[go: up one dir, main page]

EP3948970A1 - Batteriegehäuse und seine verwendung in elektrofahrzeugen - Google Patents

Batteriegehäuse und seine verwendung in elektrofahrzeugen

Info

Publication number
EP3948970A1
EP3948970A1 EP20711627.8A EP20711627A EP3948970A1 EP 3948970 A1 EP3948970 A1 EP 3948970A1 EP 20711627 A EP20711627 A EP 20711627A EP 3948970 A1 EP3948970 A1 EP 3948970A1
Authority
EP
European Patent Office
Prior art keywords
battery housing
din
battery
iso
polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20711627.8A
Other languages
English (en)
French (fr)
Inventor
Richard REITHMEIER
Benedikt KILIAN
Claudio PAULER
Dirk Bruening
Harald Rasselnberg
Andreas Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Covestro Intellectual Property GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Intellectual Property GmbH and Co KG filed Critical Covestro Intellectual Property GmbH and Co KG
Publication of EP3948970A1 publication Critical patent/EP3948970A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/238Flexibility or foldability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0438Arrangement under the floor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to battery housings and their use in electric vehicles.
  • Electric vehicles with appropriate batteries have been known for a long time. It was recognized early on that these batteries had to be protected, especially against mechanical influences, e.g. in the event of an accident or collision with an obstacle.
  • the battery housing of a battery for electric vehicles has individual battery modules and a control unit and is intended to protect the battery from environmental influences and - as far as possible - to increase the efficiency of the battery.
  • the battery housing should be as light as possible in order to reduce the power consumption of the vehicle.
  • the individual parts should be arranged in a space-saving manner and connected to the battery housing.
  • the battery housing should protect the battery modules and the control unit from deformation by absorbing the impact energy from the battery housing or distributing it to the surrounding vehicle structure.
  • the critical impact cases are, for example, the pole side impact and the impact on the bottom of the battery.
  • the battery housing should have the lowest possible thermal conductivity in order to be able to keep the battery modules in an optimal temperature range when the ambient temperature is cold.
  • EP3428993 A1 describes a battery housing which is intended to protect the battery modules from deformation in the event of an impact with the aid of a double-walled housing and spring elements made of steel.
  • the disadvantage here is the additional space required for the spring elements and the increased weight due to the use of springs.
  • the individual battery modules are movably mounted, which makes connecting and routing the cables more difficult.
  • the battery housing also has a high thermal conductivity.
  • DE 102012224041 A1 describes a modular battery group and a method for producing the modular battery group. Due to the modularity of the design, the size of the battery can be easily adapted to the vehicle. In addition, it is possible to flexibly fasten the individual battery toes and battery modules in the support structure in order to compensate for manufacturing tolerances. In one embodiment, additional cooling lines for removing or supplying heat can be attached.
  • EP1950070 B1 describes a structure for mounting batteries in electric vehicles.
  • a frame component made of metal is embedded in a battery housing made of plastic. Particular focus is placed on connecting the structure to the rest of the vehicle. Since a large part of the structure, the battery case, is made of plastic, the essential impact properties of the metal structure or the rest of the vehicle.
  • the frame component leads to an increased weight.
  • WO 2012/091404 A2 describes an underbody that houses the batteries.
  • This sub-floor contains a suspension, which is divided into several compartments, in which the batteries can be installed.
  • the batteries are protected by the various struts.
  • DE 102017217155 A1 describes a battery housing made of thermoplastic plastics, whereby both the housing base and the housing wall, housing cover and partition walls must be made of fiber-reinforced thermoplastic material.
  • Thermoplastic plastics generally have poor mechanical properties.
  • the battery housing is preferably made in a 3D printing process. As a result of the process, different fiber orientations result within a plate element, as can be seen from FIG.
  • the achievable fiber contents are relatively low, at least lower than in other processes for the production of fiber-reinforced components.
  • a preferred orientation of the reinforcing fibers in relation to the direction of travel of the vehicle is not mentioned. Such structures are unsuitable for protecting the battery modules in the event of a side impact.
  • US 2013252059 A1 describes a battery pack housing arrangement consisting of a housing body, a cover and reinforced elements in the side area and / or on the underside of the housing.
  • the housing body consists of plastic, which is reinforced with catch fibers or a mixture of catch fibers and continuous fibers. When using such a reinforcement, only low fiber contents can be achieved. In addition, when using capture fibers, an orientation of the capture fibers in the manufacturing process cannot be guaranteed in a targeted and uniform manner.
  • Thermoplastics such as polypropylene, polyamide and others are proposed as plastics.
  • Extrusion compression molding is proposed as the production method for the housing body. The mechanical characteristics of fiber-reinforced plastic components based on thermoplastics and of components that are produced by extrusion compression molding are not particularly good.
  • the battery pack housing assembly is made entirely of reinforced plastic. In the event of shock loads, such as the side of the pile, the energy acts locally concentrated on the battery housing. An arrangement made of merely reinforced plastic is unsuitable for distributing the energy over a large component area and thus avoiding excessive deformation of the components so that the battery modules are not protected.
  • the object of the present invention was therefore to provide protection for batteries in electric vehicles that is as simple as possible to design and manufacture, can be used universally, is inexpensive and light, and at the same time passes the usual impact tests.
  • the invention relates to a battery housing for electric vehicles, the housing consisting of at least a cover and a base which are connected to one another, and the cover is connected to the vehicle body or a part of the vehicle body forms the cover of the housing, characterized in that the The floor faces away from the vehicle body and the floor of the housing is a floor obtained by pultrusion and consists of thermoset plastic reinforced with continuous fibers, which is available from a reactive resin mixture, the fibers running transversely to the direction of travel of the vehicle.
  • it is a battery housing for electric vehicles to protect the batteries in the event of a side impact on the electric vehicle.
  • thermosetting plastic is preferably polyurethane.
  • the battery housing can be installed as a whole under the vehicle.
  • the battery housing protects the battery modules located in the battery housing from damage in the event of a typical force of at least 100 kN due to a side impact on the electric vehicle and can absorb an impact energy of at least 24,000 J without damaging the battery modules in a typical pole side impact.
  • the corresponding side impact tests are described in the example section.
  • the bottom of the battery housing is produced from thermosetting plastic reinforced with continuous fibers by pultrusion, a polyurethane reactive resin mixture preferably being used as the reactive resin mixture for the plastic.
  • the pultrusion process enables particularly high contents of continuous fibers to be achieved.
  • the pultrusion process achieves extremely good orientation of the continuous fibers and very good mechanical properties in the pultrusion / profile direction. As a result, pultruded profiles are particularly well suited to absorbing high mechanical loads while being lightweight.
  • the bottom preferably has hollow chambers.
  • the hollow chambers save weight and they can e.g. serve to accommodate cables.
  • the hollow chambers run in the direction of the pulling direction of the continuous fibers.
  • the floor has an axial flexural strength according to DIN EN ISO 14125 of 1100 to 1500 MPa, an axial compression modulus according to DIN EN ISO 14126 of 50 to 60 GPa, an axial interlaminar Shear strength according to DIN EN ISO 14130 from 60 to 80 MPa, a shear module according to DIN EN ISO 15310 from 3 to 6 GPa, an axial tensile module according to DIN EN ISO 527-4 from 45 to 60 GPa, a transverse tensile module according to DIN EN ISO 527- 4 from 10 to 15 GPa and a thermal conductivity according to DIN EN 993-14 of 0.1 to 0.7 W / m K.
  • the polyurethane reinforced with continuous fibers based on glass preferably has a density according to DIN EN ISO 1183 of 1.5 g / cm 3 to 2.2 g / cm 3 .
  • the floor can preferably consist of floor modules that are connected to one another. Connections in which the individual floor modules interlock according to the “tongue and groove” principle or as a kind of “puzzle piece” prove to be particularly advantageous. Gluing or stapling is also possible. In the aforementioned embodiments of connecting the floor modules, reinforcement is preferably also attached, for example in the form of webs and struts at the connection points.
  • the housing base also has a cover made of metal or other non-combustible materials on the side facing away from the battery modules. The cover and the bottom of the battery case according to the invention are connected to one another by connecting parts.
  • These connecting parts can preferably be realized by profiles and / or side parts, preferably made of metal.
  • the connection parts can also be made of plastic, ceramic or fiber-reinforced plastic. To save weight, these profiles / side parts can have cutouts.
  • the shape / design of the profiles / side parts can be any.
  • Connecting elements such as screws, rivets, glue points and welds.
  • Double-walled connecting parts particularly preferably have one or more cavities which deform in the event of an impact.
  • connecting parts made of steel have a high flexural strength. Connecting parts made of steel are therefore well suited to distribute the locally concentrated energy in the event of a collision over a large area and to make full use of the mechanical properties of the floor.
  • the connecting parts should consist of as few individual parts as possible.
  • the connecting parts made of metal additionally stabilize the battery housing and can easily be connected to the vehicle floor, for example.
  • the connecting parts protect the battery modules from moisture and shield them from environmental influences. In the event of a leak, nothing will escape. The plastic deformation also absorbs impact energy.
  • connection techniques are required to connect the individual parts to one another for normal operation and in the event of an impact. It is important to ensure that the connections are designed to be simple and easily accessible and that they can be partially released again. It is also advantageous if the connecting elements can also absorb dynamic loads. When combining different materials, the different coefficients of thermal expansion must be taken into account.
  • connection techniques can preferably be used for the battery housing according to the invention:
  • Screw connection of the battery modules to the pultruded base • Screw connection of the bars / struts to the pultruded floor
  • the particular advantage of using plastic reinforced with continuous fibers, in particular polyurethane, as a matrix material for the pultruded floor / floor modules is that screws can be screwed into the unidirectional reinforced floor without pre-drilling being necessary. With another, more brittle matrix material, such as unsaturated polyester, the floor can splinter.
  • the pultruded floor according to the invention based on polyurethane, which is preferably used, is therefore particularly suitable for connection by means of screwing, because there is no pre-drilling. This additionally simplifies the construction of the battery box, ensures detachable connections and leads to fewer pre-treatment / assembly steps.
  • the battery housing according to the invention particularly preferably has a bottom obtained by pultrusion, which consists of thermoset plastic reinforced with continuous fibers based on polyurethane, which is available from a reactive resin mixture, and connecting parts made of metal profiles.
  • continuous fibers means fibers known to the person skilled in the art, e.g. inorganic fibers, organic fibers, metallic fibers, natural fibers, preferably glass fibers and carbon fibers, particularly preferably glass fibers.
  • a continuous fiber is understood to mean a fiber material that has a catch of at least several meters. These are unwound from rolls or spools, for example.
  • Individual fibers, so-called fiber rovings and braided fibers can be used as fiber material. Fiber mats, fiber scrims and fiber fabrics are less preferred, since overall lower fiber contents are achieved in the profile than when using fiber rovings.
  • the glass fibers are used in the form of fiber rovings.
  • the preferred thermosetting plastic for the pultruded base is pultrudate which consists of 40-80, preferably 50-75% by volume of continuous fibers and the remainder of thermosetting plastic.
  • the matrix (without continuous fibers), for example based on polyurethane, preferably has a density of> 1.05 g / cm 3 .
  • the preferred polyurethane used is particularly preferably obtained from a reactive mixture which consists of a polyisocyanate component (A) a polyol component (B) consisting of bl) a mixture of at least two polyols b2) 0-20 wt .-%, based on the total weight of (B), one or more other isocyanate-reactive compounds that of bl) are different, in the presence of b3) 0-5% by weight, based on the total weight of B), of one or more catalysts, b4) 0-20% by weight, based on the total weight of (B), further auxiliaries and / or additives, and
  • the polyisocyanate component (A) particularly preferably consists of monomeric MDI, oligomeric MDI, polymeric MDI, or mixtures thereof.
  • the number average hydroxyl number of the sum of the components in (B) is particularly preferably> 400 mg KOH / g and ⁇ 2000 mg KOH / g and the sum of the nominal OH functionalities in (B) has a number average value between 2.5 and 3, 5, and the ratio of the number of NCO groups in (A) to the sum of the number of OH groups in (B) and (C) multiplied by 100 (the so-called index) preferably has a value of 90-120 .
  • the NCO content of the polyisocyanate component (A) is preferably above 25% by weight, more preferably above 30% by weight, particularly preferably above 31.5% by weight.
  • Polyisocyanate component (A) is preferably from 2.1 to 2.9.
  • the viscosity of the polyisocyanate component (A) is preferably ⁇ 500 mPas (at 25 ° C.), measured in accordance with DIN 53019-1.
  • polyisocyanates ethylene diisocyanate, 1,4-butylene diisocyanate, 1,5-pentane diisocyanate, 1,6-hexamethylene diisocyanate (HDI), 1,12-dodecane diisocyanate, cyclobutane-1,3-diisocyanate, cyclohexane 1,3- and -1,4-diisocyanate and mixtures of these isomers, isophorone diisocyanate (IPDI), 2,4- and 2,6- Hexahydrotolylene diisocyanate and mixtures of these isomers, 2,2,4- and / or 2,4,4-trimethylhexamethylene diisocyanate, bis (4,4'-, 2,4'-, 2,4-trimethylhexamethylene diisocyanate, bis (4,4'-, 2,4'-, 2,4'-, 2,4-trimethylhexamethylene diisocyanate, bis (4,4'-, 2,4'-, 2,
  • Examples include 1,3-diisocyanato-o-xylene, 1,3-diisocyanato-p-xylene, 1,3-diisocyanato-m-xylene, 2,4-diisocyanato-1-chlorobenzene, 2,4-diisocyanato-1 -nitro-benzene, 2,5- diisocyanato-l-nitrobenzene, m-phenylene diisocyanate, p-phenylene diisocyanate, 2,4- tolylene diisocyanate, 2,6-tolylene diisocyanate, mixtures of 2,4- and 2,6-tolylene diisocyanate, 1, 5-naphthalene diisocyanate, 1-methoxy-2,4-phenylene diisocyanate, 4,4'-biphenylene diisocyanate, 3,3'-dimethyl-4,4'-diphenylmethane diisocyanate, and 3,3'-dimethyldip
  • modified isocyanates e.g. those with uretdione, isocyanurate, carbodiimide, uretonimine, allophanate or biuret structure can be used.
  • Polyether polyols, polyester polyols, polyether ester polyols and / or polycarbonate polyols can be used as the mixture (bl) of at least two polyols.
  • Polyether polyols and / or polyester polyols, particularly preferably polyether polyols, are preferably used in the mixture (bl).
  • Such polyols are, for example, from Ionescu in “Chemistry and Technology of Polyols for Polyurethanes”, Rapra Technology Limited, Shawbury 2005, p.31 ff. (Chapter 3: The General Characteristics of Oligo-Polyols, p.55 ff. (Ch. 4: Oligo-Polyols for Elastic Polyurethanes), p. 263 ff. (Chapter 8: Polyester Polyols for Elastic Polyurethanes) and in particular on page 321 ff. (Chapter 13: Polyether Polyols for Rigid Polyurethane Foams) and p.419 ff. (Chapter 16: Polyester Polyols for Rigid Polyurethane Foams).
  • polyether polyols as a mixture bl), which are obtained in a manner known per se by polyaddition of alkylene oxides such as propylene oxide and / or Ethylene oxide to polyfunctional starter compounds in the presence of catalysts can be prepared.
  • the polyhydroxy polyethers are preferably prepared from a starter compound with an average of 2 to 8 active hydrogen atoms and one or more alkylene oxides, for example ethylene oxide, butylene oxide and / or propylene oxide.
  • Preferred starter compounds are molecules with two to eight hydroxyl groups per molecule, such as water, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, 1,4-butanediol, 1,6-hexanediol, bisphenol A, glycerol, trimethylolpropane, pentaerythritol and saccharose, sorbitol and amine starter compounds such as ethylenediamine and triethanolamine.
  • the starter compounds can be used alone or in a mixture.
  • 1,2- and 1,3-propylene glycol, diethylene glycol, sorbitol, glycerol, trimethylolpropane, sucrose and mixtures of the products mentioned are particularly preferred.
  • Representatives of the component bl) mentioned are described, for example, in the Kunststoff-Handbuch, Volume VII “Polyurethane”, 3rd edition, Carl Hanser Verlag, Kunststoff / Vienna, 1993, pages 57-67 and pages 88-90.
  • the polyester polyols are polyhydroxyl compounds containing ester groups, e.g. Castor oil or polyhydroxy polyester, as obtained by polycondensation of excess amounts of simple polyhydric alcohols of the type just mentioned with, preferably, dibasic carboxylic acids or their anhydrides such as e.g. Adipic acid, phthalic acid or phthalic anhydride are accessible.
  • ester groups e.g. Castor oil or polyhydroxy polyester, as obtained by polycondensation of excess amounts of simple polyhydric alcohols of the type just mentioned with, preferably, dibasic carboxylic acids or their anhydrides such as e.g. Adipic acid, phthalic acid or phthalic anhydride are accessible.
  • the polyurethane system used with preference can contain 0-20% by weight, based on the total weight of (B), further isocyanate-reactive components b2) which are different from the mixture bl).
  • B further isocyanate-reactive components b2 which are different from the mixture bl).
  • These are known per se as components for polyurethane. Examples are polyhydric alcohols or (oxy) alkylene diols, e.g. Ethylene glycol and its oligomers, propylene glycol and its oligomers, 1,6-hexanediol, glycerol or trimethylolpropane and other OH-functional compounds such as.
  • the known polyurethane catalysts such as, for example, organic metal compounds, such as potassium or sodium salts of organic carboxylic acids such as, for example, potassium acetate, can be used as catalyst component (b3); also tin (II) salts of organic carboxylic acids, e.g.
  • Latent catalysts and their mechanism of action are described, for example, in EP 2531538 A1, pages 1-4 and page 9, line 26 to page 10, line 2.
  • Typical latent catalysts are blocked amine and amidine catalysts, e.g. catalysts from the manufacturers Air Products (such as Polycat® SA-1/10, Dabco KTM 60) and Tosoh Corporation (such as Toyocat® DB 2, DB 30, DB 31, DB 40, DB 41, DB 42, DB 60, DB 70). Further representatives of catalysts and details about the mode of action of the catalysts are described in the Kunststoff-Handbuch, Volume VII “Polyurethane”, 3rd edition, Carl Hanser Verlag, Kunststoff / Vienna, 1993 on pages 104-110.
  • auxiliaries and additives known for the production of polyurethanes can be used as auxiliaries and additives b4).
  • Such substances are known and are described, for example, in "Kunststoffhandbuch, Volume 7, Polyurethane", Carl Hanser Verlag, 3rd Edition 1993, Chapters 3.4.4 and 3.4.6 to 3.4.11.
  • Examples include surface-active substances, defoamers, emulsifiers, viscosity-reducing agents, dyes, pigments, flame retardants, water binders, e.g.
  • Tris (chloroethyl) orthoformate alkaline earth oxides, zeolites, aluminum oxides, oxazolidines and silicates, and adhesion promoters and fillers such as calcium carbonate, barium sulfate, titanium dioxide, polyethylene, short fibers, for example made of glass or carbon, or natural minerals, such as. B. talc, wollastonite or muskowite.
  • internal release agents (C) it is possible to use all release agents customary in the production of polyurethanes, for example long-chain monocarboxylic acids, in particular fatty acids such as stearic acid, amines of long-chain carboxylic acids such as stearic amide, fatty acid esters, metal salts of long-chain fatty acids such as zinc stearate, or silicones.
  • the internal release agents available especially for pultrusion, e.g. B. MOLD WIZ INT-1948 MCH, MOLD WIZ INT-1960 MCH, available from Axel Plastics or Luvotrent TL HB 550-D, Luvotrent TL HB 550, available from Lehmann & Voss.
  • the internal release agents are preferably insoluble in (B).
  • the internal release agents are used in amounts of 0.1-8% by weight, preferably 0.1-6% by weight and particularly preferably 0.1-4% by weight, based on the total weight of (B).
  • the invention also relates to electric vehicles with the battery housing according to the invention, which are characterized in that the battery housing is mounted in the vehicle in such a way that the continuous fibers located in the bottom of the housing are transverse to the direction of travel of the electric vehicle (i.e. approximately at a 90 ° angle to the direction of travel ) are aligned.
  • FIG. 2 is a section from FIG. 1, which is defined in FIG. 1 by the dashed circle.
  • the battery housing has a base 1 and side walls 3 and 4 and webs 5.
  • the arrow 6 shows the direction of impact in the event of a side impact and the arrow 7 the direction of travel of the vehicle (not shown) in which the battery housing is located.
  • the side parts can be connected to the cover (not shown) by means of the bores 8. Cables (not shown), for example, can run through the recesses 9 and 9 ‘.
  • the dashed circle in FIG. 1 shows the section that is shown in FIG.
  • the base modules of the battery housing are connected to one another by tongue and groove connections 11.
  • the screws 12 connect the webs to the bottom of the battery housing.
  • the battery case according to the invention consists of
  • a floor made of composite, pultruded hollow chamber profiles (unidirectional glass fibers embedded in a polyurethane matrix; fiber content 65 percent by volume), the fibers of which are oriented perpendicular to the direction of travel of the vehicle; the polyurethane-based pultruded profiles have a lower density than metal and are therefore lightweight;
  • the polyurethane system used was:
  • the pultruded profiles produced with the polyurethane system have the following physical properties:
  • the comparison battery housing consists of a profiled base plate ("corrugated sheet metal profile" for stiffening) made of die-cast aluminum, on which the battery modules are attached.
  • the battery modules are covered by a cover made of glass fiber reinforced polypropylene.
  • the base plate protrudes laterally and thus has a larger base area than the battery modules attached to it and thus represents a lateral crumple zone that is intended to absorb the forces in the event of an impact through deformation.
  • the battery housing according to the invention was subjected to two different crash cases in a simulation (the so-called “China crush test” and “pole side impact test (35 km / h (90 °))” in accordance with the NCAP tests for crash Load cases) and compared with the above-described comparison battery housing from the prior art.
  • the battery housing including the battery modules and the control unit is pressed against a pole with a diameter of 150 mm at a speed of 1 m / s (side and center) and the resulting deformation is observed.
  • a force of 120 kN battery modules should not be damaged.
  • the simulation was repeated with a die-cast aluminum battery housing.
  • the simulation showed significant damage to the battery / battery modules.
  • the battery housing including the battery modules and the control unit, together with a frame structure that represents the vehicle's chassis, is pushed vertically and centrally against a pole at 35 km / h.
  • the total weight was 1750 kg.
  • the simulation was repeated with a reduced rigidity of the frame structure ("vehicle chassis").
  • the battery modules / batteries should not be damaged.
  • an impact energy of 15,960 J acts on the battery housing and in the second simulation an impact energy of 25,309 J.
  • the battery housing according to the invention was only slightly heavier than the comparative housing at 291.1 kg.
  • the floor made of glass fiber reinforced polyurethane has a low thermal conductivity of 0.5 W / (m * K) according to DIN EN 993-14, so that the battery modules can be operated energy-efficiently in the preferred temperature range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Battery Mounting, Suspending (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

Die vorliegende Erfindung betrifft Batteriegehäuse und ihre Verwendung in Elektrofahrzeugen.

Description

Batteriegehäuse und seine Verwendung in Elektrofahrzeugen
Die vorliegende Erfindung betrifft Batteriegehäuse und ihre Verwendung in Elektrofahrzeugen.
Elektrofahrzeuge mit entsprechenden Batterien sind seit langem bekannt. Man erkannte frühzeitig, dass diese Batterien geschützt werden müssen, insbesondere gegen mechanische Einwirkungen z.B. bei einem Unfall oder bei einem Aufprall auf Hindernisse.
Das Batteriegehäuse einer Batterie für Elektrofahrzeuge weist einzelne Batteriemodule sowie eine Steuereinheit auf und soll die Batterie vor Umgebungseinflüssen schützen und die Effizienz der Batterie - soweit möglich - steigern. Außerdem soll das Batteriegehäuse möglichst leicht sein, um den Stromverbrauch des Fahrzeugs zu verringern. Die Einzelteile sollten möglichst platzsparend angeordnet und mit dem Batteriegehäuse verbunden sein. Das Batteriegehäuse sollte im Falle eines Fahrzeugaufpralls die Batteriemodule und die Steuereinheit vor einer Verformung schützen, indem die Aufprallenergie von dem Batteriegehäuse aufgenommen bzw. auf die umhegende Fahrzeugstruktur verteilt wird. Die kritischen Aufprallfälle sind zum Beispiel der Pfahl- Seitenaufprall und der Einschlag (Impact) auf den Batterieboden. Um die Effizienz der Batterie zu steigern, sollte das Batteriegehäuse eine möglichst geringe Wärmeleitfähigkeit besitzen, um die Batteriemodule bei kalten Umgebungstemperaturen in einem optimalen Temperaturbereich halten zu können.
In EP3428993 Al wird ein Batteriegehäuse beschrieben, das mit Hilfe eines doppelwandigen Gehäuses und Federelementen aus Stahl die Batteriemodule vor Verformung beim Aufprall schützen soll. Nachteilig ist hierbei der zusätzliche Platzbedarf für die Federelemente sowie das erhöhte Gewicht durch die Verwendung von Federn. Zudem sind die einzelnen Batteriemodule beweglich gelagert, was die Anbindung und Führung der Kabel erschwert. Durch die Verwendung von Metall besitzt das Batteriegehäuse außerdem eine hohe Wärmeleitfähigkeit.
In DE 102012224041 Al werden eine modulare Batteriegruppe und ein Verfahren zur Herstellung der modularen Batteriegruppe beschrieben. Durch die Modularität der Bauweise kann die Größe der Batterie einfach dem Fahrzeug angepasst werden. Zudem ist es möglich, die einzelnen Batteriezehen und Batteriemodule flexibel in der Tragstruktur zu befestigen, um Fertigungstoleranzen auszugleichen. In einer Ausführungsform können zusätzliche Kühlleitungen zur Wärmeab- oder -zufuhr angebracht werden.
In EP1950070 Bl wird eine Struktur zur Montage von Batterien in elektrischen Fahrzeugen beschrieben. Dabei wird ein Rahmenbauteil aus Metall in ein Batteriegehäuse aus Kunststoff eingebettet. Besonderer Fokus wird auf die Anbindung der Struktur an den Rest des Fahrzeugs gelegt. Da ein großer Teil der Struktur, das Batteriegehäuse, aus Kunststoff besteht, werden die wesentlichen Aufpralleigenschaften von der Metallstruktur bzw. dem Rest-Fahrzeug übernommen. Das Rahmenbauteil führt zu einem erhöhten Gewicht.
In WO 2012/091404 A2 wird ein Unterboden beschrieben, der die Batterien aufnimmt. Dieser Unterboden enthält eine in mehrere Abteilungen aufgeteilte Aufhängung, in die die Batterien eingebaut werden können. Durch die diversen Verstrebungen werden die Batterien geschützt.
In DE 102017217155 Al wird ein Batteriegehäuse aus thermoplastischen Kunststoffen beschrieben, wobei sowohl der Gehäuseboden, als auch Gehäusewandung, Gehäusedeckel und Trennwände aus faserverstärktem thermoplastischem Kunststoff bestehen müssen. Thermoplastische Kunststoffe weisen in der Regel geringe mechanische Eigenschaften auf. Das Batteriegehäuse wird bevorzugt in einem 3D-Druckverfahren hergesteht. Hierbei ergeben sich verfahrensbedingt unterschiedliche Faserorientierungen innerhalb eines Plattenelements, wie aus Figur 4 hervorgeht. Die erzielbaren Fasergehalte sind relativ gering, zumindest geringer als in anderen Verfahren zur Herstellung von faserverstärkten Bauteilen. Eine bevorzugte Orientierung der Verstärkungsfasern in Bezug auf die Fahrtrichtung des Fahrzeugs ist nicht erwähnt. Derartige Aufbauten sind bei einem Seitenaufprall nicht geeignet, um die Batteriemodule zu schützen.
In US 2013252059 Al wird eine Batteriepackgehäuseanordnung, bestehend aus einem Gehäusekörper, einer Abdeckung und verstärkten Elementen im Seitenbereich und/oder an der Unterseite des Gehäuses, beschrieben. Der Gehäusekörper besteht dabei aus Kunststoff, der mit Fangfasern oder einer Mischung aus Fangfasern und Endlosfasern verstärkt ist. Bei Verwendung einer solchen Verstärkung sind nur geringe Fasergehalte erreichbar. Zudem lässt sich bei der Verwendung von Fangfasern eine Orientierung der Fangfasern im Herstehungsprozess nicht gezielt und einheitlich einstehen. Als Kunststoff werden thermoplastische Kunststoffe wie Polypropylen, Polyamid und weitere vorgeschlagen. Als Herstellungsverfahren für den Gehäusekörper wird Extrusions-Pressformen vorgeschlagen. Die mechanischen Kennwerte von faserverstärkten Kunststoffbauteilen auf Basis von thermoplastischen Kunststoffen und von Bauteilen, die im Extrusions-Pressformen hergestellt werden, sind nicht besonders gut. Die Batteriepackgehäuseanordnung besteht vollständig aus verstärktem Kunststoff. Bei einer stoßartigen Beanspruchung, wie zum Beispiel dem Pfahl-Seitenaufprah, wirkt die Energie lokal konzentriert auf das Batteriegehäuse ein. Eine Anordnung aus lediglich verstärktem Kunststoff ist ungeeignet, um die Energie auf eine große Bauteilfläche zu verteilen und so eine zu große Verformung der Bauteile zu vermeiden, so dass die Batteriemodule nicht geschützt werden.
Im Konferenzbeitrag„Methodisches und effizientes Entwickeln von Batteriegehäusesystemen“ von Eduard Haberstroh, Automotive Center Südwestfalen GmbH, sowie im Konferenzbeitrag „Herausforderungen in der Entwicklung von HV-Batteriegehäusen“ von Alexander Günther, Kirchhoff Automotive Deutschland GmbH, auf der Konferenz„Batteriesysteme im Karosseriebau 2018“ am 12.06.2018 in Bad Nauheim wurden Batteriegehäuse vorgestellt, deren Struktur vollständig aus Metallprofilen hergestellt wurde. Die Seitenwände bestehen aus Hohlprofilen mit mehreren Hohlkammern, um die Aufprall-Energie aufzunehmen. Auch der Boden besteht aus Metallprofilen mit Hohlkammern. Dadurch hat das Batteriegehäuse ein hohes Gewicht. Zudem leitet das Gehäuse die Wärme gut nach außen und innen, was eine effiziente Temperierung der Batteriemodule erschwert.
Die bekannten Ausführungen zum Schutz von Batterien in Elektrofahrzeugen sind teuer, technisch kompliziert, häufig zu schwer, teilweise nicht praktikabel, und die Batteriemodule können nicht temperiert werden.
Aufgabe der vorliegenden Erfindung war daher, einen Schutz für Batterien in Elektrofahrzeugen zur Verfügung zu stellen, der möglichst einfach aufgebaut und herstellbar ist, universell einsetzbar, kostengünstig sowie leicht ist und gleichzeitig die üblichen Aufpralltests besteht.
Diese Aufgabe konnte durch ein Batteriegehäuse, wie es im Folgenden beansprucht wird, gelöst werden. Dabei ist die Herstellung und auch die Montage einfach, und das Gehäuse kann universell eingesetzt werden.
Gegenstand der Erfindung ist ein Batteriegehäuse für Elektrofahrzeuge, wobei das Gehäuse mindestens aus einer Abdeckung und einem Boden besteht, die miteinander verbunden sind , und die Abdeckung mit der Fahrzeugkarosserie verbunden ist oder ein Teil der Fahrzeugkarosserie die Abdeckung des Gehäuses bildet, dadurch gekennzeichnet, dass der Boden von der Fahrzeugkarosserie abgewandt ist und der Boden des Gehäuses ein durch Pultrusion erhaltener Boden ist und aus mit Endlosfasern verstärktem duroplastischen Kunststoff, der aus einem Reaktivharzgemisch erhältlich ist, besteht, wobei die Fasern quer zur Fahrrichtung des Fahrzeugs verlaufen.
In einer Ausführungsform handelt es sich um ein Batteriegehäuse für Elektrofahrzeuge zum Schutz der Batterien bei einem Seitenaufprall auf das Elektrofahrzeug.
Der duroplastische Kunststoff ist bevorzugt Polyurethan.
Das Batteriegehäuse kann als Ganzes unter das Fahrzeug angebracht werden.
Das erfindungsgemäße Batteriegehäuse schützt bei einer typischen Krafteinwirkung von mindestens 100 kN durch Seitenaufprall auf das Elektrofahrzeug die im Batteriegehäuse befindlichen Batteriemodule vor Beschädigung und kann bei einem typischen Pfahl-Seitenaufprall eine Aufprallenergie von mindestens 24.000 J ohne Beschädigung der Batteriemodule aufnehmen. Die entsprechenden Seitenaufpralltests werden im Beispielteil beschrieben. Der Boden des Batteriegehäuses wird aus mit Endlosfasem verstärktem duroplastischem Kunststoff durch Pultrusion hergestellt, wobei als Reaktivharzgemisch für den Kunststoff bevorzugt ein Polyurethanreaktivharzgemisch verwendet wird. Durch das Pultrusionsverfahren können im Gegensatz zu anderen Verfahren besonders hohe Gehalte an Endlosfasern erreicht werden. Darüber hinaus wird durch das Pultrusionsverfahren eine extrem gute Orientierung der Endlosfasern und sehr gute mechanische Eigenschaften in Pultrusions-/Profilrichtung erzielt. Dadurch sind pultrudierte Profile besonders gut geeignet, hohe mechanische Lasten bei gleichzeitig geringem Gewicht aufzunehmen.
Der Boden weist vorzugsweise Hohlkammern auf. Durch die Hohlkammern wird Gewicht eingespart, und sie können z.B. zur Aufnahme von Kabeln dienen. Bei der Herstellung des Bodens mittels Pultrusion verlaufen die Hohlkammern in Richtung der Zugrichtung der Endlosfasern. In einer besonderen Ausführung ist es auch möglich, die Hohlkammern als Kanäle für eine aktive Temperierung des Batteriegehäuses mittels eines Temperiermediums zu verwenden.
Der Boden weist besonders bevorzugt bei Einsatz von bevorzugt eingesetztem Polyurethan als Kunststoff und Endlosfasern auf Basis von Glas eine axiale Biegefestigkeit nach DIN EN ISO 14125 von 1100 bis 1500 MPa, einen axialen Kompressionsmodul nach DIN EN ISO 14126 von 50 bis 60 GPa, eine axiale interlaminare Scherfestigkeit nach DIN EN ISO 14130 von 60 bis 80 MPa, einen Schubmodul nach DIN EN ISO 15310 von 3 bis 6 GPa, einen axialen Zugmodul nach DIN EN ISO 527-4 von 45 bis 60 GPa, einen transversalen Zugmodul nach DIN EN ISO 527-4 von 10 bis 15 GPa und eine Wärmeleitfähigkeit nach DIN EN 993-14 von 0,1 bis 0,7 W/m K auf.
Das mit Endlosfasern auf Basis von Glas verstärkte Polyurethan weist bevorzugt eine Dichte nach DIN EN ISO 1183 von 1,5 g/cm3 bis 2,2 g/cm3 auf.
Der Boden kann vorzugsweise aus Bodenmodulen bestehen, die miteinander verbunden sind. Als besonders vorteilhaft erweisen sich Verbindungen, bei denen die einzelnen Bodenmodule nach dem Prinzip„Nut und Feder“ oder als Art„Puzzleteile“ ineinander greifen. Möglich ist auch ein Verkleben oder Klammern. Bei den genannten Ausführungsformen des Verbindens der Bodenmodule wird vorzugsweise zusätzlich eine Verstärkung angebracht, zum Beispiel in Form von Stegen und Verstrebungen an den Verbindungsstellen.
Diese Stege und Verstrebungen, die vorzugsweise senkrecht auf dem Boden angebracht sind, verstärken den Batteriegehäuseboden, wobei diese Stege und Verstrebungen gleichzeitig als Trennwände für die einzelnen Batteriemodule fungieren können. Bei der Herstellung des Bodens durch Pultrusion können diese Stege und Verstrebungen teilweise gleichzeitig mit dem Gehäuseboden hergestellt werden. Besonders bevorzugt weist der Gehäuseboden zusätzlich auf der den Batteriemodulen abgewandten Seite eine Abdeckung aus Metall oder anderen nicht brennbaren Materialien auf. Die Abdeckung und der Boden des erfindungsgemäßen Batteriegehäuses werden durch Verbindungsteile miteinander verbunden.
Diese Verbindungsteile lassen sich vorzugsweise durch Profile und/oder Seitenteile bevorzugt aus Metall realisieren. Die Verbindungs teile können auch aus Kunststoff, Keramik oder faserverstärktem Kunststoff bestehen. Aus Gründen der Gewichtseinsparung können diese Profile/Seitenteile Aussparungen aufweisen. Die Form/ Ausgestaltung der Profile/Seitenteile kann beliebig sein.
Besonders bevorzugt werden Metallprofile verwendet, da diese insbesondere die Möglichkeit zur Integration von Verbindungselementen, wie beispielsweise Schrauben, Nieten, Klebepunkte und Schweißstellen, bieten. Besonders bevorzugt weisen doppelwandige Verbindungsteile einen oder mehrere Hohlräume auf, die sich im Falle eines Aufpralls verformen. Insbesondere Verbindungsteile aus Stahl weisen eine hohe Biegesteifigkeit auf. Verbindungsteile aus Stahl eignen sich daher gut, um die lokal konzertiert einwirkende Energie im Falle einer Kollision auf eine große Fläche zu verteilen und um sich die mechanischen Eigenschaften des Bodens in voller Gänze zunutze zu machen. Darüber hinaus sollten die Verbindungsteile aus möglichst wenigen Einzelteilen bestehen.
Insbesondere die Verbindungs teile aus Metall stabilisieren das Batteriegehäuse zusätzlich und können einfach beispielsweise mit dem Fahrzeugboden verbunden werden. Zudem schützen die Verbindungsteile die Batteriemodule vor Feuchtigkeit und schirmen diese gegen Umwelteinflüsse ab. Bei einer Leckage dringt nichts nach außen. Durch die plastische Verformung wird Aufprallenergie zusätzlich aufgefangen.
Durch den Aufbau des erfindungsgemäßen Batteriegehäuses aus Boden, Abdeckung und Verbindungsteilen, wobei diese aus verschiedenen Werkstoffen bestehen können, werden Verbindungstechniken benötigt, um die Einzelteile für den Normalbetrieb und den Fall eines Aufpralls miteinander zu verbinden. Es ist hierbei darauf zu achten, dass die Verbindungen einfach und gut zugänglich gestaltet sind und dass sie teilweise wieder lösbar sind. Von Vorteil ist auch, wenn die Verbindungselemente ebenfalls dynamische Belastungen aufnehmen können. Bei der Kombination von verschiedenen Werkstoffen sind die unterschiedlichen Wärmeausdehnungs koeffizienten zu beachten.
Bevorzugt können für das erfindungsgemäße Batteriegehäuse verschiedene Verbindungstechniken verwendet werden:
Verschraubung der Batteriemodule mit dem pultrudierten Boden • Verschraubung der Stege/Verstrebungen mit dem pultrudierten Boden
• Verklebung der pultrudierten Bodenmodule untereinander
• Verschraubung der Stege/Verstrebungen mit den Verbindungsteilen (Seitenteilen)
• Verklebung des pultrudierten Bodens mit den Verbindungsteilen (Seitenteilen)
Der besondere Vorteil bei der Verwendung von mit Endlosfasern verstärktem Kunststoff, insbesondere Polyurethan als Matrixmaterial für den pultrudierten Boden/die pultrudierten Bodenmodule liegt darin, dass Schrauben in den unidirektional verstärkten Boden geschraubt werden können, ohne dass ein Vorbohren nötig ist. Mit einem anderen, spröderen Matrixmaterial, wie zum Beispiel ungesättigtem Polyester, kann der Boden splittern. Der erfindungsgemäße pultrudierte Boden auf Basis von bevorzugt eingesetztem Polyurethan eignet sich also besonders für die Verbindung mittels Verschraubung, weil das Vorbohren entfällt. Dies vereinfacht den Aufbau des Batteriekastens zusätzlich, gewährleistet lösbare Verbindungen und führt zu weniger Vorbehandlungs-/Montageschritten.
Das erfindungsgemäße Batteriegehäuse weist besonders bevorzugt einen durch Pultrusion erhaltenen Boden auf, der aus mit Endlosfasern verstärktem duroplastischem Kunststoff auf Basis von Polyurethan, das aus einem Reaktivharzgemisch erhältlich ist, besteht, und Verbindungs teile aus Metallprofilen.
Endlosfasern bedeutet im Sinne dieser Anmeldung dem Fachmann bekannte Fasern, wie z.B. anorganische Fasern, organische Fasern, metallische Fasern, Naturfasern, bevorzugt Glasfasern und Kohlenstofffasern, besonders bevorzugt Glasfasern. Dabei wird unter Endlosfaser ein Fasermaterial verstanden, das eine Fänge von mindestens mehreren Metern aufweist. Diese werden beispielsweise von Rollen oder Spulen abgewickelt. Dabei können als Fasermaterial Einzelfasern, sogenannte Faserrovings und geflochtene Fasern eingesetzt werden. Fasermatten, Fasergelege und Fasergewebe sind weniger bevorzugt, da insgesamt geringere Fasergehalte im Profil erreicht werden als bei der Verwendung von Faserrovings. In einer bevorzugten Ausführungsform der Erfindung werden die Glasfasern in Form von Faserrovings eingesetzt.
Als bevorzugter duroplastischer Kunststoff für den pultrudierten Boden (Matrixmaterial für den Batterieboden) werden Pultrudate eingesetzt, die aus 40-80, bevorzugt 50-75 Vol.-% Endlosfasern und dem Rest duroplastischem Kunststoff bestehen. Die Matrix (ohne Endlosfasern) beispielsweise auf Basis von Polyurethan weist bevorzugt eine Dichte von >1,05 g/cm3 auf.
Das bevorzugt eingesetzte Polyurethan wird besonders bevorzugt aus einem Reaktivgemisch erhalten, welches besteht aus einer Polyisocyanatkomponente (A) einer Polyolkomponente (B) bestehend aus bl) einem Gemisch von mindestens zwei Polyolen b2) 0-20 Gew.-%, bezogen auf das Gesamtgewicht von (B), einer oder mehrerer weiterer Isocyanat-reaktiven Verbindungen, die von bl) verschieden sind, in Gegenwart von b3) 0-5 Gew.-%, bezogen auf das Gesamtgewicht von B), eines oder mehrerer Katalysatoren, b4) 0-20 Gew.-%, bezogen auf das Gesamtgewicht von (B), weiterer Hilfs- und/oder Zusatzmittel, und
0,1-8 Gew.-%, bezogen auf das Gesamtgewicht von (B) mindestens eines internen Trennmittels
(C).
Die Polyisocyanatkomponente (A) besteht besonders bevorzugt aus monomerem MDI, oligo- merem MDI, polymerem MDI, oder Mischungen daraus.
Die zahlenmittlere Hydroxylzahl der Summe der Komponenten in (B) ist besonders bevorzugt >400 mg KOH/g und <2000 mg KOH/g und die Summe der nominalen OH-Funktionalitäten in (B) weist einen zahlenmittleren Wert zwischen 2,5 und 3,5 auf, und das Verhältnis der Anzahl der NCO-Gruppen in (A) zu der Summe der Anzahl der OH-Gruppen in (B) und (C) multipliziert mit 100 (der sogenannte Index) weist vorzugsweise einen Wert von 90-120 auf.
Der NCO-Gehalt der Polyisocyanatkomponente (A) liegt vorzugsweise über 25 Gew.-%, bevorzugt über 30 Gew.-%, besonders bevorzugt über 31,5 Gew.-%. Die Funktionalität der
Polyisocyanatkomponente (A) liegt vorzugsweise bei 2,1 bis 2,9. Die Viskosität der Polyisocyanatkomponente (A) liegt vorzugsweise bei < 500 mPas (bei 25°C), gemessen nach DIN 53019-1.
Zusätzlich können die üblichen aliphatischen, cycloaliphatischen, araliphatischen Di- und/oder Polyisocyanate und insbesondere aromatischen Isocyanate zum Einsatz kommen, welche aus der Polyurethanchemie bekannt sind. Beispiele solcher geeigneter Polyisocyanate sind Ethylendiisocyanat, 1 ,4-Butylendiisocyanat, 1,5-Pentandiisocyanat, 1 ,6-Hexamethylendiisocyanat (HDI), 1,12-Dodecandiisocyant, Cyclobutan-l,3-diisocyanat, Cy clohexan- 1,3- und -1,4-diisocyanat und Mischungen dieser Isomere, Isophorondiisocyanat (IPDI), 2,4- und 2,6- Hexahydrotoluylendiisocyanat und Mischungen dieser Isomere, 2,2,4- und/oder 2,4,4- Trimethylhexamethylendiisocyanat, Bis(4,4‘-, 2,4‘- und 2,2‘-isocyanatocyclohexyl)methan oder Mischungen dieser Isomere, und aromatische Isocyanate der allgemeinen Formel R(NCO)z, wobei R ein polyvalenter organischer Rest ist, der einen Aromaten aufweist, und z eine ganze Zahl von mindestens 2 ist. Beispiele hierfür sind 1,3-Diisocyanato-o-xylol, 1,3-Diisocyanato-p-xylol, 1,3- Diisocyanato-m- xylol, 2,4-Diisocyanato-l-chlorobenzol, 2,4-Diisocyanato-l-nitro-benzol, 2,5- Diisocyanato-l-nitrobenzol, m-Phenylendiisocyanat, p-Phenylendiisocyanat, 2,4- Toluylendiisocyanat, 2,6-Toluylendiisocyanat, Mischungen aus 2,4- and 2,6-Toluylendiisocyanat, 1 ,5-Naphthalindiisocyanat, l-Methoxy-2,4-phenylendiisocyanat, 4,4'-Biphenylendiisocyanat, 3,3'- Dimethyl-4,4'-diphenylmethandiisocyanat, und 3,3'-Dimethyldiphenylmethan-4,4'-diisocyanat; Triisocyanate, wie 4,4',4"-Triphenylmethantriisocyanat und 2,4,6-Toluoltriisocyanat, und Tetraisocyanate, wie 4,4'-Dimethyl-2,2'-5,5'-diphenylmethantetraisocyanat sowie, 1,3- und/oder l,4-Bis-(2-isocyanato-prop-2-yl)-benzol (TMXDI), l,3-Bis-(isocyanatomethyl)benzol (XDI).
Neben den vorstehend genannten Isocyanaten können auch modifizierte Isocyanate, wie z.B. solche mit Uretdion-, Isocyanurat-, Carbodiimid-, Uretonimin-, Allophanat- oder Biuretstruktur, eingesetzt werden.
Als Gemisch (bl) aus mindestens zwei Polyolen können Polyetherpolyole, Polyesterpolyole, Polyetheresterpolyole und/oder Polycarbonatpolyole eingesetzt werden. Vorzugsweise werden im Gemisch (bl) Polyetherpolyole und/oder Polyesterpolyole, besonders bevorzugt Polyetherpolyole eingesetzt.
Die als bl) eingesetzten Polyole können neben der OH- Funktion auch weitere gegenüber Isocyanat reaktive Wasserstoff atome (= aktive Wasserstoffatome) enthalten, wie beispielsweise NH-Gruppen und NH2-Gruppen. Soweit solche weiteren aktiven Wasserstoffatome vorhanden sind, stammen bevorzugt mehr als 90 %, insbesondere mehr als 95 %, besonders bevorzugt mehr als 99 % und ganz besonders bevorzugt 100 % aller gegenüber Isocyanat reaktiven Wasserstoff atome in der Polyolformulierung aus OH-Funktionen.
Solche Polyole sind beispielsweise von Ionescu in„Chemistry and Technology of Polyols for Polyurethanes“, Rapra Technology Limited, Shawbury 2005, S.31 ff. (Kap. 3: The General Characteristics of Oligo-Polyols, S.55 ff. (Kap. 4: Oligo-Polyols for Elastic Polyurethanes), S. 263 ff. (Kap. 8: Polyester Polyols for Elastic Polyurethanes) und insbesondere auf S.321 ff. (Kap. 13: Polyether Polyols for Rigid Polyurethane Foams) und S.419 ff. (Kap. 16: Polyester Polyols for Rigid Polyurethane Foams) beschrieben.
Bevorzugt werden als Gemisch bl) zwei oder mehrere Polyetherpolyole eingesetzt, welche auf an sich bekannte Weise durch Polyaddition von Alkylenoxiden wie Propylenoxid und/oder Ethylenoxid an polyfunktionelle Starterverbindungen in Gegenwart von Katalysatoren hergestellt werden können. Bevorzugt werden die Polyhydroxypolyether aus einer Starterverbindung mit durchschnittlich 2 bis 8 aktiven Wasserstoffatomen und einem oder mehreren Alkylenoxiden, z.B. Ethylenoxid, Butylenoxid und/oder Propylenoxid, hergestellt. Bevorzugte Starterverbindungen sind Moleküle mit zwei bis acht Hydroxylgruppen pro Molekül wie Wasser, Ethylenglykol, Propylenglykol, Diethylenglykol, Dipropylenglykol, Triethylenglykol, Tripropylenglykol, 1,4- Butandiol, 1,6-Hexandiol, Bisphenol A, Glycerin, Trimethylolpropan, Pentaerythrit, Sorbit und Saccharose und aminische Starterverbindungen wie z.B. Ethylendiamin und Triethanolamin. Die Starterverbindungen können allein oder im Gemisch verwendet werden. Besonders bevorzugt sind 1,2- und 1,3- Propylenglykol, Diethylenglykol, Sorbit, Glycerin, Trimethylolpropan, Saccharose und Gemische aus den genannten Produkten. Vertreter der genannten Komponente bl) sind z.B. im Kunststoff-Handbuch, Band VII„Polyurethane“, 3. Auflage, Carl Hanser Verlag, München / Wien, 1993, Seiten 57 - 67 bzw. Seiten 88 - 90 beschrieben.
Bei den Polyesterpolyolen handelt es sich um Estergruppen aufweisende Polyhydroxylverbindungen wie z.B. Ricinusöl oder Polyhydroxypolyester, wie sie durch Polykondensation überschüssiger Mengen einfacher mehrwertiger Alkohole der soeben beispielhaft genannten Art mit vorzugsweise dibasischen Carbonsäuren bzw. deren Anhydride wie z.B. Adipinsäure, Phthalsäure oder Phthalsäureanhydrid zugänglich sind.
Das bevorzugt eingesetzte Polyurethansystem kann 0-20 Gew.-% bezogen auf das Gesamtgewicht von (B), weitere Isocyanat-reaktive Komponenten b2) enthalten, welche vom Gemisch bl) verschieden sind. Diese sind als Komponenten für Polyurethan an sich bekannt. Beispiele sind mehrwertige Alkohole bzw. (Oxy)alkylendiole, z.B. Ethylenglykol und seine Oligomeren, Propylenglykol und seine Oligomeren, Hexandiol-1,6, Glycerin oder Trimethylolpropan und weitere OH-funktionelle Verbindungen wie z. B. Sorbit oder Bis(2-Hydroxyethylenoxy)benzol.
Als Katalysatorkomponente (b3) können beispielsweise die bekannten Polyurethankatalysatoren eingesetzt werden, wie z.B. organische Metallverbindungen, wie Kalium- oder Natriumsalze organischer Carbonsäuren wie z.B. Kaliumacetat; ebenso Zinn-(II)-salze von organischen Carbonsäuren, z.B. Zinn-(II)-acetat, Zinn-(II)-octoat, Zinn-(II)-ethylhexanoat und Zinn-(II)-laurat und die Dialkylzinn-(IV)-salze von organischen Carbonsäuren, z.B. Dibutylzinndiacetat, Dibutylzinndilaurat, Dimethylzinndilaurat, Dibutylzinnmaleat und Dioctylzinndiacetat, weiterhin beispielsweise Diisooctyl-2,2'-[(dioctylstannylen)bis(thio)]diacetat, Di-n-butyl-bis(dodecylthio)- Zinn, 2-Ethylhexyl-4,4'-dibutyl-10-ethyl-7-oxo-8-oxa-3,5-dithia-4-stannatetradecanoat, Dimethyl- zinndithioglycolat und/oder stark basische Amine wie 2,2,2-Diazabicyclooctan, N,N-Dimethyl- aminopropylamin, N,N-bis(3-dimethylaminopropyl)-N-isopropanolamin, Triethylamin, Triethylen- diamin, Tetramethylhexamethylendiamin, Pentamethyldiethylentriamin, N,N-Dimethyl- cyclohexylamin oder Bis(N,N-Dimethylaminoethyl)ether, N,N-Dimethylbenzylamin, N,N- Methyldibenzylamin und N-Methylimidazol, und latente Katalysatoren. Latente Katalysatoren und ihr Wirkmechanismus werden beispielsweise in EP 2531538 Al, Seiten 1 - 4 sowie Seite 9, Zeile 26 bis Seite 10, Zeile 2 beschrieben. Typische latente Katalysatoren sind blockierte Amin- und Amidin-Katalysatoren, z.B. Katalysatoren der Hersteller Air Products (wie z.B. Polycat® SA-1/10, Dabco KTM 60) und Tosoh Corporation (wie etwa Toyocat® DB 2, DB 30, DB 31, DB 40, DB 41, DB 42, DB 60, DB 70). Weitere Vertreter von Katalysatoren sowie Einzelheiten über die Wirkungsweise der Katalysatoren sind im Kunststoff-Handbuch, Band VII„Polyurethane“, 3. Auflage, Carl Hanser Verlag, München / Wien, 1993 auf den Seiten 104 - 110 beschrieben.
Als Hilfs- und Zusatzmittel b4) können alle zur Herstellung von Polyurethanen bekannten Hilfs- und Zusatzmittel verwendet werden. Solche Substanzen sind bekannt und beispielsweise in "Kunststoffhandbuch, Band 7, Polyurethane", Carl Hanser Verlag, 3. Auflage 1993, Kapitel 3.4.4 und 3.4.6 bis 3.4.11 beschrieben. Genannt seien beispielsweise oberflächenaktive Substanzen, Entschäumer, Emulgatoren, Viskositätserniedriger, Farbstoffe, Pigmente, Flammschutzmittel, Wasserbinder, wie z.B. Tris(chlorethyl)orthoformiat, Erdalkalioxide, Zeolithe, Aluminiumoxide, Oxazolidine und Silikate, und Haftvermittler sowie Füllstoffe, wie Calciumcarbonat, Bariumsulfat, Titandioxid, Polyethylen, Kurzfasern beispielsweise aus Glas oder Kohlenstoff oder natürliche Minerale, wie z. B. Talkum, Wollastonite oder Muskowite.
Als interne Trennmittel (C) können alle bei der Herstellung von Polyurethanen üblichen Trennmittel verwendet werden, beispielsweise langkettige Monocarbonsäuren, insbesondere Fettsäuren wie Stearinsäure, Amine langkettiger Carbonsäuren wie Stearinamid, Fettsäureester, Metallsalze langkettiger Fettsäuren wie Zinkstearat, oder Silikone. Besonders geeignet sind die speziell für die Pultrusion erhältlichen Internen Trennmittel, z. B. MOLD WIZ INT-1948 MCH, MOLD WIZ INT-1960 MCH, erhältlich von Axel Plastics oder Luvotrent TL HB 550-D, Luvotrent TL HB 550, erhältlich von Lehmann&Voss. Vorzugsweise sind die internen Trennmittel in (B) unlöslich. Die internen Trennmittel werden in Mengen von 0,1-8 Gew.-%, bevorzugt 0,1-6 Gew.-% und besonders bevorzugt 0,1-4 Gew.-%, bezogen auf das Gesamtgewicht von (B) eingesetzt.
Ein weiterer Gegenstand der Erfindung sind Elektrofahrzeuge mit dem erfindungsgemäßen Batteriegehäuse, die dadurch gekennzeichnet sind, dass das Batteriegehäuse so im Fahrzeug angebracht ist, dass die im Boden des Gehäuses befindlichen Endlosfasern quer zur Fahrtrichtung des Elektrofahrzeugs (also etwa in einem 90°-Winkel zur Fahrtrichtung) ausgerichtet sind. Beschreibung der Figuren:
In Figur 1 wird ein Teil eines erfindungsgemäßen Batteriegehäuses ohne Batteriemodule und Steuerungseinheit gezeigt.
Figur 2 ist ein Ausschnitt aus Figur 1 , der in Figur 1 durch den gestrichelten Kreis definiert ist. Das Batteriegehäuse weist einen Boden 1 und Seitenwände 3 und 4 sowie Stege 5 auf. Der Pfeil 6 zeigt die Stoßrichtung im Falle eines Seitenaufpralls und der Pfeil 7 die Fahrtrichtung des Fahrzeugs (nicht abgebildet), in dem sich das Batteriegehäuse befindet. Mittels der Bohrungen 8 können die Seitenteile mit der Abdeckung (nicht abgebildet) verbunden werden. Durch die Aussparungen 9 und 9‘ können beispielsweise Kabel (nicht abgebildet) verlaufen. Der gestrichelte Kreis in Figur 1 zeigt den Ausschnitt, der in Figur 2 dargestellt ist.
Die Bodenmodule des Batteriegehäuses sind durch Nut und Feder- Verbindung 11 miteinander verbunden. Die Schrauben 12 verbinden die Stege mit dem Boden des Batteriegehäuses.
Die Erfindung soll anhand der nachfolgenden beispielhaften Ausführungen näher erläutert werden.
Beispiele:
Das erfindungsgemäße Batteriegehäuse besteht aus
• einem Boden aus zusammengesetzten, pultrudierten Hohlkammer-Profilen (unidirektional ausgerichtete Glasfasern eingebettet in eine Polyurethan-Matrix; Fasergehalt 65 Volumenprozent), deren Fasern senkrecht zur Fahrtrichtung des Fahrzeugs ausgerichtet sind; die pultrudierten Profile auf Polyurethan-Basis haben eine geringere Dichte als Metall und weisen somit ein geringes Gewicht auf;
• Seitenteilen aus Hohlkammerprofilen aus Stahl;
• Stege aus Stahl, die zwei nebeneinander liegende Bodenprofile sowie zwei gegenüberliegende Seitenteile verbinden;
• Deckel aus einer Pol ypropy len plattend ie das Batteriegehäuse abdichtet;
• Batteriemodulen und Steuereinheit.
Als Polyurethan-System wurde verwendet:
Die mit dem Polyurethan-System hergestellten pultrudierten Profile besitzen die folgenden physikalischen Eigenschaften:
• Biegefestigkeit axial: ca. 1.300 MPa (DIN EN ISO 14125)
• Kompressionsmodul axial: ca. 53,5 GPa (DIN EN ISO 14126)
• Interlaminare Scherfestigkeit axial: ca. 70 MPa (DIN EN ISO 14130)
• Wärmeleitfähigkeit: ca. 0,5 W/m K (DIN EN 993-14)
• Dichte: ca. 2,1 g/cm3 (DIN EN ISO 1183)
• Zugmodul transversal: ca. 12 GPa (DIN EN ISO 527-4)
• Zugmodul axial: ca. 50 GPa (DIN EN ISO 527-4)
• Schubmodul: ca. 3,5 GPa (DIN EN ISO 15310)
Das Vergleichsbatteriegehäuse besteht aus einer profilierten Bodenplatte („Wellblechprofil“ zur Versteifung) aus Aluminiumdruckguss, auf der die Batteriemodule befestigt sind. Die Batteriemodule werden von einem Deckel aus glasfaserverstärktem Polypropylen abgedeckt. Die Bodenplatte steht seitlich über und hat somit eine größere Grundfläche als die darauf befestigten Batteriemodule und stellt damit eine seitliche Knautschzone dar, die die Kräfte im Fall des Aufpralls durch Verformung aufnehmen soll.
Das erfindungsgemäße Batteriegehäuse wurde in einer Simulation zwei unterschiedlichen Crash- Fällen unterzogen (dem sog. „China-Crush-Test“ sowie „Pfahl-Seitenaufprall-Test (35 km/h (90°))“ entsprechend den NCAP-Tests für Crash-Lastfälle) und mit dem oben beschriebenen Vergleichsbatteriegehäuse aus dem Stand der Technik verglichen.
Beim sogenannten China-Crush-Test wird das Batteriegehäuse inklusive der Batteriemodule und der Steuereinheit mit einer Geschwindigkeit von 1 m/s (seitlich und mittig) gegen einen Pfahl mit einem Durchmesser von 150 mm gedrückt und die resultierende Verformung betrachtet. Beim Erreichen einer Kraft von 120 kN sollten Batteriemodule nicht beschädigt werden.
In der Simulation des China-Crush-Tests mit dem erfindungsgemäßen Batteriegehäuse zeigte sich, dass bei 120 kN keine Schädigung der Batterie/der Batteriemodule auftrat.
Die Simulation wurde mit einem Batteriegehäuse aus Aluminiumdruckguss wiederholt. In der Simulation zeigte sich eine deutliche Schädigung der Batterie/Batteriemodule. Beim sogenannten Pfahl-Seitenaufprall-Test wird das Batteriegehäuse inklusive der Batteriemodule und der Steuereinheit zusammen mit einer Rahmenstruktur, die das Chassis des Fahrzeugs darstellt, mit 35 km/h senkrecht und mittig gegen einen Pfahl geschoben. Das gesamte Gewicht betrug 1750 kg. Die Simulation wurde mit einer reduzierten Steifigkeit der Rahmenstruktur („Fahrzeug- Chassis“) wiederholt. Bei der Simulation des Pfahlaufpralls sollen die Batteriemodule/Batterie nicht beschädigt werden. Bei der ersten Simulation wirkt eine Aufprallenergie von 15960 J auf das Batteriegehäuse und in der zweiten Simulation eine Aufprallenergie von 25309 J.
In der Simulation des Pfahlaufprall-Tests mit dem erfindungsgemäßen Batteriegehäuse zeigte sich, dass sowohl eine Aufprall-Energie von 15.960 J als auch eine Aufprallenergie von 25.309 J vom erfindungsgemäßen Batteriegehäuse aufgenommen werden konnte, ohne dass die Batterie/- Batteriemodule beschädigt wurden.
In der Simulation mit dem oben beschrieben Vergleichsgehäuse zeigte sich bereits bei einer Aufprall-Energie von 15.960 J eine starke Beschädigung der Batterie/Batteriemodule.
Das erfindungsgemäße Batteriegehäuse war mit 310,3 kg nur geringfügig schwerer als das Ver- gleichsgehäuse mit 291,1 kg.
Der Boden aus glasfaserverstärktem Polyurethan weist eine geringe Wärmeleitfähigkeit von 0,5 W/(m*K) nach DIN EN 993-14 auf, sodass die Batteriemodule energieeffizient im bevorzugten Temperaturbereich betrieben werden können.

Claims

Patentansprüche :
1. Batteriegehäuse für Elektrofahrzeuge, wobei das Gehäuse mindestens aus einer Abdeckung und einem Boden besteht, die miteinander verbunden sind, und die Abdeckung mit der Fahrzeugkarosserie verbunden ist oder ein Teil der Fahrzeugkarosserie die Abdeckung des Gehäuses bildet, dadurch gekennzeichnet, dass der Boden von der Fahrzeugkarosserie abgewandt ist und der Boden des Gehäuses ein durch Pultrusion erhaltener Boden ist und aus mit Endlosfasern verstärktem duroplastischen Kunststoff, der aus einem Reaktivharzgemisch erhältlich ist, besteht, wobei die Fasern quer zur Fahrrichtung des Fahrzeugs verlaufen.
2. Batteriegehäuse gemäß Anspruch 1, dadurch gekennzeichnet, dass der Kunststoff Polyurethan ist.
3. Batteriegehäuse gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Boden Hohlkammern aufweist.
4. Batteriegehäuse gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die die Abdeckung und der Boden durch Profile und/oder Seitenteile, die aus Metall bestehen, verbunden sind.
5. Batteriegehäuse gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Boden aus Bodenmodulen besteht, die miteinander verbunden sind, so dass sie Verbindungsstellen aufweisen.
6. Batteriegehäuse gemäß Anspruch 5, dadurch gekennzeichnet, dass die Bodenmodule an den Verbindungsstellen der Bodenmodule zusätzlich verstärkt sind.
7. Batteriegehäuse gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Boden durch senkrecht zum Boden angeordnete Stege und/oder Verstrebungen verstärkt ist.
8. Batteriegehäuse gemäß Anspruch 2, dadurch gekennzeichnet, dass der pultrudierte mit Endlosfasern auf Basis von Glas verstärkte Boden aus Polyurethan als Kunststoff eine axiale Biegefestigkeit nach DIN EN ISO 14125 von 1100 bis 1500 MPa, einen axialen Kompressionsmodul nach DIN EN ISO 14126 von 50 bis 60 GPa, eine axiale interlaminare Scherfestigkeit nach DIN EN ISO 14130 von 60 bis 80 MPa, einen Schubmodul nach DIN EN ISO 15310 von 3 bis 6 GPa, einen axialen Zugmodul nach DIN EN ISO 527-4 von 45 bis 60 GPa, einen transversalen Zugmodul nach DIN EN ISO 527-4 von 10 bis 15 GPa und/oder eine Wärmeleitfähigkeit nach DIN EN 993-14 von 0,1 bis 0,7 W/m K aufweist.
9. Batteriegehäuse gemäß Anspruch 2, dadurch gekennzeichnet, dass das mit Endlosfasern verstärkte Polyurethan eine Dichte gemäß DIN EN ISO 1183 von 1,5 g/cm3 bis 2,2 g/cm3 aufweist.
10. Batteriegehäuse gemäß Anspruch 2, dadurch gekennzeichnet, dass der Gehalt an Endlosfasern mindestens 40 Vol.-% und höchstens 80 Vol.-% im mit Endlosfasern verstärktem Polyurethan beträgt.
11. Batteriegehäuse gemäß Anspruch 2, dadurch gekennzeichnet, dass das Polyurethan erhältlich ist aus einem Polyurethanreaktionsgemisch bestehend aus einer Polyisocyanatkomponente (A) einer Polyolkomponente (B) bestehend aus bl) einem Gemisch von mindestens zwei Polyolen b2) 0-20 Gew.-%, bezogen auf das Gesamtgewicht von (B), einer oder mehrerer weiterer Isocyanat-reaktiven Verbindungen, die von bl) verschieden sind, in Gegenwart von b3) 0-5 Gew.-%, bezogen auf das Gesamtgewicht von B), eines oder mehrerer Katalysatoren, b4) 0-20 Gew.-%, bezogen auf das Gesamtgewicht von (B), weiterer Hilfs- und/oder Zusatzmittel, und 0,1-8 Gew.-%, bezogen auf das Gesamtgewicht von (B) mindestens eines internen
Trennmittels (C).
12. Elektrofahrzeug mit Batteriegehäuse gemäß einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Batteriegehäuse so im Fahrzeug angebracht ist, dass die im Boden des Gehäuses befindlichen Endlosfasern quer zur Fahrtrichtung des
Elektrofahrzeugs ausgerichtet sind.
EP20711627.8A 2019-03-29 2020-03-23 Batteriegehäuse und seine verwendung in elektrofahrzeugen Pending EP3948970A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19166070 2019-03-29
PCT/EP2020/057998 WO2020200885A1 (de) 2019-03-29 2020-03-23 Batteriegehäuse und seine verwendung in elektrofahrzeugen

Publications (1)

Publication Number Publication Date
EP3948970A1 true EP3948970A1 (de) 2022-02-09

Family

ID=66001133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20711627.8A Pending EP3948970A1 (de) 2019-03-29 2020-03-23 Batteriegehäuse und seine verwendung in elektrofahrzeugen

Country Status (5)

Country Link
US (1) US12043125B2 (de)
EP (1) EP3948970A1 (de)
JP (1) JP2022526353A (de)
CN (1) CN113614989B (de)
WO (1) WO2020200885A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11964535B2 (en) 2019-11-18 2024-04-23 Bollinger Motors, Inc. Electric automotive vehicle
JP7215557B1 (ja) * 2021-12-02 2023-01-31 Jfeスチール株式会社 バッテリーケース及びバッテリーケースクロスメンバ
DE102022208548A1 (de) * 2022-08-17 2024-02-22 Sgl Carbon Se Batteriestruktur
WO2024100042A1 (en) 2022-11-08 2024-05-16 Sabic Global Technologies B.V. Thermoplastic battery cover reinforced with continuousfiber composite lamina to control burst pressure
WO2024176678A1 (ja) * 2023-02-22 2024-08-29 株式会社神戸製鋼所 自動車用バッテリーケース
WO2024240776A1 (en) 2023-05-22 2024-11-28 Sabic Global Technologies B.V. Battery pack cover with a protruding double wall battery divider and thermal runaway barrier
DE102023113297A1 (de) 2023-05-22 2024-11-28 Bayerische Motoren Werke Aktiengesellschaft Gehäuseteil für eine Fahrzeugbatterie, Fahrzeugbatterie sowie Fahrzeug
WO2025026798A1 (en) * 2023-07-28 2025-02-06 Autoneum Management Ag Flame shield for a battery of an electric vehicle and battery housing comprising it
CN117400604B (zh) * 2023-10-17 2024-05-17 溧阳山湖新材料科技有限公司 高达因值电池盒底板制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056976B2 (en) * 2002-08-06 2006-06-06 Huntsman International Llc Pultrusion systems and process
JP4434213B2 (ja) 2007-01-26 2010-03-17 三菱自動車工業株式会社 電気自動車のバッテリ搭載構造
US20120302718A1 (en) 2010-02-02 2012-11-29 Bayer Intellectual Property GmbH Creative Campus Monheim Polyisocyanate Polyaddition Products, Method for Producing Same, and Use Thereof
US9065111B2 (en) * 2010-05-26 2015-06-23 Samsung Sdi Co., Ltd. Battery pack
KR20120044853A (ko) 2010-10-28 2012-05-08 현대자동차주식회사 플라스틱 복합재를 이용한 전기자동차용 배터리팩 케이스 어셈블리
KR101220768B1 (ko) 2010-12-28 2013-01-21 주식회사 포스코 전기 자동차용 언더 바디
DE102012224041B4 (de) 2011-12-22 2022-02-03 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Modular erweiterbare Baugruppe für einen modularen Kraftfahrzeug-Batteriepack sowie solch ein Batteriepack
KR101315741B1 (ko) * 2012-03-23 2013-10-10 현대자동차주식회사 치수안정성이 우수한 전기자동차용 배터리 팩 케이스 어셈블리와 그 제조 방법
KR101456960B1 (ko) * 2012-05-07 2014-11-03 주식회사 엘지화학 고정부재를 구비한 전지모듈
KR101500935B1 (ko) * 2012-08-17 2015-03-11 주식회사 엘지화학 조립 체결 구조를 가진 전지모듈
US10213973B2 (en) * 2015-01-22 2019-02-26 Michael A. Hawkins Composite rail tie apparatus and method
CN108779268B (zh) * 2016-03-04 2021-08-24 科思创德国股份有限公司 制造纤维复合部件的方法
US10886513B2 (en) * 2017-05-16 2021-01-05 Shape Corp. Vehicle battery tray having tub-based integration
WO2018213383A1 (en) * 2017-05-16 2018-11-22 Shape Corp. Vehicle battery tray with integrated battery retention and support features
FI3428993T3 (fi) 2017-07-13 2023-02-21 Turvallinen akkulaatikko akkusähköautoihin
DE102017217155A1 (de) 2017-09-27 2019-03-28 Volkswagen Aktiengesellschaft Batteriegehäuse und Verfahren zur Herstellung eines Batteriegehäuses
DE102017126949B4 (de) * 2017-11-16 2025-02-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batterieeinrichtung für ein wenigstens teilweise elektrisch betriebenes Kraftfahrzeug

Also Published As

Publication number Publication date
CN113614989B (zh) 2024-10-29
US20220169124A1 (en) 2022-06-02
US12043125B2 (en) 2024-07-23
JP2022526353A (ja) 2022-05-24
WO2020200885A1 (de) 2020-10-08
CN113614989A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
EP3948970A1 (de) Batteriegehäuse und seine verwendung in elektrofahrzeugen
EP0918663B1 (de) Kraftfahrzeug mit wärmedämmung
DE102012213308B4 (de) Batteriepackgehäuseanordnung für Elektro- und Hybridfahrzeuge unter Verwendung eines Kunststoffverbundwerkstoffes und Verfahren zum Herstellen desselben
WO2007075535A2 (en) Load-bearing composite panels
EP3612579B1 (de) Pultrudat, dessen herstellung und verwendung
WO2009043446A2 (de) Dachmodul
EP2768891A1 (de) Faserverstärktes polyisocyanuratbauteil und ein verfahren zu dessen herstellung
DE112012002694T5 (de) Bauteile, hergestellt aus thermoplastischen Verbundwerkstoffen
WO2010125038A1 (de) Verbundwerkstoff umfassend zwei oder mehrere übereinander angeordnete schichten eines holzartigen werkstoffes
EP3313910B1 (de) Polyurethansysteme für schichtaufbauten in windkraftanlagen
WO2010125012A1 (de) Verwendung eines verbundwerkstoffes auf basis eines einkomponenten-polyurethanklebstoffes
WO2012117093A1 (de) Bauteil für schienenfahrzeuge
EP0624619B1 (de) Harte hydrophobe Polyurethane
EP1218234B1 (de) Fahrzeug für lasten- und personentransporte
DE10244287B4 (de) Spacer enthaltende, dellenfreie Verbundelemente
DE69000688T2 (de) Hochleistungsstossstangenmodul fuer kraftfahrzeuge.
EP2683592A1 (de) Kraftableitungskomponente für ein kraftfahrzeug zum schutz vor einem aufschlag einer bordsteinkante auf eine unterseite des kraftfahrzeugs
DE102018000950B4 (de) Fahrzeugbatterie mit einem im Crashfall auf Druck beanspruchten FKV-Profilbauteil
DE102011079651A1 (de) PUR-PIR-Hartschaumstoff mit verbesserter Haftung in Verbundelementen
DE102021211094A1 (de) Elektrische Batterie und Kraftfahrzeug
DE10212235A1 (de) Polymethacrylimid-Schaumstoffe mit verringerter Porengröße
DE202019102847U1 (de) Sperrpfeiler zur Verwendung in einem Poller und Poller mit einem solchen Pfeiler
DE102010028391A1 (de) Dämpfungselement mit Befestigungsmittel
DE102005057998A1 (de) Polyurethan-Hartschaumstoffe
DE102008017621A1 (de) Photovoltaisches Solarmodul

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COVESTRO DEUTSCHLAND AG