m, sodass das erste Garn 7 wiederum um 15 % länger ist als das zweite Garn 8.
  • Im Allgemeinen ist das erste Garn 7 um zumindest 5 %, bevorzugt um zumindest 8 %, besonders bevorzugt um zumindest 12 %, länger als das zweite Garn 8, gemessen im entdrehten Zustand der Einheitslänge E des Zwirns 6. Der Prozentsatz P ist wie oben beschrieben jeweils bezüglich der Länge L2 des zweiten Garns 8 angegeben, d.h. P = 100*(L1-L2)/L2. Durch diese Längenverhältnisse wird erzielt, dass das erste Garn 7 selbst dann noch nicht gestreckt ist, wenn das zweite Garn 8 gedehnt ist. Eine Obergrenze der Länge, um die das erste Garn 7 länger ist als das zweite Garn 8, kann beispielsweise 30 % sein, wobei diese Obergrenze üblicherweise nur durch das Herstellungsverfahren begrenzt ist.
  • An dieser Stelle sei angemerkt, dass das Messen der Länge des ersten Garns 7 und des zweiten Garns 8 im entdrehten Zustand der Einheitslänge E entweder im spannungsfreien Zustand oder unter einer bestimmten Vorspannung, beispielsweise 0,5 +/- 0,1 cN/tex, erfolgen kann. Das Vorspannen der Garne kann nötig sein, um ein korrektes, vergleichbares Messergebnis zu erzielen. Standards zur Messung der Länge von Garnen sind im Stand der Technik bekannt, wie z.B. DIN 53830-3, welche unter anderem eine Vorspannung von 0,5 +/- 0,1 cN/tex zum Messen der Länge von Garnen vorgibt, und können auch zur Bestimmung der Längen der Garne des hierin beschriebenen Seils 1 eingesetzt werden.
  • Üblicherweise umfasst das erste Garn 7 hochfeste Fasern und das zweite Garn 8 nicht-hochfeste Fasern, wobei die Definition von hochfest wie oben bezüglich des Seilkerns 2 gegeben ist. Beispielsweise könnten die hochfesten Fasern des erste Garns 7 p-Aramidfasern (Para-Aramidfasern), m-Aramidfasern (Meta-Aramidfasern), LCP-Fasern, UHMWPE-Fasern oder PBO-Fasern sein. Besonders eignen sich Fasern, die unter den Namen Kevlar, Twaron und Technora vertrieben werden. Für die nicht-hochfesten Fasern des zweiten Garns 8 könnten z.B. PA-Fasern, PES-Fasern oder PP-Fasern gewählt werden.
  • Je nach Ausführungsform können somit für den Zwirn 6 mit Überlänge Δ Garne 7, 8 aus verschiedenen Materialen gewählt werden. In anderen Ausführungsformen können jedoch auch Garne aus gleichen Materialien gewählt werden, wobei hierbei Einschränkungen durch die unten beschriebenen Herstellungsverfahren gegeben sein können.
  • In der Regel wird das Verhältnis von erstem Garn 7 zu zweitem Garn 8 derart gewählt, dass der Gewichtsanteil des ersten Garns 7 mit Überlänge Δ im Zwirn 30 % bis 90 %, bevorzugt 40 % bis 75 %, beträgt.
  • Der Aufbau des Zwirns 6 ist jedoch nicht auf das Verdrehen von nur zwei Garnen beschränkt, sondern es könnten auch mehr als zwei Garne miteinander verdreht werden. Im entdrehten Zustand des Zwirns 6 mit Überlänge Δ könnten dann alle Garne eine andere Länge aufweisen. In anderen Ausführungsvarianten könnte auch nur ein Garn länger als die anderen, gleichlangen Garne sei oder es könnte nur ein Garn kürzer als die anderen, gleichlangen Garne sein. Wiederum könnten beispielsweise zwei gleichlange Garne länger sein als zwei andere gleichlange Garne. Es ist ersichtlich, dass dem Aufbau des Zwirns 6 mit Überlänge Δ keine Grenzen gesetzt sind, solange zumindest ein Garn eine größere Länge als ein anderes Garn aufweist, gemessen in einem entdrehten Zustand einer Einheitslänge E des Zwirns 6. In diesen Ausführungsformen ist besonders bevorzugt, wenn das längste Garn um zumindest 5 %, bevorzugt um zumindest 8 %, besonders bevorzugt um zumindest 12 %, länger als das kürzeste Garn ist, gemessen im entdrehten Zustand der Einheitslänge E des Zwirns 6.
  • Der Zwirn 6 mit Überlänge Δ kann auf verschiedenste Weisen hergestellt werden und ist nicht auf ein bestimmtes Herstellungsverfahren beschränkt. Insbesondere bieten sich jedoch Herstellungsverfahren mittels eines Schrumpfvorgangs oder unter unterschiedlicher Spannung an, die im Folgenden beschrieben werden.
  • Bei dem Herstellungsverfahren mittels Schrumpfvorgangs werden zuerst das erste Garn 7 und das zweite Garn 8 bereitgestellt. Hierbei liegen die beiden Garne 7, 8 in der Regel spannungslos oder mit derselben Spannung vor. Danach werden die Garne 7, 8 miteinander verzwirnt, wodurch ein Zwirn ohne Überlänge Δ entsteht. In einem weiteren Verfahrensschritt wird der Zwirn ohne Überlänge Δ nach geeigneter Aufbereitung, z.B. Stricken, in einem Autoklav einer vorbestimmten Temperatur ausgesetzt, sodass das erste Garn 7 und das zweite Garn 8 schrumpfen. In dieser Ausführungsform wurden die Garne 7, 8, insbesondere ihre Materialien, derart gewählt, dass diese unter den vorbestimmten Bedingungen unterschiedlich stark schrumpfen, wodurch sich der Zwirn 6 mit Überlänge Δ ergibt.
  • Bei dem Herstellungsverfahren mittels unterschiedlicher Spannung werden das erste Garn 7 und das zweite Garn 8 mit unterschiedlicher Spannung miteinander verzwirnt und der Zwirn 6, d.h. dessen Garne 7, 8, wird nach dem Zwirnen entspannt. Die Wahl der Spannungen, um ein gewünschtes Maß der Überlänge Δ des ersten Garns 7 im Vergleich zum zweiten Garn 8 zu erzielen, kann durch den Fachmann anhand des Elastizitätsmoduls der beiden Garne 7, 8 ermittelt werden. Es ist ersichtlich, dass beispielswiese ein Zwirn, bei dem PA 940 dtex mit Aramid 1660 dtex verzwirnt ist, jeweils andere Vorspannung zur Erzielung des Zwirns 6 mit Überlänge Δ benötigt als ein Zwirn, bei dem PA1400 dtex mit Aramid 1660 dtex verzwirnt ist.
  • Um empirisch zu testen, ob das oben erläuterte Seil 1 mit darin verarbeitetem Zwirn 6 mit Überlänge Δ eine höhere Schnittfestigkeit aufweist als ein vergleichbares Seil ohne Zwirn 6 mit Überlänge Δ, wurde die im Folgenden beschriebene Messung durchgeführt. Es versteht sich jedoch, dass auch andere Messverfahren zur Bestimmung der Schnittfestigkeit herangezogen werden können.
  • Eingangs wurde ein höhenverstellbarer Prüfträger bereitgestellt, auf dem ein 80 cm langer Granitblock 9 mit natürlich gebrochener Kante 10 (Gehsteigkante aus Granit) befestigt wurde. Ausgehend von einem darüber liegenden fixen Anschlagpunkt wurde eine Prüfmasse (80kg Stahlzylinder) mit dem zu prüfenden Seil über die Kante 10 abgelassen. Durch die Lage des Anschlagpunktes ergibt sich eine Umlenkung des Seils an der Kante 10 in einem Umlenkwinkel α, wie aus Figur 4 ersichtlich ist. Die Kante 10 befindet sich in einer Entfernung von 4 m vom Anschlagpunkt (Standplatz). Unmittelbar nach der Kante 10 ist die Prüfmasse freihängend. Durch die Installation einer Kraftmessdose wurden die auftretenden Kräfte am Anschlagpunkt aufgezeichnet.
  • Der Versuchsablauf ist wie folgt:
    • Am Anschlagpunkt wird eine Kraftmessdose installiert und das Prüfseil daran befestigt.
    • Die Masse wird jeweils stoßfrei knapp unterhalb der Steinkante in das Prüfseil gehängt und anschließend um 2 m abgelassen.
    • Das Seil wird mittels seitlich angebrachten Seilzügen horizontal bewegt (Dies könnte einer Situation entsprechen, bei welcher der abgelassene Kletterer seitlich zum nächsten darunterliegenden Standplatz pendelt). Das Prüfseil wird so entlang der scharfen Kante 10 in beide Richtungen gezogen bis zum Riss. Die Kantenlänge, die bis zum Riss überstrichen wurde, wird gemessen und als Bruchlänge bezeichnet.
  • Um eine möglichst gleichmäßige Seitwärtsbewegung zu erreichen, wird die Kraft des Seitwärtszuges unmittelbar unterhalb der Kante 10 eingeleitet. Anschlagbolzen am jeweiligen Ende der Kante 10 verhindern ein Verfahren des Seils über die Kante 10 hinaus. Am Ende der Prüfungen wird die Schärfe der Kante 10 durch ein bereits getestetes Seilmodell verifiziert. Die Kante 10 blieb hierbei unverändert.
  • Das erste Testseil war ein Seil nach dem Stand der Technik, ausgebildet nach EN892 mit einem Durchmesser von 9,8 mm. Hierbei handelte es sich um ein Kern-Mantel-Seil mit einem Polyamidmantel. Der Umlenkwinkel betrug 45°. Es konnte eine Bruchlänge von ca. 200 cm erreicht werden.
  • Das zweite Testseil war ein erfindungsgemäßes Seil mit Aramid im Zwischenmantel in der erfindungsgemäßen Bauweise, ausgebildet nach EN892 mit einem Durchmesser von 9,8 mm. Es konnte eine Bruchlänge von ca. 340 cm erreicht werden. Damit konnte die Bruchlänge gegenüber dem Seil nach dem Stand der Technik um 70% erhöht werden.

Claims (15)

  1. Seil (1) aus textilem Fasermaterial, umfassend einen Seilkern (2) sowie eine den Seilkern (2) umgebende Ummantelung (3),
    wobei die Ummantelung (3) einen Zwirn (6) mit Überlänge (Δ) umfasst, und
    wobei der Zwirn (6) mit Überlänge (Δ) dadurch gebildet ist, dass er zumindest ein erstes Garn (7) und ein zweites Garn (8) umfasst, welche miteinander verdreht sind, wobei das erste Garn (7) eine größere Länge als das zweite Garn (8) aufweist, gemessen in einem entdrehten Zustand einer Einheitslänge des Zwirns (6),
    dadurch gekennzeichnet, dass
    der Zwirn (6) mit Überlänge (Δ) derart ausgeführt ist, dass bei einer Spannung des Seils (1) aufgrund der geringeren Länge des zweiten Garns (8) das zweite Garn (8) gespannt vorliegt und aufgrund der größeren Länge des ersten Garns (7) das erste Garn (7) spannungslos vorliegt.
  2. Seil (1) aus textilem Fasermaterial, umfassend einen Seilkern (2) sowie eine den Seilkern (2) umgebende Ummantelung (3),
    dadurch gekennzeichnet, dass
    sich zwischen der Ummantelung (3) und dem Seilkern (2) ein Zwischenmantel (4) und/oder eine Bewehrung befindet, wobei der Zwischenmantel (4) und/oder die Bewehrung einen Zwirn (6) mit Überlänge (Δ) umfasst,
    wobei der Zwirn (6) mit Überlänge (Δ) dadurch gebildet ist, dass er zumindest ein erstes Garn (7) und ein zweites Garn (8) umfasst, welche miteinander verdreht sind, wobei das erste Garn (7) eine größere Länge als das zweite Garn (8) aufweist, gemessen in einem entdrehten Zustand einer Einheitslänge des Zwirns (6), und
    wobei der Zwirn (6) mit Überlänge (Δ) derart ausgeführt ist, dass bei einer Spannung des Seils (1) aufgrund der geringeren Länge des zweiten Garns (8) das zweite Garn (8) gespannt vorliegt und aufgrund der größeren Länge des ersten Garns (7) das erste Garn (7) spannungslos vorliegt.
  3. Seil (1) nach Anspruch 1 oder 2, wobei das erste Garn (7) p-Aramidfasern, m-Aramidfasern, LCP-Fasern, UHMWPE-Fasern oder PBO-Fasern umfasst.
  4. Seil nach einem der Ansprüche 1 bis 3, wobei das zweite Garn (8) PA-Fasern, PES-Fasern oder PP-Fasern umfasst.
  5. Seil (1) nach einem der Ansprüche 1 bis 4, wobei das erste Garn (7) um zumindest 5 %, bevorzugt um zumindest 8 %, besonders bevorzugt um zumindest 12 %, länger ist als das zweite Garn (8), gemessen im entdrehten Zustand der Einheitslänge des Zwirns (6).
  6. Seil (1) nach einem der Ansprüche 1 bis 5, wobei der Gewichtsanteil des ersten Garns (7) im Zwirn (6) mit Überlänge (Δ) 30 % bis 90 %, bevorzugt 40 % bis 75 %, beträgt.
  7. Seil (1) nach einem der Ansprüche 1 bis 6, wobei der Gewichtsanteil des Zwirns (6) mit Überlänge (Δ) in der Ummantelung (3), im Zwischenmantel (4) und/oder in der Bewehrung jeweils 50 % bis 100 % der Ummantelung, des Zwischenmantels bzw. der Bewehrung beträgt.
  8. Seil (1) nach einem der Ansprüche 1 bis 7, wobei der Seilkern (2) aus einem oder mehreren gedrehten oder geflochtenen Kernen (5) aufgebaut ist.
  9. Seil (1) nach einem der Ansprüche 1 bis 8, wobei der Seilkern (2) PA-Fasern, PES-Fasern oder PP-Fasern umfasst.
  10. Seil (1) nach Anspruch 9, wobei das Seil (1) als Kletterseil nach dem Standard EN892 ausgebildet ist.
  11. Seil (1) nach Anspruch einem der Ansprüche 1 bis 8, wobei der Seilkern (2) Aramidfasern, UHMWPE-Fasern oder PBO-Fasern umfasst.
  12. Seil (1) nach einem der Ansprüche 1 bis 11, wobei das Seil (1) einen Durchmesser von 5 mm bis 60 mm, bevorzugt von 5 mm bis 13 mm, aufweist.
  13. Verwendung eines Seils (1) nach Anspruch 9 oder 10 als Kletterseil.
  14. Verfahren zur Herstellung eines Seils (1) nach einem der Ansprüche 1 bis 12, umfassend die Schritte:
    a) Herstellen eines Zwirns (6) mit Überlänge (Δ) mit den Schritten:
    - Bereitstellen des ersten Garns (7) und des zweiten Garns (8);
    - Verdrehen des ersten Garns (7) mit dem zweiten Garn (8);
    wobei das erste Garn (7) und das zweite Garn (8) mit im Wesentlichen derselben Spannung und derselben Länge miteinander verdreht werden und der Zwirn (6) nach dem Verdrehen einem Schrumpfvorgang ausgesetzt wird; oder wobei das erste Garn (7) und das zweite Garn (8) mit unterschiedlicher Spannung miteinander verdreht werden und der Zwirn (6) nach dem Verdrehen entspannt wird; und
    b) Herstellen des Seils (1) durch:
    - Einführen des Seilkerns (2) bzw. von Kernen (5) des Seilkerns (2) in eine Flechtmaschine und Umflechten des Seilkerns (2) bzw. der Kernen (5) unter anderem vom Zwirn (6) mit Überlänge (Δ) zur Herstellung der Ummantelung (3) und gegebenenfalls des Zwischenmantels (4) und/oder der Bewehrung.
  15. Verfahren nach Anspruch 14, wobei der Schrumpfvorgang in einem Autoklav durchgeführt wird.
EP20195558.0A 2020-09-10 2020-09-10 Seil umfassend einen textilen zwirn und verfahren zur herstellung eines zwirns Active EP3967799B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES20195558T ES3009332T3 (en) 2020-09-10 2020-09-10 Textile fibre rope comprising a plied yarn or core-sheath yarn and method of manufacturung such a yarn
EP20195558.0A EP3967799B1 (de) 2020-09-10 2020-09-10 Seil umfassend einen textilen zwirn und verfahren zur herstellung eines zwirns
US17/468,959 US11802372B2 (en) 2020-09-10 2021-09-08 Rope made of textile fiber material, comprising a twine of excess length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20195558.0A EP3967799B1 (de) 2020-09-10 2020-09-10 Seil umfassend einen textilen zwirn und verfahren zur herstellung eines zwirns

Publications (3)

Publication Number Publication Date
EP3967799A1 EP3967799A1 (de) 2022-03-16
EP3967799B1 true EP3967799B1 (de) 2024-11-06
EP3967799C0 EP3967799C0 (de) 2024-11-06

Family

ID=72473373

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20195558.0A Active EP3967799B1 (de) 2020-09-10 2020-09-10 Seil umfassend einen textilen zwirn und verfahren zur herstellung eines zwirns

Country Status (3)

Country Link
US (1) US11802372B2 (de)
EP (1) EP3967799B1 (de)
ES (1) ES3009332T3 (de)

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2656585A (en) * 1948-04-13 1953-10-27 Neisler Mills Inc Plied yarn and plied yarn fabric and method of making same
NL247979A (de) * 1959-02-06
GB1012828A (en) * 1963-08-05 1965-12-08 Du Pont Process for producing elastic fabrics
JPS53134953A (en) * 1977-04-22 1978-11-25 Uotsu Seikoushiyo Kk Rope
US4155394A (en) * 1977-08-29 1979-05-22 The Goodyear Tire & Rubber Company Tire cord composite and pneumatic tire
US4240486A (en) * 1978-06-16 1980-12-23 The Goodyear Tire & Rubber Company Stretchable radial spare tire
US4343343A (en) * 1981-01-29 1982-08-10 The Goodyear Tire & Rubber Company Elongatable reinforcement cord for an elastomeric article
US4375779A (en) * 1981-04-24 1983-03-08 Minnesota Mining And Manufacturing Company Composite sewing thread of ceramic fibers
US4534262A (en) * 1983-04-01 1985-08-13 The United States Of America As Represented By The Secretary Of The Navy Safety mooring line
EP0150702B2 (de) * 1984-02-01 1996-10-02 Teufelberger Gesellschaft m.b.H. Seil aus Fäden, Garnen oder Litzen aus textilem Fasermaterial
US4877073A (en) * 1988-02-17 1989-10-31 The Goodyear Tire & Rubber Company Cables and tires reinforced by said cables
DE4035814A1 (de) * 1990-11-10 1992-05-14 Techtex Bremen Gmbh Seil, insbesondere reckarmes faserseil
US6216431B1 (en) * 1992-11-25 2001-04-17 World Fibers, Inc. Composite yarn with thermoplastic liquid component
JP3185821B2 (ja) * 1992-12-28 2001-07-11 東洋紡績株式会社 複合ロープ
JPH07243138A (ja) * 1994-03-04 1995-09-19 Toyobo Co Ltd 織編物用潜在嵩高性ポリエステル複合糸条
JPH0866922A (ja) * 1994-08-30 1996-03-12 Nippon Steel Chem Co Ltd 繊維強化プラスチック製棒材及びその製造方法
CH692204A5 (de) 1997-07-17 2002-03-15 Mueller Kurt Sicherheits-Bergseil.
US6601378B1 (en) * 1999-09-08 2003-08-05 Honeywell International Inc. Hybrid cabled cord and a method to make it
CZ299498B6 (cs) * 2001-05-16 2008-08-13 Singing Rock, Spol. S R. O. Zpusob výroby horolezeckého lana
DE50206757D1 (de) * 2001-09-25 2006-06-14 Mammut Tec Ag Seilartiges gebilde
US8136438B2 (en) * 2007-08-14 2012-03-20 New England Ropes Corp. Arborist's climbing rope
US7703372B1 (en) * 2007-08-14 2010-04-27 New England Ropes Corp. Climbing rope
ATE517766T1 (de) * 2007-10-24 2011-08-15 Pirelli Reifen mit einem mit einem hybridgarn verstärkten strukturelement
FR2951743B1 (fr) 2009-10-22 2012-03-23 Beal Sa Protege corde de securite
DE102011017273B4 (de) * 2011-04-15 2019-10-17 Edelrid Gmbh & Co. Kg Kletterseil
KR101580352B1 (ko) * 2012-12-27 2015-12-23 코오롱인더스트리 주식회사 하이브리드 섬유 코드 및 그 제조방법
US9175425B2 (en) * 2013-02-27 2015-11-03 E I Du Pont Nemours And Company Unbalanced hybrid cords and methods for making on cable cording machines
US20140237983A1 (en) * 2013-02-27 2014-08-28 E I Du Pont De Nemours And Company Unbalanced Hybrid Cords and Methods for Making on Cable Cording Machines
JP3185821U (ja) 2013-06-24 2013-09-05 三洋紙業株式会社 積層構造物
KR101602605B1 (ko) * 2015-06-29 2016-03-21 코오롱인더스트리 주식회사 하이브리드 타이어 코드 및 그 제조방법
EP3529403B1 (de) * 2016-10-19 2025-06-18 Firestone Fibers & Textiles Company, LLC Hybrides verdrilltes kord

Also Published As

Publication number Publication date
US20220074136A1 (en) 2022-03-10
US11802372B2 (en) 2023-10-31
EP3967799C0 (de) 2024-11-06
ES3009332T3 (en) 2025-03-26
EP3967799A1 (de) 2022-03-16

Similar Documents

Publication Publication Date Title
DE602004006634T2 (de) Umwindeverbundzwirn und verfahren und vorrichtung zu seiner herstellung
EP0150702B1 (de) Seil aus Fäden, Garnen oder Litzen aus textilem Fasermaterial
DE60109345T2 (de) Mehrfachkomponenten-Garn und Herstellungsverfahren dafür
DE68925008T3 (de) Seil Kernlitze aus Fasern.
EP1430176B1 (de) Seilartiges gebilde
DE2356868C2 (de) Endloses Seil
EP2002051B1 (de) Seil
EP0808943B1 (de) Seil für die Mitnahme und Weitergabe von Papierbahnen bei der Herstellung von Papier und Kartonagen auf Papiermaschinen
EP3392404A1 (de) Hochfestes faserseil für hebezeuge wie krane
AT510030B1 (de) Papierführungsseil
DE69910855T2 (de) Leichtes und abriebfestes Geflecht
EP3967799B1 (de) Seil umfassend einen textilen zwirn und verfahren zur herstellung eines zwirns
EP1904680B1 (de) Hochsicherheitsseil
DE2608039C2 (de) Seil
DE102016003439B3 (de) Muschelzuchtseil
AT501197B1 (de) Strang mit erhöhter haftung auf metallscheiben
DE112018007311T5 (de) Aufzugseil
DE102009056550B4 (de) Tragmittel für Hebezeuge
DE10040589C1 (de) Schnittschutzkleidung
AT503289B1 (de) Strang mit erhöhter haftung auf metallscheiben
WO2005021863A1 (de) Seilelement mit gedrehtem oder geflochtenem aufbau sowie ein derartiges seilelement aufweisendes seil
EP4339340A1 (de) Antistatisches kern-mantelseil
WO2017174774A1 (de) Kern-mantel-seil
DE102020130832A1 (de) Sicherungsgerät mit einer Seilbremse
DE29724140U1 (de) Stichschutzeinlage für Schutztextilien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220830

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231117

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240528

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020009675

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20241113

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT RO SE SI

Effective date: 20241120

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 45838

Country of ref document: SK

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 3009332

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20250326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241106

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241106